mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
96 Commits
mathieu/ca
...
igor/daili
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1bf73c8199 | ||
| d82abf65ba | |||
|
|
7d239fe380 | ||
| acb6e90f28 | |||
|
|
f844b9fc1f | ||
| 96f05020cc | |||
| fc79ff3114 | |||
|
|
3641e2e599 | ||
| c23518d2e3 | |||
| 23edffe2a2 | |||
| e59770ecc9 | |||
| 6301f2afa6 | |||
| 9ac7f0e8e2 | |||
|
|
0a84a9351a | ||
|
|
ca22084845 | ||
|
|
f945f84be9 | ||
|
|
4c523c8eec | ||
|
|
0fcf8b6875 | ||
|
|
446cb748ae | ||
|
|
3e1339a8ea | ||
|
|
807819bb2f | ||
| 5f6910e513 | |||
| 9a71af145e | |||
| eef6dc3903 | |||
|
|
1dee255fed | ||
| 5d98754305 | |||
|
|
969bd84fcc | ||
|
|
36608849ec | ||
|
|
5bf64b5a41 | ||
| 0aaa42528a | |||
| 565a62900f | |||
|
|
27016e6051 | ||
| 6ddfee0b4e | |||
|
|
47716f6e5d | ||
| 0abcebfc94 | |||
|
|
2b723da08b | ||
| 6566e04300 | |||
| 870e860517 | |||
| 396a95d5ce | |||
| 6f680b5795 | |||
| ab859d65a6 | |||
| fa049e8d06 | |||
| 2ce7479967 | |||
| b42f7cfc60 | |||
| c546e69739 | |||
|
|
3f1fe8c9bf | ||
| 5f143fe364 | |||
|
|
79f161436e | ||
|
|
5cba5d310d | ||
| 43ea9349f5 | |||
|
|
b3a8e9739d | ||
|
|
369ecdff13 | ||
| fc363bd49b | |||
|
|
962038ee3f | ||
|
|
3b85ff3bdf | ||
|
|
cde99ca271 | ||
|
|
f81fe9948a | ||
|
|
5a5b323382 | ||
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 | |||
| 52f9f533d7 | |||
| 0c3878ac3c | |||
|
|
d70beee51b | ||
| bc5b351d2b | |||
|
|
07981e8090 | ||
| 7e366f6338 | |||
| 7592679a35 | |||
| af16178f86 | |||
| 3ea7f6b7b6 | |||
|
|
009590c080 | ||
|
|
fe5d344cff | ||
|
|
86455ce573 |
5
.github/workflows/db_migrations.yml
vendored
5
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/migrations/**"
|
||||
- "server/reflector/db/**"
|
||||
@@ -17,6 +19,9 @@ on:
|
||||
jobs:
|
||||
test-migrations:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: db-ubuntu-latest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
postgres:
|
||||
image: postgres:17
|
||||
|
||||
77
.github/workflows/deploy.yml
vendored
77
.github/workflows/deploy.yml
vendored
@@ -8,18 +8,30 @@ env:
|
||||
ECR_REPOSITORY: reflector
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
build:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- platform: linux/amd64
|
||||
runner: linux-amd64
|
||||
arch: amd64
|
||||
- platform: linux/arm64
|
||||
runner: linux-arm64
|
||||
arch: arm64
|
||||
|
||||
runs-on: ${{ matrix.runner }}
|
||||
|
||||
permissions:
|
||||
deployments: write
|
||||
contents: read
|
||||
|
||||
outputs:
|
||||
registry: ${{ steps.login-ecr.outputs.registry }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@0e613a0980cbf65ed5b322eb7a1e075d28913a83
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
@@ -27,21 +39,52 @@ jobs:
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
id: login-ecr
|
||||
uses: aws-actions/amazon-ecr-login@62f4f872db3836360b72999f4b87f1ff13310f3a
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: aws-actions/amazon-ecr-login@v2
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build and push
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
- name: Build and push ${{ matrix.arch }}
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: ${{ matrix.platform }}
|
||||
push: true
|
||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
|
||||
cache-from: type=gha,scope=${{ matrix.arch }}
|
||||
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
provenance: false
|
||||
|
||||
create-manifest:
|
||||
runs-on: ubuntu-latest
|
||||
needs: [build]
|
||||
|
||||
permissions:
|
||||
deployments: write
|
||||
contents: read
|
||||
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
uses: aws-actions/amazon-ecr-login@v2
|
||||
|
||||
- name: Create and push multi-arch manifest
|
||||
run: |
|
||||
# Get the registry URL (since we can't easily access job outputs in matrix)
|
||||
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
|
||||
|
||||
docker manifest create \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
|
||||
|
||||
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
|
||||
|
||||
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"
|
||||
|
||||
57
.github/workflows/docker-frontend.yml
vendored
Normal file
57
.github/workflows/docker-frontend.yml
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
name: Build and Push Frontend Docker Image
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'www/**'
|
||||
- '.github/workflows/docker-frontend.yml'
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
REGISTRY: ghcr.io
|
||||
IMAGE_NAME: ${{ github.repository }}-frontend
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Log in to GitHub Container Registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ${{ env.REGISTRY }}
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Extract metadata
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=sha,prefix={{branch}}-
|
||||
type=raw,value=latest,enable={{is_default_branch}}
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build and push Docker image
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./www
|
||||
file: ./www/Dockerfile
|
||||
push: true
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
platforms: linux/amd64,linux/arm64
|
||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test Next Server
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "www/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "www/**"
|
||||
|
||||
jobs:
|
||||
test-next-server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./www
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
|
||||
- name: Setup Node.js cache
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
cache: 'pnpm'
|
||||
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install
|
||||
|
||||
- name: Run tests
|
||||
run: pnpm test
|
||||
49
.github/workflows/test_server.yml
vendored
49
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
||||
paths:
|
||||
- "server/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/**"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: pytest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
redis:
|
||||
image: redis:6
|
||||
@@ -19,29 +24,47 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v3
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
enable-cache: true
|
||||
working-directory: server
|
||||
|
||||
- name: Tests
|
||||
run: |
|
||||
cd server
|
||||
uv run -m pytest -v tests
|
||||
|
||||
docker:
|
||||
runs-on: ubuntu-latest
|
||||
docker-amd64:
|
||||
runs-on: linux-amd64
|
||||
concurrency:
|
||||
group: docker-amd64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
- name: Build and push
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Build AMD64
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
platforms: linux/amd64
|
||||
cache-from: type=gha,scope=amd64
|
||||
cache-to: type=gha,mode=max,scope=amd64
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
|
||||
docker-arm64:
|
||||
runs-on: linux-arm64
|
||||
concurrency:
|
||||
group: docker-arm64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Build ARM64
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/arm64
|
||||
cache-from: type=gha,scope=arm64
|
||||
cache-to: type=gha,mode=max,scope=arm64
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -14,4 +14,7 @@ data/
|
||||
www/REFACTOR.md
|
||||
www/reload-frontend
|
||||
server/test.sqlite
|
||||
CLAUDE.local.md
|
||||
CLAUDE.local.md
|
||||
www/.env.development
|
||||
www/.env.production
|
||||
.playwright-mcp
|
||||
|
||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
||||
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||
@@ -27,3 +27,8 @@ repos:
|
||||
files: ^server/
|
||||
- id: ruff-format
|
||||
files: ^server/
|
||||
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.28.0
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
170
CHANGELOG.md
170
CHANGELOG.md
@@ -1,5 +1,175 @@
|
||||
# Changelog
|
||||
|
||||
## [0.14.0](https://github.com/Monadical-SAS/reflector/compare/v0.13.1...v0.14.0) (2025-10-08)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* Add calendar event data to transcript webhook payload ([#689](https://github.com/Monadical-SAS/reflector/issues/689)) ([5f6910e](https://github.com/Monadical-SAS/reflector/commit/5f6910e5131b7f28f86c9ecdcc57fed8412ee3cd))
|
||||
* container build for www / github ([#672](https://github.com/Monadical-SAS/reflector/issues/672)) ([969bd84](https://github.com/Monadical-SAS/reflector/commit/969bd84fcc14851d1a101412a0ba115f1b7cde82))
|
||||
* docker-compose for production frontend ([#664](https://github.com/Monadical-SAS/reflector/issues/664)) ([5bf64b5](https://github.com/Monadical-SAS/reflector/commit/5bf64b5a41f64535e22849b4bb11734d4dbb4aae))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* restore feature boolean logic ([#671](https://github.com/Monadical-SAS/reflector/issues/671)) ([3660884](https://github.com/Monadical-SAS/reflector/commit/36608849ec64e953e3be456172502762e3c33df9))
|
||||
* security review ([#656](https://github.com/Monadical-SAS/reflector/issues/656)) ([5d98754](https://github.com/Monadical-SAS/reflector/commit/5d98754305c6c540dd194dda268544f6d88bfaf8))
|
||||
* update transcript list on reprocess ([#676](https://github.com/Monadical-SAS/reflector/issues/676)) ([9a71af1](https://github.com/Monadical-SAS/reflector/commit/9a71af145ee9b833078c78d0c684590ab12e9f0e))
|
||||
* upgrade nemo toolkit ([#678](https://github.com/Monadical-SAS/reflector/issues/678)) ([eef6dc3](https://github.com/Monadical-SAS/reflector/commit/eef6dc39037329b65804297786d852dddb0557f9))
|
||||
|
||||
## [0.13.1](https://github.com/Monadical-SAS/reflector/compare/v0.13.0...v0.13.1) (2025-09-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* TypeError on not all arguments converted during string formatting in logger ([#667](https://github.com/Monadical-SAS/reflector/issues/667)) ([565a629](https://github.com/Monadical-SAS/reflector/commit/565a62900f5a02fc946b68f9269a42190ed70ab6))
|
||||
|
||||
## [0.13.0](https://github.com/Monadical-SAS/reflector/compare/v0.12.1...v0.13.0) (2025-09-19)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* room form edit with enter ([#662](https://github.com/Monadical-SAS/reflector/issues/662)) ([47716f6](https://github.com/Monadical-SAS/reflector/commit/47716f6e5ddee952609d2fa0ffabdfa865286796))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* invalid cleanup call ([#660](https://github.com/Monadical-SAS/reflector/issues/660)) ([0abcebf](https://github.com/Monadical-SAS/reflector/commit/0abcebfc9491f87f605f21faa3e53996fafedd9a))
|
||||
|
||||
## [0.12.1](https://github.com/Monadical-SAS/reflector/compare/v0.12.0...v0.12.1) (2025-09-17)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* production blocked because having existing meeting with room_id null ([#657](https://github.com/Monadical-SAS/reflector/issues/657)) ([870e860](https://github.com/Monadical-SAS/reflector/commit/870e8605171a27155a9cbee215eeccb9a8d6c0a2))
|
||||
|
||||
## [0.12.0](https://github.com/Monadical-SAS/reflector/compare/v0.11.0...v0.12.0) (2025-09-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* calendar integration ([#608](https://github.com/Monadical-SAS/reflector/issues/608)) ([6f680b5](https://github.com/Monadical-SAS/reflector/commit/6f680b57954c688882c4ed49f40f161c52a00a24))
|
||||
* self-hosted gpu api ([#636](https://github.com/Monadical-SAS/reflector/issues/636)) ([ab859d6](https://github.com/Monadical-SAS/reflector/commit/ab859d65a6bded904133a163a081a651b3938d42))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* ignore player hotkeys for text inputs ([#646](https://github.com/Monadical-SAS/reflector/issues/646)) ([fa049e8](https://github.com/Monadical-SAS/reflector/commit/fa049e8d068190ce7ea015fd9fcccb8543f54a3f))
|
||||
|
||||
## [0.11.0](https://github.com/Monadical-SAS/reflector/compare/v0.10.0...v0.11.0) (2025-09-16)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* remove profanity filter that was there for conference ([#652](https://github.com/Monadical-SAS/reflector/issues/652)) ([b42f7cf](https://github.com/Monadical-SAS/reflector/commit/b42f7cfc606783afcee792590efcc78b507468ab))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* zulip and consent handler on the file pipeline ([#645](https://github.com/Monadical-SAS/reflector/issues/645)) ([5f143fe](https://github.com/Monadical-SAS/reflector/commit/5f143fe3640875dcb56c26694254a93189281d17))
|
||||
* zulip stream and topic selection in share dialog ([#644](https://github.com/Monadical-SAS/reflector/issues/644)) ([c546e69](https://github.com/Monadical-SAS/reflector/commit/c546e69739e68bb74fbc877eb62609928e5b8de6))
|
||||
|
||||
## [0.10.0](https://github.com/Monadical-SAS/reflector/compare/v0.9.0...v0.10.0) (2025-09-11)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* replace nextjs-config with environment variables ([#632](https://github.com/Monadical-SAS/reflector/issues/632)) ([369ecdf](https://github.com/Monadical-SAS/reflector/commit/369ecdff13f3862d926a9c0b87df52c9d94c4dde))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* anonymous users transcript permissions ([#621](https://github.com/Monadical-SAS/reflector/issues/621)) ([f81fe99](https://github.com/Monadical-SAS/reflector/commit/f81fe9948a9237b3e0001b2d8ca84f54d76878f9))
|
||||
* auth post ([#624](https://github.com/Monadical-SAS/reflector/issues/624)) ([cde99ca](https://github.com/Monadical-SAS/reflector/commit/cde99ca2716f84ba26798f289047732f0448742e))
|
||||
* auth post ([#626](https://github.com/Monadical-SAS/reflector/issues/626)) ([3b85ff3](https://github.com/Monadical-SAS/reflector/commit/3b85ff3bdf4fb053b103070646811bc990c0e70a))
|
||||
* auth post ([#627](https://github.com/Monadical-SAS/reflector/issues/627)) ([962038e](https://github.com/Monadical-SAS/reflector/commit/962038ee3f2a555dc3c03856be0e4409456e0996))
|
||||
* missing follow_redirects=True on modal endpoint ([#630](https://github.com/Monadical-SAS/reflector/issues/630)) ([fc363bd](https://github.com/Monadical-SAS/reflector/commit/fc363bd49b17b075e64f9186e5e0185abc325ea7))
|
||||
* sync backend and frontend token refresh logic ([#614](https://github.com/Monadical-SAS/reflector/issues/614)) ([5a5b323](https://github.com/Monadical-SAS/reflector/commit/5a5b3233820df9536da75e87ce6184a983d4713a))
|
||||
|
||||
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||
|
||||
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||
|
||||
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||
|
||||
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||
|
||||
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||
|
||||
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* docker image not loading libgomp.so.1 for torch ([#560](https://github.com/Monadical-SAS/reflector/issues/560)) ([773fccd](https://github.com/Monadical-SAS/reflector/commit/773fccd93e887c3493abc2e4a4864dddce610177))
|
||||
* include shared rooms to search ([#558](https://github.com/Monadical-SAS/reflector/issues/558)) ([499eced](https://github.com/Monadical-SAS/reflector/commit/499eced3360b84fb3a90e1c8a3b554290d21adc2))
|
||||
|
||||
## [0.7.1](https://github.com/Monadical-SAS/reflector/compare/v0.7.0...v0.7.1) (2025-08-21)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* webvtt db null expectation mismatch ([#556](https://github.com/Monadical-SAS/reflector/issues/556)) ([e67ad1a](https://github.com/Monadical-SAS/reflector/commit/e67ad1a4a2054467bfeb1e0258fbac5868aaaf21))
|
||||
|
||||
## [0.7.0](https://github.com/Monadical-SAS/reflector/compare/v0.6.1...v0.7.0) (2025-08-21)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* delete recording with transcript ([#547](https://github.com/Monadical-SAS/reflector/issues/547)) ([99cc984](https://github.com/Monadical-SAS/reflector/commit/99cc9840b3f5de01e0adfbfae93234042d706d13))
|
||||
* pipeline improvement with file processing, parakeet, silero-vad ([#540](https://github.com/Monadical-SAS/reflector/issues/540)) ([bcc29c9](https://github.com/Monadical-SAS/reflector/commit/bcc29c9e0050ae215f89d460e9d645aaf6a5e486))
|
||||
* postgresql migration and removal of sqlite in pytest ([#546](https://github.com/Monadical-SAS/reflector/issues/546)) ([cd1990f](https://github.com/Monadical-SAS/reflector/commit/cd1990f8f0fe1503ef5069512f33777a73a93d7f))
|
||||
* search backend ([#537](https://github.com/Monadical-SAS/reflector/issues/537)) ([5f9b892](https://github.com/Monadical-SAS/reflector/commit/5f9b89260c9ef7f3c921319719467df22830453f))
|
||||
* search frontend ([#551](https://github.com/Monadical-SAS/reflector/issues/551)) ([3657242](https://github.com/Monadical-SAS/reflector/commit/365724271ca6e615e3425125a69ae2b46ce39285))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* evaluation cli event wrap ([#536](https://github.com/Monadical-SAS/reflector/issues/536)) ([941c3db](https://github.com/Monadical-SAS/reflector/commit/941c3db0bdacc7b61fea412f3746cc5a7cb67836))
|
||||
* use structlog not logging ([#550](https://github.com/Monadical-SAS/reflector/issues/550)) ([27e2f81](https://github.com/Monadical-SAS/reflector/commit/27e2f81fda5232e53edc729d3e99c5ef03adbfe9))
|
||||
|
||||
## [0.6.1](https://github.com/Monadical-SAS/reflector/compare/v0.6.0...v0.6.1) (2025-08-06)
|
||||
|
||||
|
||||
|
||||
@@ -66,7 +66,6 @@ pnpm install
|
||||
|
||||
# Copy configuration templates
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
```
|
||||
|
||||
**Development:**
|
||||
@@ -152,7 +151,7 @@ All endpoints prefixed `/v1/`:
|
||||
|
||||
**Frontend** (`www/.env`):
|
||||
- `NEXTAUTH_URL`, `NEXTAUTH_SECRET` - Authentication configuration
|
||||
- `NEXT_PUBLIC_REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_DOMAIN_CONFIG` - Feature flags and domain settings
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
345
CODER_BRIEFING.md
Normal file
345
CODER_BRIEFING.md
Normal file
@@ -0,0 +1,345 @@
|
||||
# Multi-Provider Video Platform Implementation - Coder Briefing
|
||||
|
||||
## Your Mission
|
||||
|
||||
Implement multi-provider video platform support in Reflector, allowing the system to work with both Whereby and Daily.co video conferencing providers. The goal is to abstract the current Whereby-only implementation and add Daily.co as a second provider, with the ability to switch between them via environment variables.
|
||||
|
||||
**Branch:** `igor/dailico-2` (you're already on it)
|
||||
|
||||
**Estimated Time:** 12-16 hours (senior engineer)
|
||||
|
||||
**Complexity:** Medium-High (requires careful integration with existing codebase)
|
||||
|
||||
---
|
||||
|
||||
## What You Have
|
||||
|
||||
### 1. **PLAN.md** - Your Technical Specification (2,452 lines)
|
||||
- Complete step-by-step implementation guide
|
||||
- All code examples you need
|
||||
- Architecture diagrams and design rationale
|
||||
- Testing strategy and success metrics
|
||||
- **Read this first** to understand the overall approach
|
||||
|
||||
### 2. **IMPLEMENTATION_GUIDE.md** - Your Practical Guide
|
||||
- What to copy vs. adapt vs. rewrite
|
||||
- Common pitfalls and how to avoid them
|
||||
- Verification checklists for each phase
|
||||
- Decision trees for implementation choices
|
||||
- **Use this as your day-to-day reference**
|
||||
|
||||
### 3. **Reference Implementation** - `./reflector-dailyco-reference/`
|
||||
- Working implementation from 2.5 months ago
|
||||
- Good architecture and patterns
|
||||
- **BUT:** 91 commits behind current main, DO NOT merge directly
|
||||
- Use for inspiration and code patterns only
|
||||
|
||||
---
|
||||
|
||||
## Critical Context: Why Not Just Merge?
|
||||
|
||||
The reference branch (`origin/igor/feat-dailyco`) was started on August 1, 2025 and is now severely diverged from main:
|
||||
|
||||
- **91 commits behind main**
|
||||
- Main has 12x more changes (45,840 insertions vs 3,689)
|
||||
- Main added: calendar integration, webhooks, full-text search, React Query migration, security fixes
|
||||
- Reference removed: features that main still has and needs
|
||||
|
||||
**Merging would be a disaster.** We're implementing fresh on current main, using the reference for validated patterns.
|
||||
|
||||
---
|
||||
|
||||
## High-Level Approach
|
||||
|
||||
### Phase 1: Analysis (2 hours)
|
||||
- Study current Whereby integration
|
||||
- Define abstraction requirements
|
||||
- Create standard data models
|
||||
|
||||
### Phase 2: Abstraction Layer (4-5 hours)
|
||||
- Build platform abstraction (base class, registry, factory)
|
||||
- Extract Whereby into the abstraction
|
||||
- Update database schema (add `platform` field)
|
||||
- Integrate into rooms.py **without breaking calendar/webhooks**
|
||||
|
||||
### Phase 3: Daily.co Implementation (4-5 hours)
|
||||
- Implement Daily.co client
|
||||
- Add webhook handler
|
||||
- Create frontend components (rewrite API calls for React Query)
|
||||
- Add recording processing
|
||||
|
||||
### Phase 4: Testing (2-3 hours)
|
||||
- Unit tests for platform abstraction
|
||||
- Integration tests for webhooks
|
||||
- Manual testing with both providers
|
||||
|
||||
---
|
||||
|
||||
## Key Files You'll Touch
|
||||
|
||||
### Backend (New)
|
||||
```
|
||||
server/reflector/video_platforms/
|
||||
├── __init__.py
|
||||
├── base.py ← Abstract base class
|
||||
├── models.py ← Platform, MeetingData, VideoPlatformConfig
|
||||
├── registry.py ← Platform registration system
|
||||
├── factory.py ← Client creation and config
|
||||
├── whereby.py ← Whereby client wrapper
|
||||
├── daily.py ← Daily.co client
|
||||
└── mock.py ← Mock client for testing
|
||||
|
||||
server/reflector/views/daily.py ← Daily.co webhooks
|
||||
server/tests/test_video_platforms.py ← Platform tests
|
||||
server/tests/test_daily_webhook.py ← Webhook tests
|
||||
```
|
||||
|
||||
### Backend (Modified - Careful!)
|
||||
```
|
||||
server/reflector/settings.py ← Add Daily.co settings
|
||||
server/reflector/db/rooms.py ← Add platform field, PRESERVE calendar fields
|
||||
server/reflector/db/meetings.py ← Add platform field
|
||||
server/reflector/views/rooms.py ← Integrate abstraction, PRESERVE calendar/webhooks
|
||||
server/reflector/worker/process.py ← Add process_recording_from_url task
|
||||
server/reflector/app.py ← Register daily router
|
||||
server/env.example ← Document new env vars
|
||||
```
|
||||
|
||||
### Frontend (New)
|
||||
```
|
||||
www/app/[roomName]/components/
|
||||
├── RoomContainer.tsx ← Platform router
|
||||
├── DailyRoom.tsx ← Daily.co component (rewrite API calls!)
|
||||
└── WherebyRoom.tsx ← Extract existing logic
|
||||
```
|
||||
|
||||
### Frontend (Modified)
|
||||
```
|
||||
www/app/[roomName]/page.tsx ← Use RoomContainer
|
||||
www/package.json ← Add @daily-co/daily-js
|
||||
```
|
||||
|
||||
### Database
|
||||
```
|
||||
server/migrations/versions/XXXXXX_add_platform_support.py ← Generate fresh migration
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Critical Warnings ⚠️
|
||||
|
||||
### 1. **DO NOT Copy Database Migrations**
|
||||
The reference migration has the wrong `down_revision` and is based on old schema.
|
||||
```bash
|
||||
# Instead:
|
||||
cd server
|
||||
uv run alembic revision -m "add_platform_support"
|
||||
# Then edit the generated file
|
||||
```
|
||||
|
||||
### 2. **DO NOT Remove Main's Features**
|
||||
Main has calendar integration, webhooks, ICS sync that reference doesn't have.
|
||||
When modifying `rooms.py`, only change meeting creation logic, preserve everything else.
|
||||
|
||||
### 3. **DO NOT Copy Frontend API Calls**
|
||||
Reference uses old OpenAPI client. Main uses React Query.
|
||||
Check how main currently makes API calls and replicate that pattern.
|
||||
|
||||
### 4. **DO NOT Copy package.json/migrations**
|
||||
These files are severely outdated in reference.
