Files
reflector/server/gpu/modal
projects-g 9fe261406c Feature additions (#210)
* initial

* add LLM features

* update LLM logic

* update llm functions: change control flow

* add generation config

* update return types

* update processors and tests

* update rtc_offer

* revert new title processor change

* fix unit tests

* add comments and fix HTTP 500

* adjust prompt

* test with reflector app

* revert new event for final title

* update

* move onus onto processors

* move onus onto processors

* stash

* add provision for gen config

* dynamically pack the LLM input using context length

* tune final summary params

* update consolidated class structures

* update consolidated class structures

* update precommit

* add broadcast processors

* working baseline

* Organize LLMParams

* minor fixes

* minor fixes

* minor fixes

* fix unit tests

* fix unit tests

* fix unit tests

* update tests

* update tests

* edit pipeline response events

* update summary return types

* configure tests

* alembic db migration

* change LLM response flow

* edit main llm functions

* edit main llm functions

* change llm name and gen cf

* Update transcript_topic_detector.py

* PR review comments

* checkpoint before db event migration

* update DB migration of past events

* update DB migration of past events

* edit LLM classes

* Delete unwanted file

* remove List typing

* remove List typing

* update oobabooga API call

* topic enhancements

* update UI event handling

* move ensure_casing to llm base

* update tests

* update tests
2023-09-13 11:26:08 +05:30
..
2023-08-16 13:28:23 +05:30
2023-09-13 11:26:08 +05:30

Reflector GPU implementation - Transcription and LLM

This repository hold an API for the GPU implementation of the Reflector API service, and use Modal.com

  • reflector_llm.py - LLM API
  • reflector_transcriber.py - Transcription API

Modal.com deployment

Create a modal secret, and name it reflector-gpu. It should contain an REFLECTOR_APIKEY environment variable with a value.

The deployment is done using Modal.com service.

$ modal deploy reflector_transcriber.py
...
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run

$ modal deploy reflector_llm.py
...
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run

Then in your reflector api configuration .env, you can set theses keys:

TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY

LLM_BACKEND=modal
LLM_URL=https://xxxx--reflector-llm-web.modal.run
LLM_MODAL_API_KEY=REFLECTOR_APIKEY

API

Authentication must be passed with the Authorization header, using the bearer scheme.

Authorization: bearer <REFLECTOR_APIKEY>

Warmup (both)

POST /warmup

response

{
    "status": "ok"
}

LLM

POST /llm

request

{
    "prompt": "xxx"
}

response

{
    "text": "xxx completed"
}

Transcription

POST /transcribe

request (multipart/form-data)

  • file - audio file
  • language - language code (e.g. en)

response

{
    "text": "xxx",
    "words": [
        {"text": "xxx", "start": 0.0, "end": 1.0}
    ]
}