mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
689 lines
21 KiB
Python
689 lines
21 KiB
Python
"""
|
|
Main reflector pipeline for live streaming
|
|
==========================================
|
|
|
|
This is the default pipeline used in the API.
|
|
|
|
It is decoupled to:
|
|
- PipelineMainLive: have limited processing during live
|
|
- PipelineMainPost: do heavy lifting after the live
|
|
|
|
It is directly linked to our data model.
|
|
"""
|
|
|
|
import asyncio
|
|
import functools
|
|
from contextlib import asynccontextmanager
|
|
|
|
from celery import chord, group, shared_task
|
|
from pydantic import BaseModel
|
|
from reflector.db.transcripts import (
|
|
Transcript,
|
|
TranscriptDuration,
|
|
TranscriptFinalLongSummary,
|
|
TranscriptFinalShortSummary,
|
|
TranscriptFinalTitle,
|
|
TranscriptText,
|
|
TranscriptTopic,
|
|
TranscriptWaveform,
|
|
transcripts_controller,
|
|
)
|
|
from reflector.logger import logger
|
|
from reflector.pipelines.runner import PipelineRunner
|
|
from reflector.processors import (
|
|
AudioChunkerProcessor,
|
|
AudioDiarizationAutoProcessor,
|
|
AudioFileWriterProcessor,
|
|
AudioMergeProcessor,
|
|
AudioTranscriptAutoProcessor,
|
|
BroadcastProcessor,
|
|
Pipeline,
|
|
TranscriptFinalLongSummaryProcessor,
|
|
TranscriptFinalShortSummaryProcessor,
|
|
TranscriptFinalTitleProcessor,
|
|
TranscriptLinerProcessor,
|
|
TranscriptTopicDetectorProcessor,
|
|
TranscriptTranslatorProcessor,
|
|
)
|
|
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
|
from reflector.processors.types import AudioDiarizationInput
|
|
from reflector.processors.types import (
|
|
TitleSummaryWithId as TitleSummaryWithIdProcessorType,
|
|
)
|
|
from reflector.processors.types import Transcript as TranscriptProcessorType
|
|
from reflector.settings import settings
|
|
from reflector.ws_manager import WebsocketManager, get_ws_manager
|
|
from structlog import BoundLogger as Logger
|
|
|
|
|
|
def asynctask(f):
|
|
@functools.wraps(f)
|
|
def wrapper(*args, **kwargs):
|
|
coro = f(*args, **kwargs)
|
|
try:
|
|
loop = asyncio.get_running_loop()
|
|
except RuntimeError:
|
|
loop = None
|
|
if loop and loop.is_running():
|
|
return loop.run_until_complete(coro)
|
|
return asyncio.run(coro)
|
|
|
|
return wrapper
|
|
|
|
|
|
def broadcast_to_sockets(func):
|
|
"""
|
|
Decorator to broadcast transcript event to websockets
|
|
concerning this transcript
|
|
"""
|
|
|
|
async def wrapper(self, *args, **kwargs):
|
|
resp = await func(self, *args, **kwargs)
|
|
if resp is None:
|
|
return
|
|
await self.ws_manager.send_json(
|
|
room_id=self.ws_room_id,
|
|
message=resp.model_dump(mode="json"),
|
|
)
|
|
|
|
return wrapper
|
|
|
|
|
|
def get_transcript(func):
|
|
"""
|
|
Decorator to fetch the transcript from the database from the first argument
|
|
"""
|
|
|
|
async def wrapper(**kwargs):
|
|
transcript_id = kwargs.pop("transcript_id")
|
|
transcript = await transcripts_controller.get_by_id(transcript_id=transcript_id)
|
|
if not transcript:
|
|
raise Exception("Transcript {transcript_id} not found")
|
|
tlogger = logger.bind(transcript_id=transcript.id)
|
|
try:
|
|
return await func(transcript=transcript, logger=tlogger, **kwargs)
|
|
except Exception as exc:
|
|
tlogger.error("Pipeline error", exc_info=exc)
|
|
raise
|
|
|
|
return wrapper
|
|
|
|
|
|
class StrValue(BaseModel):
|
