mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
158 lines
5.2 KiB
Python
158 lines
5.2 KiB
Python
import spacy
|
|
import sys
|
|
|
|
|
|
# Observe the incremental summaries by performing summaries in chunks
|
|
with open("transcript.txt") as f:
|
|
transcription = f.read()
|
|
|
|
|
|
def split_text_file(filename, token_count):
|
|
nlp = spacy.load('en_core_web_md')
|
|
|
|
with open(filename, 'r') as file:
|
|
text = file.read()
|
|
|
|
doc = nlp(text)
|
|
total_tokens = len(doc)
|
|
|
|
parts = []
|
|
start_index = 0
|
|
|
|
while start_index < total_tokens:
|
|
end_index = start_index + token_count
|
|
part_tokens = doc[start_index:end_index]
|
|
part = ' '.join(token.text for token in part_tokens)
|
|
parts.append(part)
|
|
start_index = end_index
|
|
|
|
return parts
|
|
|
|
|
|
# Set the chunk length here to split the transcript and test
|
|
MAX_CHUNK_LENGTH = 1000
|
|
|
|
chunks = split_text_file("transcript.txt", MAX_CHUNK_LENGTH)
|
|
print("Number of chunks", len(chunks))
|
|
|
|
# Write chunks to file to refer to input vs output, separated by blank lines
|
|
with open("chunks" + str(MAX_CHUNK_LENGTH) + ".txt", "a") as f:
|
|
for c in chunks:
|
|
f.write(c + "\n\n")
|
|
|
|
# If we want to run only a certain model, type the option while running
|
|
# ex. python incsum.py 1 => will run approach 1
|
|
# If no input, will run all approaches
|
|
|
|
try:
|
|
index = sys.argv[1]
|
|
except:
|
|
index = None
|
|
|
|
# Approach 1 : facebook/bart-large-cnn
|
|
if index == "1" or index is None:
|
|
SUMMARY_MODEL = "facebook/bart-large-cnn"
|
|
MIN_LENGTH = 5
|
|
MAX_LENGTH = 10
|
|
BEAM_SIZE = 2
|
|
|
|
print("Performing chunk summary : " + SUMMARY_MODEL)
|
|
|
|
from transformers import BartTokenizer, BartForConditionalGeneration
|
|
|
|
tokenizer = BartTokenizer.from_pretrained(SUMMARY_MODEL)
|
|
model = BartForConditionalGeneration.from_pretrained(SUMMARY_MODEL)
|
|
summaries = []
|
|
for c in chunks:
|
|
input_ids = tokenizer.encode(c,
|
|
truncation=True,
|
|
max_length=MAX_CHUNK_LENGTH,
|
|
padding="max_length",
|
|
return_tensors='pt')
|
|
summary_ids = model.generate(
|
|
input_ids,
|
|
num_beams=BEAM_SIZE,
|
|
max_length=56,
|
|
early_stopping=True,
|
|
length_penalty=1.0)
|
|
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
|
summaries.append(summary)
|
|
|
|
with open("bart-summaries.txt", "a") as f:
|
|
for summary in summaries:
|
|
f.write(summary + "\n\n")
|
|
|
|
# Approach 2
|
|
if index == "2" or index is None:
|
|
print("Performing chunk summary : " + "gpt-neo-1.3B")
|
|
|
|
import torch
|
|
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
|
|
|
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
|
tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
|
summaries = []
|
|
|
|
for c in chunks:
|
|
input_ids = tokenizer.encode(c,
|
|
truncation=True,
|
|
return_tensors='pt')
|
|
input_length = input_ids.shape[1]
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
|
|
|
|
max_summary_length = 100
|
|
max_length = input_length + max_summary_length
|
|
|
|
output = model.generate(input_ids,
|
|
max_length=max_length,
|
|
attention_mask=attention_mask,
|
|
pad_token_id=model.config.eos_token_id,
|
|
num_beams=4,
|
|
length_penalty=2.0,
|
|
early_stopping=True)
|
|
summary_ids = output[0, input_length:]
|
|
summary = tokenizer.decode(summary_ids, skip_special_tokens=True)
|
|
summaries.append(summary)
|
|
with open("gptneo1.3B-summaries.txt", "a") as f:
|
|
f.write(summary + "\n\n")
|
|
|
|
# Approach 3
|
|
if index == "3" or index is None:
|
|
print("Performing chunk summary : " + "mpt-7B")
|
|
|
|
import torch
|
|
import transformers
|
|
from transformers import AutoTokenizer
|
|
|
|
config = transformers.AutoConfig.from_pretrained('mosaicml/mpt-7b',
|
|
trust_remote_code=True)
|
|
config.attn_config['attn_impl'] = 'triton'
|
|
config.max_seq_len = 1024
|
|
config.init_device = "meta"
|
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
'mosaicml/mpt-7b',
|
|
trust_remote_code=True,
|
|
torch_dtype=torch.bfloat16
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
|
|
|
|
summaries = []
|
|
for c in chunks:
|
|
input_ids = tokenizer.encode(c, return_tensors="pt")
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=25,
|
|
attention_mask=attention_mask,
|
|
pad_token_id=model.config.eos_token_id,
|
|
num_return_sequences=1)
|
|
summary = tokenizer.decode(output[0],
|
|
skip_special_tokens=True)
|
|
summaries.append(summary)
|
|
|
|
with open("mpt-7b-summaries.txt", "a") as f:
|
|
for summary in summaries:
|
|
f.write(summary + "\n\n")
|