mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 12:19:06 +00:00
upgrade modal
This commit is contained in:
@@ -6,12 +6,12 @@ Reflector GPU backend - diarizer
|
||||
import os
|
||||
|
||||
import modal.gpu
|
||||
from modal import Image, Secret, Stub, asgi_app, method
|
||||
from modal import Image, Secret, App, asgi_app, method, enter
|
||||
from pydantic import BaseModel
|
||||
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.0"
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||
MODEL_DIR = "/root/diarization_models"
|
||||
stub = Stub(name="reflector-diarizer")
|
||||
app = App(name="reflector-diarizer")
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
@@ -33,7 +33,6 @@ def download_pyannote_audio():
|
||||
Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.0",
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"]
|
||||
)
|
||||
|
||||
|
||||
@@ -54,7 +53,7 @@ diarizer_image = (
|
||||
"hf-transfer"
|
||||
)
|
||||
.run_function(migrate_cache_llm)
|
||||
.run_function(download_pyannote_audio, secrets=[modal.Secret.from_name("my-huggingface-secret")])
|
||||
.run_function(download_pyannote_audio)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
@@ -66,16 +65,16 @@ diarizer_image = (
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
@app.cls(
|
||||
gpu=modal.gpu.A100(memory=40),
|
||||
timeout=60 * 30,
|
||||
container_idle_timeout=60,
|
||||
allow_concurrent_inputs=1,
|
||||
image=diarizer_image,
|
||||
secrets=[modal.Secret.from_name("my-huggingface-secret")],
|
||||
)
|
||||
class Diarizer:
|
||||
def __enter__(self):
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
@@ -124,7 +123,7 @@ class Diarizer:
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@stub.function(
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
container_idle_timeout=60 * 3,
|
||||
allow_concurrent_inputs=40,
|
||||
|
||||
@@ -9,7 +9,7 @@ import threading
|
||||
from typing import Optional
|
||||
|
||||
import modal
|
||||
from modal import Image, Secret, Stub, asgi_app, method
|
||||
from modal import Image, Secret, App, asgi_app, method, enter, exit
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "lmsys/vicuna-13b-v1.5"
|
||||
@@ -19,7 +19,7 @@ LLM_MAX_NEW_TOKENS: int = 300
|
||||
|
||||
IMAGE_MODEL_DIR = "/root/llm_models"
|
||||
|
||||
stub = Stub(name="reflector-llm")
|
||||
app = App(name="reflector-llm")
|
||||
|
||||
|
||||
def download_llm():
|
||||
@@ -64,7 +64,7 @@ llm_image = (
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
@app.cls(
|
||||
gpu="A100",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
@@ -72,7 +72,8 @@ llm_image = (
|
||||
image=llm_image,
|
||||
)
|
||||
class LLM:
|
||||
def __enter__(self):
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
|
||||
@@ -113,7 +114,8 @@ class LLM:
|
||||
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def __exit__(self, *args):
|
||||
@exit()
|
||||
def exit():
|
||||
print("Exit llm")
|
||||
|
||||
@method()
|
||||
@@ -161,7 +163,7 @@ class LLM:
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@stub.function(
|
||||
@app.function(
|
||||
container_idle_timeout=60 * 10,
|
||||
timeout=60 * 5,
|
||||
allow_concurrent_inputs=45,
|
||||
|
||||
@@ -9,7 +9,7 @@ import threading
|
||||
from typing import Optional
|
||||
|
||||
import modal
|
||||
from modal import Image, Secret, Stub, asgi_app, method
|
||||
from modal import Image, Secret, App, asgi_app, method, enter, exit
|
||||
|
||||
# LLM
|
||||
LLM_MODEL: str = "HuggingFaceH4/zephyr-7b-alpha"
|
||||
@@ -19,7 +19,7 @@ LLM_MAX_NEW_TOKENS: int = 300
|
||||
|
||||
IMAGE_MODEL_DIR = "/root/llm_models/zephyr"
|
||||
|
||||
stub = Stub(name="reflector-llm-zephyr")
|
||||
app = App(name="reflector-llm-zephyr")
|
||||
|
||||
|
||||
def download_llm():
|
||||
@@ -64,7 +64,7 @@ llm_image = (
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
@@ -72,7 +72,8 @@ llm_image = (
|
||||
image=llm_image,
|
||||
)
|
||||
class LLM:
|
||||
def __enter__(self):
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
|
||||
@@ -116,7 +117,8 @@ class LLM:
|
||||
self.GenerationConfig = GenerationConfig
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def __exit__(self, *args):
|
||||
@exit()
|
||||
def exit():
|
||||
print("Exit llm")
|
||||
|
||||
@method()
|
||||
@@ -169,7 +171,7 @@ class LLM:
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@stub.function(
|
||||
@app.function(
|
||||
container_idle_timeout=60 * 10,
|
||||
timeout=60 * 5,
|
||||
allow_concurrent_inputs=30,
|
||||
|
||||
@@ -7,7 +7,7 @@ import os
|
||||
import tempfile
|
||||
import threading
|
||||
|
||||
from modal import Image, Secret, Stub, asgi_app, method
|
||||
from modal import Image, Secret, App, asgi_app, method, enter
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Whisper
|
||||
@@ -18,7 +18,7 @@ WHISPER_NUM_WORKERS: int = 1
|
||||
|
||||
WHISPER_MODEL_DIR = "/root/transcription_models"
|
||||
|
||||
stub = Stub(name="reflector-transcriber")
|
||||
app = App(name="reflector-transcriber")
|
||||
|
||||
|
||||
def download_whisper():
|
||||
@@ -75,7 +75,7 @@ transcriber_image = (
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
@@ -83,7 +83,8 @@ transcriber_image = (
|
||||
image=transcriber_image,
|
||||
)
|
||||
class Transcriber:
|
||||
def __enter__(self):
|
||||
@enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
@@ -149,7 +150,7 @@ class Transcriber:
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@stub.function(
|
||||
@app.function(
|
||||
container_idle_timeout=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
|
||||
@@ -6,7 +6,7 @@ Reflector GPU backend - transcriber
|
||||
import os
|
||||
import threading
|
||||
|
||||
from modal import Image, Secret, Stub, asgi_app, method
|
||||
from modal import Image, Secret, App, asgi_app, method, enter
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Seamless M4T
|
||||
@@ -20,7 +20,7 @@ HF_SEAMLESS_M4T_VOCODEREPO: str = "facebook/seamless-m4t-vocoder"
|
||||
SEAMLESS_GITEPO: str = "https://github.com/facebookresearch/seamless_communication.git"
|
||||
SEAMLESS_MODEL_DIR: str = "m4t"
|
||||
|
||||
stub = Stub(name="reflector-translator")
|
||||
app = App(name="reflector-translator")
|
||||
|
||||
|
||||
def install_seamless_communication():
|
||||
@@ -134,7 +134,7 @@ transcriber_image = (
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=60 * 5,
|
||||
container_idle_timeout=60 * 5,
|
||||
@@ -142,7 +142,8 @@ transcriber_image = (
|
||||
image=transcriber_image,
|
||||
)
|
||||
class Translator:
|
||||
def __enter__(self):
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from seamless_communication.inference.translator import Translator
|
||||
|
||||
@@ -379,7 +380,7 @@ class Translator:
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@stub.function(
|
||||
@app.function(
|
||||
container_idle_timeout=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
|
||||
Reference in New Issue
Block a user