|
value: str
|
|
|
|
|
|
class PipelineMainBase(PipelineRunner):
|
|
transcript_id: str
|
|
ws_room_id: str | None = None
|
|
ws_manager: WebsocketManager | None = None
|
|
|
|
def prepare(self):
|
|
# prepare websocket
|
|
self._lock = asyncio.Lock()
|
|
self.ws_room_id = f"ts:{self.transcript_id}"
|
|
self.ws_manager = get_ws_manager()
|
|
|
|
async def get_transcript(self) -> Transcript:
|
|
# fetch the transcript
|
|
result = await transcripts_controller.get_by_id(
|
|
transcript_id=self.transcript_id
|
|
)
|
|
if not result:
|
|
raise Exception("Transcript not found")
|
|
return result
|
|
|
|
def get_transcript_topics(self, transcript: Transcript) -> list[TranscriptTopic]:
|
|
return [
|
|
TitleSummaryWithIdProcessorType(
|
|
id=topic.id,
|
|
title=topic.title,
|
|
summary=topic.summary,
|
|
timestamp=topic.timestamp,
|
|
duration=topic.duration,
|
|
transcript=TranscriptProcessorType(words=topic.words),
|
|
)
|
|
for topic in transcript.topics
|
|
]
|
|
|
|
@asynccontextmanager
|
|
async def transaction(self):
|
|
async with self._lock:
|
|
async with transcripts_controller.transaction():
|
|
yield
|
|
|
|
@broadcast_to_sockets
|
|
async def on_status(self, status):
|
|
# if it's the first part, update the status of the transcript
|
|
# but do not set the ended status yet.
|
|
if isinstance(self, PipelineMainLive):
|
|
status_mapping = {
|
|
"started": "recording",
|
|
"push": "recording",
|
|
"flush": "processing",
|
|
"error": "error",
|
|
}
|
|
elif isinstance(self, PipelineMainFinalSummaries):
|
|
status_mapping = {
|
|
"push": "processing",
|
|
"flush": "processing",
|
|
"error": "error",
|
|
"ended": "ended",
|
|
}
|
|
else:
|
|
# intermediate pipeline don't update status
|
|
return
|
|
|
|
# mutate to model status
|
|
status = status_mapping.get(status)
|
|
if not status:
|
|
return
|
|
|
|
# when the status of the pipeline changes, update the transcript
|
|
async with self.transaction():
|
|
transcript = await self.get_transcript()
|
|
if status == transcript.status:
|
|
return
|
|
resp = await transcripts_controller.append_event(
|
|
transcript=transcript,
|
|
event="STATUS",
|
|
data=StrValue(value=status),
|
|
)
|
|
await transcripts_controller.update(
|
|
transcript,
|
|
{
|
|
"status": status,
|
|
},
|
|
)
|
|
return resp
|
|
|
|
@broadcast_to_sockets
|
|
async def on_transcript(self, data):
|
|
async with self.transaction():
|
|
transcript = await self.get_transcript()
|
|
return await transcripts_controller.append_event(
|
|
transcript=transcript,
|
|
event="TRANSCRIPT",
|
|
data=TranscriptText(text=data.text, translation=data.translation),
|
|
)
|
|
|
|
@broadcast_to_sockets
|
|
async def on_topic(self, data):
|
|
topic = TranscriptTopic(
|
|
title=data.title,
|
|
summary=data.summary,
|
|
timestamp=data.timestamp,
|
|
transcript=data.transcript.text,
|
|
words=data.transcript.words,
|
|
)
|
|
if isinstance(data, TitleSummaryWithIdProcessorType):
|
|
topic.id = data.id
|
|
async with self.transaction():
|
|
transcript = await self.get_transcript()
|
|
await transcripts_controller.upsert_topic(transcript, topic)
|
|
return await transcripts_controller.append_event(
|
|
transcript=transcript,
|
|
event="TOPIC",
|
|
data=topic,
|
|
)
|
|
|
|
@broadcast_to_sockets
|
|
async def on_title(self, data):
|
|
final_title = TranscriptFinalTitle(title=data.title)
|
|
async with self.transaction():
