Merge pull request #216 from Monadical-SAS/llm-modal

Download and load LLMs from cache
This commit is contained in:
projects-g
2023-09-13 10:33:08 +05:30
committed by GitHub
2 changed files with 63 additions and 12 deletions

View File

@@ -7,6 +7,7 @@ import json
import os
from typing import Optional
import modal
from modal import Image, Secret, Stub, asgi_app, method
# LLM
@@ -15,7 +16,7 @@ LLM_LOW_CPU_MEM_USAGE: bool = True
LLM_TORCH_DTYPE: str = "bfloat16"
LLM_MAX_NEW_TOKENS: int = 300
IMAGE_MODEL_DIR = "/model"
IMAGE_MODEL_DIR = "/root/llm_models"
stub = Stub(name="reflector-llm")
@@ -24,7 +25,7 @@ def download_llm():
from huggingface_hub import snapshot_download
print("Downloading LLM model")
snapshot_download(LLM_MODEL, local_dir=IMAGE_MODEL_DIR)
snapshot_download(LLM_MODEL, cache_dir=IMAGE_MODEL_DIR)
print("LLM model downloaded")
@@ -38,7 +39,7 @@ def migrate_cache_llm():
from transformers.utils.hub import move_cache
print("Moving LLM cache")
move_cache()
move_cache(cache_dir=IMAGE_MODEL_DIR, new_cache_dir=IMAGE_MODEL_DIR)
print("LLM cache moved")
@@ -77,9 +78,10 @@ class LLM:
print("Instance llm model")
model = AutoModelForCausalLM.from_pretrained(
IMAGE_MODEL_DIR,
LLM_MODEL,
torch_dtype=getattr(torch, LLM_TORCH_DTYPE),
low_cpu_mem_usage=LLM_LOW_CPU_MEM_USAGE,
cache_dir=IMAGE_MODEL_DIR
)
# generation configuration
@@ -91,7 +93,10 @@ class LLM:
# load tokenizer
print("Instance llm tokenizer")
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
tokenizer = AutoTokenizer.from_pretrained(
LLM_MODEL,
cache_dir=IMAGE_MODEL_DIR
)
# move model to gpu
print("Move llm model to GPU")

View File

@@ -6,6 +6,7 @@ Reflector GPU backend - transcriber
import os
import tempfile
import modal
from modal import Image, Secret, Stub, asgi_app, method
from pydantic import BaseModel
@@ -13,18 +14,55 @@ from pydantic import BaseModel
WHISPER_MODEL: str = "large-v2"
WHISPER_COMPUTE_TYPE: str = "float16"
WHISPER_NUM_WORKERS: int = 1
WHISPER_CACHE_DIR: str = "/cache/whisper"
# Translation Model
TRANSLATION_MODEL = "facebook/m2m100_418M"
IMAGE_MODEL_DIR = "/root/transcription_models"
stub = Stub(name="reflector-transcriber")
def download_whisper():
def download_whisper(cache_dir: str | None = None):
from faster_whisper.utils import download_model
download_model(WHISPER_MODEL, local_files_only=False)
print("Downloading Whisper model")
download_model(WHISPER_MODEL, cache_dir=cache_dir)
print("Whisper model downloaded")
def download_translation_model(cache_dir: str | None = None):
from huggingface_hub import snapshot_download
print("Downloading Translation model")
ignore_patterns = ["*.ot"]
snapshot_download(
TRANSLATION_MODEL,
cache_dir=cache_dir,
ignore_patterns=ignore_patterns
)
print("Translation model downloaded")
def download_models():
print(f"Downloading models to {IMAGE_MODEL_DIR=}")
download_whisper(cache_dir=IMAGE_MODEL_DIR)
download_translation_model(cache_dir=IMAGE_MODEL_DIR)
print(f"Model downloads complete.")
def migrate_cache_llm():
"""
XXX The cache for model files in Transformers v4.22.0 has been updated.
Migrating your old cache. This is a one-time only operation. You can
interrupt this and resume the migration later on by calling
`transformers.utils.move_cache()`.
"""
from transformers.utils.hub import move_cache
print("Moving LLM cache")
move_cache(cache_dir=IMAGE_MODEL_DIR, new_cache_dir=IMAGE_MODEL_DIR)
print("LLM cache moved")
whisper_image = (
@@ -37,8 +75,10 @@ whisper_image = (
"transformers",
"sentencepiece",
"protobuf",
"huggingface_hub==0.16.4",
)
.run_function(download_whisper)
.run_function(download_models)
.run_function(migrate_cache_llm)
.env(
{
"LD_LIBRARY_PATH": (
@@ -68,10 +108,16 @@ class Whisper:
device=self.device,
compute_type=WHISPER_COMPUTE_TYPE,
num_workers=WHISPER_NUM_WORKERS,
download_root=IMAGE_MODEL_DIR
)
self.translation_model = M2M100ForConditionalGeneration.from_pretrained(
TRANSLATION_MODEL,
cache_dir=IMAGE_MODEL_DIR
).to(self.device)
self.translation_tokenizer = M2M100Tokenizer.from_pretrained(
TRANSLATION_MODEL,
cache_dir=IMAGE_MODEL_DIR
)
self.translation_model = M2M100ForConditionalGeneration.from_pretrained(TRANSLATION_MODEL).to(self.device)
self.translation_tokenizer = M2M100Tokenizer.from_pretrained(TRANSLATION_MODEL)
@method()
def warmup(self):