|
||||
|
||||
### 5. **Preserve Type Safety**
|
||||
Use `TYPE_CHECKING` imports to avoid circular dependencies:
|
||||
```python
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from reflector.db.rooms import Room
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## How to Start
|
||||
|
||||
### Day 1 Morning: Setup & Understanding (2-3 hours)
|
||||
```bash
|
||||
# 1. Verify you're on the right branch
|
||||
git branch
|
||||
# Should show: igor/dailico-2
|
||||
|
||||
# 2. Read the docs (in order)
|
||||
# - PLAN.md (skim to understand scope, read Phase 1 carefully)
|
||||
# - IMPLEMENTATION_GUIDE.md (read fully, bookmark it)
|
||||
|
||||
# 3. Study current Whereby integration
|
||||
cat server/reflector/views/rooms.py | grep -A 20 "whereby"
|
||||
cat www/app/[roomName]/page.tsx
|
||||
|
||||
# 4. Check reference implementation structure
|
||||
ls -la reflector-dailyco-reference/server/reflector/video_platforms/
|
||||
```
|
||||
|
||||
### Day 1 Afternoon: Phase 1 Execution (2-3 hours)
|
||||
```bash
|
||||
# 5. Copy video_platforms directory from reference
|
||||
cp -r reflector-dailyco-reference/server/reflector/video_platforms/ \
|
||||
server/reflector/
|
||||
|
||||
# 6. Review and fix imports
|
||||
cd server
|
||||
uv run ruff check reflector/video_platforms/
|
||||
|
||||
# 7. Add settings to settings.py (see PLAN.md Phase 2.7)
|
||||
|
||||
# 8. Test imports work
|
||||
uv run python -c "from reflector.video_platforms import create_platform_client; print('OK')"
|
||||
```
|
||||
|
||||
### Day 2: Phase 2 - Database & Integration (4-5 hours)
|
||||
```bash
|
||||
# 9. Generate migration
|
||||
uv run alembic revision -m "add_platform_support"
|
||||
# Edit the file following PLAN.md Phase 2.8
|
||||
|
||||
# 10. Update Room/Meeting models
|
||||
# Add platform field, PRESERVE all existing fields
|
||||
|
||||
# 11. Integrate into rooms.py
|
||||
# Carefully modify meeting creation, preserve calendar/webhooks
|
||||
|
||||
# 12. Add Daily.co webhook handler
|
||||
cp reflector-dailyco-reference/server/reflector/views/daily.py \
|
||||
server/reflector/views/
|
||||
# Register in app.py
|
||||
```
|
||||
|
||||
### Day 3: Phase 3 - Frontend & Testing (4-5 hours)
|
||||
```bash
|
||||
# 13. Create frontend components
|
||||
mkdir -p www/app/[roomName]/components
|
||||
|
||||
# 14. Add Daily.co dependency
|
||||
cd www
|
||||
pnpm add @daily-co/daily-js@^0.81.0
|
||||
|
||||
# 15. Create RoomContainer, DailyRoom, WherebyRoom
|
||||
# IMPORTANT: Rewrite API calls using React Query patterns
|
||||
|
||||
# 16. Regenerate types
|
||||
pnpm openapi
|
||||
|
||||
# 17. Copy and adapt tests
|
||||
cp reflector-dailyco-reference/server/tests/test_*.py server/tests/
|
||||
|
||||
# 18. Run tests
|
||||
cd server
|
||||
REDIS_HOST=localhost \
|
||||
CELERY_BROKER_URL=redis://localhost:6379/1 \
|
||||
uv run pytest tests/test_video_platforms.py -v
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Verification Checklist
|
||||
|
||||
After implementation, all of these must pass:
|
||||
|
||||
**Backend:**
|
||||
- [ ] `cd server && uv run ruff check .` passes
|
||||
- [ ] `uv run alembic upgrade head` works cleanly
|
||||
- [ ] `uv run pytest tests/test_video_platforms.py` passes
|
||||
- [ ] Can import: `from reflector.video_platforms import create_platform_client`
|
||||
- [ ] Settings has all Daily.co variables
|
||||
|
||||
**Frontend:**
|
||||
- [ ] `cd www && pnpm lint` passes
|
||||
- [ ] No TypeScript errors
|
||||
- [ ] `pnpm openapi` generates platform field
|
||||
- [ ] No `@ts-ignore` for platform field
|
||||
|
||||
**Integration:**
|
||||
- [ ] Whereby meetings still work (existing flow unchanged)
|
||||
- [ ] Calendar/webhook features still work in rooms.py
|
||||
- [ ] env.example documents all new variables
|
||||
|
||||
---
|
||||
|
||||
## When You're Stuck
|
||||
|
||||
### Check These Resources:
|
||||
1. **PLAN.md** - Detailed code examples for your exact scenario
|
||||
2. **IMPLEMENTATION_GUIDE.md** - Common pitfalls section
|
||||
3. **Reference code** - See how it was solved before
|
||||
4. **Git diff** - Compare reference to your implementation
|
||||
|
||||
### Compare Files:
|
||||
```bash
|
||||
# See what reference did
|
||||
diff reflector-dailyco-reference/server/reflector/views/rooms.py \
|
||||
server/reflector/views/rooms.py
|
||||
|
||||
# See what changed in main since reference branch
|
||||
git log --oneline --since="2025-08-01" -- server/reflector/views/rooms.py
|
||||
```
|
||||
|
||||
### Common Issues:
|
||||
- **Circular imports:** Use `TYPE_CHECKING` pattern
|
||||
- **Tests fail with postgres error:** Use `REDIS_HOST=localhost` env vars
|
||||
- **Frontend API calls broken:** Check current React Query patterns in main
|
||||
- **Migrations fail:** Ensure you generated fresh, not copied
|
||||
|
||||
---
|
||||
|
||||
## Success Looks Like
|
||||
|
||||
When you're done:
|
||||
- ✅ All tests pass
|
||||
- ✅ Linting passes
|
||||
- ✅ Can create Whereby meetings (unchanged behavior)
|
||||
- ✅ Can create Daily.co meetings (with env vars)
|
||||
- ✅ Calendar/webhooks still work
|
||||
- ✅ Frontend has no TypeScript errors
|
||||
- ✅ Platform selection via environment variables works
|
||||
|
||||
---
|
||||
|
||||
## Communication
|
||||
|
||||
If you need clarification on requirements, have questions about architecture decisions, or find issues with the spec, document them clearly with:
|
||||
- What you expected
|
||||
- What you found
|
||||
- Your proposed solution
|
||||
|
||||
The PLAN.md document is comprehensive but you may find edge cases. Use your engineering judgment and document decisions.
|
||||
|
||||
---
|
||||
|
||||
## Final Notes
|
||||
|
||||
**This is not a simple copy-paste job.** You're doing careful integration work where you need to:
|
||||
- Understand the abstraction pattern (PLAN.md)
|
||||
- Preserve all of main's features
|
||||
- Adapt reference code to current patterns
|
||||
- Think about edge cases and testing
|
||||
|
||||
Take your time with Phase 2 (rooms.py integration) - that's where most bugs will come from if you accidentally break calendar/webhook features.
|
||||
|
||||
**Good luck! You've got comprehensive specs, working reference code, and a clean starting point. You can do this.**
|
||||
|
||||
---
|
||||
|
||||
## Quick Reference
|
||||
|
||||
```bash
|
||||
# Your workspace
|
||||
├── PLAN.md ← Complete technical spec (read first)
|
||||
├── IMPLEMENTATION_GUIDE.md ← Practical guide (bookmark this)
|
||||
├── CODER_BRIEFING.md ← This file
|
||||
└── reflector-dailyco-reference/ ← Reference implementation (inspiration only)
|
||||
|
||||
# Key commands
|
||||
cd server && uv run ruff check . # Lint backend
|
||||
cd www && pnpm lint # Lint frontend
|
||||
cd server && uv run alembic revision -m "..." # Create migration
|
||||
cd www && pnpm openapi # Regenerate types
|
||||
cd server && uv run pytest -v # Run tests
|
||||
```
|
||||
489
IMPLEMENTATION_GUIDE.md
Normal file
489
IMPLEMENTATION_GUIDE.md
Normal file
@@ -0,0 +1,489 @@
|
||||
# Daily.co Implementation Guide
|
||||
|
||||
## Overview
|
||||
Implement multi-provider video platform support (Whereby + Daily.co) following PLAN.md.
|
||||
|
||||
## Reference Code Location
|
||||
- **Reference branch:** `origin/igor/feat-dailyco` (on remote)
|
||||
- **Worktree location:** `./reflector-dailyco-reference/`
|
||||
- **Status:** Reference only - DO NOT merge or copy directly
|
||||
|
||||
## What Exists in Reference Branch (For Inspiration)
|
||||
|
||||
### ✅ Can Use As Reference (Well-Implemented)
|
||||
```
|
||||
server/reflector/video_platforms/
|
||||
├── base.py ← Platform abstraction (good design, copy-safe)
|
||||
├── models.py ← Data models (copy-safe)
|
||||
├── registry.py ← Registry pattern (copy-safe)
|
||||
├── factory.py ← Factory pattern (needs settings updates)
|
||||
├── whereby.py ← Whereby client (needs adaptation)
|
||||
├── daily.py ← Daily.co client (needs adaptation)
|
||||
└── mock.py ← Mock client (copy-safe for tests)
|
||||
|
||||
server/reflector/views/daily.py ← Webhook handler (needs adaptation)
|
||||
server/tests/test_video_platforms.py ← Tests (good reference)
|
||||
server/tests/test_daily_webhook.py ← Tests (good reference)
|
||||
|
||||
www/app/[roomName]/components/
|
||||
├── RoomContainer.tsx ← Platform router (needs React Query)
|
||||
├── DailyRoom.tsx ← Daily component (needs React Query)
|
||||
└── WherebyRoom.tsx ← Whereby extraction (needs React Query)
|
||||
```
|
||||
|
||||
### ⚠️ Needs Significant Changes (Use Logic Only)
|
||||
- `server/reflector/db/rooms.py` - Reference removed calendar/webhook fields that main has
|
||||
- `server/reflector/db/meetings.py` - Same issue (missing user_id handling differences)
|
||||
- `server/reflector/views/rooms.py` - Main has calendar integration, webhooks, ICS sync
|
||||
- `server/reflector/worker/process.py` - Main has different recording flow
|
||||
- Migration files - Must regenerate against current main schema
|
||||
|
||||
### ❌ Do NOT Use (Outdated/Incompatible)
|
||||
- `package.json`/`pnpm-lock.yaml` - Main uses different dependency versions
|
||||
- Frontend API client calls - Main uses React Query (reference uses old OpenAPI client)
|
||||
- Database migrations - Must create new ones from scratch
|
||||
- Any files that delete features present in main (search, calendar, webhooks)
|
||||
|
||||
## Key Differences: Reference vs Current Main
|
||||
|
||||
| Aspect | Reference Branch | Current Main | Action Required |
|
||||
|--------|------------------|--------------|-----------------|
|
||||
| **API client** | Old OpenAPI generated | React Query hooks | Rewrite all API calls |
|
||||
| **Database schema** | Simplified (removed features) | Has calendar, webhooks, full-text search | Merge carefully, preserve main features |
|
||||
| **Settings** | Aug 2025 structure | Current structure | Adapt carefully |
|
||||
| **Migrations** | Branched from Aug 1 | Current main (91+ commits ahead) | Regenerate from scratch |
|
||||
| **Frontend deps** | `@daily-co/daily-js@0.81.0` | Check current versions | Update to compatible versions |
|
||||
| **Package manager** | yarn | pnpm (maybe both?) | Use what main uses |
|
||||
|
||||
## Branch Divergence Analysis
|
||||
|
||||
**The reference branch is 91 commits behind main and severely diverged:**
|
||||
- Reference: 8 commits, 3,689 insertions, 425 deletions
|
||||
- Main since divergence: 320 files changed, 45,840 insertions, 16,827 deletions
|
||||
- **Main has 12x more changes**
|
||||
|
||||
**Major features in main that reference lacks:**
|
||||
1. Calendar integration (ICS sync with rooms)
|
||||
2. Self-hosted GPU API infrastructure
|
||||
3. Frontend OpenAPI React Query migration
|
||||
4. Full-text search (backend + frontend)
|
||||
5. Webhook system for room events
|
||||
6. Environment variable migration
|
||||
7. Security fixes and auth improvements
|
||||
8. Docker production frontend
|
||||
9. Meeting user ID removal (schema change)
|
||||
10. NextJS version upgrades
|
||||
|
||||
**High conflict risk files:**
|
||||
- `server/reflector/views/rooms.py` - 12x more changes in main
|
||||
- `server/reflector/db/rooms.py` - Main added 7+ fields
|
||||
- `www/package.json` - NextJS major version bump
|
||||
- Database migrations - 20+ new migrations in main
|
||||
|
||||
## Implementation Approach
|
||||
|
||||
### Phase 1: Copy Clean Abstractions (1-2 hours)
|
||||
|
||||
**Files to copy directly from reference:**
|
||||
```bash
|
||||
# Core abstraction (review but mostly safe to copy)
|
||||
cp -r reflector-dailyco-reference/server/reflector/video_platforms/ \
|
||||
server/reflector/
|
||||
|
||||
# BUT review each file for:
|
||||
# - Import paths (make sure they match current main)
|
||||
# - Settings references (adapt to current settings.py)
|
||||
# - Type imports (ensure no circular dependencies)
|
||||
```
|
||||
|
||||
**After copying, immediately:**
|
||||
```bash
|
||||
cd server
|
||||
# Check for issues
|
||||
uv run ruff check reflector/video_platforms/
|
||||
# Fix any import errors or type issues
|
||||
```
|
||||
|
||||
### Phase 2: Adapt to Current Main (2-3 hours)
|
||||
|
||||
**2.1 Settings Integration**
|
||||
|
||||
File: `server/reflector/settings.py`
|
||||
|
||||
Add at the appropriate location (near existing Whereby settings):
|
||||
|
||||
```python
|
||||
# Daily.co API Integration (NEW)
|
||||
DAILY_API_KEY: str | None = None
|
||||
DAILY_WEBHOOK_SECRET: str | None = None
|
||||
DAILY_SUBDOMAIN: str | None = None
|
||||
AWS_DAILY_S3_BUCKET: str | None = None
|
||||
AWS_DAILY_S3_REGION: str = "us-west-2"
|
||||
AWS_DAILY_ROLE_ARN: str | None = None
|
||||
|
||||
# Platform Migration Feature Flags (NEW)
|
||||
DAILY_MIGRATION_ENABLED: bool = False # Conservative default
|
||||
DAILY_MIGRATION_ROOM_IDS: list[str] = []
|
||||
DEFAULT_VIDEO_PLATFORM: Literal["whereby", "daily"] = "whereby"
|
||||
```
|
||||
|
||||
**2.2 Database Migration**
|
||||
|
||||
⚠️ **CRITICAL: Do NOT copy migration from reference**
|
||||
|
||||
Generate new migration:
|
||||
```bash
|
||||
cd server
|
||||
uv run alembic revision -m "add_platform_support"
|
||||
```
|
||||
|
||||
Edit the generated migration file to add `platform` column:
|
||||
```python
|
||||
def upgrade():
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("platform", sa.String(), nullable=False, server_default="whereby")
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("platform", sa.String(), nullable=False, server_default="whereby")
|
||||
)
|
||||
```
|
||||
|
||||
**2.3 Update Database Models**
|
||||
|
||||
File: `server/reflector/db/rooms.py`
|
||||
|
||||
Add platform field (preserve all existing fields from main):
|
||||
```python
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from reflector.video_platforms.models import Platform
|
||||
|
||||
class Room:
|
||||
# ... ALL existing fields from main (calendar, webhooks, etc.) ...
|
||||
|
||||
# NEW: Platform field
|
||||
platform: "Platform" = sqlalchemy.Column(
|
||||
sqlalchemy.String,
|
||||
nullable=False,
|
||||
server_default="whereby",
|
||||
)
|
||||
```
|
||||
|
||||
File: `server/reflector/db/meetings.py`
|
||||
|
||||
Same approach - add platform field, preserve everything from main.
|
||||
|
||||
**2.4 Integrate Platform Abstraction into rooms.py**
|
||||
|
||||
⚠️ **This is the most delicate part - main has calendar/webhook features**
|
||||
|
||||
File: `server/reflector/views/rooms.py`
|
||||
|
||||
Strategy:
|
||||
1. Add imports at top
|
||||
2. Modify meeting creation logic only
|
||||
3. Preserve all calendar/webhook/ICS logic from main
|
||||
|
||||
```python
|
||||
# Add imports
|
||||
from reflector.video_platforms import (
|
||||
create_platform_client,
|
||||
get_platform_for_room,
|
||||
)
|
||||
|
||||
# In create_meeting endpoint:
|
||||
# OLD: Direct Whereby API calls
|
||||
# NEW: Platform abstraction
|
||||
|
||||
# Find the meeting creation section and replace:
|
||||
platform = get_platform_for_room(room.id)
|
||||
client = create_platform_client(platform)
|
||||
|
||||
meeting_data = await client.create_meeting(
|
||||
room_name_prefix=room.name,
|
||||
end_date=meeting_data.end_date,
|
||||
room=room,
|
||||
)
|
||||
|
||||
# Then create Meeting record with meeting_data.platform, meeting_data.meeting_id, etc.
|
||||
```
|
||||
|
||||
**2.5 Add Daily.co Webhook Handler**
|
||||
|
||||
Copy from reference, minimal changes needed:
|
||||
```bash
|
||||
cp reflector-dailyco-reference/server/reflector/views/daily.py \
|
||||
server/reflector/views/
|
||||
```
|
||||
|
||||
Register in `server/reflector/app.py`:
|
||||
```python
|
||||
from reflector.views import daily
|
||||
|
||||
app.include_router(daily.router, prefix="/v1/daily", tags=["daily"])
|
||||
```
|
||||
|
||||
**2.6 Add Recording Processing Task**
|
||||
|
||||
File: `server/reflector/worker/process.py`
|
||||
|
||||
Add the `process_recording_from_url` task from reference (copy the function).
|
||||
|
||||
### Phase 3: Frontend Adaptation (3-4 hours)
|
||||
|
||||
**3.1 Determine Current API Client Pattern**
|
||||
|
||||
First, check how main currently makes API calls:
|
||||
```bash
|
||||
cd www
|
||||
grep -r "api\." app/ | head -20
|
||||
# Look for patterns like: api.v1Something()
|
||||
```
|
||||
|
||||
**3.2 Create Components**
|
||||
|
||||
Copy component structure from reference but **rewrite all API calls**:
|
||||
|
||||
```bash
|
||||
mkdir -p www/app/[roomName]/components
|
||||
```
|
||||
|
||||
Files to create:
|
||||
- `RoomContainer.tsx` - Platform router (mostly copy-safe, just fix imports)
|
||||
- `DailyRoom.tsx` - Needs React Query API calls
|
||||
- `WherebyRoom.tsx` - Extract current room page logic
|
||||
|
||||
**Example React Query pattern** (adapt to your actual API):
|
||||
```typescript
|
||||
import { api } from '@/app/api/client'
|
||||
|
||||
// In DailyRoom.tsx
|
||||
const handleConsent = async () => {
|
||||
try {
|
||||
await api.v1MeetingAudioConsent({
|
||||
path: { meeting_id: meeting.id },
|
||||
body: { consent: true },
|
||||
})
|
||||
// ...
|
||||
} catch (error) {
|
||||
// ...
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**3.3 Add Daily.co Dependency**
|
||||
|
||||
Check current package manager:
|
||||
```bash
|
||||
cd www
|
||||
ls package-lock.json yarn.lock pnpm-lock.yaml
|
||||
```
|
||||
|
||||
Then install:
|
||||
```bash
|
||||
# If using pnpm
|
||||
pnpm add @daily-co/daily-js@^0.81.0
|
||||
|
||||
# If using yarn
|
||||
yarn add @daily-co/daily-js@^0.81.0
|
||||
```
|
||||
|
||||
**3.4 Update TypeScript Types**
|
||||
|
||||
After backend changes, regenerate types:
|
||||
```bash
|
||||
cd www
|
||||
pnpm openapi # or yarn openapi
|
||||
```
|
||||
|
||||
This should pick up the new `platform` field on Meeting type.
|
||||
|
||||
### Phase 4: Testing (2-3 hours)
|
||||
|
||||
**4.1 Copy Test Structure**
|
||||
|
||||
```bash
|
||||
cp reflector-dailyco-reference/server/tests/test_video_platforms.py \
|
||||
server/tests/
|
||||
|
||||
cp reflector-dailyco-reference/server/tests/test_daily_webhook.py \
|
||||
server/tests/
|
||||
```
|
||||
|
||||
**4.2 Fix Test Imports and Fixtures**
|
||||
|
||||
Update imports to match current test infrastructure:
|
||||
- Check `server/tests/conftest.py` for fixture patterns
|
||||
- Update database access patterns if changed
|
||||
- Fix any import errors
|
||||
|
||||
**4.3 Run Tests**
|
||||
|
||||
```bash
|
||||
cd server
|
||||
# Run with environment variables for Mac
|
||||
REDIS_HOST=localhost \
|
||||
CELERY_BROKER_URL=redis://localhost:6379/1 \
|
||||
CELERY_RESULT_BACKEND=redis://localhost:6379/1 \
|
||||
uv run pytest tests/test_video_platforms.py -v
|
||||
```
|
||||
|
||||
### Phase 5: Environment Configuration
|
||||
|
||||
**Update `server/env.example`:**
|
||||
|
||||
Add at the end:
|
||||
```bash
|
||||
# Daily.co API Integration
|
||||
DAILY_API_KEY=your-daily-api-key
|
||||
DAILY_WEBHOOK_SECRET=your-daily-webhook-secret
|
||||
DAILY_SUBDOMAIN=your-subdomain
|
||||
AWS_DAILY_S3_BUCKET=your-daily-bucket
|
||||
AWS_DAILY_S3_REGION=us-west-2
|
||||
AWS_DAILY_ROLE_ARN=arn:aws:iam::ACCOUNT:role/DailyRecording
|
||||
|
||||
# Platform Selection
|
||||
DAILY_MIGRATION_ENABLED=false # Master switch
|
||||
DAILY_MIGRATION_ROOM_IDS=[] # Specific room IDs
|
||||
DEFAULT_VIDEO_PLATFORM=whereby # Default platform
|
||||
```
|
||||
|
||||
## Decision Tree: Copy vs Adapt vs Rewrite
|
||||
|
||||
```
|
||||
┌─ Is it pure abstraction logic? (base.py, registry.py, models.py)
|
||||
│ YES → Copy directly, review imports
|
||||
│ NO → Continue ↓
|
||||
│
|
||||
├─ Does it touch database models?
|
||||
│ YES → Adapt carefully, preserve main's fields
|
||||
│ NO → Continue ↓
|
||||
│
|
||||
├─ Does it make API calls on frontend?
|
||||
│ YES → Rewrite using React Query
|
||||
│ NO → Continue ↓
|
||||
│
|
||||
├─ Is it a database migration?
|
||||
│ YES → Generate fresh from current schema
|
||||
│ NO → Continue ↓
|
||||
│
|
||||
└─ Does it touch rooms.py or core business logic?
|
||||
YES → Merge carefully, preserve calendar/webhooks
|
||||
NO → Safe to adapt from reference
|
||||
```
|
||||
|
||||
## Verification Checklist
|
||||
|
||||
After each phase, verify:
|
||||
|
||||
**Phase 1 (Abstraction Layer):**
|
||||
- [ ] `uv run ruff check server/reflector/video_platforms/` passes
|
||||
- [ ] No circular import errors
|
||||
- [ ] Can import `from reflector.video_platforms import create_platform_client`
|
||||
|
||||
**Phase 2 (Backend Integration):**
|
||||
- [ ] `uv run ruff check server/` passes
|
||||
- [ ] Migration file generated (not copied)
|
||||
- [ ] Room and Meeting models have platform field
|
||||
- [ ] rooms.py still has calendar/webhook features
|
||||
|
||||
**Phase 3 (Frontend):**
|
||||
- [ ] `pnpm lint` passes
|
||||
- [ ] No TypeScript errors
|
||||
- [ ] No `@ts-ignore` for platform field
|
||||
- [ ] API calls use React Query patterns
|
||||
|
||||
**Phase 4 (Testing):**
|
||||
- [ ] Tests can be collected: `pytest tests/test_video_platforms.py --collect-only`
|
||||
- [ ] Database fixtures work
|
||||
- [ ] Mock platform works
|
||||
|
||||
**Phase 5 (Config):**
|
||||
- [ ] env.example has Daily.co variables
|
||||
- [ ] settings.py has all new variables
|
||||
- [ ] No duplicate variable definitions
|
||||
|
||||
## Common Pitfalls
|
||||
|
||||
### 1. Database Schema Conflicts
|
||||
**Problem:** Reference removed fields that main has (calendar, webhooks)
|
||||
**Solution:** Always preserve main's fields, only add platform field
|
||||
|
||||
### 2. Migration Conflicts
|
||||
**Problem:** Reference migration has wrong `down_revision`
|
||||
**Solution:** Always generate fresh migration from current main
|
||||
|
||||
### 3. Frontend API Calls
|
||||
**Problem:** Reference uses old API client patterns
|
||||
**Solution:** Check current main's API usage, replicate that pattern
|
||||
|
||||
### 4. Import Errors
|
||||
**Problem:** Circular imports with TYPE_CHECKING
|
||||
**Solution:** Use `if TYPE_CHECKING:` for Room/Meeting imports in video_platforms
|
||||
|
||||
### 5. Test Database Issues
|
||||
**Problem:** Tests fail with "could not translate host name 'postgres'"
|
||||
**Solution:** Use environment variables: `REDIS_HOST=localhost DATABASE_URL=...`
|
||||
|
||||
### 6. Preserved Features Broken
|
||||
**Problem:** Calendar/webhook features stop working
|
||||
**Solution:** Carefully review rooms.py diff, only change meeting creation, not calendar logic
|
||||
|
||||
## File Modification Summary
|
||||
|
||||
**New files (can copy):**
|
||||
- `server/reflector/video_platforms/*.py` (entire directory)
|
||||
- `server/reflector/views/daily.py`
|
||||
- `server/tests/test_video_platforms.py`
|
||||
- `server/tests/test_daily_webhook.py`
|
||||
- `www/app/[roomName]/components/RoomContainer.tsx`
|
||||
- `www/app/[roomName]/components/DailyRoom.tsx`
|
||||
- `www/app/[roomName]/components/WherebyRoom.tsx`
|
||||
|
||||
**Modified files (careful merging):**
|
||||
- `server/reflector/settings.py` - Add Daily.co settings
|
||||
- `server/reflector/db/rooms.py` - Add platform field
|
||||
- `server/reflector/db/meetings.py` - Add platform field
|
||||
- `server/reflector/views/rooms.py` - Integrate platform abstraction
|
||||
- `server/reflector/worker/process.py` - Add process_recording_from_url
|
||||
- `server/reflector/app.py` - Register daily router
|
||||
- `server/env.example` - Add Daily.co variables
|
||||
- `www/app/[roomName]/page.tsx` - Use RoomContainer
|
||||
- `www/package.json` - Add @daily-co/daily-js
|
||||
|
||||
**Generated files (do not copy):**
|
||||
- `server/migrations/versions/XXXXXX_add_platform_support.py` - Generate fresh
|
||||
|
||||
## Success Metrics
|
||||
|
||||
Implementation is complete when:
|
||||
- [ ] All tests pass (including new platform tests)
|
||||
- [ ] Linting passes (ruff, pnpm lint)
|
||||
- [ ] Migration applies cleanly: `uv run alembic upgrade head`
|
||||
- [ ] Can create Whereby meeting (existing flow unchanged)
|
||||
- [ ] Can create Daily.co meeting (with env vars set)
|
||||
- [ ] Frontend loads without TypeScript errors
|
||||
- [ ] No features from main were accidentally removed
|
||||
|
||||
## Getting Help
|
||||
|
||||
**Reference documentation locations:**
|
||||
- Implementation plan: `PLAN.md`
|
||||
- Reference implementation: `./reflector-dailyco-reference/`
|
||||
- Current main codebase: `./ ` (current directory)
|
||||
|
||||
**Compare implementations:**
|
||||
```bash
|
||||
# Compare specific files
|
||||
diff reflector-dailyco-reference/server/reflector/video_platforms/base.py \
|
||||
server/reflector/video_platforms/base.py
|
||||
|
||||
# See what changed in rooms.py between reference branch point and now
|
||||
git log --oneline --since="2025-08-01" -- server/reflector/views/rooms.py
|
||||
```
|
||||
|
||||
**Key insight:** The reference branch validates the approach and provides working code patterns, but you're implementing fresh against current main to avoid merge conflicts and preserve all new features.
|
||||
88
README.md
88
README.md
@@ -1,43 +1,60 @@
|
||||
<div align="center">
|
||||
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||
|
||||
# Reflector
|
||||
|
||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
||||
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
</div>
|
||||
|
||||
## Screenshots
|
||||
</div>
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
||||
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
||||
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
||||
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||
</a>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## What is Reflector?
|
||||
|
||||
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||
|
||||
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||
|
||||
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||
|
||||
## Background
|
||||
|
||||
The project architecture consists of three primary components:
|
||||
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||
|
||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
||||
It also uses authentik for authentication if activated.
|
||||
|
||||
## Contribution Guidelines
|
||||
|
||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
||||
|
||||
## Installation
|
||||
|
||||
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||
|
||||
### Frontend
|
||||
|
||||
Start with `cd www`.
|
||||
@@ -80,11 +99,10 @@ Start with `cd www`.
|
||||
|
||||
```bash
|
||||
pnpm install
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
Then, fill in the environment variables in `.env` and the configuration in `config.ts` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
Then, fill in the environment variables in `.env` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
|
||||
**Run in development mode**
|
||||
|
||||
@@ -149,3 +167,41 @@ You can manually process an audio file by calling the process tool:
|
||||
```bash
|
||||
uv run python -m reflector.tools.process path/to/audio.wav
|
||||
```
|
||||
|
||||
## Build-time env variables
|
||||
|
||||
Next.js projects are more used to NEXT_PUBLIC_ prefixed buildtime vars. We don't have those for the reason we need to serve a ccustomizable prebuild docker container.
|
||||
|
||||
Instead, all the variables are runtime. Variables needed to the frontend are served to the frontend app at initial render.
|
||||
|
||||
It also means there's no static prebuild and no static files to serve for js/html.
|
||||
|
||||
## Feature Flags
|
||||
|
||||
Reflector uses environment variable-based feature flags to control application functionality. These flags allow you to enable or disable features without code changes.