|
|
transcript = await self.get_transcript()
|
|
if not transcript.title:
|
|
await transcripts_controller.update(
|
|
transcript,
|
|
{
|
|
"title": final_title.title,
|
|
},
|
|
)
|
|
return await transcripts_controller.append_event(
|
|
transcript=transcript,
|
|
event="FINAL_TITLE",
|
|
data=final_title,
|
|
)
|
|
|
|
@broadcast_to_sockets
|
|
async def on_long_summary(self, data):
|
|
final_long_summary = TranscriptFinalLongSummary(long_summary=data.long_summary)
|
|
async with self.transaction():
|
|
transcript = await self.get_transcript()
|
|
await transcripts_controller.update(
|
|
transcript,
|
|
{
|
|
"long_summary": final_long_summary.long_summary,
|
|
},
|
|
)
|
|
return await transcripts_controller.append_event(
|
|
transcript=transcript,
|
|
event="FINAL_LONG_SUMMARY",
|
|
data=final_long_summary,
|
|
)
|
|
|
|
@broadcast_to_sockets
|
|
async def on_short_summary(self, data):
|
|
final_short_summary = TranscriptFinalShortSummary(
|
|
short_summary=data.short_summary
|
|
)
|
|
async with self.transaction():
|
|
transcript = await self.get_transcript()
|
|
await transcripts_controller.update(
|
|
transcript,
|
|
{
|
|
"short_summary": final_short_summary.short_summary,
|
|
},
|
|
)
|
|
return await transcripts_controller.append_event(
|
|
transcript=transcript,
|
|
event="FINAL_SHORT_SUMMARY",
|
|
data=final_short_summary,
|
|
)
|
|
|
|
@broadcast_to_sockets
|
|
async def on_duration(self, data):
|
|
async with self.transaction():
|
|
duration = TranscriptDuration(duration=data)
|
|
|
|
transcript = await self.get_transcript()
|
|
await transcripts_controller.update(
|
|
transcript,
|
|
{
|
|
"duration": duration.duration,
|
|
},
|
|
)
|
|
return await transcripts_controller.append_event(
|
|
transcript=transcript, event="DURATION", data=duration
|
|
)
|
|
|
|
@broadcast_to_sockets
|
|
async def on_waveform(self, data):
|
|
async with self.transaction():
|
|
waveform = TranscriptWaveform(waveform=data)
|
|
|
|
transcript = await self.get_transcript()
|
|
|
|
return await transcripts_controller.append_event(
|
|
transcript=transcript, event="WAVEFORM", data=waveform
|
|
)
|
|
|
|
|
|
class PipelineMainLive(PipelineMainBase):
|
|
"""
|
|
Main pipeline for live streaming, attach to RTC connection
|
|
Any long post process should be done in the post pipeline
|
|
"""
|
|
|
|
async def create(self) -> Pipeline:
|
|
# create a context for the whole rtc transaction
|
|
# add a customised logger to the context
|
|
self.prepare()
|
|
transcript = await self.get_transcript()
|
|
|
|
processors = [
|
|
AudioFileWriterProcessor(
|
|
path=transcript.audio_wav_filename,
|
|
on_duration=self.on_duration,
|
|
),
|
|
AudioChunkerProcessor(),
|
|
AudioMergeProcessor(),
|
|
AudioTranscriptAutoProcessor.as_threaded(),
|
|
TranscriptLinerProcessor(),
|
|
TranscriptTranslatorProcessor.as_threaded(callback=self.on_transcript),
|
|
TranscriptTopicDetectorProcessor.as_threaded(callback=self.on_topic),
|
|
]
|
|
pipeline = Pipeline(*processors)
|
|
pipeline.options = self
|
|
pipeline.set_pref("audio:source_language", transcript.source_language)
|
|
pipeline.set_pref("audio:target_language", transcript.target_language)
|
|
pipeline.logger.bind(transcript_id=transcript.id)
|
|
pipeline.logger.info("Pipeline main live created")
|
|
|
|
return pipeline
|
|
|
|
async def on_ended(self):
|
|
