feat: Daily+hatchet default (#846)

* feat: set Daily as default video platform

Daily.co has been battle-tested and is ready to be the default.
Whereby remains available for rooms that explicitly set it.

* feat: enforce Hatchet for all multitrack processing

Remove use_celery option from rooms - multitrack (Daily) recordings
now always use Hatchet workflows. Celery remains for single-track
(Whereby) file processing only.

- Remove use_celery column from room table
- Simplify dispatch logic to always use Hatchet for multitracks
- Update tests to mock Hatchet instead of Celery

* fix: update whereby test to patch Hatchet instead of removed Celery import

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
This commit is contained in:
2026-02-05 18:38:08 -05:00
committed by GitHub
parent 1ce1c7a910
commit 15ab2e306e
7 changed files with 194 additions and 238 deletions

View File

@@ -0,0 +1,35 @@
"""drop_use_celery_column
Revision ID: 3aa20b96d963
Revises: e69f08ead8ea
Create Date: 2026-02-05 10:12:44.065279
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "3aa20b96d963"
down_revision: Union[str, None] = "e69f08ead8ea"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.drop_column("use_celery")
def downgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(
sa.Column(
"use_celery",
sa.Boolean(),
server_default=sa.text("false"),
nullable=False,
)
)

View File

@@ -57,12 +57,6 @@ rooms = sqlalchemy.Table(
sqlalchemy.String,
nullable=False,
),
sqlalchemy.Column(
"use_celery",
sqlalchemy.Boolean,
nullable=False,
server_default=false(),
),
sqlalchemy.Column(
"skip_consent",
sqlalchemy.Boolean,
@@ -97,7 +91,6 @@ class Room(BaseModel):
ics_last_sync: datetime | None = None
ics_last_etag: str | None = None
platform: Platform = Field(default_factory=lambda: settings.DEFAULT_VIDEO_PLATFORM)
use_celery: bool = False
skip_consent: bool = False