|
||||
|
||||
### Available Feature Flags
|
||||
|
||||
| Feature Flag | Environment Variable |
|
||||
|-------------|---------------------|
|
||||
| `requireLogin` | `FEATURE_REQUIRE_LOGIN` |
|
||||
| `privacy` | `FEATURE_PRIVACY` |
|
||||
| `browse` | `FEATURE_BROWSE` |
|
||||
| `sendToZulip` | `FEATURE_SEND_TO_ZULIP` |
|
||||
| `rooms` | `FEATURE_ROOMS` |
|
||||
|
||||
### Setting Feature Flags
|
||||
|
||||
Feature flags are controlled via environment variables using the pattern `FEATURE_{FEATURE_NAME}` where `{FEATURE_NAME}` is the SCREAMING_SNAKE_CASE version of the feature name.
|
||||
|
||||
**Examples:**
|
||||
```bash
|
||||
# Enable user authentication requirement
|
||||
FEATURE_REQUIRE_LOGIN=true
|
||||
|
||||
# Disable browse functionality
|
||||
FEATURE_BROWSE=false
|
||||
|
||||
# Enable Zulip integration
|
||||
FEATURE_SEND_TO_ZULIP=true
|
||||
```
|
||||
|
||||
39
docker-compose.prod.yml
Normal file
39
docker-compose.prod.yml
Normal file
@@ -0,0 +1,39 @@
|
||||
# Production Docker Compose configuration for Frontend
|
||||
# Usage: docker compose -f docker-compose.prod.yml up -d
|
||||
|
||||
services:
|
||||
web:
|
||||
build:
|
||||
context: ./www
|
||||
dockerfile: Dockerfile
|
||||
image: reflector-frontend:latest
|
||||
environment:
|
||||
- KV_URL=${KV_URL:-redis://redis:6379}
|
||||
- SITE_URL=${SITE_URL}
|
||||
- API_URL=${API_URL}
|
||||
- WEBSOCKET_URL=${WEBSOCKET_URL}
|
||||
- NEXTAUTH_URL=${NEXTAUTH_URL:-http://localhost:3000}
|
||||
- NEXTAUTH_SECRET=${NEXTAUTH_SECRET:-changeme-in-production}
|
||||
- AUTHENTIK_ISSUER=${AUTHENTIK_ISSUER}
|
||||
- AUTHENTIK_CLIENT_ID=${AUTHENTIK_CLIENT_ID}
|
||||
- AUTHENTIK_CLIENT_SECRET=${AUTHENTIK_CLIENT_SECRET}
|
||||
- AUTHENTIK_REFRESH_TOKEN_URL=${AUTHENTIK_REFRESH_TOKEN_URL}
|
||||
- SENTRY_DSN=${SENTRY_DSN}
|
||||
- SENTRY_IGNORE_API_RESOLUTION_ERROR=${SENTRY_IGNORE_API_RESOLUTION_ERROR:-1}
|
||||
depends_on:
|
||||
- redis
|
||||
restart: unless-stopped
|
||||
|
||||
redis:
|
||||
image: redis:7.2-alpine
|
||||
restart: unless-stopped
|
||||
healthcheck:
|
||||
test: ["CMD", "redis-cli", "ping"]
|
||||
interval: 30s
|
||||
timeout: 3s
|
||||
retries: 3
|
||||
volumes:
|
||||
- redis_data:/data
|
||||
|
||||
volumes:
|
||||
redis_data:
|
||||
@@ -6,6 +6,7 @@ services:
|
||||
- 1250:1250
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -16,6 +17,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -26,6 +28,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -36,7 +39,7 @@ services:
|
||||
ports:
|
||||
- 6379:6379
|
||||
web:
|
||||
image: node:18
|
||||
image: node:22-alpine
|
||||
ports:
|
||||
- "3000:3000"
|
||||
command: sh -c "corepack enable && pnpm install && pnpm dev"
|
||||
@@ -47,6 +50,8 @@ services:
|
||||
- /app/node_modules
|
||||
env_file:
|
||||
- ./www/.env.local
|
||||
environment:
|
||||
- NODE_ENV=development
|
||||
|
||||
postgres:
|
||||
image: postgres:17
|
||||
33
gpu/modal_deployments/.gitignore
vendored
Normal file
33
gpu/modal_deployments/.gitignore
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
.env.*
|
||||
*.env
|
||||
*.secret
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Modal local state (if any)
|
||||
modal_mounts/
|
||||
.modal_cache/
|
||||
171
gpu/modal_deployments/README.md
Normal file
171
gpu/modal_deployments/README.md
Normal file
@@ -0,0 +1,171 @@
|
||||
# Reflector GPU implementation - Transcription and LLM
|
||||
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_diarizer.py` - Diarization API
|
||||
- `reflector_transcriber.py` - Transcription API (Whisper)
|
||||
- `reflector_transcriber_parakeet.py` - Transcription API (NVIDIA Parakeet)
|
||||
- `reflector_translator.py` - Translation API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
Create a modal secret, and name it `reflector-gpu`.
|
||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||
|
||||
The deployment is done using [Modal.com](https://modal.com) service.
|
||||
|
||||
```
|
||||
$ modal deploy reflector_transcriber.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||
|
||||
$ modal deploy reflector_transcriber_parakeet.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-parakeet-web.modal.run
|
||||
|
||||
$ modal deploy reflector_llm.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||
```
|
||||
|
||||
Then in your reflector api configuration `.env`, you can set these keys:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
||||
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
TRANSLATION_BACKEND=modal
|
||||
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
||||
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
```
|
||||
|
||||
## API
|
||||
|
||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||
|
||||
```
|
||||
Authorization: bearer <REFLECTOR_APIKEY>
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
`POST /llm`
|
||||
|
||||
**request**
|
||||
```
|
||||
{
|
||||
"prompt": "xxx"
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx completed"
|
||||
}
|
||||
```
|
||||
|
||||
### Transcription
|
||||
|
||||
#### Parakeet Transcriber (`reflector_transcriber_parakeet.py`)
|
||||
|
||||
NVIDIA Parakeet is a state-of-the-art ASR model optimized for real-time transcription with superior word-level timestamps.
|
||||
|
||||
**GPU Configuration:**
|
||||
- **A10G GPU** - Used for `/v1/audio/transcriptions` endpoint (small files, live transcription)
|
||||
- Higher concurrency (max_inputs=10)
|
||||
- Optimized for multiple small audio files
|
||||
- Supports batch processing for efficiency
|
||||
|
||||
- **L40S GPU** - Used for `/v1/audio/transcriptions-from-url` endpoint (large files)
|
||||
- Lower concurrency but more powerful processing
|
||||
- Optimized for single large audio files
|
||||
- VAD-based chunking for long-form audio
|
||||
|
||||
##### `/v1/audio/transcriptions` - Small file transcription
|
||||
|
||||
**request** (multipart/form-data)
|
||||
- `file` or `files[]` - audio file(s) to transcribe
|
||||
- `model` - model name (default: `nvidia/parakeet-tdt-0.6b-v2`)
|
||||
- `language` - language code (default: `en`)
|
||||
- `batch` - whether to use batch processing for multiple files (default: `true`)
|
||||
|
||||
**response**
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||
{"word": "world", "start": 0.5, "end": 1.0}
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
For multiple files with batch=true:
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{
|
||||
"filename": "audio1.mp3",
|
||||
"text": "transcribed text",
|
||||
"words": [...]
|
||||
},
|
||||
{
|
||||
"filename": "audio2.mp3",
|
||||
"text": "transcribed text",
|
||||
"words": [...]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
##### `/v1/audio/transcriptions-from-url` - Large file transcription
|
||||
|
||||
**request** (application/json)
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text from large file",
|
||||
"words": [
|
||||
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||
{"word": "world", "start": 0.5, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**Supported file types:** mp3, mp4, mpeg, mpga, m4a, wav, webm
|
||||
|
||||
#### Whisper Transcriber (`reflector_transcriber.py`)
|
||||
|
||||
`POST /transcribe`
|
||||
|
||||
**request** (multipart/form-data)
|
||||
|
||||
- `file` - audio file
|
||||
- `language` - language code (e.g. `en`)
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx",
|
||||
"words": [
|
||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
@@ -0,0 +1,253 @@
|
||||
"""
|
||||
Reflector GPU backend - diarizer
|
||||
===================================
|
||||
"""
|
||||
|
||||
import os
|
||||
import uuid
|
||||
from typing import Mapping, NewType
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||
MODEL_DIR = "/root/diarization_models"
|
||||
UPLOADS_PATH = "/uploads"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
DiarizerUniqFilename = NewType("DiarizerUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App(name="reflector-diarizer")
|
||||
|
||||
# Volume for temporary file uploads
|
||||
upload_volume = modal.Volume.from_name("diarizer-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[DiarizerUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
print(f"Checking audio file at: {audio_file_url}")
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
print(f"Downloading audio file from: {audio_file_url}")
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
|
||||
if response.status_code != 200:
|
||||
print(f"Download failed with status {response.status_code}: {response.text}")
|
||||
raise HTTPException(
|
||||
status_code=response.status_code,
|
||||
detail=f"Failed to download audio file: {response.status_code}",
|
||||
)
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = DiarizerUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
print(f"Writing file to: {file_path} (size: {len(response.content)} bytes)")
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
print(f"File saved as: {unique_filename}")
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
def download_pyannote_audio():
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
|
||||
|
||||
diarizer_image = (
|
||||
modal.Image.debian_slim(python_version="3.10.8")
|
||||
.pip_install(
|
||||
"pyannote.audio==3.1.0",
|
||||
"requests",
|
||||
"onnx",
|
||||
"torchaudio",
|
||||
"onnxruntime-gpu",
|
||||
"torch==2.0.0",
|
||||
"transformers==4.34.0",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"numpy",
|
||||
"huggingface_hub",
|
||||
"hf-transfer",
|
||||
)
|
||||
.run_function(
|
||||
download_pyannote_audio,
|
||||
secrets=[modal.Secret.from_name("hf_token")],
|
||||
)
|
||||
.run_function(migrate_cache_llm)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A100",
|
||||
timeout=60 * 30,
|
||||
image=diarizer_image,
|
||||
volumes={UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
secrets=[
|
||||
modal.Secret.from_name("hf_token"),
|
||||
],
|
||||
)
|
||||
@modal.concurrent(max_inputs=1)
|
||||
class Diarizer:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import torch
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
print(f"Using device: {self.device}")
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
|
||||
@modal.method()
|
||||
def diarize(self, filename: str, timestamp: float = 0.0):
|
||||
import torchaudio
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
print(f"Diarizing audio from: {file_path}")
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
diarization = self.diarization_pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:]),
|
||||
}
|
||||
)
|
||||
print("Diarization complete")
|
||||
return {"diarization": words}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
scaledown_window=60 * 3,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={UPLOADS_PATH: upload_volume},
|
||||
image=diarizer_image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
diarizerstub = Diarizer()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/diarize", dependencies=[Depends(apikey_auth)])
|
||||
def diarize(audio_file_url: str, timestamp: float = 0.0) -> DiarizationResponse:
|
||||
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
|
||||
try:
|
||||
func = diarizerstub.diarize.spawn(
|
||||
filename=unique_filename, timestamp=timestamp
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {unique_filename}: {e}")
|
||||
|
||||
return app
|
||||
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
@@ -0,0 +1,608 @@
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
MINUTES = 60 # seconds
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/models"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
|
||||
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
model_cache.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||
|
||||
model_cache.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
"fastapi==0.115.12",
|
||||
"requests",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
)
|
||||
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||
|
||||
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberWhisperLive:
|
||||
"""Live transcriber class for small audio segments (A10G).
|
||||
|
||||
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||
"""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
print(f"Model is on device: {self.device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe a single uploaded audio file by filename."""
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start), 2),
|
||||
"end": round(float(w.end), 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=15 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class TranscriberWhisperFile:
|
||||
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLERATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield TimeSegment(
|
||||
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||
)
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
upload_volume.reload()
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
|
||||
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||
merged_batches: list[TimeSegment] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for segment in vad_segments(audio_array):
|
||||
seg_start, seg_end = segment.start, segment.end
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
|
||||
for segment in merged_batches:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
s_idx = int(start_time * SAMPLERATE)
|
||||
e_idx = int(end_time * SAMPLERATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = pad_audio(segment, SAMPLERATE)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: dict) -> str:
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
transcriber_live = TranscriberWhisperLive()
|
||||
transcriber_file = TranscriberWhisperFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(dict):
|
||||
pass
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_filenames: list[str] = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
if batch and len(upload_files) > 1:
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
language=language,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
os.remove(file_path)
|
||||
except Exception:
|
||||
pass
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
@@ -0,0 +1,658 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/cache"
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
app = modal.App("reflector-transcriber-parakeet")
|
||||
|
||||
# Volume for caching model weights
|
||||
model_cache = modal.Volume.from_name("parakeet-model-cache", create_if_missing=True)
|
||||
# Volume for temporary file uploads
|
||||
upload_volume = modal.Volume.from_name("parakeet-uploads", create_if_missing=True)
|
||||
|
||||
image = (
|
||||
modal.Image.from_registry(
|
||||
"nvidia/cuda:12.8.0-cudnn-devel-ubuntu22.04", add_python="3.12"
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"HF_HOME": "/cache",
|
||||
"DEBIAN_FRONTEND": "noninteractive",
|
||||
"CXX": "g++",
|
||||
"CC": "g++",
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"hf_transfer==0.1.9",
|
||||
"huggingface_hub[hf-xet]==0.31.2",
|
||||
"nemo_toolkit[asr]==2.5.0",
|
||||
"cuda-python==12.8.0",
|
||||
"fastapi==0.115.12",
|
||||
"numpy<2",
|
||||
"librosa==0.10.1",
|
||||
"requests",
|
||||
"silero-vad==5.1.0",
|
||||
"torch",
|
||||
)
|
||||
.entrypoint([]) # silence chatty logs by container on start
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[ParakeetUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = ParakeetUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5 seconds of silence if audio is less than 500ms.
|
||||
|
||||
This is a workaround for a Parakeet bug where very short audio (<500ms) causes:
|
||||
ValueError: `char_offsets`: [] and `processed_tokens`: [157, 834, 834, 841]
|
||||
have to be of the same length
|
||||
|
||||
See: https://github.com/NVIDIA/NeMo/issues/8451
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < 0.5:
|
||||
silence_samples = int(sample_rate * 0.5)
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=600,
|
||||
scaledown_window=300,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberParakeetLive:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import nemo.collections.asr as nemo_asr
|
||||
|
||||
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||
device = next(self.model.parameters()).device
|
||||
print(f"Model is on device: {device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
):
|
||||
import librosa
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
padded_audio = pad_audio(audio_array, sample_rate)
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||
|
||||
text = output.text.strip()
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
# XXX the space added here is to match the output of whisper
|
||||
# whisper add space to each words, while parakeet don't
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
):
|
||||
import librosa
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
audio_arrays = []
|
||||
|
||||
# Load all audio files with padding
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
padded_audio = pad_audio(audio_array, sample_rate)
|
||||
audio_arrays.append(padded_audio)
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
outputs = self.model.transcribe(audio_arrays, timestamps=True)
|
||||
|
||||
# Process results for each file
|
||||
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||
text = output.text.strip()
|
||||
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
# L40S class for file transcription (bigger files)
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=900,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
)
|
||||
class TranscriberParakeetFile:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import nemo.collections.asr as nemo_asr
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||
|
||||
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||
device = next(self.model.parameters()).device
|
||||
print(f"Model is on device: {device}")
|
||||
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
print("Silero VAD initialized")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
timestamp_offset: float = 0.0,
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def load_and_convert_audio(file_path):
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
return audio_array
|
||||
|
||||
def vad_segment_generator(
|
||||
audio_array,
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments using VAD with start/end sample indices"""
|
||||
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||
window_size = VAD_CONFIG["window_size"]
|
||||
start = None
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
|
||||
speech_dict = vad_iterator(chunk)
|
||||
if not speech_dict:
|
||||
continue
|
||||
|
||||
if "start" in speech_dict:
|
||||
start = speech_dict["start"]
|
||||
continue
|
||||
|
||||
if "end" in speech_dict and start is not None:
|
||||
end = speech_dict["end"]
|
||||
start_time = start / float(SAMPLERATE)
|
||||
end_time = end / float(SAMPLERATE)
|
||||
|
||||
yield TimeSegment(start_time, end_time)
|
||||
start = None
|
||||
|
||||
vad_iterator.reset_states()
|
||||
|
||||
def batch_speech_segments(
|
||||
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""
|
||||
Input segments:
|
||||
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||
|
||||
↓ (max_duration=10)
|
||||
|
||||
Output batches:
|
||||
[0-8] [10-19] [20-22]
|
||||
|
||||
Note: silences are kept for better transcription, previous implementation was
|
||||
passing segments separatly, but the output was less accurate.
|
||||
"""
|
||||
batch_start_time = None
|
||||
batch_end_time = None
|
||||
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
total_duration = end_time - batch_start_time
|
||||
|
||||
if total_duration <= max_duration:
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
return
|
||||
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
|
||||
def batch_segment_to_audio_segment(
|
||||
segments: Generator[TimeSegment, None, None],
|
||||
audio_array,
|
||||
) -> Generator[AudioSegment, None, None]:
|
||||
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||
|
||||
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||
segments, which are corrected by enforce_word_timing_constraints.
|
||||
"""
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
start_sample = int(start_time * SAMPLERATE)
|
||||
end_sample = int(end_time * SAMPLERATE)
|
||||
audio_segment = audio_array[start_sample:end_sample]
|
||||
|
||||
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||
|
||||
yield AudioSegment(start_time, end_time, padded_segment)
|
||||
|
||||
def transcribe_batch(model, audio_segments: list) -> list:
|
||||
with NoStdStreams():
|
||||
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||
return outputs
|
||||
|
||||
def enforce_word_timing_constraints(
|
||||
words: list[WordTiming],
|
||||
) -> list[WordTiming]:
|
||||
"""Enforce that word end times don't exceed the start time of the next word.
|
||||
|
||||
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||
transcription accuracy, word timings from different segments may overlap.
|
||||
This function ensures there are no overlaps by adjusting end times.
|
||||
"""
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
|
||||
enforced_words = []
|
||||
for i, word in enumerate(words):
|
||||
enforced_word = word.copy()
|
||||
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if enforced_word["end"] > next_start:
|
||||
enforced_word["end"] = next_start
|
||||
|
||||
enforced_words.append(enforced_word)
|
||||
|
||||
return enforced_words
|
||||
|
||||
def emit_results(
|
||||
results: list,
|
||||
segments_info: list[AudioSegment],
|
||||
) -> Generator[TranscriptResult, None, None]:
|
||||
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||
start_time, end_time = segment.start, segment.end
|
||||
text = output.text.strip()
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(
|
||||
word_info["start"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
yield TranscriptResult(text, words)
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array = load_and_convert_audio(file_path)
|
||||
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||
|
||||
all_text_parts: list[str] = []
|
||||
all_words: list[WordTiming] = []
|
||||
|
||||
raw_segments = vad_segment_generator(audio_array)
|
||||
speech_segments = batch_speech_segments(
|
||||
raw_segments,
|
||||
VAD_CONFIG["batch_max_duration"],
|
||||
)
|
||||
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||
|
||||
for batch in audio_segments:
|
||||
audio_segment = batch.audio
|
||||
results = transcribe_batch(self.model, [audio_segment])
|
||||
|
||||
for result in emit_results(
|
||||
results,
|
||||
[batch],
|
||||
):
|
||||
if not result.text:
|
||||
continue
|
||||
all_text_parts.append(result.text)
|
||||
all_words.extend(result.words)
|
||||
|
||||
all_words = enforce_word_timing_constraints(all_words)
|
||||
|
||||
combined_text = " ".join(all_text_parts)
|
||||
return {"text": combined_text, "words": all_words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
transcriber_live = TranscriberParakeetLive()
|
||||
transcriber_file = TranscriberParakeetFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
# Parakeet only supports English
|
||||
if language != "en":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||
)
|
||||
# Handle both single file and multiple files
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
# Upload files to volume
|
||||
uploaded_filenames = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
assert audio_suffix in SUPPORTED_FILE_EXTENSIONS
|
||||
|
||||
# Generate unique filename
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
print(f"Writing file to: {file_path}")
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
# Use A10G live transcriber for per-file transcription
|
||||
if batch and len(upload_files) > 1:
|
||||
# Use batch transcription
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
# Per-file transcription
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
except Exception as e:
|
||||
print(f"Error deleting {filename}: {e}")
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en", description="Language code (only 'en' supported)"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
# Parakeet only supports English
|
||||
if language != "en":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||
)
|
||||
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {unique_filename}: {e}")
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
2
gpu/self_hosted/.env.example
Normal file
2
gpu/self_hosted/.env.example
Normal file
@@ -0,0 +1,2 @@
|
||||
REFLECTOR_GPU_APIKEY=
|
||||
HF_TOKEN=
|
||||
38
gpu/self_hosted/.gitignore
vendored
Normal file
38
gpu/self_hosted/.gitignore
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
cache/
|
||||
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
*.env
|
||||
*.secret
|
||||
HF_TOKEN
|
||||
REFLECTOR_GPU_APIKEY
|
||||
|
||||
# Virtual env / uv
|
||||
.venv/
|
||||
venv/
|
||||
ENV/
|
||||
uv/
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
46
gpu/self_hosted/Dockerfile
Normal file
46
gpu/self_hosted/Dockerfile
Normal file
@@ -0,0 +1,46 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
WORKDIR /tmp
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
ffmpeg \
|
||||
curl \
|
||||
ca-certificates \
|
||||
gnupg \
|
||||
wget \
|
||||
&& apt-get clean
|
||||
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
|
||||
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
|
||||
RUN dpkg -i /cuda-keyring.deb \
|
||||
&& rm /cuda-keyring.deb \
|
||||
&& apt-get update \
|
||||
&& apt-get install -y --no-install-recommends \
|
||||
cuda-cudart-12-6 \
|
||||
libcublas-12-6 \
|
||||
libcudnn9-cuda-12 \
|
||||
libcudnn9-dev-cuda-12 \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
||||
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
||||
ENV PATH="/root/.local/bin/:$PATH"
|
||||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
|
||||
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
|
||||
|
||||
COPY ./app /app/app
|
||||
COPY ./main.py /app/
|
||||
COPY ./runserver.sh /app/
|
||||
|
||||
EXPOSE 8000
|
||||
|
||||
CMD ["sh", "/app/runserver.sh"]
|
||||
|
||||
|
||||
73
gpu/self_hosted/README.md
Normal file
73
gpu/self_hosted/README.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Self-hosted Model API
|
||||
|
||||
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
|
||||
|
||||
Environment variables
|
||||
|
||||
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
|
||||
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
|
||||
|
||||
Requirements
|
||||
|
||||
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
|
||||
- Python 3.12+
|
||||
- NVIDIA GPU optional. If available, it will be used automatically
|
||||
|
||||
Local run
|
||||
Set env vars in self_hosted/.env file
|
||||
uv sync
|
||||
|
||||
uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
Authentication
|
||||
|
||||
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
|
||||
|
||||
Endpoints
|
||||
|
||||
- POST /v1/audio/transcriptions
|
||||
|
||||
- multipart/form-data
|
||||
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
|
||||
- response: single { text, words, filename } or { results: [ ... ] }
|
||||
|
||||
- POST /v1/audio/transcriptions-from-url
|
||||
|
||||
- application/json
|
||||
- body: { audio_file_url, language, timestamp_offset }
|
||||
- response: { text, words }
|
||||
|
||||
- POST /translate
|
||||
|
||||
- text: query parameter
|
||||
- body (application/json): { source_language, target_language }
|
||||
- response: { text: { <src>: original, <tgt>: translated } }
|
||||
|
||||
- POST /diarize
|
||||
- query parameters: audio_file_url, timestamp (optional)
|
||||
- requires HF_TOKEN to be set (for pyannote)
|
||||
- response: { diarization: [ { start, end, speaker } ] }
|
||||
|
||||
OpenAPI docs
|
||||
|
||||
- Visit /docs when the server is running
|
||||
|
||||
Docker
|
||||
|
||||
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
|
||||
|
||||
Conformance tests
|
||||
|
||||
# From this directory
|
||||
|
||||
TRANSCRIPT_URL=http://localhost:8000 \
|
||||
TRANSCRIPT_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
|
||||
|
||||
TRANSLATION_URL=http://localhost:8000 \
|
||||
TRANSLATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
|
||||
|
||||
DIARIZATION_URL=http://localhost:8000 \
|
||||
DIARIZATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py
|
||||
19
gpu/self_hosted/app/auth.py
Normal file
19
gpu/self_hosted/app/auth.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
from fastapi import Depends, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
|
||||
if not required_key:
|
||||
return
|
||||
if apikey == required_key:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
12
gpu/self_hosted/app/config.py
Normal file
12
gpu/self_hosted/app/config.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from pathlib import Path
|
||||
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLE_RATE = 16000
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
# App-level paths
|
||||
UPLOADS_PATH = Path("/tmp/whisper-uploads")
|
||||
30
gpu/self_hosted/app/factory.py
Normal file
30
gpu/self_hosted/app/factory.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
from fastapi import FastAPI
|
||||
|
||||
from .routers.diarization import router as diarization_router
|
||||
from .routers.transcription import router as transcription_router
|
||||
from .routers.translation import router as translation_router
|
||||
from .services.transcriber import WhisperService
|
||||
from .services.diarizer import PyannoteDiarizationService
|
||||
from .utils import ensure_dirs
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
ensure_dirs()
|
||||
whisper_service = WhisperService()
|
||||
whisper_service.load()
|
||||
app.state.whisper = whisper_service
|
||||
diarization_service = PyannoteDiarizationService()
|
||||
diarization_service.load()
|
||||
app.state.diarizer = diarization_service
|
||||
yield
|
||||
|
||||
|
||||
def create_app() -> FastAPI:
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.include_router(transcription_router)
|
||||
app.include_router(translation_router)
|
||||
app.include_router(diarization_router)
|
||||
return app
|
||||
30
gpu/self_hosted/app/routers/diarization.py
Normal file
30
gpu/self_hosted/app/routers/diarization.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from typing import List
|
||||
|
||||
from fastapi import APIRouter, Depends, Request
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.diarizer import PyannoteDiarizationService
|
||||
from ..utils import download_audio_file
|
||||
|
||||
router = APIRouter(tags=["diarization"])
|
||||
|
||||
|
||||
class DiarizationSegment(BaseModel):
|
||||
start: float
|
||||
end: float
|
||||
speaker: int
|
||||
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
diarization: List[DiarizationSegment]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
|
||||
)
|
||||
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
diarizer: PyannoteDiarizationService = request.app.state.diarizer
|
||||
return diarizer.diarize_file(file_path, timestamp=timestamp)
|
||||
109
gpu/self_hosted/app/routers/transcription.py
Normal file
109
gpu/self_hosted/app/routers/transcription.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import uuid
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
|
||||
from pydantic import BaseModel
|
||||
from pathlib import Path
|
||||
from ..auth import apikey_auth
|
||||
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
from ..services.transcriber import MODEL_NAME
|
||||
from ..utils import cleanup_uploaded_files, download_audio_file
|
||||
|
||||
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
|
||||
|
||||
|
||||
class WordTiming(BaseModel):
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class TranscriptResult(BaseModel):
|
||||
text: str
|
||||
words: list[WordTiming]
|
||||
filename: Optional[str] = None
|
||||
|
||||
|
||||
class TranscriptBatchResponse(BaseModel):
|
||||
results: list[TranscriptResult]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=Union[TranscriptResult, TranscriptBatchResponse],
|
||||
)
|
||||
def transcribe(
|
||||
request: Request,
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_paths: list[Path] = []
|
||||
with cleanup_uploaded_files(uploaded_paths):
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1].lower()
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = UPLOADS_PATH / unique_filename
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_paths.append(file_path)
|
||||
|
||||
if batch and len(upload_files) > 1:
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions-from-url",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranscriptResult,
|
||||
)
|
||||
def transcribe_from_url(
|
||||
request: Request,
|
||||
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
result = service.transcribe_vad_url_segment(
|
||||
file_path=file_path, timestamp_offset=timestamp_offset, language=language
|
||||
)
|
||||
return result
|
||||
28
gpu/self_hosted/app/routers/translation.py
Normal file
28
gpu/self_hosted/app/routers/translation.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from typing import Dict
|
||||
|
||||
from fastapi import APIRouter, Body, Depends
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.translator import TextTranslatorService
|
||||
|
||||
router = APIRouter(tags=["translation"])
|
||||
|
||||
translator = TextTranslatorService()
|
||||
|
||||
|
||||
class TranslationResponse(BaseModel):
|
||||
text: Dict[str, str]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/translate",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranslationResponse,
|
||||
)
|
||||
def translate(
|
||||
text: str,
|
||||
source_language: str = Body("en"),
|
||||
target_language: str = Body("fr"),
|
||||
):
|
||||
return translator.translate(text, source_language, target_language)
|
||||
42
gpu/self_hosted/app/services/diarizer.py
Normal file
42
gpu/self_hosted/app/services/diarizer.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
import threading
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
|
||||
class PyannoteDiarizationService:
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._device = "cpu"
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self._pipeline = Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.1",
|
||||
use_auth_token=os.environ.get("HF_TOKEN"),
|
||||
)
|
||||
self._pipeline.to(torch.device(self._device))
|
||||
|
||||
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load()
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
with self._lock:
|
||||
diarization = self._pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:])
|
||||
if speaker and speaker[-2:].isdigit()
|
||||
else 0,
|
||||
}
|
||||
)
|
||||
return {"diarization": words}
|
||||
208
gpu/self_hosted/app/services/transcriber.py
Normal file
208
gpu/self_hosted/app/services/transcriber.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import threading
|
||||
from typing import Generator
|
||||
|
||||
import faster_whisper
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch
|
||||
from fastapi import HTTPException
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from ..config import SAMPLE_RATE, VAD_CONFIG
|
||||
|
||||
# Whisper configuration (service-local defaults)
|
||||
MODEL_NAME = "large-v2"
|
||||
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
|
||||
MODEL_COMPUTE_TYPE = None
|
||||
MODEL_NUM_WORKERS = 1
|
||||
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
|
||||
from ..utils import NoStdStreams
|
||||
|
||||
|
||||
class WhisperService:
|
||||
def __init__(self):
|
||||
self.model = None
|
||||
self.device = "cpu"
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
compute_type = MODEL_COMPUTE_TYPE or (
|
||||
"float16" if self.device == "cuda" else "int8"
|
||||
)
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=compute_type,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
)
|
||||
|
||||
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
enforced: list[dict] = []
|
||||
for i, word in enumerate(words):
|
||||
current = dict(word)
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if current["end"] > next_start:
|
||||
current["end"] = next_start
|
||||
enforced.append(current)
|
||||
return enforced
|
||||
|
||||
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
|
||||
input_for_model: str | "object" = file_path
|
||||
try:
|
||||
audio_array, _sample_rate = librosa.load(
|
||||
file_path, sr=SAMPLE_RATE, mono=True
|
||||
)
|
||||
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
|
||||
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
input_for_model,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
words = self.enforce_word_timing_constraints(words)
|
||||
return {"text": text, "words": words}
|
||||
|
||||
def transcribe_vad_url_segment(
|
||||
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
) -> dict:
|
||||
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
|
||||
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
|
||||
cmd = [
|
||||
ffmpeg_bin,
|
||||
"-nostdin",
|
||||
"-threads",
|
||||
"1",
|
||||
"-i",
|
||||
input_path,
|
||||
"-f",
|
||||
"f32le",
|
||||
"-acodec",
|
||||
"pcm_f32le",
|
||||
"-ac",
|
||||
"1",
|
||||
"-ar",
|
||||
str(sample_rate),
|
||||
"pipe:1",
|
||||
]
|
||||
try:
|
||||
proc = subprocess.run(
|
||||
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
|
||||
audio = np.frombuffer(proc.stdout, dtype=np.float32)
|
||||
return audio
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLE_RATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[tuple[float, float], None, None]:
|
||||
vad_model = load_silero_vad(onnx=False)
|
||||
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
|
||||
|
||||
merged_batches: list[tuple[float, float]] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for seg_start, seg_end in vad_segments(audio_array):
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
for start_time, end_time in merged_batches:
|
||||
s_idx = int(start_time * SAMPLE_RATE)
|
||||
e_idx = int(end_time * SAMPLE_RATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = self.pad_audio(segment, SAMPLE_RATE)
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
all_words = self.enforce_word_timing_constraints(all_words)
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
44
gpu/self_hosted/app/services/translator.py
Normal file
44
gpu/self_hosted/app/services/translator.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import threading
|
||||
|
||||
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
||||
|
||||
|
||||
class TextTranslatorService:
|
||||
"""Simple text-to-text translator using HuggingFace MarianMT models.
