mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Merge pull request #19 from Monadical-SAS/whisper-jax-gokul
Added new features and refactored codebase to split logic into standalone components
This commit is contained in:
28
README.md
28
README.md
@@ -32,11 +32,11 @@ To setup,
|
||||
|
||||
5) Run the Whisper-JAX pipeline. Currently, the repo can take a Youtube video and transcribes/summarizes it.
|
||||
|
||||
``` python3 whisjax.py "https://www.youtube.com/watch?v=ihf0S97oxuQ" --transcript transcript.txt summary.txt ```
|
||||
``` python3 whisjax.py "https://www.youtube.com/watch?v=ihf0S97oxuQ"```
|
||||
|
||||
You can even run it on local file or a file in your configured S3 bucket.
|
||||
|
||||
``` python3 whisjax.py "startup.mp4" --transcript transcript.txt summary.txt ```
|
||||
``` python3 whisjax.py "startup.mp4"```
|
||||
|
||||
The script will take care of a few cases like youtube file, local file, video file, audio-only file,
|
||||
file in S3, etc. If local file is not present, it can automatically take the file from S3.
|
||||
@@ -85,7 +85,7 @@ mentioned above or simply use the GUI of AWS Management Console.
|
||||
1) ```agenda_topic : <short description>```
|
||||
3) Check all the values in ```config.ini```. You need to predefine 2 categories for which you need to scatter plot the
|
||||
topic modelling visualization in the config file. This is the default visualization. But, from the dataframe artefact called
|
||||
```df.pkl``` , you can load the df and choose different topics to plot. You can filter using certain words to search for the
|
||||
```df_<timestamp>.pkl``` , you can load the df and choose different topics to plot. You can filter using certain words to search for the
|
||||
transcriptions and you can see the top influencers and characteristic in each topic we have chosen to plot in the
|
||||
interactive HTML document. I have added a new jupyter notebook that gives the base template to play around with, named
|
||||
```Viz_experiments.ipynb```.
|
||||
@@ -123,24 +123,32 @@ microphone input which you will be using for speaking. We use [Blackhole](https:
|
||||
2) Setup [Aggregate device](https://github.com/ExistentialAudio/BlackHole/wiki/Aggregate-Device) to route web audio and
|
||||
local microphone input.
|
||||
|
||||
Be sure to mirror the settings given (including the name) 
|
||||
Be sure to mirror the settings given 
|
||||
3) Setup [Multi-Output device](https://github.com/ExistentialAudio/BlackHole/wiki/Multi-Output-Device)
|
||||
|
||||
Refer 
|
||||
|
||||
4) Set the aggregator input device name created in step 2 in config.ini as ```BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME```
|
||||
|
||||
Then goto ``` System Preferences -> Sound ``` and choose the devices created from the Output and
|
||||
5) Then goto ``` System Preferences -> Sound ``` and choose the devices created from the Output and
|
||||
Input tabs.
|
||||
|
||||
From the reflector root folder,
|
||||
|
||||
run ```python3 whisjax_realtime_trial.py```
|
||||
6) The input from your local microphone, the browser run meeting should be aggregated into one virtual stream to listen to
|
||||
and the output should be fed back to your specified output devices if everything is configured properly. Check this
|
||||
before trying out the trial.
|
||||
|
||||
**Permissions:**
|
||||
|
||||
You may have to add permission for "Terminal"/Code Editors [Pycharm/VSCode, etc.] microphone access to record audio in
|
||||
```System Preferences -> Privacy & Security -> Microphone``` and in
|
||||
```System Preferences -> Privacy & Security -> Accessibility```.
|
||||
```System Preferences -> Privacy & Security -> Microphone```,
|
||||
```System Preferences -> Privacy & Security -> Accessibility```,
|
||||
```System Preferences -> Privacy & Security -> Input Monitoring```.
|
||||
|
||||
From the reflector root folder,
|
||||
|
||||
run ```python3 whisjax_realtime.py```
|
||||
|
||||
The transcription text should be written to ```real_time_transcription_<timestamp>.txt```.
|
||||
|
||||
|
||||
NEXT STEPS:
|
||||
|
||||
@@ -16,4 +16,6 @@ INPUT_ENCODING_MAX_LENGTH=1024
|
||||
MAX_LENGTH=2048
|
||||
BEAM_SIZE=6
|
||||
MAX_CHUNK_LENGTH=1024
|
||||
SUMMARIZE_USING_CHUNKS=YES
|
||||
SUMMARIZE_USING_CHUNKS=YES
|
||||
# Audio device
|
||||
BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME=ref-agg-input
|
||||
160
text_utilities.py
Normal file
160
text_utilities.py
Normal file
@@ -0,0 +1,160 @@
|
||||
import torch
|
||||
import configparser
|
||||
import nltk
|
||||
from transformers import BartTokenizer, BartForConditionalGeneration
|
||||
from loguru import logger
|
||||
from nltk.corpus import stopwords
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from nltk.tokenize import word_tokenize
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
|
||||
def preprocess_sentence(sentence):
|
||||
stop_words = set(stopwords.words('english'))
|
||||
tokens = word_tokenize(sentence.lower())
|
||||
tokens = [token for token in tokens if token.isalnum() and token not in stop_words]
|
||||
return ' '.join(tokens)
|
||||
|
||||
def compute_similarity(sent1, sent2):
|
||||
tfidf_vectorizer = TfidfVectorizer()
|
||||
