mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-21 04:39:06 +00:00
fix pipeline bugs
This commit is contained in:
File diff suppressed because one or more lines are too long
@@ -20,8 +20,11 @@ def preprocess_sentence(sentence):
|
|||||||
|
|
||||||
def compute_similarity(sent1, sent2):
|
def compute_similarity(sent1, sent2):
|
||||||
tfidf_vectorizer = TfidfVectorizer()
|
tfidf_vectorizer = TfidfVectorizer()
|
||||||
|
print("semt1", sent1, sent2)
|
||||||
|
if sent1 is not None and sent2 is not None:
|
||||||
tfidf_matrix = tfidf_vectorizer.fit_transform([sent1, sent2])
|
tfidf_matrix = tfidf_vectorizer.fit_transform([sent1, sent2])
|
||||||
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
|
return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
|
||||||
|
return 0.0
|
||||||
|
|
||||||
def remove_almost_alike_sentences(sentences, threshold=0.7):
|
def remove_almost_alike_sentences(sentences, threshold=0.7):
|
||||||
num_sentences = len(sentences)
|
num_sentences = len(sentences)
|
||||||
@@ -31,8 +34,17 @@ def remove_almost_alike_sentences(sentences, threshold=0.7):
|
|||||||
if i not in removed_indices:
|
if i not in removed_indices:
|
||||||
for j in range(i + 1, num_sentences):
|
for j in range(i + 1, num_sentences):
|
||||||
if j not in removed_indices:
|
if j not in removed_indices:
|
||||||
|
l_i = len(sentences[i])
|
||||||
|
l_j = len(sentences[j])
|
||||||
|
if l_i == 0 or l_j == 0:
|
||||||
|
if l_i == 0:
|
||||||
|
removed_indices.add(i)
|
||||||
|
if l_j == 0:
|
||||||
|
removed_indices.add(j)
|
||||||
|
else:
|
||||||
sentence1 = preprocess_sentence(sentences[i])
|
sentence1 = preprocess_sentence(sentences[i])
|
||||||
sentence2 = preprocess_sentence(sentences[j])
|
sentence2 = preprocess_sentence(sentences[j])
|
||||||
|
if len(sentence1) != 0 and len(sentence2) != 0:
|
||||||
similarity = compute_similarity(sentence1, sentence2)
|
similarity = compute_similarity(sentence1, sentence2)
|
||||||
|
|
||||||
if similarity >= threshold:
|
if similarity >= threshold:
|
||||||
@@ -67,11 +79,14 @@ def remove_whisper_repetitive_hallucination(nonduplicate_sentences):
|
|||||||
return chunk_sentences
|
return chunk_sentences
|
||||||
|
|
||||||
def post_process_transcription(whisper_result):
|
def post_process_transcription(whisper_result):
|
||||||
|
transcript_text = ""
|
||||||
for chunk in whisper_result["chunks"]:
|
for chunk in whisper_result["chunks"]:
|
||||||
nonduplicate_sentences = remove_outright_duplicate_sentences_from_chunk(chunk)
|
nonduplicate_sentences = remove_outright_duplicate_sentences_from_chunk(chunk)
|
||||||
chunk_sentences = remove_whisper_repetitive_hallucination(nonduplicate_sentences)
|
chunk_sentences = remove_whisper_repetitive_hallucination(nonduplicate_sentences)
|
||||||
similarity_matched_sentences = remove_almost_alike_sentences(chunk_sentences)
|
similarity_matched_sentences = remove_almost_alike_sentences(chunk_sentences)
|
||||||
chunk["text"] = " ".join(similarity_matched_sentences)
|
chunk["text"] = " ".join(similarity_matched_sentences)
|
||||||
|
transcript_text += chunk["text"]
|
||||||
|
whisper_result["text"] = transcript_text
|
||||||
return whisper_result
|
return whisper_result
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from wordcloud import WordCloud, STOPWORDS
|
from wordcloud import WordCloud, STOPWORDS
|
||||||
|
from nltk.corpus import stopwords as nltk_stopwords
|
||||||
import collections
|
import collections
|
||||||
import spacy
|
import spacy
|
||||||
import pickle
|
import pickle
|
||||||
@@ -11,6 +12,10 @@ import configparser
|
|||||||
config = configparser.ConfigParser()
|
config = configparser.ConfigParser()
|
||||||
config.read('config.ini')
|
config.read('config.ini')
|
||||||
|
|
||||||
|
en = spacy.load('en_core_web_md')
|
||||||
|
spacy_stopwords = en.Defaults.stop_words
|
||||||
|
|
||||||
|
STOPWORDS = set(STOPWORDS).union(set(nltk_stopwords)).union(set(spacy_stopwords))
|
||||||
|
|
||||||
def create_wordcloud(timestamp, real_time=False):
|
def create_wordcloud(timestamp, real_time=False):
|
||||||
"""
|
"""
|
||||||
@@ -26,13 +31,11 @@ def create_wordcloud(timestamp, real_time=False):
|
|||||||
with open(filename, "r") as f:
|
with open(filename, "r") as f:
|
||||||
transcription_text = f.read()
|
transcription_text = f.read()
|
||||||
|
|
||||||
stopwords = set(STOPWORDS)
|
|
||||||
|
|
||||||
# python_mask = np.array(PIL.Image.open("download1.png"))
|
# python_mask = np.array(PIL.Image.open("download1.png"))
|
||||||
|
|
||||||
wordcloud = WordCloud(height=800, width=800,
|
wordcloud = WordCloud(height=800, width=800,
|
||||||
background_color='white',
|
background_color='white',
|
||||||
stopwords=stopwords,
|
stopwords=STOPWORDS,
|
||||||
min_font_size=8).generate(transcription_text)
|
min_font_size=8).generate(transcription_text)
|
||||||
|
|
||||||
# Plot wordcloud and save image
|
# Plot wordcloud and save image
|
||||||
|
|||||||
@@ -106,10 +106,6 @@ def main():
|
|||||||
|
|
||||||
transcript_with_timestamp = post_process_transcription(transcript_with_timestamp)
|
transcript_with_timestamp = post_process_transcription(transcript_with_timestamp)
|
||||||
|
|
||||||
transcript_text = ""
|
|
||||||
for chunk in transcript_with_timestamp["chunks"]:
|
|
||||||
transcript_text += chunk["text"]
|
|
||||||
|
|
||||||
logger.info("Creating word cloud")
|
logger.info("Creating word cloud")
|
||||||
create_wordcloud(NOW, True)
|
create_wordcloud(NOW, True)
|
||||||
|
|
||||||
@@ -125,7 +121,7 @@ def main():
|
|||||||
"real_time_mappings_" + suffix + ".pkl"]
|
"real_time_mappings_" + suffix + ".pkl"]
|
||||||
upload_files(files_to_upload)
|
upload_files(files_to_upload)
|
||||||
|
|
||||||
summarize(transcript_text, NOW, True, True)
|
summarize(transcript_with_timestamp["text"], NOW, True, True)
|
||||||
|
|
||||||
logger.info("Summarization completed")
|
logger.info("Summarization completed")
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user