Files
reflector/server/reflector/processors/audio_diarization_pyannote.py
Mathieu Virbel 3ea7f6b7b6 feat: pipeline improvement with file processing, parakeet, silero-vad (#540)
* feat: improve pipeline threading, and transcriber (parakeet and silero vad)

* refactor: remove whisperx, implement parakeet

* refactor: make audio_chunker more smart and wait for speech, instead of fixed frame

* refactor: make audio merge to always downscale the audio to 16k for transcription

* refactor: make the audio transcript modal accepting batches

* refactor: improve type safety and remove prometheus metrics

- Add DiarizationSegment TypedDict for proper diarization typing
- Replace List/Optional with modern Python list/| None syntax
- Remove all Prometheus metrics from TranscriptDiarizationAssemblerProcessor
- Add comprehensive file processing pipeline with parallel execution
- Update processor imports and type annotations throughout
- Implement optimized file pipeline as default in process.py tool

* refactor: convert FileDiarizationProcessor I/O types to BaseModel

Update FileDiarizationInput and FileDiarizationOutput to inherit from
BaseModel instead of plain classes, following the standard pattern
used by other processors in the codebase.

* test: add tests for file transcript and diarization with pytest-recording

* build: add pytest-recording

* feat: add local pyannote for testing

* fix: replace PyAV AudioResampler with torchaudio for reliable audio processing

- Replace problematic PyAV AudioResampler that was causing ValueError: [Errno 22] Invalid argument
- Use torchaudio.functional.resample for robust sample rate conversion
- Optimize processing: skip conversion for already 16kHz mono audio
- Add direct WAV writing with Python wave module for better performance
- Consolidate duplicate downsample checks for cleaner code
- Maintain list[av.AudioFrame] input interface
- Required for Silero VAD which needs 16kHz mono audio

* fix: replace PyAV AudioResampler with torchaudio solution

- Resolves ValueError: [Errno 22] Invalid argument in AudioMergeProcessor
- Replaces problematic PyAV AudioResampler with torchaudio.functional.resample
- Optimizes processing to skip unnecessary conversions when audio is already 16kHz mono
- Uses direct WAV writing with Python's wave module for better performance
- Fixes test_basic_process to disable diarization (pyannote dependency not installed)
- Updates test expectations to match actual processor behavior
- Removes unused pydub dependency from pyproject.toml
- Adds comprehensive TEST_ANALYSIS.md documenting test suite status

* feat: add parameterized test for both diarization modes

- Adds @pytest.mark.parametrize to test_basic_process with enable_diarization=[False, True]
- Test with diarization=False always passes (tests core AudioMergeProcessor functionality)
- Test with diarization=True gracefully skips when pyannote.audio is not installed
- Provides comprehensive test coverage for both pipeline configurations

* fix: resolve pipeline property naming conflict in AudioDiarizationPyannoteProcessor

- Renames 'pipeline' property to 'diarization_pipeline' to avoid conflict with base Processor.pipeline attribute
- Fixes AttributeError: 'property 'pipeline' object has no setter' when set_pipeline() is called
- Updates property usage in _diarize method to use new name
- Now correctly supports pipeline initialization for diarization processing

* fix: add local for pyannote

* test: add diarization test

* fix: resample on audio merge now working

* fix: correctly restore timestamp

* fix: display exception in a threaded processor if that happen

* Update pyproject.toml

* ci: remove option

* ci: update astral-sh/setup-uv

* test: add monadical url for pytest-recording

* refactor: remove previous version

* build: move faster whisper to local dep

* test: fix missing import

* refactor: improve main_file_pipeline organization and error handling

- Move all imports to the top of the file
- Create unified EmptyPipeline class to replace duplicate mock pipeline code
- Remove timeout and fallback logic - let processors handle their own retries
- Fix error handling to raise any exception from parallel tasks
- Add proper type hints and validation for captured results

* fix: wrong function

* fix: remove task_done

* feat: add configurable file processing timeouts for modal processors

- Add TRANSCRIPT_FILE_TIMEOUT setting (default: 600s) for file transcription
- Add DIARIZATION_FILE_TIMEOUT setting (default: 600s) for file diarization
- Replace hardcoded timeout=600 with configurable settings in modal processors
- Allows customization of timeout values via environment variables

* fix: use logger

* fix: worker process meetings now use file pipeline

* fix: topic not gathered

* refactor: remove prepare(), pipeline now work

* refactor: implement many review from Igor

* test: add test for test_pipeline_main_file

* refactor: remove doc

* doc: add doc

* ci: update build to use native arm64 builder

* fix: merge fixes

* refactor: changes from Igor review + add test (not by default) to test gpu modal part

* ci: update to our own runner linux-amd64

* ci: try using suggested mode=min

* fix: update diarizer for latest modal, and use volume

* fix: modal file extension detection

* fix: put the diarizer as A100
2025-08-20 20:07:19 -06:00

75 lines
2.9 KiB
Python

import os
import torch
import torchaudio
from pyannote.audio import Pipeline
from reflector.processors.audio_diarization import AudioDiarizationProcessor
from reflector.processors.audio_diarization_auto import AudioDiarizationAutoProcessor
from reflector.processors.types import AudioDiarizationInput, DiarizationSegment
class AudioDiarizationPyannoteProcessor(AudioDiarizationProcessor):
"""Local diarization processor using pyannote.audio library"""
def __init__(
self,
model_name: str = "pyannote/speaker-diarization-3.1",
pyannote_auth_token: str | None = None,
device: str | None = None,
**kwargs,
):
super().__init__(**kwargs)
self.model_name = model_name
self.auth_token = pyannote_auth_token or os.environ.get("HF_TOKEN")
self.device = device
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.logger.info(f"Loading pyannote diarization model: {self.model_name}")
self.diarization_pipeline = Pipeline.from_pretrained(
self.model_name, use_auth_token=self.auth_token
)
self.diarization_pipeline.to(torch.device(self.device))
self.logger.info(f"Diarization model loaded on device: {self.device}")
async def _diarize(self, data: AudioDiarizationInput) -> list[DiarizationSegment]:
try:
# Load audio file (audio_url is assumed to be a local file path)
self.logger.info(f"Loading local audio file: {data.audio_url}")
waveform, sample_rate = torchaudio.load(data.audio_url)
audio_input = {"waveform": waveform, "sample_rate": sample_rate}
self.logger.info("Running speaker diarization")
diarization = self.diarization_pipeline(audio_input)
# Convert pyannote diarization output to our format
segments = []
for segment, _, speaker in diarization.itertracks(yield_label=True):
# Extract speaker number from label (e.g., "SPEAKER_00" -> 0)
speaker_id = 0
if speaker.startswith("SPEAKER_"):
try:
speaker_id = int(speaker.split("_")[-1])
except (ValueError, IndexError):
# Fallback to hash-based ID if parsing fails
speaker_id = hash(speaker) % 1000
segments.append(
{
"start": round(segment.start, 3),
"end": round(segment.end, 3),
"speaker": speaker_id,
}
)
self.logger.info(f"Diarization completed with {len(segments)} segments")
return segments
except Exception as e:
self.logger.exception(f"Diarization failed: {e}")
raise
AudioDiarizationAutoProcessor.register("pyannote", AudioDiarizationPyannoteProcessor)