tfidf_matrix = tfidf_vectorizer.fit_transform([sent1, sent2])
|
||||
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
|
||||
|
||||
def remove_almost_alike_sentences(sentences, threshold=0.7):
|
||||
num_sentences = len(sentences)
|
||||
removed_indices = set()
|
||||
|
||||
for i in range(num_sentences):
|
||||
if i not in removed_indices:
|
||||
for j in range(i + 1, num_sentences):
|
||||
if j not in removed_indices:
|
||||
sentence1 = preprocess_sentence(sentences[i])
|
||||
sentence2 = preprocess_sentence(sentences[j])
|
||||
similarity = compute_similarity(sentence1, sentence2)
|
||||
|
||||
if similarity >= threshold:
|
||||
removed_indices.add(max(i, j))
|
||||
|
||||
filtered_sentences = [sentences[i] for i in range(num_sentences) if i not in removed_indices]
|
||||
return filtered_sentences
|
||||
|
||||
def remove_outright_duplicate_sentences_from_chunk(chunk):
|
||||
chunk_text = chunk["text"]
|
||||
sentences = nltk.sent_tokenize(chunk_text)
|
||||
nonduplicate_sentences = list(dict.fromkeys(sentences))
|
||||
return nonduplicate_sentences
|
||||
|
||||
def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
|
||||
chunk_sentences = []
|
||||
|
||||
for sent in nonduplicate_sentences:
|
||||
temp_result = ""
|
||||
seen = {}
|
||||
words = nltk.word_tokenize(sent)
|
||||
n_gram_filter = 3
|
||||
for i in range(len(words)):
|
||||
if str(words[i:i + n_gram_filter]) in seen and seen[str(words[i:i + n_gram_filter])] == words[
|
||||
i + 1:i + n_gram_filter + 2]:
|
||||
pass
|
||||
else:
|
||||
seen[str(words[i:i + n_gram_filter])] = words[i + 1:i + n_gram_filter + 2]
|
||||
temp_result += words[i]
|
||||
temp_result += " "
|
||||
chunk_sentences.append(temp_result)
|
||||
return chunk_sentences
|
||||
|
||||
def post_process_transcription(whisper_result):
|
||||
for chunk in whisper_result["chunks"]:
|
||||
nonduplicate_sentences = remove_outright_duplicate_sentences_from_chunk(chunk)
|
||||
chunk_sentences = remove_whisper_repetitive_hallucination(nonduplicate_sentences)
|
||||
similarity_matched_sentences = remove_almost_alike_sentences(chunk_sentences)
|
||||
chunk["text"] = " ".join(similarity_matched_sentences)
|
||||
return whisper_result
|
||||
|
||||
def summarize(transcript_text, timestamp,
|
||||
real_time=False, summarize_using_chunks=config["DEFAULT"]["SUMMARIZE_USING_CHUNKS"]):
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
summary_model = config["DEFAULT"]["SUMMARY_MODEL"]
|
||||
if not summary_model:
|
||||
summary_model = "facebook/bart-large-cnn"
|
||||
|
||||
# Summarize the generated transcript using the BART model
|
||||
logger.info(f"Loading BART model: {summary_model}")
|
||||
tokenizer = BartTokenizer.from_pretrained(summary_model)
|
||||
model = BartForConditionalGeneration.from_pretrained(summary_model)
|
||||
model = model.to(device)
|
||||
|
||||
output_filename = "summary_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
|
||||
if real_time:
|
||||
output_filename = "real_time_" + output_filename
|
||||
|
||||
if summarize_using_chunks != "YES":
|
||||
inputs = tokenizer.batch_encode_plus([transcript_text], truncation=True, padding='longest',
|
||||
max_length=int(config["DEFAULT"]["INPUT_ENCODING_MAX_LENGTH"]),
|
||||
return_tensors='pt')
|
||||
inputs = inputs.to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
summaries = model.generate(inputs['input_ids'],
|
||||
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]), length_penalty=2.0,
|
||||
max_length=int(config["DEFAULT"]["MAX_LENGTH"]), early_stopping=True)
|
||||
|
||||
decoded_summaries = [tokenizer.decode(summary, skip_special_tokens=True, clean_up_tokenization_spaces=False) for
|
||||
summary in summaries]
|
||||
summary = " ".join(decoded_summaries)
|
||||
with open(output_filename, 'w') as f:
|
||||
f.write(summary.strip() + "\n")
|
||||
else:
|
||||
logger.info("Breaking transcript into smaller chunks")
|
||||
chunks = chunk_text(transcript_text)
|
||||
|
||||
logger.info(f"Transcript broken into {len(chunks)} chunks of at most 500 words") # TODO fix variable
|
||||
|
||||
logger.info(f"Writing summary text to: {output_filename}")
|
||||
with open(output_filename, 'w') as f:
|
||||
summaries = summarize_chunks(chunks, tokenizer, model)
|
||||
for summary in summaries:
|
||||
f.write(summary.strip() + " ")
|
||||
|
||||
def summarize_chunks(chunks, tokenizer, model):
|
||||
"""
|
||||
Summarize each chunk using a summarizer model
|
||||
:param chunks:
|
||||
:param tokenizer:
|
||||
:param model:
|
||||
:return:
|
||||
"""
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
summaries = []
|
||||
for c in chunks:
|
||||
input_ids = tokenizer.encode(c, return_tensors='pt')
|
||||
input_ids = input_ids.to(device)
|
||||
with torch.no_grad():
|
||||
summary_ids = model.generate(input_ids,
|
||||
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]), length_penalty=2.0,
|
||||
max_length=int(config["DEFAULT"]["MAX_LENGTH"]), early_stopping=True)
|
||||
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
||||
summaries.append(summary)
|
||||
return summaries
|
||||
|
||||
def chunk_text(text, max_chunk_length=int(config["DEFAULT"]["MAX_CHUNK_LENGTH"])):
|
||||
"""
|
||||
Split text into smaller chunks.