|
||||
|
||||
This mirrors the modal translator API shape but uses text translation only.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self, source_language: str = "en", target_language: str = "fr"):
|
||||
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
|
||||
model_name = self._resolve_model_name(source_language, target_language)
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
model = MarianMTModel.from_pretrained(model_name)
|
||||
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
||||
|
||||
def _resolve_model_name(self, src: str, tgt: str) -> str:
|
||||
# Minimal mapping; extend as needed
|
||||
pair = (src.lower(), tgt.lower())
|
||||
mapping = {
|
||||
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
|
||||
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
|
||||
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
|
||||
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
|
||||
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
|
||||
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
|
||||
}
|
||||
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
|
||||
|
||||
def translate(self, text: str, source_language: str, target_language: str) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load(source_language, target_language)
|
||||
with self._lock:
|
||||
results = self._pipeline(
|
||||
text, src_lang=source_language, tgt_lang=target_language
|
||||
)
|
||||
translated = results[0]["translation_text"] if results else ""
|
||||
return {"text": {source_language: text, target_language: translated}}
|
||||
107
gpu/self_hosted/app/utils.py
Normal file
107
gpu/self_hosted/app/utils.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from typing import Mapping
|
||||
from urllib.parse import urlparse
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
|
||||
|
||||
def ensure_dirs():
|
||||
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path: Path = UPLOADS_PATH / unique_filename
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
return file_path, audio_suffix
|
||||
|
||||
|
||||
@contextmanager
|
||||
def download_audio_file(audio_file_url: str):
|
||||
"""Download an audio file to UPLOADS_PATH and remove it after use.
|
||||
|
||||
Yields (file_path: Path, audio_suffix: str).
|
||||
"""
|
||||
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
|
||||
try:
|
||||
yield file_path, audio_suffix
|
||||
finally:
|
||||
try:
|
||||
file_path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", file_path, e)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def cleanup_uploaded_files(file_paths: list[Path]):
|
||||
"""Ensure provided file paths are removed after use.
|
||||
|
||||
The provided list can be populated inside the context; all present entries
|
||||
at exit will be deleted.
|
||||
"""
|
||||
try:
|
||||
yield file_paths
|
||||
finally:
|
||||
for path in list(file_paths):
|
||||
try:
|
||||
path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", path, e)
|
||||
10
gpu/self_hosted/compose.yml
Normal file
10
gpu/self_hosted/compose.yml
Normal file
@@ -0,0 +1,10 @@
|
||||
services:
|
||||
reflector_gpu:
|
||||
build:
|
||||
context: .
|
||||
ports:
|
||||
- "8000:8000"
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./cache:/root/.cache
|
||||
3
gpu/self_hosted/main.py
Normal file
3
gpu/self_hosted/main.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from app.factory import create_app
|
||||
|
||||
app = create_app()
|
||||
19
gpu/self_hosted/pyproject.toml
Normal file
19
gpu/self_hosted/pyproject.toml
Normal file
@@ -0,0 +1,19 @@
|
||||
[project]
|
||||
name = "reflector-gpu"
|
||||
version = "0.1.0"
|
||||
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"fastapi[standard]>=0.116.1",
|
||||
"uvicorn[standard]>=0.30.0",
|
||||
"torch>=2.3.0",
|
||||
"faster-whisper>=1.1.0",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
"transformers>=4.35.0",
|
||||
"sentencepiece",
|
||||
"pyannote.audio==3.1.0",
|
||||
"torchaudio>=2.3.0",
|
||||
]
|
||||
17
gpu/self_hosted/runserver.sh
Normal file
17
gpu/self_hosted/runserver.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/bin/sh
|
||||
set -e
|
||||
|
||||
export PATH="/root/.local/bin:$PATH"
|
||||
cd /app
|
||||
|
||||
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
|
||||
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
|
||||
echo "[startup] Installing Python dependencies with uv..."
|
||||
uv sync --compile-bytecode --locked
|
||||
else
|
||||
echo "[startup] Using existing virtual environment at /app/.venv"
|
||||
fi
|
||||
|
||||
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
|
||||
3013
gpu/self_hosted/uv.lock
generated
Normal file
3013
gpu/self_hosted/uv.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
3
server/.gitignore
vendored
3
server/.gitignore
vendored
@@ -176,7 +176,8 @@ artefacts/
|
||||
audio_*.wav
|
||||
|
||||
# ignore local database
|
||||
reflector.sqlite3
|
||||
*.sqlite3
|
||||
*.db
|
||||
data/
|
||||
|
||||
dump.rdb
|
||||
|
||||
613
server/DAILYCO_TEST.md
Normal file
613
server/DAILYCO_TEST.md
Normal file
@@ -0,0 +1,613 @@
|
||||
# Daily.co Integration Test Plan
|
||||
|
||||
## ✅ IMPLEMENTATION STATUS: Real Transcription Active
|
||||
|
||||
**This test validates Daily.co multitrack recording integration with REAL transcription/diarization.**
|
||||
|
||||
The implementation includes complete audio processing pipeline:
|
||||
- **Multitrack recordings** from Daily.co S3 (separate audio stream per participant)
|
||||
- **PyAV-based audio mixdown** with PTS-based track alignment
|
||||
- **Real transcription** via Modal GPU backend (Whisper)
|
||||
- **Real diarization** via Modal GPU backend (speaker identification)
|
||||
- **Per-track transcription** with timestamp synchronization
|
||||
- **Complete database entities** (recording, transcript, topics, participants, words)
|
||||
|
||||
**Processing pipeline** (`PipelineMainMultitrack`):
|
||||
1. Download all audio tracks from Daily.co S3
|
||||
2. Align tracks by PTS (presentation timestamp) to handle late joiners
|
||||
3. Mix tracks into single audio file for unified playback
|
||||
4. Transcribe each track individually with proper offset handling
|
||||
5. Perform diarization on mixed audio
|
||||
6. Generate topics, summaries, and word-level timestamps
|
||||
7. Convert audio to MP3 and generate waveform visualization
|
||||
|
||||
**Note:** A stub processor (`process_daily_recording`) exists for testing webhook flow without GPU costs, but the production code path uses `process_multitrack_recording` with full ML pipeline.
|
||||
|
||||
---
|
||||
|
||||
## Prerequisites
|
||||
|
||||
**1. Environment Variables** (check in `.env.development.local`):
|
||||
```bash
|
||||
# Daily.co API Configuration
|
||||
DAILY_API_KEY=<key>
|
||||
DAILY_SUBDOMAIN=monadical
|
||||
DAILY_WEBHOOK_SECRET=<base64-encoded-secret>
|
||||
AWS_DAILY_S3_BUCKET=reflector-dailyco-local
|
||||
AWS_DAILY_S3_REGION=us-east-1
|
||||
AWS_DAILY_ROLE_ARN=arn:aws:iam::950402358378:role/DailyCo
|
||||
DAILY_MIGRATION_ENABLED=true
|
||||
DAILY_MIGRATION_ROOM_IDS=["552640fd-16f2-4162-9526-8cf40cd2357e"]
|
||||
|
||||
# Transcription/Diarization Backend (Required for real processing)
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_MODAL_API_KEY=<modal-api-key>
|
||||
# TRANSCRIPTION_BACKEND is not explicitly set (uses default/modal)
|
||||
```
|
||||
|
||||
**2. Services Running:**
|
||||
```bash
|
||||
docker compose ps # server, postgres, redis, worker, beat should be UP
|
||||
```
|
||||
|
||||
**IMPORTANT:** Worker and beat services MUST be running for transcription processing:
|
||||
```bash
|
||||
docker compose up -d worker beat
|
||||
```
|
||||
|
||||
**3. ngrok Tunnel for Webhooks:**
|
||||
```bash
|
||||
# Start ngrok (if not already running)
|
||||
ngrok http 1250 --log=stdout > /tmp/ngrok.log 2>&1 &
|
||||
|
||||
# Get public URL
|
||||
curl -s http://localhost:4040/api/tunnels | python3 -c "import sys, json; data=json.load(sys.stdin); print(data['tunnels'][0]['public_url'])"
|
||||
```
|
||||
|
||||
**Current ngrok URL:** `https://0503947384a3.ngrok-free.app` (as of last registration)
|
||||
|
||||
**4. Webhook Created:**
|
||||
```bash
|
||||
cd server
|
||||
uv run python scripts/recreate_daily_webhook.py https://0503947384a3.ngrok-free.app/v1/daily/webhook
|
||||
# Verify: "Created webhook <uuid> (state: ACTIVE)"
|
||||
```
|
||||
|
||||
**Current webhook status:** ✅ ACTIVE (webhook ID: dad5ad16-ceca-488e-8fc5-dae8650b51d0)
|
||||
|
||||
---
|
||||
|
||||
## Test 1: Database Configuration
|
||||
|
||||
**Check room platform:**
|
||||
```bash
|
||||
docker-compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT id, name, platform, recording_type FROM room WHERE name = 'test2';"
|
||||
```
|
||||
|
||||
**Expected:**
|
||||
```
|
||||
id: 552640fd-16f2-4162-9526-8cf40cd2357e
|
||||
name: test2
|
||||
platform: whereby # DB value (overridden by env var DAILY_MIGRATION_ROOM_IDS)
|
||||
recording_type: cloud
|
||||
```
|
||||
|
||||
**Clear old meetings:**
|
||||
```bash
|
||||
docker-compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"UPDATE meeting SET is_active = false WHERE room_id = '552640fd-16f2-4162-9526-8cf40cd2357e';"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Test 2: Meeting Creation with Auto-Recording
|
||||
|
||||
**Create meeting:**
|
||||
```bash
|
||||
curl -s -X POST http://localhost:1250/v1/rooms/test2/meeting \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"allow_duplicated":false}' | python3 -m json.tool
|
||||
```
|
||||
|
||||
**Expected Response:**
|
||||
```json
|
||||
{
|
||||
"room_name": "test2-YYYYMMDDHHMMSS", // Includes "test2" prefix!
|
||||
"room_url": "https://monadical.daily.co/test2-...?t=<JWT_TOKEN>", // Has token!
|
||||
"platform": "daily",
|
||||
"recording_type": "cloud" // DB value (Whereby-specific)
|
||||
}
|
||||
```
|
||||
|
||||
**Decode token to verify auto-recording:**
|
||||
```bash
|
||||
# Extract token from room_url, decode JWT payload
|
||||
echo "<token>" | python3 -c "
|
||||
import sys, json, base64
|
||||
token = sys.stdin.read().strip()
|
||||
payload = token.split('.')[1] + '=' * (4 - len(token.split('.')[1]) % 4)
|
||||
print(json.dumps(json.loads(base64.b64decode(payload)), indent=2))
|
||||
"
|
||||
```
|
||||
|
||||
**Expected token payload:**
|
||||
```json
|
||||
{
|
||||
"r": "test2-YYYYMMDDHHMMSS", // Room name
|
||||
"sr": true, // start_recording: true ✅
|
||||
"d": "...", // Domain ID
|
||||
"iat": 1234567890
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Test 3: Daily.co API Verification
|
||||
|
||||
**Check room configuration:**
|
||||
```bash
|
||||
ROOM_NAME="<from previous step>"
|
||||
curl -s -X GET "https://api.daily.co/v1/rooms/$ROOM_NAME" \
|
||||
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -m json.tool
|
||||
```
|
||||
|
||||
**Expected config:**
|
||||
```json
|
||||
{
|
||||
"config": {
|
||||
"enable_recording": "raw-tracks", // ✅
|
||||
"recordings_bucket": {
|
||||
"bucket_name": "reflector-dailyco-local",
|
||||
"bucket_region": "us-east-1",
|
||||
"assume_role_arn": "arn:aws:iam::950402358378:role/DailyCo"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Test 4: Browser UI Test (Playwright MCP)
|
||||
|
||||
**Using Claude Code MCP tools:**
|
||||
|
||||
**Load room:**
|
||||
```
|
||||
Use: mcp__playwright__browser_navigate
|
||||
Input: {"url": "http://localhost:3000/test2"}
|
||||
|
||||
Then wait 12 seconds for iframe to load
|
||||
```
|
||||
|
||||
**Verify Daily.co iframe loaded:**
|
||||
```
|
||||
Use: mcp__playwright__browser_snapshot
|
||||
|
||||
Expected in snapshot:
|
||||
- iframe element with src containing "monadical.daily.co"
|
||||
- Daily.co pre-call UI visible
|
||||
```
|
||||
|
||||
**Take screenshot:**
|
||||
```
|
||||
Use: mcp__playwright__browser_take_screenshot
|
||||
Input: {"filename": "test2-before-join.png"}
|
||||
|
||||
Expected: Daily.co pre-call UI with "Join" button visible
|
||||
```
|
||||
|
||||
**Join meeting:**
|
||||
```
|
||||
Note: Daily.co iframe interaction requires clicking inside iframe.
|
||||
Use: mcp__playwright__browser_click
|
||||
Input: {"element": "Join button in Daily.co iframe", "ref": "<ref-from-snapshot>"}
|
||||
|
||||
Then wait 5 seconds for call to connect
|
||||
```
|
||||
|
||||
**Verify in-call:**
|
||||
```
|
||||
Use: mcp__playwright__browser_take_screenshot
|
||||
Input: {"filename": "test2-in-call.png"}
|
||||
|
||||
Expected: "Waiting for others to join" or participant video visible
|
||||
```
|
||||
|
||||
**Leave meeting:**
|
||||
```
|
||||
Use: mcp__playwright__browser_click
|
||||
Input: {"element": "Leave button in Daily.co iframe", "ref": "<ref-from-snapshot>"}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**Alternative: JavaScript snippets (for manual testing):**
|
||||
|
||||
```javascript
|
||||
await page.goto('http://localhost:3000/test2');
|
||||
await new Promise(f => setTimeout(f, 12000)); // Wait for load
|
||||
|
||||
// Verify iframe
|
||||
const iframes = document.querySelectorAll('iframe');
|
||||
// Expected: 1 iframe with src containing "monadical.daily.co"
|
||||
|
||||
// Screenshot
|
||||
await page.screenshot({ path: 'test2-before-join.png' });
|
||||
|
||||
// Join
|
||||
await page.locator('iframe').contentFrame().getByRole('button', { name: 'Join' }).click();
|
||||
await new Promise(f => setTimeout(f, 5000));
|
||||
|
||||
// In-call screenshot
|
||||
await page.screenshot({ path: 'test2-in-call.png' });
|
||||
|
||||
// Leave
|
||||
await page.locator('iframe').contentFrame().getByRole('button', { name: 'Leave' }).click();
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Test 5: Webhook Verification
|
||||
|
||||
**Check server logs for webhooks:**
|
||||
```bash
|
||||
docker-compose logs --since 15m server 2>&1 | grep -i "participant joined\|recording started"
|
||||
```
|
||||
|
||||
**Expected logs:**
|
||||
```
|
||||
[info] Participant joined | meeting_id=... | num_clients=1 | recording_type=cloud | recording_trigger=automatic-2nd-participant
|
||||
[info] Recording started | meeting_id=... | recording_id=... | platform=daily
|
||||
```
|
||||
|
||||
**Check Daily.co webhook delivery logs:**
|
||||
```bash
|
||||
curl -s -X GET "https://api.daily.co/v1/logs/webhooks?limit=20" \
|
||||
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -c "
|
||||
import sys, json
|
||||
logs = json.load(sys.stdin)
|
||||
for log in logs[:10]:
|
||||
req = json.loads(log['request'])
|
||||
room = req.get('payload', {}).get('room') or req.get('payload', {}).get('room_name', 'N/A')
|
||||
print(f\"{req['type']:30s} | room: {room:30s} | status: {log['status']}\")
|
||||
"
|
||||
```
|
||||
|
||||
**Expected output:**
|
||||
```
|
||||
participant.joined | room: test2-YYYYMMDDHHMMSS | status: 200
|
||||
recording.started | room: test2-YYYYMMDDHHMMSS | status: 200
|
||||
participant.left | room: test2-YYYYMMDDHHMMSS | status: 200
|
||||
recording.ready-to-download | room: test2-YYYYMMDDHHMMSS | status: 200
|
||||
```
|
||||
|
||||
**Check database updated:**
|
||||
```bash
|
||||
docker-compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT room_name, num_clients FROM meeting WHERE room_name LIKE 'test2-%' ORDER BY end_date DESC LIMIT 1;"
|
||||
```
|
||||
|
||||
**Expected:**
|
||||
```
|
||||
room_name: test2-YYYYMMDDHHMMSS
|
||||
num_clients: 0 // After participant left
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Test 6: Recording in S3
|
||||
|
||||
**List recent recordings:**
|
||||
```bash
|
||||
curl -s -X GET "https://api.daily.co/v1/recordings" \
|
||||
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -c "
|
||||
import sys, json
|
||||
data = json.load(sys.stdin)
|
||||
for rec in data.get('data', [])[:5]:
|
||||
if 'test2-' in rec.get('room_name', ''):
|
||||
print(f\"Room: {rec['room_name']}\")
|
||||
print(f\"Status: {rec['status']}\")
|
||||
print(f\"Duration: {rec.get('duration', 0)}s\")
|
||||
print(f\"S3 key: {rec.get('s3key', 'N/A')}\")
|
||||
print(f\"Tracks: {len(rec.get('tracks', []))} files\")
|
||||
for track in rec.get('tracks', []):
|
||||
print(f\" - {track['type']}: {track['s3Key'].split('/')[-1]} ({track['size']} bytes)\")
|
||||
print()
|
||||
"
|
||||
```
|
||||
|
||||
**Expected output:**
|
||||
```
|
||||
Room: test2-20251009192341
|
||||
Status: finished
|
||||
Duration: ~30-120s
|
||||
S3 key: monadical/test2-20251009192341/1760037914930
|
||||
Tracks: 2 files
|
||||
- audio: 1760037914930-<uuid>-cam-audio-1760037915265 (~400 KB)
|
||||
- video: 1760037914930-<uuid>-cam-video-1760037915269 (~10-30 MB)
|
||||
```
|
||||
|
||||
**Verify S3 path structure:**
|
||||
- `monadical/` - Daily.co subdomain
|
||||
- `test2-20251009192341/` - Reflector room name + timestamp
|
||||
- `<timestamp>-<participant-uuid>-<media-type>-<track-start>.webm` - Individual track files
|
||||
|
||||
---
|
||||
|
||||
## Test 7: Database Check - Recording and Transcript
|
||||
|
||||
**Check recording created:**
|
||||
```bash
|
||||
docker-compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT id, bucket_name, object_key, status, meeting_id, recorded_at
|
||||
FROM recording
|
||||
ORDER BY recorded_at DESC LIMIT 1;"
|
||||
```
|
||||
|
||||
**Expected:**
|
||||
```
|
||||
id: <recording-id-from-webhook>
|
||||
bucket_name: reflector-dailyco-local
|
||||
object_key: monadical/test2-<timestamp>/<recording-timestamp>-<uuid>-cam-audio-<track-start>.webm
|
||||
status: completed
|
||||
meeting_id: <meeting-id>
|
||||
recorded_at: <recent-timestamp>
|
||||
```
|
||||
|
||||
**Check transcript created:**
|
||||
```bash
|
||||
docker compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT id, title, status, duration, recording_id, meeting_id, room_id
|
||||
FROM transcript
|
||||
ORDER BY created_at DESC LIMIT 1;"
|
||||
```
|
||||
|
||||
**Expected (REAL transcription):**
|
||||
```
|
||||
id: <transcript-id>
|
||||
title: <AI-generated title based on actual conversation content>
|
||||
status: uploaded (audio file processed and available)
|
||||
duration: <actual meeting duration in seconds>
|
||||
recording_id: <same-as-recording-id-above>
|
||||
meeting_id: <meeting-id>
|
||||
room_id: 552640fd-16f2-4162-9526-8cf40cd2357e
|
||||
```
|
||||
|
||||
**Note:** Title and content will reflect the ACTUAL conversation, not mock data. Processing time depends on recording length and GPU backend availability (Modal).
|
||||
|
||||
**Verify audio file exists:**
|
||||
```bash
|
||||
ls -lh data/<transcript-id>/upload.webm
|
||||
```
|
||||
|
||||
**Expected:**
|
||||
```
|
||||
-rw-r--r-- 1 user staff ~100-200K Oct 10 18:48 upload.webm
|
||||
```
|
||||
|
||||
**Check transcript topics (REAL transcription):**
|
||||
```bash
|
||||
TRANSCRIPT_ID=$(docker compose exec -T postgres psql -U reflector -d reflector -t -c \
|
||||
"SELECT id FROM transcript ORDER BY created_at DESC LIMIT 1;")
|
||||
|
||||
docker compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT
|
||||
jsonb_array_length(topics) as num_topics,
|
||||
jsonb_array_length(participants) as num_participants,
|
||||
short_summary,
|
||||
title
|
||||
FROM transcript
|
||||
WHERE id = '$TRANSCRIPT_ID';"
|
||||
```
|
||||
|
||||
**Expected (REAL data):**
|
||||
```
|
||||
num_topics: <varies based on conversation>
|
||||
num_participants: <actual number of participants who spoke>
|
||||
short_summary: <AI-generated summary of actual conversation>
|
||||
title: <AI-generated title based on content>
|
||||
```
|
||||
|
||||
**Check topics contain actual transcription:**
|
||||
```bash
|
||||
docker compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT topics->0->'title', topics->0->'summary', topics->0->'transcript'
|
||||
FROM transcript
|
||||
ORDER BY created_at DESC LIMIT 1;" | head -20
|
||||
```
|
||||
|
||||
**Expected output:** Will contain the ACTUAL transcribed conversation from the Daily.co meeting, not mock data.
|
||||
|
||||
**Check participants:**
|
||||
```bash
|
||||
docker compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT participants FROM transcript ORDER BY created_at DESC LIMIT 1;" \
|
||||
| python3 -c "import sys, json; data=json.loads(sys.stdin.read()); print(json.dumps(data, indent=2))"
|
||||
```
|
||||
|
||||
**Expected (REAL diarization):**
|
||||
```json
|
||||
[
|
||||
{
|
||||
"id": "<uuid>",
|
||||
"speaker": 0,
|
||||
"name": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "<uuid>",
|
||||
"speaker": 1,
|
||||
"name": "Speaker 2"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
**Note:** Speaker names will be generic ("Speaker 1", "Speaker 2", etc.) as determined by the diarization backend. Number of participants depends on how many actually spoke during the meeting.
