Files
reflector/server/env.example
Mathieu Virbel ad56165b54 fix: remove unused settings and utils files (#522)
* fix: remove unused settings and utils files

* fix: remove migration done

* fix: remove outdated scripts

* fix: removing deployment of hermes, not used anymore

* fix: partially remove secret, still have to understand frontend.
2025-07-31 17:45:48 -06:00

98 lines
2.8 KiB
Plaintext

#
# This file serve as an example of possible configuration
# All the settings are described here: reflector/settings.py
#
## =======================================================
## User authentication
## =======================================================
## Using jwt/authentik
AUTH_BACKEND=jwt
AUTH_JWT_AUDIENCE=
## =======================================================
## Transcription backend
##
## Check reflector/processors/audio_transcript_* for the
## full list of available transcription backend
## =======================================================
## Using local whisper
#TRANSCRIPT_BACKEND=whisper
## Using serverless modal.com (require reflector-gpu-modal deployed)
#TRANSCRIPT_BACKEND=modal
#TRANSCRIPT_URL=https://xxxxx--reflector-transcriber-web.modal.run
#TRANSLATE_URL=https://xxxxx--reflector-translator-web.modal.run
#TRANSCRIPT_MODAL_API_KEY=xxxxx
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=
## =======================================================
## Transcription backend
##
## Only available in modal atm
## =======================================================
TRANSLATE_URL=https://monadical-sas--reflector-translator-web.modal.run
## =======================================================
## LLM backend
##
## Responsible for titles and short summary
## Check reflector/llm/* for the full list of available
## llm backend implementation
## =======================================================
## Using serverless modal.com (require reflector-gpu-modal deployed)
LLM_BACKEND=modal
LLM_URL=https://monadical-sas--reflector-llm-web.modal.run
LLM_MODAL_API_KEY=
ZEPHYR_LLM_URL=https://monadical-sas--reflector-llm-zephyr-web.modal.run
## Using OpenAI
#LLM_BACKEND=openai
#LLM_OPENAI_KEY=xxx
#LLM_OPENAI_MODEL=gpt-3.5-turbo
## Using GPT4ALL
#LLM_BACKEND=openai
#LLM_URL=http://localhost:4891/v1/completions
#LLM_OPENAI_MODEL="GPT4All Falcon"
## Default LLM MODEL NAME
#DEFAULT_LLM=lmsys/vicuna-13b-v1.5
## Cache directory to store models
CACHE_DIR=data
## =======================================================
## Summary LLM configuration
## =======================================================
## Context size for summary generation (tokens)
SUMMARY_LLM_CONTEXT_SIZE_TOKENS=16000
SUMMARY_LLM_URL=
SUMMARY_LLM_API_KEY=sk-
SUMMARY_MODEL=
## =======================================================
## Diarization
##
## Only available on modal
## To allow diarization, you need to expose expose the files to be dowloded by the pipeline
## =======================================================
DIARIZATION_ENABLED=false
DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
## =======================================================
## Sentry
## =======================================================
## Sentry DSN configuration
#SENTRY_DSN=