|
||||
:param txt: Text to be chunked
|
||||
:param max_chunk_length: length of chunk
|
||||
:return: chunked texts
|
||||
"""
|
||||
sentences = nltk.sent_tokenize(text)
|
||||
chunks = []
|
||||
current_chunk = ""
|
||||
for sentence in sentences:
|
||||
if len(current_chunk) + len(sentence) < max_chunk_length:
|
||||
current_chunk += f" {sentence.strip()}"
|
||||
else:
|
||||
chunks.append(current_chunk.strip())
|
||||
current_chunk = f"{sentence.strip()}"
|
||||
chunks.append(current_chunk.strip())
|
||||
return chunks
|
||||
190
viz_utilities.py
Normal file
190
viz_utilities.py
Normal file
@@ -0,0 +1,190 @@
|
||||
import matplotlib.pyplot as plt
|
||||
from wordcloud import WordCloud, STOPWORDS
|
||||
import collections
|
||||
import spacy
|
||||
import pickle
|
||||
import ast
|
||||
import pandas as pd
|
||||
import scattertext as st
|
||||
import configparser
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
|
||||
|
||||
def create_wordcloud(timestamp, real_time=False):
|
||||
"""
|
||||
Create a basic word cloud visualization of transcribed text
|
||||
:return: None. The wordcloud image is saved locally
|
||||
"""
|
||||
filename = "transcript"
|
||||
if real_time:
|
||||
filename = "real_time_" + filename + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
|
||||
else:
|
||||
filename += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt"
|
||||
|
||||
with open(filename, "r") as f:
|
||||
transcription_text = f.read()
|
||||
|
||||
stopwords = set(STOPWORDS)
|
||||
|
||||
# python_mask = np.array(PIL.Image.open("download1.png"))
|
||||
|
||||
wordcloud = WordCloud(height=800, width=800,
|
||||
background_color='white',
|
||||
stopwords=stopwords,
|
||||
min_font_size=8).generate(transcription_text)
|
||||
|
||||
# Plot wordcloud and save image
|
||||
plt.figure(facecolor=None)
|
||||
plt.imshow(wordcloud, interpolation="bilinear")
|
||||
plt.axis("off")
|
||||
plt.tight_layout(pad=0)
|
||||
|
||||
wordcloud_name = "wordcloud"
|
||||
if real_time:
|
||||
wordcloud_name = "real_time_" + wordcloud_name + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
|
||||
else:
|
||||
wordcloud_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".png"
|
||||
|
||||
plt.savefig(wordcloud_name)
|
||||
|
||||
|
||||
def create_talk_diff_scatter_viz(timestamp, real_time=False):
|
||||
"""
|
||||
Perform agenda vs transription diff to see covered topics.
|
||||
Create a scatter plot of words in topics.
|
||||
:return: None. Saved locally.
|
||||
"""
|
||||
spaCy_model = "en_core_web_md"
|
||||
nlp = spacy.load(spaCy_model)
|
||||
nlp.add_pipe('sentencizer')
|
||||
|
||||
agenda_topics = []
|
||||
agenda = []
|
||||
# Load the agenda
|
||||
with open("agenda-headers.txt", "r") as f:
|
||||
for line in f.readlines():
|
||||
if line.strip():
|
||||
agenda.append(line.strip())
|
||||
agenda_topics.append(line.split(":")[0])
|
||||
|
||||
# Load the transcription with timestamp
|
||||
with open("transcript_with_timestamp_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".txt") as f:
|
||||
transcription_timestamp_text = f.read()
|
||||
|
||||
res = ast.literal_eval(transcription_timestamp_text)
|
||||
chunks = res["chunks"]
|
||||
|
||||
# create df for processing
|
||||
df = pd.DataFrame.from_dict(res["chunks"])
|
||||
|
||||
covered_items = {}
|
||||
# ts: timestamp
|
||||
# Map each timestamped chunk with top1 and top2 matched agenda
|
||||
ts_to_topic_mapping_top_1 = {}
|
||||
ts_to_topic_mapping_top_2 = {}
|
||||
|
||||
# Also create a mapping of the different timestamps in which each topic was covered
|
||||
topic_to_ts_mapping_top_1 = collections.defaultdict(list)
|
||||
topic_to_ts_mapping_top_2 = collections.defaultdict(list)
|
||||
|
||||
similarity_threshold = 0.7
|
||||
|
||||
for c in chunks:
|
||||
doc_transcription = nlp(c["text"])
|
||||
topic_similarities = []
|
||||
for item in range(len(agenda)):
|
||||
item_doc = nlp(agenda[item])
|
||||
# if not doc_transcription or not all(token.has_vector for token in doc_transcription):
|
||||
if not doc_transcription:
|
||||
continue
|
||||
similarity = doc_transcription.similarity(item_doc)
|
||||
topic_similarities.append((item, similarity))
|
||||
topic_similarities.sort(key=lambda x: x[1], reverse=True)
|
||||
for i in range(2):
|
||||
if topic_similarities[i][1] >= similarity_threshold:
|
||||
covered_items[agenda[topic_similarities[i][0]]] = True
|
||||
# top1 match
|
||||
if i == 0:
|
||||
ts_to_topic_mapping_top_1[c["timestamp"]] = agenda_topics[topic_similarities[i][0]]
|
||||
topic_to_ts_mapping_top_1[agenda_topics[topic_similarities[i][0]]].append(c["timestamp"])
|
||||
# top2 match
|
||||
else:
|
||||
ts_to_topic_mapping_top_2[c["timestamp"]] = agenda_topics[topic_similarities[i][0]]
|
||||
topic_to_ts_mapping_top_2[agenda_topics[topic_similarities[i][0]]].append(c["timestamp"])
|
||||
|
||||
def create_new_columns(record):
|
||||
"""
|
||||
Accumulate the mapping information into the df
|
||||
:param record:
|
||||
:return:
|
||||
"""
|
||||
record["ts_to_topic_mapping_top_1"] = ts_to_topic_mapping_top_1[record["timestamp"]]
|
||||
record["ts_to_topic_mapping_top_2"] = ts_to_topic_mapping_top_2[record["timestamp"]]
|
||||
return record
|
||||
|
||||
df = df.apply(create_new_columns, axis=1)
|
||||
|
||||
# Count the number of items covered and calculatre the percentage
|
||||
num_covered_items = sum(covered_items.values())
|
||||
percentage_covered = num_covered_items / len(agenda) * 100
|
||||
|
||||
# Print the results
|
||||
print("💬 Agenda items covered in the transcription:")
|
||||
for item in agenda:
|
||||
if item in covered_items and covered_items[item]:
|
||||
print("✅ ", item)
|
||||
else:
|
||||
print("❌ ", item)
|
||||
print("📊 Coverage: {:.2f}%".format(percentage_covered))
|
||||
|
||||
# Save df, mappings for further experimentation
|
||||
df_name = "df"
|
||||
if real_time:
|
||||
df_name = "real_time_" + df_name + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
else:
|
||||
df_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
df.to_pickle(df_name)
|
||||
|
||||
my_mappings = [ts_to_topic_mapping_top_1, ts_to_topic_mapping_top_2,
|
||||
topic_to_ts_mapping_top_1, topic_to_ts_mapping_top_2]