# when the pipeline ends, connect to the post pipeline
|
|
logger.info("Pipeline main live ended", transcript_id=self.transcript_id)
|
|
logger.info("Scheduling pipeline main post", transcript_id=self.transcript_id)
|
|
pipeline_post(transcript_id=self.transcript_id)
|
|
|
|
|
|
class PipelineMainDiarization(PipelineMainBase):
|
|
"""
|
|
Diarize the audio and update topics
|
|
"""
|
|
|
|
async def create(self) -> Pipeline:
|
|
# create a context for the whole rtc transaction
|
|
# add a customised logger to the context
|
|
self.prepare()
|
|
pipeline = Pipeline(
|
|
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
|
)
|
|
pipeline.options = self
|
|
|
|
# now let's start the pipeline by pushing information to the
|
|
# first processor diarization processor
|
|
# XXX translation is lost when converting our data model to the processor model
|
|
transcript = await self.get_transcript()
|
|
|
|
# diarization works only if the file is uploaded to an external storage
|
|
if transcript.audio_location == "local":
|
|
pipeline.logger.info("Audio is local, skipping diarization")
|
|
return
|
|
|
|
topics = self.get_transcript_topics(transcript)
|
|
audio_url = await transcript.get_audio_url()
|
|
audio_diarization_input = AudioDiarizationInput(
|
|
audio_url=audio_url,
|
|
topics=topics,
|
|
)
|
|
|
|
# as tempting to use pipeline.push, prefer to use the runner
|
|
# to let the start just do one job.
|
|
pipeline.logger.bind(transcript_id=transcript.id)
|
|
pipeline.logger.info("Diarization pipeline created")
|
|
await self.push(audio_diarization_input)
|
|
await self.flush()
|
|
|
|
return pipeline
|
|
|
|
|
|
class PipelineMainFromTopics(PipelineMainBase):
|
|
"""
|
|
Pseudo class for generating a pipeline from topics
|
|
"""
|
|
|
|
def get_processors(self) -> list:
|
|
raise NotImplementedError
|
|
|
|
async def create(self) -> Pipeline:
|
|
self.prepare()
|
|
|
|
# get transcript
|
|
self._transcript = transcript = await self.get_transcript()
|
|
|
|
# create pipeline
|
|
processors = self.get_processors()
|
|
pipeline = Pipeline(*processors)
|
|
pipeline.options = self
|
|
pipeline.logger.bind(transcript_id=transcript.id)
|
|
pipeline.logger.info(f"{self.__class__.__name__} pipeline created")
|
|
|
|
# push topics
|
|
topics = self.get_transcript_topics(transcript)
|
|
for topic in topics:
|
|
await self.push(topic)
|
|
|
|
await self.flush()
|
|
|
|
return pipeline
|
|
|
|
|
|
class PipelineMainTitleAndShortSummary(PipelineMainFromTopics):
|
|
"""
|
|
Generate title from the topics
|
|
"""
|
|
|
|
def get_processors(self) -> list:
|
|
return [
|
|
BroadcastProcessor(
|
|
processors=[
|
|
TranscriptFinalTitleProcessor.as_threaded(callback=self.on_title),
|
|
TranscriptFinalShortSummaryProcessor.as_threaded(
|
|
callback=self.on_short_summary
|
|
),
|
|
]
|
|
)
|
|
]
|
|
|
|
|
|
class PipelineMainFinalSummaries(PipelineMainFromTopics):
|
|
"""
|
|
Generate summaries from the topics
|
|
"""
|
|
|
|
def get_processors(self) -> list:
|
|
return [
|
|
BroadcastProcessor(
|
|
processors=[
|
|
TranscriptFinalLongSummaryProcessor.as_threaded(
|
|
callback=self.on_long_summary
|
|
),
|
|
TranscriptFinalShortSummaryProcessor.as_threaded(
|
|
callback=self.on_short_summary
|
|
),
|
|
]
|
|
),
|
|
]
|
|
|
|
|
|
class PipelineMainWaveform(PipelineMainFromTopics):
|
|
"""
|
|
Generate waveform
|
|
"""
|
|
|
|
