mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
fix pipeline bugs
This commit is contained in:
File diff suppressed because one or more lines are too long
@@ -20,8 +20,11 @@ def preprocess_sentence(sentence):
|
||||
|
||||
def compute_similarity(sent1, sent2):
|
||||
tfidf_vectorizer = TfidfVectorizer()
|
||||
tfidf_matrix = tfidf_vectorizer.fit_transform([sent1, sent2])
|
||||
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
|
||||
print("semt1", sent1, sent2)
|
||||
if sent1 is not None and sent2 is not None:
|
||||
tfidf_matrix = tfidf_vectorizer.fit_transform([sent1, sent2])
|
||||
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
|
||||
return 0.0
|
||||
|
||||
def remove_almost_alike_sentences(sentences, threshold=0.7):
|
||||
num_sentences = len(sentences)
|
||||
@@ -31,12 +34,21 @@ def remove_almost_alike_sentences(sentences, threshold=0.7):
|
||||
if i not in removed_indices:
|
||||
for j in range(i + 1, num_sentences):
|
||||
if j not in removed_indices:
|
||||
sentence1 = preprocess_sentence(sentences[i])
|
||||
sentence2 = preprocess_sentence(sentences[j])
|
||||
similarity = compute_similarity(sentence1, sentence2)
|
||||
l_i = len(sentences[i])
|
||||
l_j = len(sentences[j])
|
||||
if l_i == 0 or l_j == 0:
|
||||
if l_i == 0:
|
||||
removed_indices.add(i)
|
||||
if l_j == 0:
|
||||
removed_indices.add(j)
|
||||
else:
|
||||
sentence1 = preprocess_sentence(sentences[i])
|
||||
sentence2 = preprocess_sentence(sentences[j])
|
||||
if len(sentence1) != 0 and len(sentence2) != 0:
|
||||
similarity = compute_similarity(sentence1, sentence2)
|
||||
|
||||
if similarity >= threshold:
|
||||
removed_indices.add(max(i, j))
|
||||
if similarity >= threshold:
|
||||
removed_indices.add(max(i, j))
|
||||
|
||||
filtered_sentences = [sentences[i] for i in range(num_sentences) if i not in removed_indices]
|
||||
return filtered_sentences
|
||||
@@ -67,11 +79,14 @@ def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
|
||||
return chunk_sentences
|
||||
|
||||
def post_process_transcription(whisper_result):
|
||||
transcript_text = ""
|
||||
for chunk in whisper_result["chunks"]:
|
||||
nonduplicate_sentences = remove_outright_duplicate_sentences_from_chunk(chunk)
|
||||
chunk_sentences = remove_whisper_repetitive_hallucination(nonduplicate_sentences)
|
||||
similarity_matched_sentences = remove_almost_alike_sentences(chunk_sentences)
|
||||
chunk["text"] = " ".join(similarity_matched_sentences)
|
||||
transcript_text += chunk["text"]
|
||||
whisper_result["text"] = transcript_text
|
||||
return whisper_result
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import matplotlib.pyplot as plt
|
||||
from wordcloud import WordCloud, STOPWORDS
|
||||
from nltk.corpus import stopwords as nltk_stopwords
|
||||
import collections
|
||||
import spacy
|
||||
import pickle
|
||||
@@ -11,6 +12,10 @@ import configparser
|
||||
config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
|
||||
en = spacy.load('en_core_web_md')
|
||||
spacy_stopwords = en.Defaults.stop_words
|
||||
|
||||
STOPWORDS = set(STOPWORDS).union(set(nltk_stopwords)).union(set(spacy_stopwords))
|
||||
|
||||
def create_wordcloud(timestamp, real_time=False):
|
||||
"""
|
||||
@@ -26,13 +31,11 @@ def create_wordcloud(timestamp, real_time=False):
|
||||
with open(filename, "r") as f:
|
||||
transcription_text = f.read()
|
||||
|
||||
stopwords = set(STOPWORDS)
|
||||
|
||||
# python_mask = np.array(PIL.Image.open("download1.png"))
|
||||
|
||||
wordcloud = WordCloud(height=800, width=800,
|
||||
background_color='white',
|
||||
stopwords=stopwords,
|
||||
stopwords=STOPWORDS,
|
||||
min_font_size=8).generate(transcription_text)
|
||||
|
||||
# Plot wordcloud and save image
|
||||
|
||||
@@ -106,10 +106,6 @@ def main():
|
||||
|
||||
transcript_with_timestamp = post_process_transcription(transcript_with_timestamp)
|
||||
|
||||
transcript_text = ""
|
||||
for chunk in transcript_with_timestamp["chunks"]:
|
||||
transcript_text += chunk["text"]
|
||||
|
||||
logger.info("Creating word cloud")
|
||||
create_wordcloud(NOW, True)
|
||||
|
||||
@@ -125,7 +121,7 @@ def main():
|
||||
"real_time_mappings_" + suffix + ".pkl"]
|
||||
upload_files(files_to_upload)
|
||||
|
||||
summarize(transcript_text, NOW, True, True)
|
||||
summarize(transcript_with_timestamp["text"], NOW, True, True)
|
||||
|
||||
logger.info("Summarization completed")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user