|
||||
|
||||
mappings_name = "mappings"
|
||||
if real_time:
|
||||
mappings_name = "real_time_" + mappings_name + "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
else:
|
||||
mappings_name += "_" + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + ".pkl"
|
||||
pickle.dump(my_mappings, open(mappings_name, "wb"))
|
||||
|
||||
# to load, my_mappings = pickle.load( open ("mappings.pkl", "rb") )
|
||||
|
||||
# pick the 2 most matched topic to be used for plotting
|
||||
topic_times = collections.defaultdict(int)
|
||||
for key in ts_to_topic_mapping_top_1.keys():
|
||||
if key[0] is None or key[1] is None:
|
||||
continue
|
||||
duration = key[1] - key[0]
|
||||
topic_times[ts_to_topic_mapping_top_1[key]] += duration
|
||||
|
||||
topic_times = sorted(topic_times.items(), key=lambda x: x[1], reverse=True)
|
||||
|
||||
cat_1 = topic_times[0][0]
|
||||
cat_1_name = topic_times[0][0]
|
||||
cat_2_name = topic_times[1][0]
|
||||
|
||||
# Scatter plot of topics
|
||||
df = df.assign(parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences))
|
||||
corpus = st.CorpusFromParsedDocuments(
|
||||
df, category_col='ts_to_topic_mapping_top_1', parsed_col='parse'
|
||||
).build().get_unigram_corpus().compact(st.AssociationCompactor(2000))
|
||||
html = st.produce_scattertext_explorer(
|
||||
corpus,
|
||||
category=cat_1,
|
||||
category_name=cat_1_name,
|
||||
not_category_name=cat_2_name,
|
||||
minimum_term_frequency=0, pmi_threshold_coefficient=0,
|
||||
width_in_pixels=1000,
|
||||
transform=st.Scalers.dense_rank
|
||||
)
|
||||
open('./scatter_' + timestamp.strftime("%m-%d-%Y_%H:%M:%S") + '.html', 'w').write(html)
|
||||
354
whisjax.py
354
whisjax.py
@@ -5,35 +5,26 @@
|
||||
# summarize podcast.mp3 summary.txt
|
||||
|
||||
import argparse
|
||||
import ast
|
||||
import torch
|
||||
import collections
|
||||
import configparser
|
||||
import jax.numpy as jnp
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import moviepy.editor
|
||||
import moviepy.editor
|
||||
import nltk
|
||||
import os
|
||||
import subprocess
|
||||
import pandas as pd
|
||||
import pickle
|
||||
import re
|
||||
import scattertext as st
|
||||
import spacy
|
||||
import tempfile
|
||||
from loguru import logger
|
||||
from pytube import YouTube
|
||||
from transformers import BartTokenizer, BartForConditionalGeneration
|
||||
|
||||
from urllib.parse import urlparse
|
||||
from whisper_jax import FlaxWhisperPipline
|
||||
from wordcloud import WordCloud, STOPWORDS
|
||||
from nltk.corpus import stopwords
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from nltk.tokenize import word_tokenize
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
from file_util import upload_files, download_files
|
||||
from datetime import datetime
|
||||
from file_utilities import upload_files, download_files
|
||||
from viz_utilities import create_wordcloud, create_talk_diff_scatter_viz
|
||||
from text_utilities import summarize, post_process_transcription
|
||||
|
||||
nltk.download('punkt')
|
||||
nltk.download('stopwords')
|
||||
@@ -43,7 +34,7 @@ config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
|
||||
WHISPER_MODEL_SIZE = config['DEFAULT']["WHISPER_MODEL_SIZE"]
|
||||
|
||||
NOW = datetime.now()
|
||||
|
||||
def init_argparse() -> argparse.ArgumentParser:
|
||||
"""
|
||||
@@ -57,310 +48,10 @@ def init_argparse() -> argparse.ArgumentParser:
|
||||
|
||||
parser.add_argument("-l", "--language", help="Language that the summary should be written in", type=str,
|
||||
default="english", choices=['english', 'spanish', 'french', 'german', 'romanian'])
|
||||
parser.add_argument("-t", "--transcript", help="Save a copy of the intermediary transcript file", type=str)
|
||||
parser.add_argument("location")
|
||||
parser.add_argument("output")
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def chunk_text(txt, max_chunk_length=int(config["DEFAULT"]["MAX_CHUNK_LENGTH"])):
|
||||
"""
|
||||
Split text into smaller chunks.
|
||||
:param txt: Text to be chunked
|
||||
:param max_chunk_length: length of chunk
|
||||
:return: chunked texts
|
||||
"""
|
||||
sentences = nltk.sent_tokenize(txt)
|
||||
chunks = []
|
||||
current_chunk = ""
|
||||
for sentence in sentences:
|
||||
if len(current_chunk) + len(sentence) < max_chunk_length:
|
||||
current_chunk += f" {sentence.strip()}"
|
||||
else:
|
||||
chunks.append(current_chunk.strip())
|
||||
current_chunk = f"{sentence.strip()}"
|
||||
chunks.append(current_chunk.strip())
|
||||
return chunks
|
||||
|
||||
|
||||
def summarize_chunks(chunks, tokenizer, model):
|
||||
"""
|
||||
Summarize each chunk using a summarizer model
|
||||
:param chunks:
|
||||
:param tokenizer:
|
||||
:param model:
|
||||
:return:
|
||||
"""
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
summaries = []
|
||||
for c in chunks:
|
||||
input_ids = tokenizer.encode(c, return_tensors='pt')
|
||||
input_ids = input_ids.to(device)
|
||||
with torch.no_grad():
|
||||
summary_ids = model.generate(input_ids,
|
||||
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]), length_penalty=2.0,
|
||||
max_length=int(config["DEFAULT"]["MAX_LENGTH"]), early_stopping=True)
|
||||
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
||||
summaries.append(summary)
|
||||
return summaries
|
||||
|
||||
|
||||
def create_wordcloud():
|
||||
"""
|
||||
Create a basic word cloud visualization of transcribed text
|
||||
:return: None. The wordcloud image is saved locally
|
||||
"""
|
||||
with open("transcript.txt", "r") as f:
|
||||
transcription_text = f.read()
|
||||
|
||||
stopwords = set(STOPWORDS)
|
||||
|
||||
# python_mask = np.array(PIL.Image.open("download1.png"))
|
||||
|
||||
wordcloud = WordCloud(height=800, width=800,
|
||||
background_color='white',
|
||||
stopwords=stopwords,
|
||||
min_font_size=8).generate(transcription_text)
|
||||
|
||||
# Plot wordcloud and save image
|
||||
plt.figure(facecolor=None)
|
||||
plt.imshow(wordcloud, interpolation="bilinear")
|
||||
plt.axis("off")
|
||||
plt.tight_layout(pad=0)
|
||||
plt.savefig("wordcloud.png")
|
||||
|
||||
|
||||
def create_talk_diff_scatter_viz():
|
||||
"""
|
||||
Perform agenda vs transription diff to see covered topics.