def get_processors(self) -> list:
|
|
return [
|
|
AudioWaveformProcessor.as_threaded(
|
|
audio_path=self._transcript.audio_wav_filename,
|
|
waveform_path=self._transcript.audio_waveform_filename,
|
|
on_waveform=self.on_waveform,
|
|
),
|
|
]
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_remove_upload(transcript: Transcript, logger: Logger):
|
|
logger.info("Starting remove upload")
|
|
uploads = transcript.data_path.glob("upload.*")
|
|
for upload in uploads:
|
|
upload.unlink(missing_ok=True)
|
|
logger.info("Remove upload done")
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_waveform(transcript: Transcript, logger: Logger):
|
|
logger.info("Starting waveform")
|
|
runner = PipelineMainWaveform(transcript_id=transcript.id)
|
|
await runner.run()
|
|
logger.info("Waveform done")
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_convert_to_mp3(transcript: Transcript, logger: Logger):
|
|
logger.info("Starting convert to mp3")
|
|
|
|
# If the audio wav is not available, just skip
|
|
wav_filename = transcript.audio_wav_filename
|
|
if not wav_filename.exists():
|
|
logger.warning("Wav file not found, may be already converted")
|
|
return
|
|
|
|
# Convert to mp3
|
|
mp3_filename = transcript.audio_mp3_filename
|
|
|
|
import av
|
|
|
|
with av.open(wav_filename.as_posix()) as in_container:
|
|
in_stream = in_container.streams.audio[0]
|
|
with av.open(mp3_filename.as_posix(), "w") as out_container:
|
|
out_stream = out_container.add_stream("mp3")
|
|
for frame in in_container.decode(in_stream):
|
|
for packet in out_stream.encode(frame):
|
|
out_container.mux(packet)
|
|
|
|
# Delete the wav file
|
|
transcript.audio_wav_filename.unlink(missing_ok=True)
|
|
|
|
logger.info("Convert to mp3 done")
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_upload_mp3(transcript: Transcript, logger: Logger):
|
|
if not settings.TRANSCRIPT_STORAGE_BACKEND:
|
|
logger.info("No storage backend configured, skipping mp3 upload")
|
|
return
|
|
|
|
logger.info("Starting upload mp3")
|
|
|
|
# If the audio mp3 is not available, just skip
|
|
mp3_filename = transcript.audio_mp3_filename
|
|
if not mp3_filename.exists():
|
|
logger.warning("Mp3 file not found, may be already uploaded")
|
|
return
|
|
|
|
# Upload to external storage and delete the file
|
|
await transcripts_controller.move_mp3_to_storage(transcript)
|
|
|
|
logger.info("Upload mp3 done")
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_diarization(transcript: Transcript, logger: Logger):
|
|
logger.info("Starting diarization")
|
|
runner = PipelineMainDiarization(transcript_id=transcript.id)
|
|
await runner.run()
|
|
logger.info("Diarization done")
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_title_and_short_summary(transcript: Transcript, logger: Logger):
|
|
logger.info("Starting title and short summary")
|
|
runner = PipelineMainTitleAndShortSummary(transcript_id=transcript.id)
|
|
await runner.run()
|
|
logger.info("Title and short summary done")
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_summaries(transcript: Transcript, logger: Logger):
|
|
logger.info("Starting summaries")
|
|
runner = PipelineMainFinalSummaries(transcript_id=transcript.id)
|
|
await runner.run()
|
|
logger.info("Summaries done")
|
|
|
|
|
|
# ===================================================================
|
|