View File

@@ -15,14 +15,10 @@ from hatchet_sdk.clients.rest.exceptions import ApiException, NotFoundException
from hatchet_sdk.clients.rest.models import V1TaskStatus
from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import Transcript, transcripts_controller
from reflector.hatchet.client import HatchetClientManager
from reflector.logger import logger
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
from reflector.pipelines.main_multitrack_pipeline import (
task_pipeline_multitrack_process,
)
from reflector.utils.string import NonEmptyString
@@ -181,124 +177,98 @@ async def dispatch_transcript_processing(
Returns AsyncResult for Celery tasks, None for Hatchet workflows.
"""
if isinstance(config, MultitrackProcessingConfig):
use_celery = False
if config.room_id:
room = await rooms_controller.get_by_id(config.room_id)
use_celery = room.use_celery if room else False
use_hatchet = not use_celery
if use_celery:
logger.info(
"Room uses legacy Celery processing",
room_id=config.room_id,
transcript_id=config.transcript_id,
# Multitrack processing always uses Hatchet (no Celery fallback)
# First check if we can replay (outside transaction since it's read-only)
transcript = await transcripts_controller.get_by_id(config.transcript_id)
if transcript and transcript.workflow_run_id and not force:
can_replay = await HatchetClientManager.can_replay(
transcript.workflow_run_id
)
if use_hatchet:
# First check if we can replay (outside transaction since it's read-only)
transcript = await transcripts_controller.get_by_id(config.transcript_id)
if transcript and transcript.workflow_run_id and not force:
can_replay = await HatchetClientManager.can_replay(
transcript.workflow_run_id
if can_replay:
await HatchetClientManager.replay_workflow(transcript.workflow_run_id)
logger.info(
"Replaying Hatchet workflow",
workflow_id=transcript.workflow_run_id,
)
if can_replay:
await HatchetClientManager.replay_workflow(
transcript.workflow_run_id
)
logger.info(
"Replaying Hatchet workflow",
workflow_id=transcript.workflow_run_id,
)
return None
else:
# Workflow can't replay (CANCELLED, COMPLETED, or 404 deleted)
# Log and proceed to start new workflow
try:
status = await HatchetClientManager.get_workflow_run_status(
transcript.workflow_run_id
)
logger.info(
"Old workflow not replayable, starting new",
old_workflow_id=transcript.workflow_run_id,
old_status=status.value,
)
except NotFoundException:
# Workflow deleted from Hatchet but ID still in DB
logger.info(
"Old workflow not found in Hatchet, starting new",
old_workflow_id=transcript.workflow_run_id,
)
# Force: cancel old workflow if exists
if force and transcript and transcript.workflow_run_id:
try:
await HatchetClientManager.cancel_workflow(
transcript.workflow_run_id
)
logger.info(
"Cancelled old workflow (--force)",
workflow_id=transcript.workflow_run_id,
)
except NotFoundException:
logger.info(
"Old workflow already deleted (--force)",
workflow_id=transcript.workflow_run_id,
)
await transcripts_controller.update(
transcript, {"workflow_run_id": None}
)
# Re-fetch and check for concurrent dispatch (optimistic approach).
# No database lock - worst case is duplicate dispatch, but Hatchet
# workflows are idempotent so this is acceptable.
transcript = await transcripts_controller.get_by_id(config.transcript_id)
if transcript and transcript.workflow_run_id:
# Another process started a workflow between validation and now
return None
else:
# Workflow can't replay (CANCELLED, COMPLETED, or 404 deleted)
# Log and proceed to start new workflow
try:
status = await HatchetClientManager.get_workflow_run_status(
transcript.workflow_run_id
)
if status in (V1TaskStatus.RUNNING, V1TaskStatus.QUEUED):
logger.info(
"Concurrent workflow detected, skipping dispatch",
workflow_id=transcript.workflow_run_id,
)
return None
except ApiException:
# Workflow might be gone (404) or API issue - proceed with new workflow
pass
logger.info(
"Old workflow not replayable, starting new",
old_workflow_id=transcript.workflow_run_id,
old_status=status.value,
)
except NotFoundException:
# Workflow deleted from Hatchet but ID still in DB
logger.info(
"Old workflow not found in Hatchet, starting new",
old_workflow_id=transcript.workflow_run_id,
)
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": config.recording_id,
"tracks": [{"s3_key": k} for k in config.track_keys],
"bucket_name": config.bucket_name,
"transcript_id": config.transcript_id,
"room_id": config.room_id,
},
additional_metadata={
"transcript_id": config.transcript_id,
"recording_id": config.recording_id,
"daily_recording_id": config.recording_id,
},
# Force: cancel old workflow if exists
if force and transcript and transcript.workflow_run_id:
try:
await HatchetClientManager.cancel_workflow(transcript.workflow_run_id)
logger.info(
"Cancelled old workflow (--force)",
workflow_id=transcript.workflow_run_id,
)
except NotFoundException:
logger.info(
"Old workflow already deleted (--force)",
workflow_id=transcript.workflow_run_id,
)
await transcripts_controller.update(transcript, {"workflow_run_id": None})
# Re-fetch and check for concurrent dispatch (optimistic approach).
# No database lock - worst case is duplicate dispatch, but Hatchet
# workflows are idempotent so this is acceptable.
transcript = await transcripts_controller.get_by_id(config.transcript_id)
if transcript and transcript.workflow_run_id:
# Another process started a workflow between validation and now
try:
status = await HatchetClientManager.get_workflow_run_status(
transcript.workflow_run_id
)
if status in (V1TaskStatus.RUNNING, V1TaskStatus.QUEUED):
logger.info(
"Concurrent workflow detected, skipping dispatch",
workflow_id=transcript.workflow_run_id,
)
return None
except ApiException:
# Workflow might be gone (404) or API issue - proceed with new workflow
pass
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": config.recording_id,
"tracks": [{"s3_key": k} for k in config.track_keys],
"bucket_name": config.bucket_name,
"transcript_id": config.transcript_id,
"room_id": config.room_id,
},
additional_metadata={
"transcript_id": config.transcript_id,
"recording_id": config.recording_id,
"daily_recording_id": config.recording_id,
},
)
if transcript:
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
if transcript:
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
logger.info("Hatchet workflow dispatched", workflow_id=workflow_id)
return None
logger.info("Hatchet workflow dispatched", workflow_id=workflow_id)
return None
# Celery pipeline (durable workflows disabled)
return task_pipeline_multitrack_process.delay(
transcript_id=config.transcript_id,
bucket_name=config.bucket_name,
track_keys=config.track_keys,
)
elif isinstance(config, FileProcessingConfig):
return task_pipeline_file_process.delay(transcript_id=config.transcript_id)
else:

View File

@@ -1,7 +1,7 @@
from pydantic.types import PositiveInt
from pydantic_settings import BaseSettings, SettingsConfigDict
from reflector.schemas.platform import WHEREBY_PLATFORM, Platform
from reflector.schemas.platform import DAILY_PLATFORM, Platform
from reflector.utils.string import NonEmptyString
@@ -155,7 +155,7 @@ class Settings(BaseSettings):
None # Webhook UUID for this environment. Not used by production code
)
# Platform Configuration
DEFAULT_VIDEO_PLATFORM: Platform = WHEREBY_PLATFORM
DEFAULT_VIDEO_PLATFORM: Platform = DAILY_PLATFORM
# Zulip integration
ZULIP_REALM: str | None = None

View File

@@ -27,9 +27,6 @@ from reflector.db.transcripts import (
from reflector.hatchet.client import HatchetClientManager
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
from reflector.pipelines.main_live_pipeline import asynctask
from reflector.pipelines.main_multitrack_pipeline import (
task_pipeline_multitrack_process,
)
from reflector.pipelines.topic_processing import EmptyPipeline
from reflector.processors import AudioFileWriterProcessor
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
@@ -351,49 +348,29 @@ async def _process_multitrack_recording_inner(
room_id=room.id,
)
use_celery = room and room.use_celery
use_hatchet = not use_celery
if use_celery:
logger.info(
"Room uses legacy Celery processing",
room_id=room.id,
transcript_id=transcript.id,
)
if use_hatchet:
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": recording_id,
"tracks": [{"s3_key": k} for k in filter_cam_audio_tracks(track_keys)],
"bucket_name": bucket_name,
"transcript_id": transcript.id,
"room_id": room.id,
},
additional_metadata={
"transcript_id": transcript.id,
"recording_id": recording_id,
"daily_recording_id": recording_id,
},
)
logger.info(
"Started Hatchet workflow",
workflow_id=workflow_id,
transcript_id=transcript.id,
)
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
return
# Celery pipeline (runs when durable workflows disabled)
task_pipeline_multitrack_process.delay(
transcript_id=transcript.id,
bucket_name=bucket_name,
track_keys=filter_cam_audio_tracks(track_keys),
# Multitrack processing always uses Hatchet (no Celery fallback)
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": recording_id,
"tracks": [{"s3_key": k} for k in filter_cam_audio_tracks(track_keys)],
"bucket_name": bucket_name,
"transcript_id": transcript.id,
"room_id": room.id,
},
additional_metadata={
"transcript_id": transcript.id,
"recording_id": recording_id,
"daily_recording_id": recording_id,
},
)
logger.info(
"Started Hatchet workflow",
workflow_id=workflow_id,
transcript_id=transcript.id,
)
await transcripts_controller.update(transcript, {"workflow_run_id": workflow_id})
@shared_task
@@ -1072,66 +1049,43 @@ async def reprocess_failed_daily_recordings():
)
continue
use_celery = room and room.use_celery
use_hatchet = not use_celery
if use_hatchet:
if not transcript:
logger.warning(
"No transcript for Hatchet reprocessing, skipping",
recording_id=recording.id,
)
continue
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": recording.id,
"tracks": [
{"s3_key": k}
for k in filter_cam_audio_tracks(recording.track_keys)
],
"bucket_name": bucket_name,
"transcript_id": transcript.id,
"room_id": room.id if room else None,
},
additional_metadata={
"transcript_id": transcript.id,
"recording_id": recording.id,
"reprocess": True,
},
)
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
logger.info(
"Queued Daily recording for Hatchet reprocessing",
# Multitrack reprocessing always uses Hatchet (no Celery fallback)
if not transcript:
logger.warning(
"No transcript for Hatchet reprocessing, skipping",
recording_id=recording.id,
workflow_id=workflow_id,
room_name=meeting.room_name,
track_count=len(recording.track_keys),
)
else:
logger.info(
"Queueing Daily recording for Celery reprocessing",
recording_id=recording.id,
room_name=meeting.room_name,
track_count=len(recording.track_keys),
transcript_status=transcript.status if transcript else None,
)
continue
# For reprocessing, pass actual recording time (though it's ignored - see _process_multitrack_recording_inner)
# Reprocessing uses recording.meeting_id directly instead of time-based matching
recording_start_ts = int(recording.recorded_at.timestamp())
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": recording.id,
"tracks": [
{"s3_key": k}
for k in filter_cam_audio_tracks(recording.track_keys)
],
"bucket_name": bucket_name,
"transcript_id": transcript.id,
"room_id": room.id if room else None,
},
additional_metadata={
"transcript_id": transcript.id,
"recording_id": recording.id,
"reprocess": True,
},
)
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
process_multitrack_recording.delay(
bucket_name=bucket_name,
daily_room_name=meeting.room_name,
recording_id=recording.id,
track_keys=recording.track_keys,
recording_start_ts=recording_start_ts,
)
logger.info(
"Queued Daily recording for Hatchet reprocessing",
recording_id=recording.id,
workflow_id=workflow_id,
room_name=meeting.room_name,
track_count=len(recording.track_keys),
)
reprocessed_count += 1