|
||||
Create a scatter plot of words in topics.
|
||||
:return: None. Saved locally.
|
||||
"""
|
||||
spaCy_model = "en_core_web_md"
|
||||
nlp = spacy.load(spaCy_model)
|
||||
nlp.add_pipe('sentencizer')
|
||||
|
||||
agenda_topics = []
|
||||
agenda = []
|
||||
# Load the agenda
|
||||
with open("agenda-headers.txt", "r") as f:
|
||||
for line in f.readlines():
|
||||
if line.strip():
|
||||
agenda.append(line.strip())
|
||||
agenda_topics.append(line.split(":")[0])
|
||||
|
||||
# Load the transcription with timestamp
|
||||
with open("transcript_timestamps.txt", "r") as f:
|
||||
transcription_timestamp_text = f.read()
|
||||
|
||||
res = ast.literal_eval(transcription_timestamp_text)
|
||||
chunks = res["chunks"]
|
||||
|
||||
# create df for processing
|
||||
df = pd.DataFrame.from_dict(res["chunks"])
|
||||
|
||||
covered_items = {}
|
||||
# ts: timestamp
|
||||
# Map each timestamped chunk with top1 and top2 matched agenda
|
||||
ts_to_topic_mapping_top_1 = {}
|
||||
ts_to_topic_mapping_top_2 = {}
|
||||
|
||||
# Also create a mapping of the different timestamps in which each topic was covered
|
||||
topic_to_ts_mapping_top_1 = collections.defaultdict(list)
|
||||
topic_to_ts_mapping_top_2 = collections.defaultdict(list)
|
||||
|
||||
similarity_threshold = 0.7
|
||||
|
||||
for c in chunks:
|
||||
doc_transcription = nlp(c["text"])
|
||||
topic_similarities = []
|
||||
for item in range(len(agenda)):
|
||||
item_doc = nlp(agenda[item])
|
||||
# if not doc_transcription or not all(token.has_vector for token in doc_transcription):
|
||||
if not doc_transcription:
|
||||
continue
|
||||
similarity = doc_transcription.similarity(item_doc)
|
||||
topic_similarities.append((item, similarity))
|
||||
topic_similarities.sort(key=lambda x: x[1], reverse=True)
|
||||
for i in range(2):
|
||||
if topic_similarities[i][1] >= similarity_threshold:
|
||||
covered_items[agenda[topic_similarities[i][0]]] = True
|
||||
# top1 match
|
||||
if i == 0:
|
||||
ts_to_topic_mapping_top_1[c["timestamp"]] = agenda_topics[topic_similarities[i][0]]
|
||||
topic_to_ts_mapping_top_1[agenda_topics[topic_similarities[i][0]]].append(c["timestamp"])
|
||||
# top2 match
|
||||
else:
|
||||
ts_to_topic_mapping_top_2[c["timestamp"]] = agenda_topics[topic_similarities[i][0]]
|
||||
topic_to_ts_mapping_top_2[agenda_topics[topic_similarities[i][0]]].append(c["timestamp"])
|
||||
|
||||
def create_new_columns(record):
|
||||
"""
|
||||
Accumulate the mapping information into the df
|
||||
:param record:
|
||||
:return:
|
||||
"""
|
||||
record["ts_to_topic_mapping_top_1"] = ts_to_topic_mapping_top_1[record["timestamp"]]
|
||||
record["ts_to_topic_mapping_top_2"] = ts_to_topic_mapping_top_2[record["timestamp"]]
|
||||
return record
|
||||
|
||||
df = df.apply(create_new_columns, axis=1)
|
||||
|
||||
# Count the number of items covered and calculatre the percentage
|
||||
num_covered_items = sum(covered_items.values())
|
||||
percentage_covered = num_covered_items / len(agenda) * 100
|
||||
|
||||
# Print the results
|
||||
print("💬 Agenda items covered in the transcription:")
|
||||
for item in agenda:
|
||||
if item in covered_items and covered_items[item]:
|
||||
print("✅ ", item)
|
||||
else:
|
||||
print("❌ ", item)
|
||||
print("📊 Coverage: {:.2f}%".format(percentage_covered))
|
||||
|
||||
# Save df, mappings for further experimentation
|
||||
df.to_pickle("df.pkl")
|
||||
|
||||
my_mappings = [ts_to_topic_mapping_top_1, ts_to_topic_mapping_top_2,
|
||||
topic_to_ts_mapping_top_1, topic_to_ts_mapping_top_2]
|
||||
pickle.dump(my_mappings, open("mappings.pkl", "wb"))
|
||||
|
||||
# to load, my_mappings = pickle.load( open ("mappings.pkl", "rb") )
|
||||
|
||||
# pick the 2 most matched topic to be used for plotting
|
||||
topic_times = collections.defaultdict(int)
|
||||
for key in ts_to_topic_mapping_top_1.keys():
|
||||
if key[0] is None or key[1] is None:
|
||||
continue
|
||||
duration = key[1] - key[0]
|
||||
topic_times[ts_to_topic_mapping_top_1[key]] += duration
|
||||
|
||||
topic_times = sorted(topic_times.items(), key=lambda x: x[1], reverse=True)
|
||||
|
||||
cat_1 = topic_times[0][0]
|
||||
cat_1_name = topic_times[0][0]
|
||||
cat_2_name = topic_times[1][0]
|
||||
|
||||
# Scatter plot of topics
|
||||
df = df.assign(parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences))
|
||||
corpus = st.CorpusFromParsedDocuments(
|
||||
df, category_col='ts_to_topic_mapping_top_1', parsed_col='parse'
|
||||
).build().get_unigram_corpus().compact(st.AssociationCompactor(2000))
|
||||
html = st.produce_scattertext_explorer(
|
||||
corpus,
|
||||
category=cat_1,
|
||||
category_name=cat_1_name,
|
||||
not_category_name=cat_2_name,
|
||||
minimum_term_frequency=0, pmi_threshold_coefficient=0,
|
||||
width_in_pixels=1000,
|
||||
transform=st.Scalers.dense_rank
|
||||
)
|
||||
open('./demo_compact.html', 'w').write(html)
|
||||
|
||||
def preprocess_sentence(sentence):
|