|
||||
|
||||
**Check word-level data:**
|
||||
```bash
|
||||
docker compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT jsonb_array_length(topics->0->'words') as num_words_first_topic
|
||||
FROM transcript
|
||||
ORDER BY created_at DESC LIMIT 1;"
|
||||
```
|
||||
|
||||
**Expected:**
|
||||
```
|
||||
num_words_first_topic: <varies based on actual conversation length and topic chunking>
|
||||
```
|
||||
|
||||
**Verify speaker diarization in words:**
|
||||
```bash
|
||||
docker compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT
|
||||
topics->0->'words'->0->>'text' as first_word,
|
||||
topics->0->'words'->0->>'speaker' as speaker,
|
||||
topics->0->'words'->0->>'start' as start_time,
|
||||
topics->0->'words'->0->>'end' as end_time
|
||||
FROM transcript
|
||||
ORDER BY created_at DESC LIMIT 1;"
|
||||
```
|
||||
|
||||
**Expected (REAL transcription):**
|
||||
```
|
||||
first_word: <actual first word from transcription>
|
||||
speaker: 0, 1, 2, ... (actual speaker ID from diarization)
|
||||
start_time: <actual timestamp in seconds>
|
||||
end_time: <actual end timestamp>
|
||||
```
|
||||
|
||||
**Note:** All timestamps and speaker IDs are from real transcription/diarization, synchronized across tracks.
|
||||
|
||||
---
|
||||
|
||||
## Test 8: Recording Type Verification
|
||||
|
||||
**Check what Daily.co received:**
|
||||
```bash
|
||||
curl -s -X GET "https://api.daily.co/v1/rooms/test2-<timestamp>" \
|
||||
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -m json.tool | grep "enable_recording"
|
||||
```
|
||||
|
||||
**Expected:**
|
||||
```json
|
||||
"enable_recording": "raw-tracks"
|
||||
```
|
||||
|
||||
**NOT:** `"enable_recording": "cloud"` (that would be wrong - we want raw tracks)
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Issue: No webhooks received
|
||||
|
||||
**Check webhook state:**
|
||||
```bash
|
||||
curl -s -X GET "https://api.daily.co/v1/webhooks" \
|
||||
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -m json.tool
|
||||
```
|
||||
|
||||
**If state is FAILED:**
|
||||
```bash
|
||||
cd server
|
||||
uv run python scripts/recreate_daily_webhook.py https://<ngrok-url>/v1/daily/webhook
|
||||
```
|
||||
|
||||
### Issue: Webhooks return 422
|
||||
|
||||
**Check server logs:**
|
||||
```bash
|
||||
docker-compose logs --tail=50 server | grep "Failed to parse webhook event"
|
||||
```
|
||||
|
||||
**Common cause:** Event structure mismatch. Daily.co events use:
|
||||
```json
|
||||
{
|
||||
"version": "1.0.0",
|
||||
"type": "participant.joined",
|
||||
"payload": {...}, // NOT "data"
|
||||
"event_ts": 123.456 // NOT "ts"
|
||||
}
|
||||
```
|
||||
|
||||
### Issue: Recording not starting
|
||||
|
||||
1. **Check token has `sr: true`:**
|
||||
- Decode JWT token from room_url query param
|
||||
- Should contain `"sr": true`
|
||||
|
||||
2. **Check Daily.co room config:**
|
||||
- `enable_recording` must be set (not false)
|
||||
- For raw-tracks: must be exactly `"raw-tracks"`
|
||||
|
||||
3. **Check participant actually joined:**
|
||||
- Logs should show "Participant joined"
|
||||
- Must click "Join" button, not just pre-call screen
|
||||
|
||||
### Issue: Recording in S3 but wrong format
|
||||
|
||||
**Daily.co recording types:**
|
||||
- `"cloud"` → Single MP4 file (`download_link` in webhook)
|
||||
- `"raw-tracks"` → Multiple WebM files (`tracks` array in webhook)
|
||||
- `"raw-tracks-audio-only"` → Only audio WebM files
|
||||
|
||||
**Current implementation:** Always uses `"raw-tracks"` (better for transcription)
|
||||
|
||||
---
|
||||
|
||||
## Quick Validation Commands
|
||||
|
||||
**One-liner to verify everything:**
|
||||
```bash
|
||||
# 1. Check room exists
|
||||
docker-compose exec -T postgres psql -U reflector -d reflector -c \
|
||||
"SELECT name, platform FROM room WHERE name = 'test2';" && \
|
||||
|
||||
# 2. Create meeting
|
||||
MEETING=$(curl -s -X POST http://localhost:1250/v1/rooms/test2/meeting \
|
||||
-H "Content-Type: application/json" -d '{"allow_duplicated":false}') && \
|
||||
echo "$MEETING" | python3 -c "import sys,json; m=json.load(sys.stdin); print(f'Room: {m[\"room_name\"]}\nURL: {m[\"room_url\"][:80]}...')" && \
|
||||
|
||||
# 3. Check Daily.co config
|
||||
ROOM_NAME=$(echo "$MEETING" | python3 -c "import sys,json; print(json.load(sys.stdin)['room_name'])") && \
|
||||
curl -s -X GET "https://api.daily.co/v1/rooms/$ROOM_NAME" \
|
||||
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -c "import sys,json; print(f'Recording: {json.load(sys.stdin)[\"config\"][\"enable_recording\"]}')"
|
||||
```
|
||||
|
||||
**Expected output:**
|
||||
```
|
||||
name: test2, platform: whereby
|
||||
Room: test2-20251009192341
|
||||
URL: https://monadical.daily.co/test2-20251009192341?t=eyJhbGc...
|
||||
Recording: raw-tracks
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Success Criteria Checklist
|
||||
|
||||
- [x] Room name includes Reflector room prefix (`test2-...`)
|
||||
- [x] Meeting URL contains JWT token (`?t=...`)
|
||||
- [x] Token has `sr: true` (auto-recording enabled)
|
||||
- [x] Daily.co room config: `enable_recording: "raw-tracks"`
|
||||
- [x] Browser loads Daily.co interface (not Whereby)
|
||||
- [x] Recording auto-starts when participant joins
|
||||
- [x] Webhooks received: participant.joined, recording.started, participant.left, recording.ready-to-download
|
||||
- [x] Recording status: `finished`
|
||||
- [x] S3 contains 2 files: audio (.webm) and video (.webm)
|
||||
- [x] S3 path: `monadical/test2-{timestamp}/{recording-start-ts}-{participant-uuid}-cam-{audio|video}-{track-start-ts}`
|
||||
- [x] Database `num_clients` increments/decrements correctly
|
||||
- [x] **Database recording entry created** with correct S3 path and status `completed`
|
||||
- [ ] **Database transcript entry created** with status `uploaded`
|
||||
- [ ] **Audio file downloaded** to `data/{transcript_id}/upload.webm`
|
||||
- [ ] **Transcript has REAL data**: AI-generated title based on conversation
|
||||
- [ ] **Transcript has topics** generated from actual content
|
||||
- [ ] **Transcript has participants** with proper speaker diarization
|
||||
- [ ] **Topics contain word-level data** with accurate timestamps and speaker IDs
|
||||
- [ ] **Total duration** matches actual meeting length
|
||||
- [ ] **MP3 and waveform files generated** by file processing pipeline
|
||||
- [ ] **Frontend transcript page loads** without "Failed to load audio" error
|
||||
- [ ] **Audio player functional** with working playback and waveform visualization
|
||||
- [ ] **Multitrack processing completed** without errors in worker logs
|
||||
- [ ] **Modal GPU backends accessible** (transcription and diarization)
|
||||
@@ -1,11 +1,12 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
# builder install base dependencies
|
||||
WORKDIR /tmp
|
||||
RUN apt-get update && apt-get install -y curl && apt-get clean
|
||||
RUN apt-get update && apt-get install -y curl ffmpeg && apt-get clean
|
||||
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
||||
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
||||
ENV PATH="/root/.local/bin/:$PATH"
|
||||
@@ -13,8 +14,8 @@ ENV PATH="/root/.local/bin/:$PATH"
|
||||
# install application dependencies
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
RUN touch README.md && env uv sync --compile-bytecode --locked
|
||||
COPY pyproject.toml uv.lock README.md /app/
|
||||
RUN uv sync --compile-bytecode --locked
|
||||
|
||||
# pre-download nltk packages
|
||||
RUN uv run python -c "import nltk; nltk.download('punkt_tab'); nltk.download('averaged_perceptron_tagger_eng')"
|
||||
@@ -26,4 +27,15 @@ COPY migrations /app/migrations
|
||||
COPY reflector /app/reflector
|
||||
WORKDIR /app
|
||||
|
||||
# Create symlink for libgomp if it doesn't exist (for ARM64 compatibility)
|
||||
RUN if [ "$(uname -m)" = "aarch64" ] && [ ! -f /usr/lib/libgomp.so.1 ]; then \
|
||||
LIBGOMP_PATH=$(find /app/.venv/lib -path "*/torch.libs/libgomp*.so.*" 2>/dev/null | head -n1); \
|
||||
if [ -n "$LIBGOMP_PATH" ]; then \
|
||||
ln -sf "$LIBGOMP_PATH" /usr/lib/libgomp.so.1; \
|
||||
fi \
|
||||
fi
|
||||
|
||||
# Pre-check just to make sure the image will not fail
|
||||
RUN uv run python -c "import silero_vad.model"
|
||||
|
||||
CMD ["./runserver.sh"]
|
||||
|
||||
@@ -40,3 +40,5 @@ uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeli
|
||||
```bash
|
||||
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
|
||||
```
|
||||
|
||||
.
|
||||
|
||||
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
||||
# Data Retention and Cleanup
|
||||
|
||||
## Overview
|
||||
|
||||
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||
|
||||
### What Gets Deleted
|
||||
|
||||
When data reaches the retention period, the following items are automatically removed:
|
||||
|
||||
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||
- Database records
|
||||
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||
- Storage files (cloud storage if configured)
|
||||
|
||||
## Automatic Cleanup
|
||||
|
||||
### Celery Beat Schedule
|
||||
|
||||
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||
|
||||
```python
|
||||
# Automatically scheduled when PUBLIC_MODE=true
|
||||
"cleanup_old_public_data": {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||
}
|
||||
```
|
||||
|
||||
### Running the Worker
|
||||
|
||||
Ensure both Celery worker and beat scheduler are running:
|
||||
|
||||
```bash
|
||||
# Start Celery worker
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
|
||||
# Start Celery beat scheduler (in another terminal)
|
||||
uv run celery -A reflector.worker.app beat
|
||||
```
|
||||
|
||||
## Manual Cleanup
|
||||
|
||||
For testing or manual intervention, use the cleanup tool:
|
||||
|
||||
```bash
|
||||
# Delete data older than 7 days (default)
|
||||
uv run python -m reflector.tools.cleanup_old_data
|
||||
|
||||
# Delete data older than 30 days
|
||||
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||
```
|
||||
|
||||
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||
|
||||
## Important Notes
|
||||
|
||||
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||
|
||||
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||
|
||||
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||
|
||||
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||
|
||||
## Testing
|
||||
|
||||
Run the cleanup tests:
|
||||
|
||||
```bash
|
||||
uv run pytest tests/test_cleanup.py -v
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
Check Celery logs for cleanup task execution:
|
||||
|
||||
```bash
|
||||
# Look for cleanup task logs
|
||||
grep "cleanup_old_public_data" celery.log
|
||||
grep "Starting cleanup of old public data" celery.log
|
||||
```
|
||||
|
||||
Task statistics are logged after each run:
|
||||
- Number of transcripts deleted
|
||||
- Number of meetings deleted
|
||||
- Number of orphaned recordings deleted
|
||||
- Any errors encountered
|
||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
||||
## Reflector GPU Transcription API (Specification)
|
||||
|
||||
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||
|
||||
### Base URL and Authentication
|
||||
|
||||
- Example base URLs (Modal web endpoints):
|
||||
|
||||
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||
|
||||
- All endpoints are served under `/v1` and require a Bearer token:
|
||||
|
||||
```
|
||||
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||
|
||||
### Supported file types
|
||||
|
||||
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||
|
||||
### Models and languages
|
||||
|
||||
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||
- Language support: only `en`. Other languages return HTTP 400.
|
||||
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||
- Language support: multilingual (per Whisper model capabilities).
|
||||
|
||||
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||
|
||||
### Endpoints
|
||||
|
||||
#### POST /v1/audio/transcriptions
|
||||
|
||||
Transcribe one or more uploaded audio files.
|
||||
|
||||
Request: multipart/form-data
|
||||
|
||||
- `file` (File) — optional. Single file to transcribe.
|
||||
- `files` (File[]) — optional. One or more files to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`.
|
||||
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||
- Whisper: model-dependent; typically multilingual
|
||||
- `batch` (boolean) — optional, defaults to `false`.
|
||||
|
||||
Notes:
|
||||
|
||||
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||
- Response shape for multiple files is the same regardless of `batch`.
|
||||
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||
|
||||
Responses
|
||||
|
||||
Single file response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
Multiple files response:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- Word objects always include keys: `word`, `start`, `end`.
|
||||
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||
|
||||
Example curl (single file):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "file=@/path/to/audio.mp3" \
|
||||
-F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
Example curl (multiple files, batch):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||
-F "batch=true" -F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
#### POST /v1/audio/transcriptions-from-url
|
||||
|
||||
Transcribe a single remote audio file by URL.
|
||||
|
||||
Request: application/json
|
||||
|
||||
Body parameters:
|
||||
|
||||
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||
|
||||
Example curl:
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0
|
||||
}' \
|
||||
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||
```
|
||||
|
||||
### Error handling
|
||||
|
||||
- 400 Bad Request
|
||||
- Parakeet: `language` other than `en`
|
||||
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||
- Unsupported file extension
|
||||
- 401 Unauthorized
|
||||
- Missing or invalid Bearer token
|
||||
- 404 Not Found
|
||||
- `audio_file_url` does not exist
|
||||
|
||||
### Implementation details
|
||||
|
||||
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||
|
||||
### Server configuration (Reflector API)
|
||||
|
||||
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
### Conformance tests
|
||||
|
||||
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||
|
||||
```
|
||||
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
|
||||
```
|
||||
233
server/docs/webhook.md
Normal file
233
server/docs/webhook.md
Normal file
@@ -0,0 +1,233 @@
|
||||
# Reflector Webhook Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||
|
||||
## Configuration
|
||||
|
||||
Webhooks are configured at the room level with two fields:
|
||||
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||
|
||||
## Events
|
||||
|
||||
### `transcript.completed`
|
||||
|
||||
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, topic detection and calendar event integration.
|
||||
|
||||
### `test`
|
||||
|
||||
A test event that can be triggered manually to verify webhook configuration.
|
||||
|
||||
## Webhook Request Format
|
||||
|
||||
### Headers
|
||||
|
||||
All webhook requests include the following headers:
|
||||
|
||||
| Header | Description | Example |
|
||||
|--------|-------------|---------|
|
||||
| `Content-Type` | Always `application/json` | `application/json` |
|
||||
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||
|
||||
### Signature Verification
|
||||
|
||||
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||
|
||||
The signature format is: `t={timestamp},v1={signature}`
|
||||
|
||||
To verify the signature:
|
||||
1. Extract the timestamp and signature from the header
|
||||
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||
4. Compare the computed signature with the received signature
|
||||
|
||||
Example verification (Python):
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||
# Parse header: "t=1735306800,v1=abc123..."
|
||||
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||
timestamp = parts["t"]
|
||||
received_signature = parts["v1"]
|
||||
|
||||
# Create signed payload
|
||||
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||
|
||||
# Compute expected signature
|
||||
expected_signature = hmac.new(
|
||||
secret.encode("utf-8"),
|
||||
signed_payload.encode("utf-8"),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
# Compare signatures
|
||||
return hmac.compare_digest(expected_signature, received_signature)
|
||||
```
|
||||
|
||||
## Event Payloads
|
||||
|
||||
### `transcript.completed` Event
|
||||
|
||||
This event includes a convenient URL for accessing the transcript:
|
||||
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "transcript.completed",
|
||||
"event_id": "transcript.completed-abc-123-def-456",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"transcript": {
|
||||
"id": "abc-123-def-456",
|
||||
"room_id": "room-789",
|
||||
"created_at": "2025-08-27T12:00:00Z",
|
||||
"duration": 1800.5,
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||
"topics": [
|
||||
{
|
||||
"title": "Introduction and Agenda",
|
||||
"summary": "Meeting kickoff with agenda review",
|
||||
"timestamp": 0.0,
|
||||
"duration": 120.0,
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||
},
|
||||
{
|
||||
"title": "Mobile App Features Discussion",
|
||||
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||
"timestamp": 120.0,
|
||||
"duration": 600.0,
|
||||
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||
}
|
||||
],
|
||||
"participants": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
],
|
||||
"source_language": "en",
|
||||
"target_language": "en",
|
||||
"status": "completed",
|
||||
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||
},
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
},
|
||||
"calendar_event": {
|
||||
"id": "calendar-event-123",
|
||||
"ics_uid": "event-123",
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"start_time": "2025-08-27T12:00:00Z",
|
||||
"end_time": "2025-08-27T12:30:00Z",
|
||||
"description": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"location": "Conference Room 1",
|
||||
"attendees": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `test` Event
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "test",
|
||||
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"message": "This is a test webhook from Reflector",
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Retry Policy
|
||||
|
||||
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||
|
||||
### Retry Mechanism
|
||||
|
||||
Reflector implements an exponential backoff strategy for webhook retries:
|
||||
|
||||
- **Initial retry delay**: 60 seconds after the first failure
|
||||
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||
- **Maximum retry attempts**: 30 attempts total
|
||||
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||
|
||||
### How Retries Work
|
||||
|
||||
When a webhook fails, Reflector will:
|
||||
1. Wait 60 seconds, then retry (attempt #1)
|
||||
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||
|
||||
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||
|
||||
### Retry Behavior by HTTP Status Code
|
||||
|
||||
| Status Code | Behavior |
|
||||
|-------------|----------|
|
||||
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||
|
||||
**Important Notes:**
|
||||
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||
|
||||
## Testing Webhooks
|
||||
|
||||
You can test your webhook configuration before processing transcripts:
|
||||
|
||||
```http
|
||||
POST /v1/rooms/{room_id}/webhook/test
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"status_code": 200,
|
||||
"message": "Webhook test successful",
|
||||
"response_preview": "OK"
|
||||
}
|
||||
```
|
||||
|
||||
Or in case of failure:
|
||||
```json
|
||||
{
|
||||
"success": false,
|
||||
"error": "Webhook request timed out (10 seconds)"
|
||||
}
|
||||
```
|
||||
@@ -27,7 +27,7 @@ AUTH_JWT_AUDIENCE=
|
||||
#TRANSCRIPT_MODAL_API_KEY=xxxxx
|
||||
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=
|
||||
|
||||
## =======================================================
|
||||
@@ -71,3 +71,27 @@ DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
|
||||
|
||||
## Sentry DSN configuration
|
||||
#SENTRY_DSN=
|
||||
|
||||
## =======================================================
|
||||
## Video Platform Configuration
|
||||
## =======================================================
|
||||
|
||||
## Whereby
|
||||
#WHEREBY_API_KEY=your-whereby-api-key
|
||||
#WHEREBY_WEBHOOK_SECRET=your-whereby-webhook-secret
|
||||
#AWS_WHEREBY_ACCESS_KEY_ID=your-aws-key
|
||||
#AWS_WHEREBY_ACCESS_KEY_SECRET=your-aws-secret
|
||||
#AWS_PROCESS_RECORDING_QUEUE_URL=https://sqs.us-west-2.amazonaws.com/...
|
||||
|
||||
## Daily.co
|
||||
#DAILY_API_KEY=your-daily-api-key
|
||||
#DAILY_WEBHOOK_SECRET=your-daily-webhook-secret
|
||||
#DAILY_SUBDOMAIN=your-subdomain
|
||||
#AWS_DAILY_S3_BUCKET=your-daily-bucket
|
||||
#AWS_DAILY_S3_REGION=us-west-2
|
||||
#AWS_DAILY_ROLE_ARN=arn:aws:iam::ACCOUNT:role/DailyRecording
|
||||
|
||||
## Platform Selection
|
||||
#DAILY_MIGRATION_ENABLED=false # Enable Daily.co support
|
||||
#DAILY_MIGRATION_ROOM_IDS=[] # Specific rooms to use Daily
|
||||
#DEFAULT_VIDEO_PLATFORM=whereby # Default platform for new rooms
|
||||
|
||||
@@ -1,86 +0,0 @@
|
||||
# Reflector GPU implementation - Transcription and LLM
|
||||
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_diarizer.py` - Diarization API
|
||||
- `reflector_transcriber.py` - Transcription API
|
||||
- `reflector_translator.py` - Translation API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
Create a modal secret, and name it `reflector-gpu`.
|
||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||
|
||||
The deployment is done using [Modal.com](https://modal.com) service.
|
||||
|
||||
```
|
||||
$ modal deploy reflector_transcriber.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||
|
||||
$ modal deploy reflector_llm.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||
```
|
||||
|
||||
Then in your reflector api configuration `.env`, you can set these keys:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
||||
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
TRANSLATION_BACKEND=modal
|
||||
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
||||
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
```
|
||||
|
||||
## API
|
||||
|
||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||
|
||||
```
|
||||
Authorization: bearer <REFLECTOR_APIKEY>
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
`POST /llm`
|
||||
|
||||
**request**
|
||||
```
|
||||
{
|
||||
"prompt": "xxx"
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx completed"
|
||||
}
|
||||
```
|
||||
|
||||
### Transcription
|
||||
|
||||
`POST /transcribe`
|
||||
|
||||
**request** (multipart/form-data)
|
||||
|
||||
- `file` - audio file
|
||||
- `language` - language code (e.g. `en`)
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx",
|
||||
"words": [
|
||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
@@ -1,187 +0,0 @@
|
||||
"""
|
||||
Reflector GPU backend - diarizer
|
||||
===================================
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import modal.gpu
|
||||
from modal import App, Image, Secret, asgi_app, enter, method
|
||||
from pydantic import BaseModel
|
||||
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||
MODEL_DIR = "/root/diarization_models"
|
||||
app = App(name="reflector-diarizer")
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
def download_pyannote_audio():
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
|
||||
|
||||
diarizer_image = (
|
||||
Image.debian_slim(python_version="3.10.8")
|
||||
.pip_install(
|
||||
"pyannote.audio==3.1.0",
|
||||
"requests",
|
||||
"onnx",
|
||||
"torchaudio",
|
||||
"onnxruntime-gpu",
|
||||
"torch==2.0.0",
|
||||
"transformers==4.34.0",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"numpy",
|
||||
"huggingface_hub",
|
||||
"hf-transfer",
|
||||
)
|
||||
.run_function(
|
||||
download_pyannote_audio, secrets=[Secret.from_name("my-huggingface-secret")]
|
||||
)
|
||||
.run_function(migrate_cache_llm)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu=modal.gpu.A100(size="40GB"),
|
||||
timeout=60 * 30,
|
||||
scaledown_window=60,
|
||||
allow_concurrent_inputs=1,
|
||||
image=diarizer_image,
|
||||
)
|
||||
class Diarizer:
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME, cache_dir=MODEL_DIR
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
|
||||
@method()
|
||||
def diarize(self, audio_data: str, audio_suffix: str, timestamp: float):
|
||||
import tempfile
|
||||
|
||||
import torchaudio
|
||||
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
print("Diarizing audio")
|
||||
waveform, sample_rate = torchaudio.load(fp.name)
|
||||
diarization = self.diarization_pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(
|
||||
yield_label=True
|
||||
):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:]),
|
||||
}
|
||||
)
|
||||
print("Diarization complete")
|
||||
return {"diarization": words}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
scaledown_window=60 * 3,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
image=diarizer_image,
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
import requests
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
diarizerstub = Diarizer()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
def validate_audio_file(audio_file_url: str):
|
||||
# Check if the audio file exists
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(
|
||||
status_code=response.status_code,
|
||||
detail="The audio file does not exist.",
|
||||
)
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth), Depends(validate_audio_file)]
|
||||
)
|
||||
def diarize(
|
||||
audio_file_url: str, timestamp: float = 0.0
|
||||
) -> HTTPException | DiarizationResponse:
|
||||
# Currently the uploaded files are in mp3 format
|
||||
audio_suffix = "mp3"
|
||||
|
||||
print("Downloading audio file")
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
print("Audio file downloaded successfully")
|
||||
|
||||
func = diarizerstub.diarize.spawn(
|
||||
audio_data=response.content, audio_suffix=audio_suffix, timestamp=timestamp
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -1,161 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
import threading
|
||||
|
||||
import modal
|
||||
from pydantic import BaseModel
|
||||
|
||||
MODELS_DIR = "/models"
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
|
||||
MINUTES = 60 # seconds
|
||||
|
||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
volume.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
||||
|
||||
volume.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
class Transcriber:
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=MODELS_DIR,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
language: str,
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments)
|
||||
words = [
|
||||
{"word": word.word, "start": word.start, "end": word.end}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriber = Transcriber()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile,
|
||||
model: str = "whisper-1",
|
||||
language: Annotated[str, Body(...)] = "en",
|
||||
) -> TranscriptResponse:
|
||||
audio_data = file.file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_file_types
|
||||
|
||||
func = transcriber.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -0,0 +1,36 @@
|
||||
"""Add webhook fields to rooms
|
||||
|
||||
Revision ID: 0194f65cd6d3
|
||||
Revises: 5a8907fd1d78
|
||||
Create Date: 2025-08-27 09:03:19.610995
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0194f65cd6d3"
|
||||
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("webhook_secret")
|
||||
batch_op.drop_column("webhook_url")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,64 @@
|
||||
"""add_long_summary_to_search_vector
|
||||
|
||||
Revision ID: 0ab2d7ffaa16
|
||||
Revises: b1c33bd09963
|
||||
Create Date: 2025-08-15 13:27:52.680211
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ab2d7ffaa16"
|
||||
down_revision: Union[str, None] = "b1c33bd09963"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Drop the existing search vector column and index
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
|
||||
# Recreate the search vector column with long_summary included
|
||||
op.execute("""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')
|
||||
) STORED
|
||||
""")
|
||||
|
||||
# Recreate the GIN index for the search vector
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Drop the updated search vector column and index
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
|
||||
# Recreate the original search vector column without long_summary
|
||||
op.execute("""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||
) STORED
|
||||
""")
|
||||
|
||||
# Recreate the GIN index for the search vector
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
@@ -0,0 +1,36 @@
|
||||
"""remove user_id from meeting table
|
||||
|
||||
Revision ID: 0ce521cda2ee
|
||||
Revises: 6dec9fb5b46c
|
||||
Create Date: 2025-09-10 12:40:55.688899
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ce521cda2ee"
|
||||
down_revision: Union[str, None] = "6dec9fb5b46c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_column("user_id")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("user_id", sa.VARCHAR(), autoincrement=False, nullable=True)
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add_platform_support
|
||||
|
||||
Revision ID: 1e49625677e4
|
||||
Revises: dc035ff72fd5
|
||||
Create Date: 2025-10-08 13:17:29.943612
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "1e49625677e4"
|
||||
down_revision: Union[str, None] = "dc035ff72fd5"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Add platform field with default 'whereby' for backward compatibility."""
