Files
reflector/server/reflector/processors/audio_transcript_banana.py
Mathieu Virbel d94e2911c3 Serverless GPU support on banana.dev (#106)
* serverless: implement banana backend for both audio and LLM

Related to monadical-sas/reflector-gpu-banana project

* serverless: got llm working on banana !

* tests: fixes

* serverless: fix dockerfile to use fastapi server + httpx
2023-08-04 10:24:11 +02:00

86 lines
2.7 KiB
Python

"""
Implementation using the GPU service from banana.
API will be a POST request to TRANSCRIPT_URL:
```json
{
"audio_url": "https://...",
"audio_ext": "wav",
"timestamp": 123.456
"language": "en"
}
```
"""
from reflector.processors.audio_transcript import AudioTranscriptProcessor
from reflector.processors.audio_transcript_auto import AudioTranscriptAutoProcessor
from reflector.processors.types import AudioFile, Transcript, Word
from reflector.settings import settings
from reflector.storage import Storage
from reflector.utils.retry import retry
from pathlib import Path
import httpx
class AudioTranscriptBananaProcessor(AudioTranscriptProcessor):
def __init__(self, banana_api_key: str, banana_model_key: str):
super().__init__()
self.transcript_url = settings.TRANSCRIPT_URL
self.timeout = settings.TRANSCRIPT_TIMEOUT
self.storage = Storage.get_instance(
settings.TRANSCRIPT_STORAGE_BACKEND, "TRANSCRIPT_STORAGE_"
)
self.headers = {
"X-Banana-API-Key": banana_api_key,
"X-Banana-Model-Key": banana_model_key,
}
async def _transcript(self, data: AudioFile):
async with httpx.AsyncClient() as client:
print(f"Uploading audio {data.path.name} to S3")
url = await self._upload_file(data.path)
print(f"Try to transcribe audio {data.path.name}")
request_data = {
"audio_url": url,
"audio_ext": data.path.suffix[1:],
"timestamp": float(round(data.timestamp, 2)),
}
response = await retry(client.post)(
self.transcript_url,
json=request_data,
headers=self.headers,
timeout=self.timeout,
)
print(f"Transcript response: {response.status_code} {response.content}")
response.raise_for_status()
result = response.json()
transcript = Transcript(
text=result["text"],
words=[
Word(text=word["text"], start=word["start"], end=word["end"])
for word in result["words"]
],
)
# remove audio file from S3
await self._delete_file(data.path)
return transcript
@retry
async def _upload_file(self, path: Path) -> str:
upload_result = await self.storage.put_file(path.name, open(path, "rb"))
return upload_result.url
@retry
async def _delete_file(self, path: Path):
await self.storage.delete_file(path.name)
return True
AudioTranscriptAutoProcessor.register("banana", AudioTranscriptBananaProcessor)