# Celery tasks that can be called from the API
|
|
# ===================================================================
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_remove_upload(*, transcript_id: str):
|
|
await pipeline_remove_upload(transcript_id=transcript_id)
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_waveform(*, transcript_id: str):
|
|
await pipeline_waveform(transcript_id=transcript_id)
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_convert_to_mp3(*, transcript_id: str):
|
|
await pipeline_convert_to_mp3(transcript_id=transcript_id)
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_upload_mp3(*, transcript_id: str):
|
|
await pipeline_upload_mp3(transcript_id=transcript_id)
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_diarization(*, transcript_id: str):
|
|
await pipeline_diarization(transcript_id=transcript_id)
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_title_and_short_summary(*, transcript_id: str):
|
|
await pipeline_title_and_short_summary(transcript_id=transcript_id)
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_final_summaries(*, transcript_id: str):
|
|
await pipeline_summaries(transcript_id=transcript_id)
|
|
|
|
|
|
def pipeline_post(*, transcript_id: str):
|
|
"""
|
|
Run the post pipeline
|
|
"""
|
|
chain_mp3_and_diarize = (
|
|
task_pipeline_waveform.si(transcript_id=transcript_id)
|
|
| task_pipeline_convert_to_mp3.si(transcript_id=transcript_id)
|
|
| task_pipeline_upload_mp3.si(transcript_id=transcript_id)
|
|
| task_pipeline_remove_upload.si(transcript_id=transcript_id)
|
|
| task_pipeline_diarization.si(transcript_id=transcript_id)
|
|
)
|
|
chain_title_preview = task_pipeline_title_and_short_summary.si(
|
|
transcript_id=transcript_id
|
|
)
|
|
chain_final_summaries = task_pipeline_final_summaries.si(
|
|
transcript_id=transcript_id
|
|
)
|
|
|
|
chain = chord(
|
|
group(chain_mp3_and_diarize, chain_title_preview),
|
|
chain_final_summaries,
|
|
)
|
|
chain.delay()
|
|
|
|
|
|
@get_transcript
|
|
async def pipeline_process(transcript: Transcript, logger: Logger):
|
|
import av
|
|
|
|
try:
|
|
# open audio
|
|
audio_filename = next(transcript.data_path.glob("upload.*"), None)
|
|
if audio_filename and transcript.status != "uploaded":
|
|
raise Exception("File upload is not completed")
|
|
|
|
if not audio_filename:
|
|
audio_filename = next(transcript.data_path.glob("audio.*"), None)
|
|
if not audio_filename:
|
|
raise Exception("There is no file to process")
|
|
|
|
container = av.open(audio_filename.as_posix())
|
|
|
|
# create pipeline
|
|
pipeline = PipelineMainLive(transcript_id=transcript.id)
|
|
pipeline.start()
|
|
|
|
# push audio to pipeline
|
|
try:
|
|
logger.info("Start pushing audio into the pipeline")
|
|
for frame in container.decode(audio=0):
|
|
await pipeline.push(frame)
|
|
finally:
|
|
logger.info("Flushing the pipeline")
|
|
await pipeline.flush()
|
|
|
|
logger.info("Waiting for the pipeline to end")
|
|
await pipeline.join()
|
|
|
|
except Exception as exc:
|
|
logger.error("Pipeline error", exc_info=exc)
|
|
await transcripts_controller.update(
|
|
transcript,
|
|
{
|
|
"status": "error",
|
|
},
|
|
)
|
|
raise
|
|
|
|
logger.info("Pipeline ended")
|
|
|
|
|
|
@shared_task
|
|
@asynctask
|
|
async def task_pipeline_process(*, transcript_id: str):
|
|
return await pipeline_process(transcript_id=transcript_id)
|