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"platform",
|
||||
sa.String(),
|
||||
nullable=False,
|
||||
server_default="whereby",
|
||||
)
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"platform",
|
||||
sa.String(),
|
||||
nullable=False,
|
||||
server_default="whereby",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Remove platform field."""
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_column("platform")
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("platform")
|
||||
@@ -0,0 +1,32 @@
|
||||
"""clean up orphaned room_id references in meeting table
|
||||
|
||||
Revision ID: 2ae3db106d4e
|
||||
Revises: def1b5867d4c
|
||||
Create Date: 2025-09-11 10:35:15.759967
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "2ae3db106d4e"
|
||||
down_revision: Union[str, None] = "def1b5867d4c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Set room_id to NULL for meetings that reference non-existent rooms
|
||||
op.execute("""
|
||||
UPDATE meeting
|
||||
SET room_id = NULL
|
||||
WHERE room_id IS NOT NULL
|
||||
AND room_id NOT IN (SELECT id FROM room WHERE id IS NOT NULL)
|
||||
""")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Cannot restore orphaned references - no operation needed
|
||||
pass
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add cascade delete to meeting consent foreign key
|
||||
|
||||
Revision ID: 5a8907fd1d78
|
||||
Revises: 0ab2d7ffaa16
|
||||
Create Date: 2025-08-26 17:26:50.945491
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "5a8907fd1d78"
|
||||
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,53 @@
|
||||
"""remove_one_active_meeting_per_room_constraint
|
||||
|
||||
Revision ID: 6025e9b2bef2
|
||||
Revises: 2ae3db106d4e
|
||||
Create Date: 2025-08-18 18:45:44.418392
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6025e9b2bef2"
|
||||
down_revision: Union[str, None] = "2ae3db106d4e"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove the unique constraint that prevents multiple active meetings per room
|
||||
# This is needed to support calendar integration with overlapping meetings
|
||||
# Check if index exists before trying to drop it
|
||||
from alembic import context
|
||||
|
||||
if context.get_context().dialect.name == "postgresql":
|
||||
conn = op.get_bind()
|
||||
result = conn.execute(
|
||||
sa.text(
|
||||
"SELECT 1 FROM pg_indexes WHERE indexname = 'idx_one_active_meeting_per_room'"
|
||||
)
|
||||
)
|
||||
if result.fetchone():
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
else:
|
||||
# For SQLite, just try to drop it
|
||||
try:
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Restore the unique constraint
|
||||
op.create_index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"meeting",
|
||||
["room_id"],
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sqlite_where=sa.text("is_active = 1"),
|
||||
)
|
||||
@@ -0,0 +1,28 @@
|
||||
"""webhook url and secret null by default
|
||||
|
||||
|
||||
Revision ID: 61882a919591
|
||||
Revises: 0194f65cd6d3
|
||||
Create Date: 2025-08-29 11:46:36.738091
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "61882a919591"
|
||||
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,35 @@
|
||||
"""make meeting room_id required and add foreign key
|
||||
|
||||
Revision ID: 6dec9fb5b46c
|
||||
Revises: 61882a919591
|
||||
Create Date: 2025-09-10 10:47:06.006819
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6dec9fb5b46c"
|
||||
down_revision: Union[str, None] = "61882a919591"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.create_foreign_key(
|
||||
None, "room", ["room_id"], ["id"], ondelete="CASCADE"
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("meeting_room_id_fkey", type_="foreignkey")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,41 @@
|
||||
"""add_search_optimization_indexes
|
||||
|
||||
Revision ID: b1c33bd09963
|
||||
Revises: 9f5c78d352d6
|
||||
Create Date: 2025-08-14 17:26:02.117408
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "b1c33bd09963"
|
||||
down_revision: Union[str, None] = "9f5c78d352d6"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add indexes for actual search filtering patterns used in frontend
|
||||
# Based on /browse page filters: room_id and source_kind
|
||||
|
||||
# Index for room_id + created_at (for room-specific searches with date ordering)
|
||||
op.create_index(
|
||||
"idx_transcript_room_id_created_at",
|
||||
"transcript",
|
||||
["room_id", "created_at"],
|
||||
if_not_exists=True,
|
||||
)
|
||||
|
||||
# Index for source_kind alone (actively used filter in frontend)
|
||||
op.create_index(
|
||||
"idx_transcript_source_kind", "transcript", ["source_kind"], if_not_exists=True
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove the indexes in reverse order
|
||||
op.drop_index("idx_transcript_source_kind", "transcript", if_exists=True)
|
||||
op.drop_index("idx_transcript_room_id_created_at", "transcript", if_exists=True)
|
||||
@@ -0,0 +1,34 @@
|
||||
"""add_grace_period_fields_to_meeting
|
||||
|
||||
Revision ID: d4a1c446458c
|
||||
Revises: 6025e9b2bef2
|
||||
Create Date: 2025-08-18 18:50:37.768052
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d4a1c446458c"
|
||||
down_revision: Union[str, None] = "6025e9b2bef2"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add fields to track when participants left for grace period logic
|
||||
op.add_column(
|
||||
"meeting", sa.Column("last_participant_left_at", sa.DateTime(timezone=True))
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column("grace_period_minutes", sa.Integer, server_default=sa.text("15")),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""add calendar
|
||||
|
||||
Revision ID: d8e204bbf615
|
||||
Revises: d4a1c446458c
|
||||
Create Date: 2025-09-10 19:56:22.295756
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d8e204bbf615"
|
||||
down_revision: Union[str, None] = "d4a1c446458c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table(
|
||||
"calendar_event",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("room_id", sa.String(), nullable=False),
|
||||
sa.Column("ics_uid", sa.Text(), nullable=False),
|
||||
sa.Column("title", sa.Text(), nullable=True),
|
||||
sa.Column("description", sa.Text(), nullable=True),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", postgresql.JSONB(astext_type=sa.Text()), nullable=True),
|
||||
sa.Column("location", sa.Text(), nullable=True),
|
||||
sa.Column("ics_raw_data", sa.Text(), nullable=True),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column(
|
||||
"is_deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["room_id"],
|
||||
["room.id"],
|
||||
name="fk_calendar_event_room_id",
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
)
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_deleted",
|
||||
["is_deleted"],
|
||||
unique=False,
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_room_start", ["room_id", "start_time"], unique=False
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("calendar_event_id", sa.String(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"calendar_metadata",
|
||||
postgresql.JSONB(astext_type=sa.Text()),
|
||||
nullable=True,
|
||||
)
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_meeting_calendar_event", ["calendar_event_id"], unique=False
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
"fk_meeting_calendar_event_id",
|
||||
"calendar_event",
|
||||
["calendar_event_id"],
|
||||
["id"],
|
||||
ondelete="SET NULL",
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("ics_url", sa.Text(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_fetch_interval", sa.Integer(), server_default="300", nullable=True
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_enabled",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column("ics_last_sync", sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
batch_op.add_column(sa.Column("ics_last_etag", sa.Text(), nullable=True))
|
||||
batch_op.create_index("idx_room_ics_enabled", ["ics_enabled"], unique=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_room_ics_enabled")
|
||||
batch_op.drop_column("ics_last_etag")
|
||||
batch_op.drop_column("ics_last_sync")
|
||||
batch_op.drop_column("ics_enabled")
|
||||
batch_op.drop_column("ics_fetch_interval")
|
||||
batch_op.drop_column("ics_url")
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("fk_meeting_calendar_event_id", type_="foreignkey")
|
||||
batch_op.drop_index("idx_meeting_calendar_event")
|
||||
batch_op.drop_column("calendar_metadata")
|
||||
batch_op.drop_column("calendar_event_id")
|
||||
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_calendar_event_room_start")
|
||||
batch_op.drop_index(
|
||||
"idx_calendar_event_deleted", postgresql_where=sa.text("NOT is_deleted")
|
||||
)
|
||||
|
||||
op.drop_table("calendar_event")
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,43 @@
|
||||
"""remove_grace_period_fields
|
||||
|
||||
Revision ID: dc035ff72fd5
|
||||
Revises: d8e204bbf615
|
||||
Create Date: 2025-09-11 10:36:45.197588
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "dc035ff72fd5"
|
||||
down_revision: Union[str, None] = "d8e204bbf615"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove grace period columns from meeting table
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Add back grace period columns to meeting table
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"last_participant_left_at", sa.DateTime(timezone=True), nullable=True
|
||||
),
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"grace_period_minutes",
|
||||
sa.Integer(),
|
||||
server_default=sa.text("15"),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
@@ -0,0 +1,34 @@
|
||||
"""make meeting room_id nullable but keep foreign key
|
||||
|
||||
Revision ID: def1b5867d4c
|
||||
Revises: 0ce521cda2ee
|
||||
Create Date: 2025-09-11 09:42:18.697264
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "def1b5867d4c"
|
||||
down_revision: Union[str, None] = "0ce521cda2ee"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -12,7 +12,6 @@ dependencies = [
|
||||
"requests>=2.31.0",
|
||||
"aiortc>=1.5.0",
|
||||
"sortedcontainers>=2.4.0",
|
||||
"loguru>=0.7.0",
|
||||
"pydantic-settings>=2.0.2",
|
||||
"structlog>=23.1.0",
|
||||
"uvicorn[standard]>=0.23.1",
|
||||
@@ -27,12 +26,10 @@ dependencies = [
|
||||
"prometheus-fastapi-instrumentator>=6.1.0",
|
||||
"sentencepiece>=0.1.99",
|
||||
"protobuf>=4.24.3",
|
||||
"profanityfilter>=2.0.6",
|
||||
"celery>=5.3.4",
|
||||
"redis>=5.0.1",
|
||||
"python-jose[cryptography]>=3.3.0",
|
||||
"python-multipart>=0.0.6",
|
||||
"faster-whisper>=0.10.0",
|
||||
"transformers>=4.36.2",
|
||||
"jsonschema>=4.23.0",
|
||||
"openai>=1.59.7",
|
||||
@@ -41,6 +38,7 @@ dependencies = [
|
||||
"llama-index-llms-openai-like>=0.4.0",
|
||||
"pytest-env>=1.1.5",
|
||||
"webvtt-py>=0.5.0",
|
||||
"icalendar>=6.0.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
@@ -57,6 +55,7 @@ tests = [
|
||||
"httpx-ws>=0.4.1",
|
||||
"pytest-httpx>=0.23.1",
|
||||
"pytest-celery>=0.0.0",
|
||||
"pytest-recording>=0.13.4",
|
||||
"pytest-docker>=3.2.3",
|
||||
"asgi-lifespan>=2.1.0",
|
||||
]
|
||||
@@ -67,6 +66,15 @@ evaluation = [
|
||||
"tqdm>=4.66.0",
|
||||
"pydantic>=2.1.1",
|
||||
]
|
||||
local = [
|
||||
"pyannote-audio>=3.3.2",
|
||||
"faster-whisper>=0.10.0",
|
||||
]
|
||||
silero-vad = [
|
||||
"silero-vad>=5.1.2",
|
||||
"torch>=2.8.0",
|
||||
"torchaudio>=2.8.0",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
default-groups = [
|
||||
@@ -74,6 +82,21 @@ default-groups = [
|
||||
"tests",
|
||||
"aws",
|
||||
"evaluation",
|
||||
"local",
|
||||
"silero-vad"
|
||||
]
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
explicit = true
|
||||
|
||||
[tool.uv.sources]
|
||||
torch = [
|
||||
{ index = "pytorch-cpu" },
|
||||
]
|
||||
torchaudio = [
|
||||
{ index = "pytorch-cpu" },
|
||||
]
|
||||
|
||||
[build-system]
|
||||
@@ -89,11 +112,15 @@ source = ["reflector"]
|
||||
[tool.pytest_env]
|
||||
ENVIRONMENT = "pytest"
|
||||
DATABASE_URL = "postgresql://test_user:test_password@localhost:15432/reflector_test"
|
||||
AUTH_BACKEND = "jwt"
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
||||
testpaths = ["tests"]
|
||||
asyncio_mode = "auto"
|
||||
markers = [
|
||||
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
|
||||
]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
@@ -104,7 +131,7 @@ select = [
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
||||
"gpu/**.py" = ["PLC0415"]
|
||||
"gpu/modal_deployments/**.py" = ["PLC0415"]
|
||||
"reflector/tools/**.py" = ["PLC0415"]
|
||||
"migrations/versions/**.py" = ["PLC0415"]
|
||||
"tests/**.py" = ["PLC0415"]
|
||||
|
||||
@@ -12,6 +12,7 @@ from reflector.events import subscribers_shutdown, subscribers_startup
|
||||
from reflector.logger import logger
|
||||
from reflector.metrics import metrics_init
|
||||
from reflector.settings import settings
|
||||
from reflector.views.daily import router as daily_router
|
||||
from reflector.views.meetings import router as meetings_router
|
||||
from reflector.views.rooms import router as rooms_router
|
||||
from reflector.views.rtc_offer import router as rtc_offer_router
|
||||
@@ -26,6 +27,7 @@ from reflector.views.transcripts_upload import router as transcripts_upload_rout
|
||||
from reflector.views.transcripts_webrtc import router as transcripts_webrtc_router
|
||||
from reflector.views.transcripts_websocket import router as transcripts_websocket_router
|
||||
from reflector.views.user import router as user_router
|
||||
from reflector.views.user_websocket import router as user_ws_router
|
||||
from reflector.views.whereby import router as whereby_router
|
||||
from reflector.views.zulip import router as zulip_router
|
||||
|
||||
@@ -65,6 +67,12 @@ app.add_middleware(
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
# metrics
|
||||
instrumentator = Instrumentator(
|
||||
excluded_handlers=["/docs", "/metrics"],
|
||||
@@ -84,8 +92,10 @@ app.include_router(transcripts_websocket_router, prefix="/v1")
|
||||
app.include_router(transcripts_webrtc_router, prefix="/v1")
|
||||
app.include_router(transcripts_process_router, prefix="/v1")
|
||||
app.include_router(user_router, prefix="/v1")
|
||||
app.include_router(user_ws_router, prefix="/v1")
|
||||
app.include_router(zulip_router, prefix="/v1")
|
||||
app.include_router(whereby_router, prefix="/v1")
|
||||
app.include_router(daily_router, prefix="/v1/daily")
|
||||
add_pagination(app)
|
||||
|
||||
# prepare celery
|
||||
|
||||
27
server/reflector/asynctask.py
Normal file
27
server/reflector/asynctask.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import asyncio
|
||||
import functools
|
||||
|
||||
from reflector.db import get_database
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
@@ -67,7 +67,8 @@ def current_user(
|
||||
try:
|
||||
payload = jwtauth.verify_token(token)
|
||||
sub = payload["sub"]
|
||||
return UserInfo(sub=sub)
|
||||
email = payload["email"]
|
||||
return UserInfo(sub=sub, email=email)
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
|
||||
@@ -24,6 +24,7 @@ def get_database() -> databases.Database:
|
||||
|
||||
|
||||
# import models
|
||||
import reflector.db.calendar_events # noqa
|
||||
import reflector.db.meetings # noqa
|
||||
import reflector.db.recordings # noqa
|
||||
import reflector.db.rooms # noqa
|
||||
|
||||
187
server/reflector/db/calendar_events.py
Normal file
187
server/reflector/db/calendar_events.py
Normal file
@@ -0,0 +1,187 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
calendar_events = sa.Table(
|
||||
"calendar_event",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE", name="fk_calendar_event_room_id"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("ics_uid", sa.Text, nullable=False),
|
||||
sa.Column("title", sa.Text),
|
||||
sa.Column("description", sa.Text),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", JSONB),
|
||||
sa.Column("location", sa.Text),
|
||||
sa.Column("ics_raw_data", sa.Text),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("is_deleted", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
sa.Index("idx_calendar_event_room_start", "room_id", "start_time"),
|
||||
sa.Index(
|
||||
"idx_calendar_event_deleted",
|
||||
"is_deleted",
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class CalendarEvent(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
room_id: str
|
||||
ics_uid: str
|
||||
title: str | None = None
|
||||
description: str | None = None
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
attendees: list[dict[str, Any]] | None = None
|
||||
location: str | None = None
|
||||
ics_raw_data: str | None = None
|
||||
last_synced: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
is_deleted: bool = False
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class CalendarEventController:
|
||||
async def get_by_room(
|
||||
self,
|
||||
room_id: str,
|
||||
include_deleted: bool = False,
|
||||
start_after: datetime | None = None,
|
||||
end_before: datetime | None = None,
|
||||
) -> list[CalendarEvent]:
|
||||
query = calendar_events.select().where(calendar_events.c.room_id == room_id)
|
||||
|
||||
if not include_deleted:
|
||||
query = query.where(calendar_events.c.is_deleted == False)
|
||||
|
||||
if start_after:
|
||||
query = query.where(calendar_events.c.start_time >= start_after)
|
||||
|
||||
if end_before:
|
||||
query = query.where(calendar_events.c.end_time <= end_before)
|
||||
|
||||
query = query.order_by(calendar_events.c.start_time.asc())
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_upcoming(
|
||||
self, room_id: str, minutes_ahead: int = 120
|
||||
) -> list[CalendarEvent]:
|
||||
"""Get upcoming events for a room within the specified minutes, including currently happening events."""
|
||||
now = datetime.now(timezone.utc)
|
||||
future_time = now + timedelta(minutes=minutes_ahead)
|
||||
|
||||
query = (
|
||||
calendar_events.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.start_time <= future_time,
|
||||
calendar_events.c.end_time >= now,
|
||||
)
|
||||
)
|
||||
.order_by(calendar_events.c.start_time.asc())
|
||||
)
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_by_id(self, event_id: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(calendar_events.c.id == event_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def get_by_ics_uid(self, room_id: str, ics_uid: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.ics_uid == ics_uid,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def upsert(self, event: CalendarEvent) -> CalendarEvent:
|
||||
existing = await self.get_by_ics_uid(event.room_id, event.ics_uid)
|
||||
|
||||
if existing:
|
||||
event.id = existing.id
|
||||
event.created_at = existing.created_at
|
||||
event.updated_at = datetime.now(timezone.utc)
|
||||
|
||||
query = (
|
||||
calendar_events.update()
|
||||
.where(calendar_events.c.id == existing.id)
|
||||
.values(**event.model_dump())
|
||||
)
|
||||
else:
|
||||
query = calendar_events.insert().values(**event.model_dump())
|
||||
|
||||
await get_database().execute(query)
|
||||
return event
|
||||
|
||||
async def soft_delete_missing(
|
||||
self, room_id: str, current_ics_uids: list[str]
|
||||
) -> int:
|
||||
"""Soft delete future events that are no longer in the calendar."""
|
||||
now = datetime.now(timezone.utc)
|
||||
|
||||
select_query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
|
||||
to_delete = await get_database().fetch_all(select_query)
|
||||
delete_count = len(to_delete)
|
||||
|
||||
if delete_count > 0:
|
||||
update_query = (
|
||||
calendar_events.update()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
.values(is_deleted=True, updated_at=now)
|
||||
)
|
||||
|
||||
await get_database().execute(update_query)
|
||||
|
||||
return delete_count
|
||||
|
||||
async def delete_by_room(self, room_id: str) -> int:
|
||||
query = calendar_events.delete().where(calendar_events.c.room_id == room_id)
|
||||
result = await get_database().execute(query)
|
||||
return result.rowcount
|
||||
|
||||
|
||||
calendar_events_controller = CalendarEventController()
|
||||
@@ -1,12 +1,13 @@
|
||||
from datetime import datetime
|
||||
from typing import Literal
|
||||
from typing import Any, Literal
|
||||
|
||||
import sqlalchemy as sa
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.db.rooms import Room
|
||||
from reflector.platform_types import Platform
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
meetings = sa.Table(
|
||||
@@ -18,8 +19,12 @@ meetings = sa.Table(
|
||||
sa.Column("host_room_url", sa.String),
|
||||
sa.Column("start_date", sa.DateTime(timezone=True)),
|
||||
sa.Column("end_date", sa.DateTime(timezone=True)),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("room_id", sa.String),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE"),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
|
||||
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
|
||||
@@ -41,20 +46,36 @@ meetings = sa.Table(
|
||||
nullable=False,
|
||||
server_default=sa.true(),
|
||||
),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"room_id",
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sa.Column(
|
||||
"calendar_event_id",
|
||||
sa.String,
|
||||
sa.ForeignKey(
|
||||
"calendar_event.id",
|
||||
ondelete="SET NULL",
|
||||
name="fk_meeting_calendar_event_id",
|
||||
),
|
||||
),
|
||||
sa.Column("calendar_metadata", JSONB),
|
||||
sa.Column(
|
||||
"platform",
|
||||
sa.String,
|
||||
nullable=False,
|
||||
server_default="whereby",
|
||||
),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index("idx_meeting_calendar_event", "calendar_event_id"),
|
||||
)
|
||||
|
||||
meeting_consent = sa.Table(
|
||||
"meeting_consent",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
||||
sa.Column(
|
||||
"meeting_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
||||
@@ -76,15 +97,18 @@ class Meeting(BaseModel):
|
||||
host_room_url: str
|
||||
start_date: datetime
|
||||
end_date: datetime
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_id: str | None
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
recording_trigger: Literal[
|
||||
recording_trigger: Literal[ # whereby-specific
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
num_clients: int = 0
|
||||
is_active: bool = True
|
||||
calendar_event_id: str | None = None
|
||||
calendar_metadata: dict[str, Any] | None = None
|
||||
platform: Platform = "whereby"
|
||||
|
||||
|
||||
class MeetingController:
|
||||
@@ -96,12 +120,11 @@ class MeetingController:
|
||||
host_room_url: str,
|
||||
start_date: datetime,
|
||||
end_date: datetime,
|
||||
user_id: str,
|
||||
room: Room,
|
||||
calendar_event_id: str | None = None,
|
||||
calendar_metadata: dict[str, Any] | None = None,
|
||||
platform: Platform = "whereby",
|
||||
):
|
||||
"""
|
||||
Create a new meeting
|
||||
"""
|
||||
meeting = Meeting(
|
||||
id=id,
|
||||
room_name=room_name,
|
||||
@@ -109,41 +132,47 @@ class MeetingController:
|
||||
host_room_url=host_room_url,
|
||||
start_date=start_date,
|
||||
end_date=end_date,
|
||||
user_id=user_id,
|
||||
room_id=room.id,
|
||||
is_locked=room.is_locked,
|
||||
room_mode=room.room_mode,
|
||||
recording_type=room.recording_type,
|
||||
recording_trigger=room.recording_trigger,
|
||||
calendar_event_id=calendar_event_id,
|
||||
calendar_metadata=calendar_metadata,
|
||||
platform=platform,
|
||||
)
|
||||
query = meetings.insert().values(**meeting.model_dump())
|
||||
await get_database().execute(query)
|
||||
return meeting
|
||||
|
||||
async def get_all_active(self) -> list[Meeting]:
|
||||
"""
|
||||
Get active meetings.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.is_active)
|
||||
return await get_database().fetch_all(query)
|
||||
|
||||
async def get_by_room_name(
|
||||
self,
|
||||
room_name: str,
|
||||
) -> Meeting:
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by room name.
|
||||
For backward compatibility, returns the most recent meeting.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.room_name == room_name)
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(meetings.c.room_name == room_name)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting:
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting | None:
|
||||
"""
|
||||
Get latest active meeting for a room.
|
||||
For backward compatibility, returns the most recent active meeting.
|
||||
"""
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
@@ -163,37 +192,85 @@ class MeetingController:
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_all_active_for_room(
|
||||
self, room: Room, current_time: datetime
|
||||
) -> list[Meeting]:
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Meeting(**result) for result in results]
|
||||
|
||||
async def get_active_by_calendar_event(
|
||||
self, room: Room, calendar_event_id: str, current_time: datetime
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get active meeting for a specific calendar event.
|
||||
"""
|
||||
query = meetings.select().where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.calendar_event_id == calendar_event_id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by id
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Meeting:
|
||||
"""
|
||||
Get a meeting by ID for HTTP request.
|
||||
|
||||
If not found, it will raise a 404 error.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
async def get_by_calendar_event(self, calendar_event_id: str) -> Meeting | None:
|
||||
query = meetings.select().where(
|
||||
meetings.c.calendar_event_id == calendar_event_id
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
|
||||
meeting = Meeting(**result)
|
||||
if result["user_id"] != user_id:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def update_meeting(self, meeting_id: str, **kwargs):
|
||||
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
||||
await get_database().execute(query)
|
||||
|
||||
async def increment_num_clients(self, meeting_id: str):
|
||||
"""Atomically increment participant count."""
|
||||
query = (
|
||||
meetings.update()
|
||||
.where(meetings.c.id == meeting_id)
|
||||
.values(num_clients=meetings.c.num_clients + 1)
|
||||
)
|
||||
await get_database().execute(query)
|
||||
|
||||
async def decrement_num_clients(self, meeting_id: str):
|
||||
"""Atomically decrement participant count (min 0)."""
|
||||
query = (
|
||||
meetings.update()
|
||||
.where(meetings.c.id == meeting_id)
|
||||
.values(
|
||||
num_clients=sa.case(
|
||||
(meetings.c.num_clients > 0, meetings.c.num_clients - 1), else_=0
|
||||
)
|
||||
)
|
||||
)
|
||||
await get_database().execute(query)
|
||||
|
||||
|
||||
class MeetingConsentController:
|
||||
async def get_by_meeting_id(self, meeting_id: str) -> list[MeetingConsent]:
|
||||
@@ -214,10 +291,9 @@ class MeetingConsentController:
|
||||
result = await get_database().fetch_one(query)
|
||||
if result is None:
|
||||
return None
|
||||
return MeetingConsent(**result) if result else None
|
||||
return MeetingConsent(**result)
|
||||
|
||||
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
|
||||
"""Create new consent or update existing one for authenticated users"""
|
||||
if consent.user_id:
|
||||
# For authenticated users, check if consent already exists
|
||||
# not transactional but we're ok with that; the consents ain't deleted anyways
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import IntegrityError
|
||||
from typing import Literal
|
||||
from typing import Literal, Optional
|
||||
|
||||
import sqlalchemy
|
||||
from fastapi import HTTPException
|
||||
@@ -8,6 +9,7 @@ from pydantic import BaseModel, Field
|
||||
from sqlalchemy.sql import false, or_
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.platform_types import Platform
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
rooms = sqlalchemy.Table(
|
||||
@@ -40,7 +42,23 @@ rooms = sqlalchemy.Table(
|
||||
sqlalchemy.Column(
|
||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("ics_url", sqlalchemy.Text),
|
||||
sqlalchemy.Column("ics_fetch_interval", sqlalchemy.Integer, server_default="300"),
|
||||
sqlalchemy.Column(
|
||||
"ics_enabled", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("ics_last_sync", sqlalchemy.DateTime(timezone=True)),
|
||||
sqlalchemy.Column("ics_last_etag", sqlalchemy.Text),
|
||||
sqlalchemy.Column(
|
||||
"platform",
|
||||
sqlalchemy.String,
|
||||
nullable=False,
|
||||
server_default="whereby",
|
||||
),
|
||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
|
||||
)
|
||||
|
||||
|
||||
@@ -55,10 +73,18 @@ class Room(BaseModel):
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
recording_trigger: Literal[
|
||||
recording_trigger: Literal[ # whereby-specific
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
is_shared: bool = False
|
||||
webhook_url: str | None = None
|
||||
webhook_secret: str | None = None
|
||||
ics_url: str | None = None
|
||||
ics_fetch_interval: int = 300
|
||||
ics_enabled: bool = False
|
||||
ics_last_sync: datetime | None = None
|
||||
ics_last_etag: str | None = None
|
||||
platform: Platform = "whereby"
|
||||
|
||||
|
||||
class RoomController:
|
||||
@@ -107,10 +133,19 @@ class RoomController:
|
||||
recording_type: str,
|
||||
recording_trigger: str,
|
||||
is_shared: bool,
|
||||
webhook_url: str = "",
|
||||
webhook_secret: str = "",
|
||||
ics_url: str | None = None,
|
||||
ics_fetch_interval: int = 300,
|
||||
ics_enabled: bool = False,
|
||||
platform: Optional[Platform] = None,
|
||||
):
|
||||
"""
|
||||
Add a new room
|
||||
"""
|
||||
if webhook_url and not webhook_secret:
|
||||
webhook_secret = secrets.token_urlsafe(32)
|
||||
|
||||
room = Room(
|
||||
name=name,
|
||||
user_id=user_id,
|
||||
@@ -122,6 +157,12 @@ class RoomController:
|
||||
recording_type=recording_type,
|
||||
recording_trigger=recording_trigger,
|
||||
is_shared=is_shared,
|
||||
webhook_url=webhook_url,
|
||||
webhook_secret=webhook_secret,
|
||||
ics_url=ics_url,
|
||||
ics_fetch_interval=ics_fetch_interval,
|
||||
ics_enabled=ics_enabled,
|
||||
platform=platform or "whereby",
|
||||
)
|
||||
query = rooms.insert().values(**room.model_dump())
|
||||
try:
|
||||
@@ -134,6 +175,9 @@ class RoomController:
|
||||
"""
|
||||
Update a room fields with key/values in values
|
||||
"""
|
||||
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||
|
||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||
try:
|
||||
await get_database().execute(query)
|
||||
@@ -183,6 +227,13 @@ class RoomController:
|
||||
|
||||
return room
|
||||
|
||||
async def get_ics_enabled(self) -> list[Room]:
|
||||
query = rooms.select().where(
|
||||
rooms.c.ics_enabled == True, rooms.c.ics_url != None
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Room(**result) for result in results]
|
||||
|
||||
async def remove_by_id(
|
||||
self,
|
||||
room_id: str,
|
||||
|
||||
@@ -1,22 +1,38 @@
|
||||
"""Search functionality for transcripts and other entities."""