||||
stop_words = set(stopwords.words('english'))
|
||||
tokens = word_tokenize(sentence.lower())
|
||||
tokens = [token for token in tokens if token.isalnum() and token not in stop_words]
|
||||
return ' '.join(tokens)
|
||||
|
||||
def compute_similarity(sent1, sent2):
|
||||
tfidf_vectorizer = TfidfVectorizer()
|
||||
tfidf_matrix = tfidf_vectorizer.fit_transform([sent1, sent2])
|
||||
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
|
||||
|
||||
def remove_almost_alike_sentences(sentences, threshold=0.7):
|
||||
num_sentences = len(sentences)
|
||||
removed_indices = set()
|
||||
|
||||
for i in range(num_sentences):
|
||||
if i not in removed_indices:
|
||||
for j in range(i + 1, num_sentences):
|
||||
if j not in removed_indices:
|
||||
sentence1 = preprocess_sentence(sentences[i])
|
||||
sentence2 = preprocess_sentence(sentences[j])
|
||||
similarity = compute_similarity(sentence1, sentence2)
|
||||
|
||||
if similarity >= threshold:
|
||||
removed_indices.add(max(i, j))
|
||||
|
||||
filtered_sentences = [sentences[i] for i in range(num_sentences) if i not in removed_indices]
|
||||
return filtered_sentences
|
||||
|
||||
def remove_outright_duplicate_sentences_from_chunk(chunk):
|
||||
chunk_text = chunk["text"]
|
||||
sentences = nltk.sent_tokenize(chunk_text)
|
||||
nonduplicate_sentences = list(dict.fromkeys(sentences))
|
||||
return nonduplicate_sentences
|
||||
|
||||
def remove_whisper_repititive_hallucination(nonduplicate_sentences):
|
||||
chunk_sentences = []
|
||||
|
||||
for sent in nonduplicate_sentences:
|
||||
temp_result = ""
|
||||
seen = {}
|
||||
words = nltk.word_tokenize(sent)
|
||||
n_gram_filter = 3
|
||||
for i in range(len(words)):
|
||||
if str(words[i:i + n_gram_filter]) in seen and seen[str(words[i:i + n_gram_filter])] == words[
|
||||
i + 1:i + n_gram_filter + 2]:
|
||||
pass
|
||||
else:
|
||||
seen[str(words[i:i + n_gram_filter])] = words[i + 1:i + n_gram_filter + 2]
|
||||
temp_result += words[i]
|
||||
temp_result += " "
|
||||
chunk_sentences.append(temp_result)
|
||||
return chunk_sentences
|
||||
|
||||
def remove_duplicates_from_transcript_chunk(whisper_result):
|
||||
for chunk in whisper_result["chunks"]:
|
||||
nonduplicate_sentences = remove_outright_duplicate_sentences_from_chunk(chunk)
|
||||
chunk_sentences = remove_whisper_repititive_hallucination(nonduplicate_sentences)
|
||||
similarity_matched_sentences = remove_almost_alike_sentences(chunk_sentences)
|
||||
chunk["text"] = " ".join(similarity_matched_sentences)
|
||||
return whisper_result
|
||||
|
||||
def summarize(transcript_text, output_file,
|
||||
summarize_using_chunks=config["DEFAULT"]["SUMMARIZE_USING_CHUNKS"]):
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
summary_model = config["DEFAULT"]["SUMMARY_MODEL"]
|
||||
if not summary_model:
|
||||
summary_model = "facebook/bart-large-cnn"
|
||||
|
||||
# Summarize the generated transcript using the BART model
|
||||
logger.info(f"Loading BART model: {summary_model}")
|
||||
tokenizer = BartTokenizer.from_pretrained(summary_model)
|
||||
model = BartForConditionalGeneration.from_pretrained(summary_model)
|
||||
model = model.to(device)
|
||||
|
||||
if summarize_using_chunks != "YES":
|
||||
inputs = tokenizer.batch_encode_plus([transcript_text], truncation=True, padding='longest',
|
||||
max_length=int(config["DEFAULT"]["INPUT_ENCODING_MAX_LENGTH"]),
|
||||
return_tensors='pt')
|
||||
inputs = inputs.to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
summaries = model.generate(inputs['input_ids'],
|
||||
num_beams=int(config["DEFAULT"]["BEAM_SIZE"]), length_penalty=2.0,
|
||||
max_length=int(config["DEFAULT"]["MAX_LENGTH"]), early_stopping=True)
|
||||
|
||||
decoded_summaries = [tokenizer.decode(summary, skip_special_tokens=True, clean_up_tokenization_spaces=False) for
|
||||
summary in summaries]
|
||||
summary = " ".join(decoded_summaries)
|
||||
with open(output_file, 'w') as f:
|
||||
f.write(summary.strip() + "\n\n")
|
||||
else:
|
||||
logger.info("Breaking transcript into smaller chunks")
|
||||
chunks = chunk_text(transcript_text)
|
||||
|
||||
logger.info(f"Transcript broken into {len(chunks)} chunks of at most 500 words") # TODO fix variable
|
||||
|
||||
logger.info(f"Writing summary text to: {output_file}")
|
||||
with open(output_file, 'w') as f:
|
||||
summaries = summarize_chunks(chunks, tokenizer, model)
|
||||
for summary in summaries:
|
||||
f.write(summary.strip() + " ")
|
||||
|
||||
def main():
|
||||
parser = init_argparse()
|
||||
@@ -425,41 +116,40 @@ def main():
|
||||
whisper_result = pipeline(audio_filename, return_timestamps=True)
|
||||
logger.info("Finished transcribing file")
|
||||
|
||||
whisper_result = remove_duplicates_from_transcript_chunk(whisper_result)
|
||||
whisper_result = post_process_transcription(whisper_result)
|
||||
|
||||
transcript_text = ""
|
||||
for chunk in whisper_result["chunks"]:
|
||||
transcript_text += chunk["text"]
