Files
reflector/server
Jose 5f6910e513 feat: Add calendar event data to transcript webhook payload (#689)
* feat: add calendar event data to transcript webhook payload and implement get_by_id method

* Update server/reflector/worker/webhook.py

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* Update server/reflector/worker/webhook.py

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* style: format conditional time fields with line breaks for better readability

* docs: add calendar event fields to transcript.completed webhook payload schema

---------

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-10-08 11:11:57 -05:00
..
2025-02-03 16:11:01 +01:00
2025-08-20 20:56:45 -04:00
2025-07-16 18:10:11 -06:00
2023-08-29 10:58:27 +02:00
2025-10-07 10:41:01 -04:00
2025-09-29 23:07:49 +02:00
2025-09-17 16:43:20 -06:00
2025-09-17 16:43:20 -06:00

AWS S3/SQS usage clarification

Whereby.com uploads recordings directly to our S3 bucket when meetings end.

SQS Queue (AWS_PROCESS_RECORDING_QUEUE_URL)

Filled by: AWS S3 Event Notifications

The S3 bucket is configured to send notifications to our SQS queue when new objects are created. This is standard AWS infrastructure - not in our codebase.

AWS S3 → SQS Event Configuration:

  • Event Type: s3:ObjectCreated:*
  • Filter: *.mp4 files
  • Destination: Our SQS queue

Our System's Role

Polls SQS every 60 seconds via /server/reflector/worker/process.py:24-62:

Every 60 seconds, check for new recordings

sqs = boto3.client("sqs", ...) response = sqs.receive_message(QueueUrl=queue_url, ...)

Requeue

uv run /app/requeue_uploaded_file.py TRANSCRIPT_ID

Pipeline Management

Continue stuck pipeline from final summaries (identify_participants) step:

uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeline_final_summaries; result = task_pipeline_final_summaries.delay(transcript_id='TRANSCRIPT_ID'); print(f'Task queued: {result.id}')"

Run full post-processing pipeline (continues to completion):

uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"

.