|
||||
|
||||
import itertools
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from io import StringIO
|
||||
from typing import Annotated, Any, Dict
|
||||
from typing import Annotated, Any, Dict, Iterator
|
||||
|
||||
import sqlalchemy
|
||||
import webvtt
|
||||
from pydantic import BaseModel, Field, constr, field_serializer
|
||||
from databases.interfaces import Record as DbRecord
|
||||
from fastapi import HTTPException
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
NonNegativeFloat,
|
||||
NonNegativeInt,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
constr,
|
||||
field_serializer,
|
||||
)
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.db.transcripts import SourceKind, transcripts
|
||||
from reflector.db.rooms import rooms
|
||||
from reflector.db.transcripts import SourceKind, TranscriptStatus, transcripts
|
||||
from reflector.db.utils import is_postgresql
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||
|
||||
DEFAULT_SEARCH_LIMIT = 20
|
||||
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||
DEFAULT_SNIPPET_MAX_LENGTH = 150
|
||||
DEFAULT_MAX_SNIPPETS = 3
|
||||
DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||
|
||||
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||
@@ -24,6 +40,7 @@ SearchOffsetBase = Annotated[int, Field(ge=0)]
|
||||
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||
|
||||
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||
search_query_adapter = TypeAdapter(SearchQuery)
|
||||
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||
SearchOffset = Annotated[
|
||||
SearchOffsetBase, Field(description="Number of results to skip")
|
||||
@@ -32,15 +49,92 @@ SearchTotal = Annotated[
|
||||
SearchTotalBase, Field(description="Total number of search results")
|
||||
]
|
||||
|
||||
WEBVTT_SPEC_HEADER = "WEBVTT"
|
||||
|
||||
WebVTTContent = Annotated[
|
||||
str,
|
||||
Field(min_length=len(WEBVTT_SPEC_HEADER), description="WebVTT content"),
|
||||
]
|
||||
|
||||
|
||||
class WebVTTProcessor:
|
||||
"""Stateless processor for WebVTT content operations."""
|
||||
|
||||
@staticmethod
|
||||
def parse(raw_content: str) -> WebVTTContent:
|
||||
"""Parse WebVTT content and return it as a string."""
|
||||
if not raw_content.startswith(WEBVTT_SPEC_HEADER):
|
||||
raise ValueError(f"Invalid WebVTT content, no header {WEBVTT_SPEC_HEADER}")
|
||||
return raw_content
|
||||
|
||||
@staticmethod
|
||||
def extract_text(webvtt_content: WebVTTContent) -> str:
|
||||
"""Extract plain text from WebVTT content using webvtt library."""
|
||||
try:
|
||||
buffer = StringIO(webvtt_content)
|
||||
vtt = webvtt.read_buffer(buffer)
|
||||
return " ".join(caption.text for caption in vtt if caption.text)
|
||||
except webvtt.errors.MalformedFileError as e:
|
||||
logger.warning(f"Malformed WebVTT content: {e}")
|
||||
return ""
|
||||
except (UnicodeDecodeError, ValueError) as e:
|
||||
logger.warning(f"Failed to decode WebVTT content: {e}")
|
||||
return ""
|
||||
except AttributeError as e:
|
||||
logger.error(
|
||||
f"WebVTT parsing error - unexpected format: {e}", exc_info=True
|
||||
)
|
||||
return ""
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error parsing WebVTT: {e}", exc_info=True)
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def generate_snippets(
|
||||
webvtt_content: WebVTTContent,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from WebVTT content."""
|
||||
return SnippetGenerator.generate(
|
||||
WebVTTProcessor.extract_text(webvtt_content),
|
||||
query,
|
||||
max_snippets=max_snippets,
|
||||
)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class SnippetCandidate:
|
||||
"""Represents a candidate snippet with its position."""
|
||||
|
||||
_text: str
|
||||
start: NonNegativeInt
|
||||
_original_text_length: int
|
||||
|
||||
@property
|
||||
def end(self) -> NonNegativeInt:
|
||||
"""Calculate end position from start and raw text length."""
|
||||
return self.start + len(self._text)
|
||||
|
||||
def text(self) -> str:
|
||||
"""Get display text with ellipses added if needed."""
|
||||
result = self._text.strip()
|
||||
if self.start > 0:
|
||||
result = "..." + result
|
||||
if self.end < self._original_text_length:
|
||||
result = result + "..."
|
||||
return result
|
||||
|
||||
|
||||
class SearchParameters(BaseModel):
|
||||
"""Validated search parameters for full-text search."""
|
||||
|
||||
query_text: SearchQuery
|
||||
query_text: SearchQuery | None = None
|
||||
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||
offset: SearchOffset = 0
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
source_kind: SourceKind | None = None
|
||||
|
||||
|
||||
class SearchResultDB(BaseModel):
|
||||
@@ -64,13 +158,18 @@ class SearchResult(BaseModel):
|
||||
title: str | None = None
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_name: str | None = None
|
||||
source_kind: SourceKind
|
||||
created_at: datetime
|
||||
status: str = Field(..., min_length=1)
|
||||
status: TranscriptStatus = Field(..., min_length=1)
|
||||
rank: float = Field(..., ge=0, le=1)
|
||||
duration: float | None = Field(..., ge=0, description="Duration in seconds")
|
||||
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
|
||||
search_snippets: list[str] = Field(
|
||||
description="Text snippets around search matches"
|
||||
)
|
||||
total_match_count: NonNegativeInt = Field(
|
||||
default=0, description="Total number of matches found in the transcript"
|
||||
)
|
||||
|
||||
@field_serializer("created_at", when_used="json")
|
||||
def serialize_datetime(self, dt: datetime) -> str:
|
||||
@@ -79,84 +178,157 @@ class SearchResult(BaseModel):
|
||||
return dt.isoformat()
|
||||
|
||||
|
||||
class SearchController:
|
||||
"""Controller for search operations across different entities."""
|
||||
class SnippetGenerator:
|
||||
"""Stateless generator for text snippets and match operations."""
|
||||
|
||||
@staticmethod
|
||||
def _extract_webvtt_text(webvtt_content: str) -> str:
|
||||
"""Extract plain text from WebVTT content using webvtt library."""
|
||||
if not webvtt_content:
|
||||
return ""
|
||||
def find_all_matches(text: str, query: str) -> Iterator[int]:
|
||||
"""Generate all match positions for a query in text."""
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in find_all_matches")
|
||||
return
|
||||
if not query:
|
||||
logger.warning("Empty query for search text in find_all_matches")
|
||||
return
|
||||
|
||||
try:
|
||||
buffer = StringIO(webvtt_content)
|
||||
vtt = webvtt.read_buffer(buffer)
|
||||
return " ".join(caption.text for caption in vtt if caption.text)
|
||||
except (webvtt.errors.MalformedFileError, UnicodeDecodeError, ValueError) as e:
|
||||
logger.warning(f"Failed to parse WebVTT content: {e}", exc_info=e)
|
||||
return ""
|
||||
except AttributeError as e:
|
||||
logger.warning(f"WebVTT parsing error - unexpected format: {e}", exc_info=e)
|
||||
return ""
|
||||
text_lower = text.lower()
|
||||
query_lower = query.lower()
|
||||
start = 0
|
||||
prev_start = start
|
||||
while (pos := text_lower.find(query_lower, start)) != -1:
|
||||
yield pos
|
||||
start = pos + len(query_lower)
|
||||
if start <= prev_start:
|
||||
raise ValueError("panic! find_all_matches is not incremental")
|
||||
prev_start = start
|
||||
|
||||
@staticmethod
|
||||
def _generate_snippets(
|
||||
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||
"""Count total number of matches for a query in text."""
|
||||
ZERO = NonNegativeInt(0)
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in count_matches")
|
||||
return ZERO
|
||||
assert query is not None
|
||||
return NonNegativeInt(
|
||||
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_snippet(
|
||||
text: str, match_pos: int, max_length: int = DEFAULT_SNIPPET_MAX_LENGTH
|
||||
) -> SnippetCandidate:
|
||||
"""Create a snippet from a match position."""
|
||||
snippet_start = NonNegativeInt(max(0, match_pos - SNIPPET_CONTEXT_LENGTH))
|
||||
snippet_end = min(len(text), match_pos + max_length - SNIPPET_CONTEXT_LENGTH)
|
||||
|
||||
snippet_text = text[snippet_start:snippet_end]
|
||||
|
||||
return SnippetCandidate(
|
||||
_text=snippet_text, start=snippet_start, _original_text_length=len(text)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def filter_non_overlapping(
|
||||
candidates: Iterator[SnippetCandidate],
|
||||
) -> Iterator[str]:
|
||||
"""Filter out overlapping snippets and return only display text."""
|
||||
last_end = 0
|
||||
for candidate in candidates:
|
||||
display_text = candidate.text()
|
||||
# it means that next overlapping snippets simply don't get included
|
||||
# it's fine as simplistic logic and users probably won't care much because they already have their search results just fin
|
||||
if candidate.start >= last_end and display_text:
|
||||
yield display_text
|
||||
last_end = candidate.end
|
||||
|
||||
@staticmethod
|
||||
def generate(
|
||||
text: str,
|
||||
q: SearchQuery,
|
||||
max_length: int = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||
max_snippets: int = DEFAULT_MAX_SNIPPETS,
|
||||
query: SearchQuery,
|
||||
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate multiple snippets around all occurrences of search term."""
|
||||
if not text or not q:
|
||||
"""Generate snippets from text."""
|
||||
assert query is not None
|
||||
if not text:
|
||||
logger.warning("Empty text for generate_snippets")
|
||||
return []
|
||||
|
||||
snippets = []
|
||||
lower_text = text.lower()
|
||||
search_lower = q.lower()
|
||||
candidates = (
|
||||
SnippetGenerator.create_snippet(text, pos, max_length)
|
||||
for pos in SnippetGenerator.find_all_matches(text, query)
|
||||
)
|
||||
filtered = SnippetGenerator.filter_non_overlapping(candidates)
|
||||
snippets = list(itertools.islice(filtered, max_snippets))
|
||||
|
||||
last_snippet_end = 0
|
||||
start_pos = 0
|
||||
|
||||
while len(snippets) < max_snippets:
|
||||
match_pos = lower_text.find(search_lower, start_pos)
|
||||
|
||||
if match_pos == -1:
|
||||
if not snippets and search_lower.split():
|
||||
first_word = search_lower.split()[0]
|
||||
match_pos = lower_text.find(first_word, start_pos)
|
||||
if match_pos == -1:
|
||||
break
|
||||
else:
|
||||
break
|
||||
|
||||
snippet_start = max(0, match_pos - SNIPPET_CONTEXT_LENGTH)
|
||||
snippet_end = min(
|
||||
len(text), match_pos + max_length - SNIPPET_CONTEXT_LENGTH
|
||||
)
|
||||
|
||||
if snippet_start < last_snippet_end:
|
||||
start_pos = match_pos + len(search_lower)
|
||||
continue
|
||||
|
||||
snippet = text[snippet_start:snippet_end]
|
||||
|
||||
if snippet_start > 0:
|
||||
snippet = "..." + snippet
|
||||
if snippet_end < len(text):
|
||||
snippet = snippet + "..."
|
||||
|
||||
snippet = snippet.strip()
|
||||
|
||||
if snippet:
|
||||
snippets.append(snippet)
|
||||
last_snippet_end = snippet_end
|
||||
|
||||
start_pos = match_pos + len(search_lower)
|
||||
if start_pos >= len(text):
|
||||
break
|
||||
# Fallback to first word search if no full matches
|
||||
# it's another assumption: proper snippet logic generation is quite complicated and tied to db logic, so simplification is used here
|
||||
if not snippets and " " in query:
|
||||
first_word = query.split()[0]
|
||||
return SnippetGenerator.generate(text, first_word, max_length, max_snippets)
|
||||
|
||||
return snippets
|
||||
|
||||
@staticmethod
|
||||
def from_summary(
|
||||
summary: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from summary text."""
|
||||
return SnippetGenerator.generate(summary, query, max_snippets=max_snippets)
|
||||
|
||||
@staticmethod
|
||||
def combine_sources(
|
||||
summary: NonEmptyString | None,
|
||||
webvtt: WebVTTContent | None,
|
||||
query: SearchQuery,
|
||||
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> tuple[list[str], NonNegativeInt]:
|
||||
"""Combine snippets from multiple sources and return total match count.
|
||||
|
||||
Returns (snippets, total_match_count) tuple.
|
||||
|
||||
snippets can be empty for real in case of e.g. title match
|
||||
"""
|
||||
|
||||
assert (
|
||||
summary is not None or webvtt is not None
|
||||
), "At least one source must be present"
|
||||
|
||||
webvtt_matches = 0
|
||||
summary_matches = 0
|
||||
|
||||
if webvtt:
|
||||
webvtt_text = WebVTTProcessor.extract_text(webvtt)
|
||||
webvtt_matches = SnippetGenerator.count_matches(webvtt_text, query)
|
||||
|
||||
if summary:
|
||||
summary_matches = SnippetGenerator.count_matches(summary, query)
|
||||
|
||||
total_matches = NonNegativeInt(webvtt_matches + summary_matches)
|
||||
|
||||
summary_snippets = (
|
||||
SnippetGenerator.from_summary(summary, query) if summary else []
|
||||
)
|
||||
|
||||
if len(summary_snippets) >= max_total:
|
||||
return summary_snippets[:max_total], total_matches
|
||||
|
||||
remaining = max_total - len(summary_snippets)
|
||||
webvtt_snippets = (
|
||||
WebVTTProcessor.generate_snippets(webvtt, query, remaining)
|
||||
if webvtt
|
||||
else []
|
||||
)
|
||||
|
||||
return summary_snippets + webvtt_snippets, total_matches
|
||||
|
||||
|
||||
class SearchController:
|
||||
"""Controller for search operations across different entities."""
|
||||
|
||||
@classmethod
|
||||
async def search_transcripts(
|
||||
cls, params: SearchParameters
|
||||
@@ -172,39 +344,72 @@ class SearchController:
|
||||
)
|
||||
return [], 0
|
||||
|
||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||
"english", params.query_text
|
||||
base_columns = [
|
||||
transcripts.c.id,
|
||||
transcripts.c.title,
|
||||
transcripts.c.created_at,
|
||||
transcripts.c.duration,
|
||||
transcripts.c.status,
|
||||
transcripts.c.user_id,
|
||||
transcripts.c.room_id,
|
||||
transcripts.c.source_kind,
|
||||
transcripts.c.webvtt,
|
||||
transcripts.c.long_summary,
|
||||
sqlalchemy.case(
|
||||
(
|
||||
transcripts.c.room_id.isnot(None) & rooms.c.id.is_(None),
|
||||
"Deleted Room",
|
||||
),
|
||||
else_=rooms.c.name,
|
||||
).label("room_name"),
|
||||
]
|
||||
search_query = None
|
||||
if params.query_text is not None:
|
||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||
"english", params.query_text
|
||||
)
|
||||
rank_column = sqlalchemy.func.ts_rank(
|
||||
transcripts.c.search_vector_en,
|
||||
search_query,
|
||||
32, # normalization flag: rank/(rank+1) for 0-1 range
|
||||
).label("rank")
|
||||
else:
|
||||
rank_column = sqlalchemy.cast(1.0, sqlalchemy.Float).label("rank")
|
||||
|
||||
columns = base_columns + [rank_column]
|
||||
base_query = sqlalchemy.select(columns).select_from(
|
||||
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
|
||||
)
|
||||
|
||||
base_query = sqlalchemy.select(
|
||||
[
|
||||
transcripts.c.id,
|
||||
transcripts.c.title,
|
||||
transcripts.c.created_at,
|
||||
transcripts.c.duration,
|
||||
transcripts.c.status,
|
||||
transcripts.c.user_id,
|
||||
transcripts.c.room_id,
|
||||
transcripts.c.source_kind,
|
||||
transcripts.c.webvtt,
|
||||
sqlalchemy.func.ts_rank(
|
||||
transcripts.c.search_vector_en,
|
||||
search_query,
|
||||
32, # normalization flag: rank/(rank+1) for 0-1 range
|
||||
).label("rank"),
|
||||
]
|
||||
).where(transcripts.c.search_vector_en.op("@@")(search_query))
|
||||
if params.query_text is not None:
|
||||
# because already initialized based on params.query_text presence above
|
||||
assert search_query is not None
|
||||
base_query = base_query.where(
|
||||
transcripts.c.search_vector_en.op("@@")(search_query)
|
||||
)
|
||||
|
||||
if params.user_id:
|
||||
base_query = base_query.where(transcripts.c.user_id == params.user_id)
|
||||
base_query = base_query.where(
|
||||
sqlalchemy.or_(
|
||||
transcripts.c.user_id == params.user_id, rooms.c.is_shared
|
||||
)
|
||||
)
|
||||
else:
|
||||
base_query = base_query.where(rooms.c.is_shared)
|
||||
if params.room_id:
|
||||
base_query = base_query.where(transcripts.c.room_id == params.room_id)
|
||||
if params.source_kind:
|
||||
base_query = base_query.where(
|
||||
transcripts.c.source_kind == params.source_kind
|
||||
)
|
||||
|
||||
if params.query_text is not None:
|
||||
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||
else:
|
||||
order_by = sqlalchemy.desc(transcripts.c.created_at)
|
||||
|
||||
query = base_query.order_by(order_by).limit(params.limit).offset(params.offset)
|
||||
|
||||
query = (
|
||||
base_query.order_by(sqlalchemy.desc(sqlalchemy.text("rank")))
|
||||
.limit(params.limit)
|
||||
.offset(params.offset)
|
||||
)
|
||||
rs = await get_database().fetch_all(query)
|
||||
|
||||
count_query = sqlalchemy.select([sqlalchemy.func.count()]).select_from(
|
||||
@@ -212,20 +417,52 @@ class SearchController:
|
||||
)
|
||||
total = await get_database().fetch_val(count_query)
|
||||
|
||||
def _process_result(r) -> SearchResult:
|
||||
def _process_result(r: DbRecord) -> SearchResult:
|
||||
r_dict: Dict[str, Any] = dict(r)
|
||||
webvtt: str | None = r_dict.pop("webvtt", None)
|
||||
|
||||
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||
webvtt: WebVTTContent | None
|
||||
if webvtt_raw:
|
||||
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||
else:
|
||||
webvtt = None
|
||||
|
||||
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||
room_name: str | None = r_dict.pop("room_name", None)
|
||||
db_result = SearchResultDB.model_validate(r_dict)
|
||||
|
||||
snippets = []
|
||||
if webvtt:
|
||||
plain_text = cls._extract_webvtt_text(webvtt)
|
||||
snippets = cls._generate_snippets(plain_text, params.query_text)
|
||||
at_least_one_source = webvtt is not None or long_summary is not None
|
||||
has_query = params.query_text is not None
|
||||
snippets, total_match_count = (
|
||||
SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
)
|
||||
if has_query and at_least_one_source
|
||||
else ([], 0)
|
||||
)
|
||||
|
||||
return SearchResult(**db_result.model_dump(), search_snippets=snippets)
|
||||
return SearchResult(
|
||||
**db_result.model_dump(),
|
||||
room_name=room_name,
|
||||
search_snippets=snippets,
|
||||
total_match_count=total_match_count,
|
||||
)
|
||||
|
||||
try:
|
||||
results = [_process_result(r) for r in rs]
|
||||
except ValidationError as e:
|
||||
logger.error(f"Invalid search result data: {e}", exc_info=True)
|
||||
raise HTTPException(
|
||||
status_code=500, detail="Internal search result data consistency error"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing search results: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
results = [_process_result(r) for r in rs]
|
||||
return results, total
|
||||
|
||||
|
||||
search_controller = SearchController()
|
||||
webvtt_processor = WebVTTProcessor()
|
||||
snippet_generator = SnippetGenerator()
|
||||
|
||||
@@ -88,6 +88,8 @@ transcripts = sqlalchemy.Table(
|
||||
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
||||
sqlalchemy.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
||||
sqlalchemy.Index("idx_transcript_room_id", "room_id"),
|
||||
sqlalchemy.Index("idx_transcript_source_kind", "source_kind"),
|
||||
sqlalchemy.Index("idx_transcript_room_id_created_at", "room_id", "created_at"),
|
||||
)
|
||||
|
||||
# Add PostgreSQL-specific full-text search column
|
||||
@@ -99,7 +101,8 @@ if is_postgresql():
|
||||
TSVECTOR,
|
||||
sqlalchemy.Computed(
|
||||
"setweight(to_tsvector('english', coalesce(title, '')), 'A') || "
|
||||
"setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')",
|
||||
"setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') || "
|
||||
"setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')",
|
||||
persisted=True,
|
||||
),
|
||||
)
|
||||
@@ -119,6 +122,15 @@ def generate_transcript_name() -> str:
|
||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
|
||||
TranscriptStatus = Literal[
|
||||
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||
]
|
||||
|
||||
|
||||
class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class AudioWaveform(BaseModel):
|
||||
data: list[float]
|
||||
|
||||
@@ -182,7 +194,7 @@ class Transcript(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
user_id: str | None = None
|
||||
name: str = Field(default_factory=generate_transcript_name)
|
||||
status: str = "idle"
|
||||
status: TranscriptStatus = "idle"
|
||||
duration: float = 0
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
title: str | None = None
|
||||
@@ -635,6 +647,19 @@ class TranscriptController:
|
||||
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
|
||||
await get_database().execute(query)
|
||||
|
||||
@staticmethod
|
||||
def user_can_mutate(transcript: Transcript, user_id: str | None) -> bool:
|
||||
"""
|
||||
Returns True if the given user is allowed to modify the transcript.
|
||||
|
||||
Policy:
|
||||
- Anonymous transcripts (user_id is None) cannot be modified via API
|
||||
- Only the owner (matching user_id) can modify their transcript
|
||||
"""
|
||||
if transcript.user_id is None:
|
||||
return False
|
||||
return user_id and transcript.user_id == user_id
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
"""
|
||||
@@ -729,5 +754,27 @@ class TranscriptController:
|
||||
transcript.delete_participant(participant_id)
|
||||
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||
|
||||
async def set_status(
|
||||
self, transcript_id: str, status: TranscriptStatus
|
||||
) -> TranscriptEvent | None:
|
||||
"""
|
||||
Update the status of a transcript
|
||||
|
||||
Will add an event STATUS + update the status field of transcript
|
||||
"""
|
||||
async with self.transaction():
|
||||
transcript = await self.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
if transcript.status == status:
|
||||
return
|
||||
resp = await self.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await self.update(transcript, {"status": status})
|
||||
return resp
|
||||
|
||||
|
||||
transcripts_controller = TranscriptController()
|
||||
|
||||
84
server/reflector/pipelines/MULTITRACK_FIX_SUMMARY.md
Normal file
84
server/reflector/pipelines/MULTITRACK_FIX_SUMMARY.md
Normal file
@@ -0,0 +1,84 @@
|
||||
# Multitrack Pipeline Fix Summary
|
||||
|
||||
## Problem
|
||||
Whisper timestamps were incorrect because it ignores leading silence in audio files. Daily.co tracks can have arbitrary amounts of silence before speech starts.
|
||||
|
||||
## Solution
|
||||
**Pad tracks BEFORE transcription using stream metadata `start_time`**
|
||||
|
||||
This makes Whisper timestamps automatically correct relative to recording start.
|
||||
|
||||
## Key Changes in `main_multitrack_pipeline_fixed.py`
|
||||
|
||||
### 1. Added `pad_track_for_transcription()` method (lines 55-172)
|
||||
|
||||
```python
|
||||
async def pad_track_for_transcription(
|
||||
self,
|
||||
track_data: bytes,
|
||||
track_idx: int,
|
||||
storage,
|
||||
) -> tuple[bytes, str]:
|
||||
```
|
||||
|
||||
- Extracts stream metadata `start_time` using PyAV
|
||||
- Creates PyAV filter graph with `adelay` filter to add padding
|
||||
- Stores padded track to S3 and returns URL
|
||||
- Uses same audio processing library (PyAV) already in the pipeline
|
||||
|
||||
### 2. Modified `process()` method
|
||||
|
||||
#### REMOVED (lines 255-302):
|
||||
- Entire filename parsing for offsets - NOT NEEDED ANYMORE
|
||||
- The complex regex parsing of Daily.co filenames
|
||||
- Offset adjustment after transcription
|
||||
|
||||
#### ADDED (lines 371-382):
|
||||
- Padding step BEFORE transcription:
|
||||
```python
|
||||
# PAD TRACKS BEFORE TRANSCRIPTION - THIS IS THE KEY FIX!
|
||||
padded_track_urls: list[str] = []
|
||||
for idx, data in enumerate(track_datas):
|
||||
if not data:
|
||||
padded_track_urls.append("")
|
||||
continue
|
||||
|
||||
_, padded_url = await self.pad_track_for_transcription(
|
||||
data, idx, storage
|
||||
)
|
||||
padded_track_urls.append(padded_url)
|
||||
```
|
||||
|
||||
#### MODIFIED (lines 385-435):
|
||||
- Transcribe PADDED tracks instead of raw tracks
|
||||
- Removed all timestamp offset adjustment code
|
||||
- Just set speaker ID - timestamps already correct!