|
||||
|
||||
# If we got the transcript parameter on the command line,
|
||||
# save the transcript to the specified file.
|
||||
if args.transcript:
|
||||
logger.info(f"Saving transcript to: {args.transcript}")
|
||||
transcript_file = open(args.transcript, "w")
|
||||
transcript_file_timestamps = open(args.transcript[0:len(args.transcript) - 4] + "_timestamps.txt", "w")
|
||||
with open("transcript_" + NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as transcript_file:
|
||||
transcript_file.write(transcript_text)
|
||||
|
||||
with open("transcript_with_timestamp_" + NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as transcript_file_timestamps:
|
||||
transcript_file_timestamps.write(str(whisper_result))
|
||||
transcript_file.close()
|
||||
transcript_file_timestamps.close()
|
||||
|
||||
|
||||
logger.info("Creating word cloud")
|
||||
create_wordcloud()
|
||||
create_wordcloud(NOW)
|
||||
|
||||
logger.info("Performing talk-diff and talk-diff visualization")
|
||||
create_talk_diff_scatter_viz()
|
||||
create_talk_diff_scatter_viz(NOW)
|
||||
|
||||
# S3 : Push artefacts to S3 bucket
|
||||
files_to_upload = ["transcript.txt", "transcript_timestamps.txt",
|
||||
"df.pkl",
|
||||
"wordcloud.png", "mappings.pkl"]
|
||||
suffix = NOW.strftime("%m-%d-%Y_%H:%M:%S")
|
||||
files_to_upload = ["transcript_" + suffix + ".txt",
|
||||
"transcript_with_timestamp_" + suffix + ".txt",
|
||||
"df_" + suffix + ".pkl",
|
||||
"wordcloud_" + suffix + ".png",
|
||||
"mappings_" + suffix + ".pkl"]
|
||||
upload_files(files_to_upload)
|
||||
|
||||
summarize(transcript_text, args.output)
|
||||
summarize(transcript_text, NOW, False, False)
|
||||
|
||||
logger.info("Summarization completed")
|
||||
|
||||
# Summarization takes a lot of time, so do this separately at the end
|
||||
files_to_upload = ["summary.txt"]
|
||||
files_to_upload = ["summary_" + suffix + ".txt"]
|
||||
upload_files(files_to_upload)
|
||||
|
||||
|
||||
|
||||
137
whisjax_realtime.py
Normal file
137
whisjax_realtime.py
Normal file
@@ -0,0 +1,137 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import configparser
|
||||
import pyaudio
|
||||
from whisper_jax import FlaxWhisperPipline
|
||||
from pynput import keyboard
|
||||
import jax.numpy as jnp
|
||||
import wave
|
||||
import datetime
|
||||
from file_utilities import upload_files
|
||||
from viz_utilities import create_wordcloud, create_talk_diff_scatter_viz
|
||||
from text_utilities import summarize, post_process_transcription
|
||||
from loguru import logger
|
||||
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
|
||||
WHISPER_MODEL_SIZE = config['DEFAULT']["WHISPER_MODEL_SIZE"]
|
||||
|
||||
FRAMES_PER_BUFFER = 8000
|
||||
FORMAT = pyaudio.paInt16
|
||||
CHANNELS = 2
|
||||
RATE = 44100
|
||||
RECORD_SECONDS = 15
|
||||
NOW = datetime.now()
|
||||
|
||||
|
||||
def main():
|
||||
p = pyaudio.PyAudio()
|
||||
AUDIO_DEVICE_ID = -1
|
||||
for i in range(p.get_device_count()):
|
||||
if p.get_device_info_by_index(i)["name"] == config["DEFAULT"]["BLACKHOLE_INPUT_AGGREGATOR_DEVICE_NAME"]:
|
||||
AUDIO_DEVICE_ID = i
|
||||
audio_devices = p.get_device_info_by_index(AUDIO_DEVICE_ID)
|
||||
stream = p.open(
|
||||
format=FORMAT,
|
||||
channels=CHANNELS,
|
||||
rate=RATE,
|
||||
input=True,
|
||||
frames_per_buffer=FRAMES_PER_BUFFER,
|
||||
input_device_index=audio_devices['index']
|
||||
)
|
||||
|
||||
pipeline = FlaxWhisperPipline("openai/whisper-" + config["DEFAULT"]["WHISPER_REAL_TIME_MODEL_SIZE"],
|
||||
dtype=jnp.float16,
|
||||
batch_size=16)
|
||||
|
||||
transcription = ""
|
||||
|
||||
TEMP_AUDIO_FILE = "temp_audio.wav"
|
||||
global proceed
|
||||
proceed = True
|
||||
|
||||
def on_press(key):
|
||||
if key == keyboard.Key.esc:
|
||||
global proceed
|
||||
proceed = False
|
||||
|
||||
transcript_with_timestamp = {"text": "", "chunks": []}
|
||||
last_transcribed_time = 0.0
|
||||
|
||||
listener = keyboard.Listener(on_press=on_press)
|
||||
listener.start()
|
||||
print("Attempting real-time transcription.. Listening...")
