Files
reflector/gpu/self_hosted/app/services/diarizer.py
Sergey Mankovsky ab859d65a6 feat: self-hosted gpu api (#636)
* Self-hosted gpu api

* Refactor self-hosted api

* Rename model api tests

* Use lifespan instead of startup event

* Fix self hosted imports

* Add newlines

* Add response models

* Move gpu dir to the root

* Add project description

* Refactor lifespan

* Update env var names for model api tests

* Preload diarizarion service

* Refactor uploaded file paths
2025-09-17 18:52:03 +02:00

43 lines
1.4 KiB
Python

import os
import threading
import torch
import torchaudio
from pyannote.audio import Pipeline
class PyannoteDiarizationService:
def __init__(self):
self._pipeline = None
self._device = "cpu"
self._lock = threading.Lock()
def load(self):
self._device = "cuda" if torch.cuda.is_available() else "cpu"
self._pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.environ.get("HF_TOKEN"),
)
self._pipeline.to(torch.device(self._device))
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
if self._pipeline is None:
self.load()
waveform, sample_rate = torchaudio.load(file_path)
with self._lock:
diarization = self._pipeline(
{"waveform": waveform, "sample_rate": sample_rate}
)
words = []
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
words.append(
{
"start": round(timestamp + diarization_segment.start, 3),
"end": round(timestamp + diarization_segment.end, 3),
"speaker": int(speaker[-2:])
if speaker and speaker[-2:].isdigit()
else 0,
}
)
return {"diarization": words}