Files
reflector/CLAUDE.md
Mathieu Virbel 406164033d feat: new summary using phi-4 and llama-index (#519)
* feat: add litellm backend implementation

* refactor: improve generate/completion methods for base LLM

* refactor: remove tokenizer logic

* style: apply code formatting

* fix: remove hallucinations from LLM responses

* refactor: comprehensive LLM and summarization rework

* chore: remove debug code

* feat: add structured output support to LiteLLM

* refactor: apply self-review improvements

* docs: add model structured output comments

* docs: update model structured output comments

* style: apply linting and formatting fixes

* fix: resolve type logic bug

* refactor: apply PR review feedback

* refactor: apply additional PR review feedback

* refactor: apply final PR review feedback

* fix: improve schema passing for LLMs without structured output

* feat: add PR comments and logger improvements

* docs: update README and add HTTP logging

* feat: improve HTTP logging

* feat: add summary chunking functionality

* fix: resolve title generation runtime issues

* refactor: apply self-review improvements

* style: apply linting and formatting

* feat: implement LiteLLM class structure

* style: apply linting and formatting fixes

* docs: env template model name fix

* chore: remove older litellm class

* chore: format

* refactor: simplify OpenAILLM

* refactor: OpenAILLM tokenizer

* refactor: self-review

* refactor: self-review

* refactor: self-review

* chore: format

* chore: remove LLM_USE_STRUCTURED_OUTPUT from envs

* chore: roll back migration lint changes

* chore: roll back migration lint changes

* fix: make summary llm configuration optional for the tests

* fix: missing f-string

* fix: tweak the prompt for summary title

* feat: try llamaindex for summarization

* fix: complete refactor of summary builder using llamaindex and structured output when possible

* fix: separate prompt as constant

* fix: typings

* fix: enhance prompt to prevent mentioning others subject while summarize one

* fix: various changes after self-review

* fix: from igor review

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-07-31 15:29:29 -06:00

5.4 KiB

CLAUDE.md

This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.

Project Overview

Reflector is an AI-powered audio transcription and meeting analysis platform with real-time processing capabilities. The system consists of:

  • Frontend: Next.js 14 React application (www/) with Chakra UI, real-time WebSocket integration
  • Backend: Python FastAPI server (server/) with async database operations and background processing
  • Processing: GPU-accelerated ML pipeline for transcription, diarization, summarization via Modal.com
  • Infrastructure: Redis, PostgreSQL/SQLite, Celery workers, WebRTC streaming

Development Commands

Backend (Python) - cd server/

Setup and Dependencies:

# Install dependencies
uv sync

# Database migrations (first run or schema changes)
uv run alembic upgrade head

# Start services
docker compose up -d redis

Development:

# Start FastAPI server
uv run -m reflector.app --reload

# Start Celery worker for background tasks
uv run celery -A reflector.worker.app worker --loglevel=info

# Start Celery beat scheduler (optional, for cron jobs)
uv run celery -A reflector.worker.app beat

Testing:

# Run all tests with coverage
uv run pytest

# Run specific test file
uv run pytest tests/test_transcripts.py

# Run tests with verbose output
uv run pytest -v

Process Audio Files:

# Process local audio file manually
uv run python -m reflector.tools.process path/to/audio.wav

Frontend (Next.js) - cd www/

Setup:

# Install dependencies
yarn install

# Copy configuration templates
cp .env_template .env
cp config-template.ts config.ts

Development:

# Start development server
yarn dev

# Generate TypeScript API client from OpenAPI spec
yarn openapi

# Lint code
yarn lint

# Format code
yarn format

# Build for production
yarn build

Docker Compose (Full Stack)

# Start all services
docker compose up -d

# Start specific services
docker compose up -d redis server worker

Architecture Overview

Backend Processing Pipeline

The audio processing follows a modular pipeline architecture:

  1. Audio Input: WebRTC streaming, file upload, or cloud recording ingestion
  2. Chunking: Audio split into processable segments (AudioChunkerProcessor)
  3. Transcription: Whisper or Modal.com GPU processing (AudioTranscriptAutoProcessor)
  4. Diarization: Speaker identification (AudioDiarizationAutoProcessor)
  5. Text Processing: Formatting, translation, topic detection
  6. Summarization: AI-powered summaries and title generation
  7. Storage: Database persistence with optional S3 backend

Database Models

Core entities:

  • transcript: Main table with processing results, summaries, topics, participants
  • meeting: Live meeting sessions with consent management
  • room: Virtual meeting spaces with configuration
  • recording: Audio/video file metadata and processing status

API Structure

All endpoints prefixed /v1/:

  • transcripts/ - CRUD operations for transcripts
  • transcripts_audio/ - Audio streaming and download
  • transcripts_webrtc/ - Real-time WebRTC endpoints
  • transcripts_websocket/ - WebSocket for live updates
  • meetings/ - Meeting lifecycle management
  • rooms/ - Virtual room management

Frontend Architecture

  • App Router: Next.js 14 with route groups for organization
  • State: React Context pattern, no Redux
  • Real-time: WebSocket integration for live transcription updates
  • Auth: NextAuth.js with Authentik OAuth/OIDC provider
  • UI: Chakra UI components with Tailwind CSS utilities

Key Configuration

Environment Variables

Backend (server/.env):

  • DATABASE_URL - Database connection string
  • REDIS_URL - Redis broker for Celery
  • MODAL_TOKEN_ID, MODAL_TOKEN_SECRET - Modal.com GPU processing
  • WHEREBY_API_KEY - Video platform integration
  • REFLECTOR_AUTH_BACKEND - Authentication method (none, jwt)

Frontend (www/.env):

  • NEXTAUTH_URL, NEXTAUTH_SECRET - Authentication configuration
  • NEXT_PUBLIC_REFLECTOR_API_URL - Backend API endpoint
  • REFLECTOR_DOMAIN_CONFIG - Feature flags and domain settings

Testing Strategy

  • Backend: pytest with async support, HTTP client mocking, audio processing tests
  • Frontend: No current test suite - opportunities for Jest/React Testing Library
  • Coverage: Backend maintains test coverage reports in htmlcov/

GPU Processing

Modal.com integration for scalable ML processing:

  • Deploy changes: modal run server/gpu/path/to/model.py
  • Requires Modal account with REFLECTOR_GPU_APIKEY secret
  • Fallback to local processing when Modal unavailable

Common Issues

  • Permissions: Browser microphone access required in System Preferences
  • Audio Routing: Use BlackHole (Mac) for merging multiple audio sources
  • WebRTC: Ensure proper CORS configuration for cross-origin streaming
  • Database: Run uv run alembic upgrade head after pulling schema changes

If you need to do any worker/pipeline related work, search for "Pipeline" classes and their "create" or "build" methods to find the main processor sequence. Look for task orchestration patterns (like "chord", "group", or "chain") to identify the post-processing flow with parallel execution chains. This will give you abstract vision on how processing pipeling is organized.