|
||||
|
||||
try:
|
||||
while proceed:
|
||||
frames = []
|
||||
for i in range(0, int(RATE / FRAMES_PER_BUFFER * RECORD_SECONDS)):
|
||||
data = stream.read(FRAMES_PER_BUFFER, exception_on_overflow=False)
|
||||
frames.append(data)
|
||||
|
||||
wf = wave.open(TEMP_AUDIO_FILE, 'wb')
|
||||
wf.setnchannels(CHANNELS)
|
||||
wf.setsampwidth(p.get_sample_size(FORMAT))
|
||||
wf.setframerate(RATE)
|
||||
wf.writeframes(b''.join(frames))
|
||||
wf.close()
|
||||
|
||||
whisper_result = pipeline(TEMP_AUDIO_FILE, return_timestamps=True)
|
||||
print(whisper_result['text'])
|
||||
|
||||
timestamp = whisper_result["chunks"][0]["timestamp"]
|
||||
start = timestamp[0]
|
||||
end = timestamp[1]
|
||||
if end is None:
|
||||
end = start + 15.0
|
||||
duration = end - start
|
||||
item = {'timestamp': (last_transcribed_time, last_transcribed_time + duration),
|
||||
'text': whisper_result['text']}
|
||||
last_transcribed_time = last_transcribed_time + duration
|
||||
transcript_with_timestamp["chunks"].append(item)
|
||||
|
||||
transcription += whisper_result['text']
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
finally:
|
||||
with open("real_time_transcript_" + NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as f:
|
||||
f.write(transcription)
|
||||
with open("real_time_transcript_with_timestamp_" + NOW.strftime("%m-%d-%Y_%H:%M:%S") + ".txt", "w") as f:
|
||||
transcript_with_timestamp["text"] = transcription
|
||||
f.write(str(transcript_with_timestamp))
|
||||
|
||||
transcript_with_timestamp = post_process_transcription(transcript_with_timestamp)
|
||||
|
||||
transcript_text = ""
|
||||
for chunk in transcript_with_timestamp["chunks"]:
|
||||
transcript_text += chunk["text"]
|
||||
|
||||
logger.info("Creating word cloud")
|
||||
create_wordcloud(NOW, True)
|
||||
|
||||
logger.info("Performing talk-diff and talk-diff visualization")
|
||||
create_talk_diff_scatter_viz(NOW, True)
|
||||
|
||||
# S3 : Push artefacts to S3 bucket
|
||||
suffix = NOW.strftime("%m-%d-%Y_%H:%M:%S")
|
||||
files_to_upload = ["real_time_transcript_" + suffix + ".txt",
|
||||
"real_time_transcript_with_timestamp" + suffix + ".txt",
|
||||
"real_time_df_" + suffix + ".pkl",
|
||||
"real_time_wordcloud_" + suffix + ".png",
|
||||
"real_time_mappings_" + suffix + ".pkl"]
|
||||
upload_files(files_to_upload)
|
||||
|
||||
summarize(transcript_text, NOW, True, True)
|
||||
|
||||
logger.info("Summarization completed")
|
||||
|
||||
# Summarization takes a lot of time, so do this separately at the end
|
||||
files_to_upload = ["real_time_summary_" + suffix + ".txt"]
|
||||
upload_files(files_to_upload)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,84 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import configparser
|
||||
import pyaudio
|
||||
from whisper_jax import FlaxWhisperPipline
|
||||
from pynput import keyboard
|
||||
import jax.numpy as jnp
|
||||
import wave
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
|
||||
WHISPER_MODEL_SIZE = config['DEFAULT']["WHISPER_MODEL_SIZE"]
|
||||
|
||||
FRAMES_PER_BUFFER = 8000
|
||||
FORMAT = pyaudio.paInt16
|
||||
CHANNELS = 2
|
||||
RATE = 44100
|
||||
RECORD_SECONDS = 15
|
||||
|
||||
|
||||
def main():
|
||||
p = pyaudio.PyAudio()
|
||||
AUDIO_DEVICE_ID = -1
|
||||
for i in range(p.get_device_count()):
|
||||
if p.get_device_info_by_index(i)["name"] == "ref-agg-input":
|
||||
AUDIO_DEVICE_ID = i
|
||||
audio_devices = p.get_device_info_by_index(AUDIO_DEVICE_ID)
|
||||
stream = p.open(
|
||||
format=FORMAT,
|
||||
channels=CHANNELS,
|
||||
rate=RATE,
|
||||
input=True,
|
||||
frames_per_buffer=FRAMES_PER_BUFFER,
|
||||
input_device_index=audio_devices['index']
|
||||
)
|
||||
|
||||
pipeline = FlaxWhisperPipline("openai/whisper-" + config["DEFAULT"]["WHISPER_REAL_TIME_MODEL_SIZE"],
|
||||
dtype=jnp.float16,
|
||||
batch_size=16)
|
||||
|
||||
transcript_file = open("transcript.txt", "w+")
|
||||
transcription = ""
|
||||
|
||||
TEMP_AUDIO_FILE = "temp_audio.wav"
|
||||
global proceed
|
||||
proceed = True
|
||||
|
||||
def on_press(key):
|
||||
if key == keyboard.Key.esc:
|
||||
global proceed
|
||||
proceed = False
|
||||
|
||||
listener = keyboard.Listener(on_press=on_press)
|
||||
listener.start()
|
||||
print("Attempting real-time transcription.. Listening...")
|
||||
while proceed:
|
||||
try:
|
||||
frames = []
|
||||
for i in range(0, int(RATE / FRAMES_PER_BUFFER * RECORD_SECONDS)):
|
||||
data = stream.read(FRAMES_PER_BUFFER, exception_on_overflow=False)
|
||||
frames.append(data)
|
||||
|
||||
wf = wave.open(TEMP_AUDIO_FILE, 'wb')
|
||||
wf.setnchannels(CHANNELS)
|
||||
wf.setsampwidth(p.get_sample_size(FORMAT))
|
||||
wf.setframerate(RATE)
|
||||
wf.writeframes(b''.join(frames))
|
||||
wf.close()
|
||||
|
||||
whisper_result = pipeline(TEMP_AUDIO_FILE, return_timestamps=True)
|
||||
print(whisper_result['text'])
|
||||
|
||||
transcription += whisper_result['text']
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
finally:
|
||||
with open("real_time_transcription.txt", "w") as f:
|
||||
transcript_file.write(transcription)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user