View File

@@ -4,7 +4,7 @@ from unittest.mock import patch
import pytest
from reflector.schemas.platform import WHEREBY_PLATFORM
from reflector.schemas.platform import DAILY_PLATFORM, WHEREBY_PLATFORM
@pytest.fixture(scope="session", autouse=True)
@@ -14,6 +14,7 @@ def register_mock_platform():
from reflector.video_platforms.registry import register_platform
register_platform(WHEREBY_PLATFORM, MockPlatformClient)
register_platform(DAILY_PLATFORM, MockPlatformClient)
yield

View File

@@ -1,6 +1,6 @@
import asyncio
import time
from unittest.mock import patch
from unittest.mock import AsyncMock, patch
import pytest
from httpx import ASGITransport, AsyncClient
@@ -142,17 +142,17 @@ async def test_whereby_recording_uses_file_pipeline(client):
"reflector.services.transcript_process.task_pipeline_file_process"
) as mock_file_pipeline,
patch(
"reflector.services.transcript_process.task_pipeline_multitrack_process"
) as mock_multitrack_pipeline,
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet,
):
response = await client.post(f"/transcripts/{transcript.id}/process")
assert response.status_code == 200
assert response.json()["status"] == "ok"
# Whereby recordings should use file pipeline
# Whereby recordings should use file pipeline, not Hatchet
mock_file_pipeline.delay.assert_called_once_with(transcript_id=transcript.id)
mock_multitrack_pipeline.delay.assert_not_called()
mock_hatchet.start_workflow.assert_not_called()
@pytest.mark.usefixtures("setup_database")
@@ -177,8 +177,6 @@ async def test_dailyco_recording_uses_multitrack_pipeline(client):
recording_trigger="automatic-2nd-participant",
is_shared=False,
)
# Force Celery backend for test
await rooms_controller.update(room, {"use_celery": True})
transcript = await transcripts_controller.add(
"",
@@ -213,18 +211,23 @@ async def test_dailyco_recording_uses_multitrack_pipeline(client):
"reflector.services.transcript_process.task_pipeline_file_process"
) as mock_file_pipeline,
patch(
"reflector.services.transcript_process.task_pipeline_multitrack_process"
) as mock_multitrack_pipeline,
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet,
):
mock_hatchet.start_workflow = AsyncMock(return_value="test-workflow-id")
response = await client.post(f"/transcripts/{transcript.id}/process")
assert response.status_code == 200
assert response.json()["status"] == "ok"
# Daily.co multitrack recordings should use multitrack pipeline
mock_multitrack_pipeline.delay.assert_called_once_with(
transcript_id=transcript.id,
bucket_name="daily-bucket",
track_keys=track_keys,
)
# Daily.co multitrack recordings should use Hatchet workflow
mock_hatchet.start_workflow.assert_called_once()
call_kwargs = mock_hatchet.start_workflow.call_args.kwargs
assert call_kwargs["workflow_name"] == "DiarizationPipeline"
assert call_kwargs["input_data"]["transcript_id"] == transcript.id
assert call_kwargs["input_data"]["bucket_name"] == "daily-bucket"
assert call_kwargs["input_data"]["tracks"] == [
{"s3_key": k} for k in track_keys
]
mock_file_pipeline.delay.assert_not_called()