|
||||
|
||||
```python
|
||||
# NO OFFSET ADJUSTMENT NEEDED!
|
||||
# Timestamps are already correct because we transcribed padded tracks
|
||||
# Just set speaker ID
|
||||
for w in t.words:
|
||||
w.speaker = idx
|
||||
```
|
||||
|
||||
## Why This Works
|
||||
|
||||
1. **Stream metadata is authoritative**: Daily.co sets `start_time` in the WebM container
|
||||
2. **PyAV respects metadata**: `audio_stream.start_time * audio_stream.time_base` gives seconds
|
||||
3. **Padding before transcription**: Whisper sees continuous audio from time 0
|
||||
4. **Automatic alignment**: Word at 51s in padded track = 51s in recording
|
||||
|
||||
## Testing
|
||||
|
||||
Process the test recording (daily-20251020193458) and verify:
|
||||
- Participant 0 words appear at ~2s
|
||||
- Participant 1 words appear at ~51s
|
||||
- No word interleaving
|
||||
- Correct chronological order
|
||||
|
||||
## Files
|
||||
|
||||
- **Original**: `main_multitrack_pipeline.py`
|
||||
- **Fixed**: `main_multitrack_pipeline_fixed.py`
|
||||
- **Test data**: `/Users/firfi/work/clients/monadical/reflector/1760988935484-*.webm`
|
||||
439
server/reflector/pipelines/main_file_pipeline.py
Normal file
439
server/reflector/pipelines/main_file_pipeline.py
Normal file
@@ -0,0 +1,439 @@
|
||||
"""
|
||||
File-based processing pipeline
|
||||
==============================
|
||||
|
||||
Optimized pipeline for processing complete audio/video files.
|
||||
Uses parallel processing for transcription, diarization, and waveform generation.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
import structlog
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
Transcript,
|
||||
TranscriptStatus,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.file_diarization import FileDiarizationInput
|
||||
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerInput,
|
||||
TranscriptDiarizationAssemblerProcessor,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
DiarizationSegment,
|
||||
TitleSummary,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.worker.webhook import send_transcript_webhook
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
"""Empty pipeline for processors that need a pipeline reference"""
|
||||
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineMainFile(PipelineMainBase):
|
||||
"""
|
||||
Optimized file processing pipeline.
|
||||
Processes complete audio/video files with parallel execution.
|
||||
"""
|
||||
|
||||
logger: structlog.BoundLogger = None
|
||||
empty_pipeline = None
|
||||
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
|
||||
def _handle_gather_exceptions(self, results: list, operation: str) -> None:
|
||||
"""Handle exceptions from asyncio.gather with return_exceptions=True"""
|
||||
for i, result in enumerate(results):
|
||||
if not isinstance(result, Exception):
|
||||
continue
|
||||
self.logger.error(
|
||||
f"Error in {operation} (task {i}): {result}",
|
||||
transcript_id=self.transcript_id,
|
||||
exc_info=result,
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def process(self, file_path: Path):
|
||||
"""Main entry point for file processing"""
|
||||
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Clear transcript as we're going to regenerate everything
|
||||
async with self.transaction():
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
},
|
||||
)
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
# Upload for processing
|
||||
audio_url = await self.upload_audio(audio_path, transcript)
|
||||
|
||||
# Run parallel processing
|
||||
await self.run_parallel_processing(
|
||||
audio_path,
|
||||
audio_url,
|
||||
transcript.source_language,
|
||||
transcript.target_language,
|
||||
)
|
||||
|
||||
self.logger.info("File pipeline complete")
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def extract_and_write_audio(
|
||||
self, file_path: Path, transcript: Transcript
|
||||
) -> Path:
|
||||
"""Extract audio from video if needed and write to transcript location as MP3"""
|
||||
self.logger.info(f"Processing audio file: {file_path}")
|
||||
|
||||
# Check if it's already audio-only
|
||||
container = av.open(str(file_path))
|
||||
has_video = len(container.streams.video) > 0
|
||||
container.close()
|
||||
|
||||
# Use AudioFileWriterProcessor to write MP3 to transcript location
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=transcript.audio_mp3_filename,
|
||||
on_duration=self.on_duration,
|
||||
)
|
||||
|
||||
# Process audio frames and write to transcript location
|
||||
input_container = av.open(str(file_path))
|
||||
for frame in input_container.decode(audio=0):
|
||||
await mp3_writer.push(frame)
|
||||
|
||||
await mp3_writer.flush()
|
||||
input_container.close()
|
||||
|
||||
if has_video:
|
||||
self.logger.info(
|
||||
f"Extracted audio from video and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
else:
|
||||
self.logger.info(
|
||||
f"Converted audio file and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
|
||||
return transcript.audio_mp3_filename
|
||||
|
||||
async def upload_audio(self, audio_path: Path, transcript: Transcript) -> str:
|
||||
"""Upload audio to storage for processing"""
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
if not storage:
|
||||
raise Exception(
|
||||
"Storage backend required for file processing. Configure TRANSCRIPT_STORAGE_* settings."
|
||||
)
|
||||
|
||||
self.logger.info("Uploading audio to storage")
|
||||
|
||||
with open(audio_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
storage_path = f"file_pipeline/{transcript.id}/audio.mp3"
|
||||
await storage.put_file(storage_path, audio_data)
|
||||
|
||||
audio_url = await storage.get_file_url(storage_path)
|
||||
|
||||
self.logger.info(f"Audio uploaded to {audio_url}")
|
||||
return audio_url
|
||||
|
||||
async def run_parallel_processing(
|
||||
self,
|
||||
audio_path: Path,
|
||||
audio_url: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
):
|
||||
"""Coordinate parallel processing of transcription, diarization, and waveform"""
|
||||
self.logger.info(
|
||||
"Starting parallel processing", transcript_id=self.transcript_id
|
||||
)
|
||||
|
||||
# Phase 1: Parallel processing of independent tasks
|
||||
transcription_task = self.transcribe_file(audio_url, source_language)
|
||||
diarization_task = self.diarize_file(audio_url)
|
||||
waveform_task = self.generate_waveform(audio_path)
|
||||
|
||||
results = await asyncio.gather(
|
||||
transcription_task, diarization_task, waveform_task, return_exceptions=True
|
||||
)
|
||||
|
||||
transcript_result = results[0]
|
||||
diarization_result = results[1]
|
||||
|
||||
# Handle errors - raise any exception that occurred
|
||||
self._handle_gather_exceptions(results, "parallel processing")
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
raise result
|
||||
|
||||
# Phase 2: Assemble transcript with diarization
|
||||
self.logger.info(
|
||||
"Assembling transcript with diarization", transcript_id=self.transcript_id
|
||||
)
|
||||
processor = TranscriptDiarizationAssemblerProcessor()
|
||||
input_data = TranscriptDiarizationAssemblerInput(
|
||||
transcript=transcript_result, diarization=diarization_result or []
|
||||
)
|
||||
|
||||
# Store result for retrieval
|
||||
diarized_transcript: Transcript | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal diarized_transcript
|
||||
diarized_transcript = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not diarized_transcript:
|
||||
raise ValueError("No diarized transcript captured")
|
||||
|
||||
# Phase 3: Generate topics from diarized transcript
|
||||
self.logger.info("Generating topics", transcript_id=self.transcript_id)
|
||||
topics = await self.detect_topics(diarized_transcript, target_language)
|
||||
|
||||
# Phase 4: Generate title and summaries in parallel
|
||||
self.logger.info(
|
||||
"Generating title and summaries", transcript_id=self.transcript_id
|
||||
)
|
||||
results = await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(topics),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
self._handle_gather_exceptions(results, "title and summary generation")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
"""Transcribe complete file"""
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
# Store result for retrieval
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
|
||||
async def diarize_file(self, audio_url: str) -> list[DiarizationSegment] | None:
|
||||
"""Get diarization for file"""
|
||||
if not settings.DIARIZATION_BACKEND:
|
||||
self.logger.info("Diarization disabled")
|
||||
return None
|
||||
|
||||
processor = FileDiarizationAutoProcessor()
|
||||
input_data = FileDiarizationInput(audio_url=audio_url)
|
||||
|
||||
# Store result for retrieval
|
||||
result = None
|
||||
|
||||
async def capture_result(diarization_output):
|
||||
nonlocal result
|
||||
result = diarization_output.diarization
|
||||
|
||||
try:
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
return result
|
||||
except Exception as e:
|
||||
self.logger.error(f"Diarization failed: {e}")
|
||||
return None
|
||||
|
||||
async def generate_waveform(self, audio_path: Path):
|
||||
"""Generate and save waveform"""
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
processor = AudioWaveformProcessor(
|
||||
audio_path=audio_path,
|
||||
waveform_path=transcript.audio_waveform_filename,
|
||||
on_waveform=self.on_waveform,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
"""Detect topics from complete transcript"""
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
"""Generate title from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
"""Generate long and short summaries from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_send_webhook_if_needed(*, transcript_id: str):
|
||||
"""Send webhook if this is a room recording with webhook configured"""
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
return
|
||||
|
||||
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||
if room and room.webhook_url:
|
||||
logger.info(
|
||||
"Dispatching webhook",
|
||||
transcript_id=transcript_id,
|
||||
room_id=room.id,
|
||||
webhook_url=room.webhook_url,
|
||||
)
|
||||
send_transcript_webhook.delay(
|
||||
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||
)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_file_process(*, transcript_id: str):
|
||||
"""Celery task for file pipeline processing"""
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
await pipeline.process(audio_file)
|
||||
|
||||
except Exception:
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
# Run post-processing chain: consent cleanup -> zulip -> webhook
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
@@ -22,7 +22,7 @@ from celery import chord, current_task, group, shared_task
|
||||
from pydantic import BaseModel
|
||||
from structlog import BoundLogger as Logger
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
@@ -32,6 +32,7 @@ from reflector.db.transcripts import (
|
||||
TranscriptFinalLongSummary,
|
||||
TranscriptFinalShortSummary,
|
||||
TranscriptFinalTitle,
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
TranscriptTopic,
|
||||
TranscriptWaveform,
|
||||
@@ -40,8 +41,9 @@ from reflector.db.transcripts import (
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioChunkerAutoProcessor,
|
||||
AudioDiarizationAutoProcessor,
|
||||
AudioDownscaleProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
@@ -68,29 +70,6 @@ from reflector.zulip import (
|
||||
)
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def broadcast_to_sockets(func):
|
||||
"""
|
||||
Decorator to broadcast transcript event to websockets
|
||||
@@ -106,6 +85,20 @@ def broadcast_to_sockets(func):
|
||||
message=resp.model_dump(mode="json"),
|
||||
)
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(self.transcript_id)
|
||||
if transcript and transcript.user_id:
|
||||
# Emit only relevant events to the user room to avoid noisy updates.
|
||||
# Allowed: STATUS, FINAL_TITLE, DURATION. All are prefixed with TRANSCRIPT_
|
||||
allowed_user_events = {"STATUS", "FINAL_TITLE", "DURATION"}
|
||||
if resp.event in allowed_user_events:
|
||||
await self.ws_manager.send_json(
|
||||
room_id=f"user:{transcript.user_id}",
|
||||
message={
|
||||
"event": f"TRANSCRIPT_{resp.event}",
|
||||
"data": {"id": self.transcript_id, **resp.data},
|
||||
},
|
||||
)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@@ -147,15 +140,18 @@ class StrValue(BaseModel):
|
||||
|
||||
|
||||
class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]):
|
||||
transcript_id: str
|
||||
ws_room_id: str | None = None
|
||||
ws_manager: WebsocketManager | None = None
|
||||
|
||||
def prepare(self):
|
||||
# prepare websocket
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__()
|
||||
self._lock = asyncio.Lock()
|
||||
self.transcript_id = transcript_id
|
||||
self.ws_room_id = f"ts:{self.transcript_id}"
|
||||
self.ws_manager = get_ws_manager()
|
||||
self._ws_manager = None
|
||||
|
||||
@property
|
||||
def ws_manager(self) -> WebsocketManager:
|
||||
if self._ws_manager is None:
|
||||
self._ws_manager = get_ws_manager()
|
||||
return self._ws_manager
|
||||
|
||||
async def get_transcript(self) -> Transcript:
|
||||
# fetch the transcript
|
||||
@@ -184,8 +180,15 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
]
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async def lock_transaction(self):
|
||||
# This lock is to prevent multiple processor starting adding
|
||||
# into event array at the same time
|
||||
async with self._lock:
|
||||
yield
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async with self.lock_transaction():
|
||||
async with transcripts_controller.transaction():
|
||||
yield
|
||||
|
||||
@@ -194,14 +197,14 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
# if it's the first part, update the status of the transcript
|
||||
# but do not set the ended status yet.
|
||||
if isinstance(self, PipelineMainLive):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"started": "recording",
|
||||
"push": "recording",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
}
|
||||
elif isinstance(self, PipelineMainFinalSummaries):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"push": "processing",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
@@ -217,22 +220,8 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
return
|
||||
|
||||
# when the status of the pipeline changes, update the transcript
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
if status == transcript.status:
|
||||
return
|
||||
resp = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"status": status,
|
||||
},
|
||||
)
|
||||
return resp
|
||||
async with self._lock:
|
||||
return await transcripts_controller.set_status(self.transcript_id, status)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_transcript(self, data):
|
||||
@@ -355,7 +344,6 @@ class PipelineMainLive(PipelineMainBase):
|
||||
async def create(self) -> Pipeline:
|
||||
# create a context for the whole rtc transaction
|
||||
# add a customised logger to the context
|
||||
self.prepare()
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
processors = [
|
||||
@@ -363,7 +351,8 @@ class PipelineMainLive(PipelineMainBase):
|
||||
path=transcript.audio_wav_filename,
|
||||
on_duration=self.on_duration,
|
||||
),
|
||||
AudioChunkerProcessor(),
|
||||
AudioDownscaleProcessor(),
|
||||
AudioChunkerAutoProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
@@ -376,6 +365,7 @@ class PipelineMainLive(PipelineMainBase):
|
||||
pipeline.set_pref("audio:target_language", transcript.target_language)
|
||||
pipeline.logger.bind(transcript_id=transcript.id)
|
||||
pipeline.logger.info("Pipeline main live created")
|
||||
pipeline.describe()
|
||||
|
||||
return pipeline
|
||||
|
||||
@@ -394,7 +384,6 @@ class PipelineMainDiarization(PipelineMainBase[AudioDiarizationInput]):
|
||||
async def create(self) -> Pipeline:
|
||||
# create a context for the whole rtc transaction
|
||||
# add a customised logger to the context
|
||||
self.prepare()
|
||||
pipeline = Pipeline(
|
||||
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
||||
)
|
||||
@@ -435,8 +424,6 @@ class PipelineMainFromTopics(PipelineMainBase[TitleSummaryWithIdProcessorType]):
|
||||
raise NotImplementedError
|
||||
|
||||
async def create(self) -> Pipeline:
|
||||
self.prepare()
|
||||
|
||||
# get transcript
|
||||
self._transcript = transcript = await self.get_transcript()
|
||||
|
||||
@@ -792,7 +779,7 @@ def pipeline_post(*, transcript_id: str):
|
||||
chain_final_summaries,
|
||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||
|
||||
chain.delay()
|
||||
return chain.delay()
|
||||
|
||||
|
||||
@get_transcript
|
||||
|
||||
510
server/reflector/pipelines/main_multitrack_pipeline.backup.py
Normal file
510
server/reflector/pipelines/main_multitrack_pipeline.backup.py
Normal file
@@ -0,0 +1,510 @@
|
||||
import asyncio
|
||||
import io
|
||||
from fractions import Fraction
|
||||
|
||||
import av
|
||||
import boto3
|
||||
import structlog
|
||||
from av.audio.resampler import AudioResampler
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.transcripts import (
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_file_pipeline import task_send_webhook_if_needed
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.types import TitleSummary
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineMainMultitrack(PipelineMainBase):
|
||||
"""Process multiple participant tracks for a transcript without mixing audio."""
|
||||
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
|
||||
async def mixdown_tracks(
|
||||
self,
|
||||
track_datas: list[bytes],
|
||||
writer: AudioFileWriterProcessor,
|
||||
offsets_seconds: list[float] | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Minimal multi-track mixdown using a PyAV filter graph (amix), no resampling.
|
||||
"""
|
||||
|
||||
# Discover target sample rate from first decodable frame
|
||||
target_sample_rate: int | None = None
|
||||
for data in track_datas:
|
||||
if not data:
|
||||
continue
|
||||
try:
|
||||
container = av.open(io.BytesIO(data))
|
||||
try:
|
||||
for frame in container.decode(audio=0):
|
||||
target_sample_rate = frame.sample_rate
|
||||
break
|
||||
finally:
|
||||
container.close()
|
||||
except Exception:
|
||||
continue
|
||||
if target_sample_rate:
|
||||
break
|
||||
|
||||
if not target_sample_rate:
|
||||
self.logger.warning("Mixdown skipped - no decodable audio frames found")
|
||||
return
|
||||
|
||||
# Build PyAV filter graph:
|
||||
# N abuffer (s32/stereo)
|
||||
# -> optional adelay per input (for alignment)
|
||||
# -> amix (s32)
|
||||
# -> aformat(s16)
|
||||
# -> sink
|
||||
graph = av.filter.Graph()
|
||||
inputs = []
|
||||
valid_track_datas = [d for d in track_datas if d]
|
||||
# Align offsets list with the filtered inputs (skip empties)
|
||||
input_offsets_seconds = None
|
||||
if offsets_seconds is not None:
|
||||
input_offsets_seconds = [
|
||||
offsets_seconds[i] for i, d in enumerate(track_datas) if d
|
||||
]
|
||||
for idx, data in enumerate(valid_track_datas):
|
||||
args = (
|
||||
f"time_base=1/{target_sample_rate}:"
|
||||
f"sample_rate={target_sample_rate}:"
|
||||
f"sample_fmt=s32:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
|
||||
inputs.append(in_ctx)
|
||||
|
||||
if not inputs:
|
||||
self.logger.warning("Mixdown skipped - no valid inputs for graph")
|
||||
return
|
||||
|
||||
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
|
||||
|
||||
fmt = graph.add(
|
||||
"aformat",
|
||||
args=(
|
||||
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
|
||||
),
|
||||
name="fmt",
|
||||
)
|
||||
|
||||
sink = graph.add("abuffersink", name="out")
|
||||
|
||||
# Optional per-input delay before mixing
|
||||
delays_ms: list[int] = []
|
||||
if input_offsets_seconds is not None:
|
||||
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
|
||||
delays_ms = [
|
||||
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
|
||||
]
|
||||
else:
|
||||
delays_ms = [0 for _ in inputs]
|
||||
|
||||
for idx, in_ctx in enumerate(inputs):
|
||||
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
|
||||
if delay_ms > 0:
|
||||
# adelay requires one value per channel; use same for stereo
|
||||
adelay = graph.add(
|
||||
"adelay",
|
||||
args=f"delays={delay_ms}|{delay_ms}:all=1",
|
||||
name=f"delay{idx}",
|
||||
)
|
||||
in_ctx.link_to(adelay)
|
||||
adelay.link_to(mixer, 0, idx)
|
||||
else:
|
||||
in_ctx.link_to(mixer, 0, idx)
|
||||
mixer.link_to(fmt)
|
||||
fmt.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
# Open containers for decoding
|
||||
containers = []
|
||||
for i, d in enumerate(valid_track_datas):
|
||||
try:
|
||||
c = av.open(io.BytesIO(d))
|
||||
containers.append(c)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Mixdown: failed to open container", input=i, error=str(e)
|
||||
)
|
||||
containers.append(None)
|
||||
# Filter out Nones for decoders
|
||||
containers = [c for c in containers if c is not None]
|
||||
decoders = [c.decode(audio=0) for c in containers]
|
||||
active = [True] * len(decoders)
|
||||
# Per-input resamplers to enforce s32/stereo at the same rate (no resample of rate)
|
||||
resamplers = [
|
||||
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
|
||||
for _ in decoders
|
||||
]
|
||||
|
||||
try:
|
||||
# Round-robin feed frames into graph, pull mixed frames as they become available
|
||||
while any(active):
|
||||
for i, (dec, is_active) in enumerate(zip(decoders, active)):
|
||||
if not is_active:
|
||||
continue
|
||||
try:
|
||||
frame = next(dec)
|
||||
except StopIteration:
|
||||
active[i] = False
|
||||
continue
|
||||
|
||||
# Enforce same sample rate; convert format/layout to s16/stereo (no resample)
|
||||
if frame.sample_rate != target_sample_rate:
|
||||
# Skip frames with differing rate
|
||||
continue
|
||||
out_frames = resamplers[i].resample(frame) or []
|
||||
for rf in out_frames:
|
||||
rf.sample_rate = target_sample_rate
|
||||
rf.time_base = Fraction(1, target_sample_rate)
|
||||
inputs[i].push(rf)
|
||||
|
||||
# Drain available mixed frames
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
|
||||
# Signal EOF to inputs and drain remaining
|
||||
for in_ctx in inputs:
|
||||
in_ctx.push(None)
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
finally:
|
||||
for c in containers:
|
||||
c.close()
|
||||
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def process(self, bucket_name: str, track_keys: list[str]):
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
s3 = boto3.client(
|
||||
"s3",
|
||||
region_name=settings.RECORDING_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.RECORDING_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.RECORDING_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
# Pre-download bytes for all tracks for mixing and transcription
|
||||
track_datas: list[bytes] = []
|
||||
for key in track_keys:
|
||||
try:
|
||||
obj = s3.get_object(Bucket=bucket_name, Key=key)
|
||||
track_datas.append(obj["Body"].read())
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Skipping track - cannot read S3 object", key=key, error=str(e)
|
||||
)
|
||||
track_datas.append(b"")
|
||||
|
||||
# Extract offsets from Daily.co filename timestamps
|
||||
# Format: {rec_start_ts}-{uuid}-{media_type}-{track_start_ts}.{ext}
|
||||
# Example: 1760988935484-uuid-cam-audio-1760988935922
|
||||
import re
|
||||
|
||||
offsets_seconds: list[float] = []
|
||||
recording_start_ts: int | None = None
|
||||
|
||||
for key in track_keys:
|
||||
# Parse Daily.co raw-tracks filename pattern
|
||||
match = re.search(r"(\d+)-([0-9a-f-]{36})-(cam-audio)-(\d+)", key)
|
||||
if not match:
|
||||
self.logger.warning(
|
||||
"Track key doesn't match Daily.co pattern, using 0.0 offset",
|
||||
key=key,
|
||||
)
|
||||
offsets_seconds.append(0.0)
|
||||
continue
|
||||
|
||||
rec_start_ts = int(match.group(1))
|
||||
track_start_ts = int(match.group(4))
|
||||
|
||||
# Validate all tracks belong to same recording
|
||||
if recording_start_ts is None:
|
||||
recording_start_ts = rec_start_ts
|
||||
elif rec_start_ts != recording_start_ts:
|
||||
self.logger.error(
|
||||
"Track belongs to different recording",
|
||||
key=key,
|
||||
expected_start=recording_start_ts,
|
||||
got_start=rec_start_ts,
|
||||
)
|
||||
offsets_seconds.append(0.0)
|
||||
continue
|
||||
|
||||
# Calculate offset in seconds
|
||||
offset_ms = track_start_ts - rec_start_ts
|
||||
offset_s = offset_ms / 1000.0
|
||||
|
||||
self.logger.info(
|
||||
"Parsed track offset from filename",
|
||||
key=key,
|
||||
recording_start=rec_start_ts,
|
||||
track_start=track_start_ts,
|
||||
offset_seconds=offset_s,
|
||||
)
|
||||
|
||||
offsets_seconds.append(max(0.0, offset_s))
|
||||
|
||||
# Mixdown all available tracks into transcript.audio_mp3_filename, preserving sample rate
|
||||
try:
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=str(transcript.audio_mp3_filename)
|
||||
)
|
||||
await self.mixdown_tracks(track_datas, mp3_writer, offsets_seconds)
|
||||
await mp3_writer.flush()
|
||||
except Exception as e:
|
||||
self.logger.error("Mixdown failed", error=str(e))
|
||||
|
||||
speaker_transcripts: list[TranscriptType] = []
|
||||
for idx, key in enumerate(track_keys):
|
||||
ext = ".mp4"
|
||||
|
||||
try:
|
||||
obj = s3.get_object(Bucket=bucket_name, Key=key)
|
||||
data = obj["Body"].read()
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"Skipping track - cannot read S3 object", key=key, error=str(e)
|
||||
)
|
||||
continue
|
||||
|
||||
storage_path = f"file_pipeline/{transcript.id}/tracks/track_{idx}{ext}"
|
||||
try:
|
||||
await storage.put_file(storage_path, data)
|
||||
audio_url = await storage.get_file_url(storage_path)
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"Skipping track - cannot upload to storage", key=key, error=str(e)
|
||||
)
|
||||
continue
|
||||
|
||||
try:
|
||||
t = await self.transcribe_file(audio_url, transcript.source_language)
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"Transcription via default backend failed, trying local whisper",
|
||||
key=key,
|
||||
url=audio_url,
|
||||
error=str(e),
|
||||
)
|
||||
try:
|
||||
fallback = FileTranscriptAutoProcessor(name="whisper")
|
||||
result = None
|
||||
|
||||
async def capture_result(r):
|
||||
nonlocal result
|
||||
result = r
|
||||
|
||||
fallback.on(capture_result)
|
||||
await fallback.push(
|
||||
FileTranscriptInput(
|
||||
audio_url=audio_url, language=transcript.source_language
|
||||
)
|
||||
)
|
||||
await fallback.flush()
|
||||
if not result:
|
||||
raise Exception("No transcript captured in fallback")
|
||||
t = result
|
||||
except Exception as e2:
|
||||
self.logger.error(
|
||||
"Skipping track - transcription failed after fallback",
|
||||
key=key,
|
||||
url=audio_url,
|
||||
error=str(e2),
|
||||
)
|
||||
continue
|
||||
|
||||
if not t.words:
|
||||
continue
|
||||
# Shift word timestamps by the track's offset so all are relative to 00:00
|
||||
track_offset = offsets_seconds[idx] if idx < len(offsets_seconds) else 0.0
|
||||
for w in t.words:
|
||||
try:
|
||||
if hasattr(w, "start") and w.start is not None:
|
||||
w.start = float(w.start) + track_offset
|
||||
if hasattr(w, "end") and w.end is not None:
|
||||
w.end = float(w.end) + track_offset
|
||||
except Exception:
|
||||
pass
|
||||
w.speaker = idx
|
||||
speaker_transcripts.append(t)
|
||||
|
||||
if not speaker_transcripts:
|
||||
raise Exception("No valid track transcriptions")
|
||||
|
||||
merged_words = []
|
||||
for t in speaker_transcripts:
|
||||
merged_words.extend(t.words)
|
||||
merged_words.sort(key=lambda w: w.start)
|
||||
|
||||
merged_transcript = TranscriptType(words=merged_words, translation=None)
|
||||
|
||||
await transcripts_controller.append_event(
|
||||
transcript,
|
||||
event="TRANSCRIPT",
|
||||
data=TranscriptText(
|
||||
text=merged_transcript.text, translation=merged_transcript.translation
|
||||
),
|
||||
)
|
||||
|
||||
topics = await self.detect_topics(merged_transcript, transcript.target_language)
|
||||
await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(topics),
|
||||
return_exceptions=False,
|
||||
)
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_multitrack_process(
|
||||
*, transcript_id: str, bucket_name: str, track_keys: list[str]
|
||||
):
|
||||
pipeline = PipelineMainMultitrack(transcript_id=transcript_id)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
await pipeline.process(bucket_name, track_keys)
|
||||
except Exception:
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
654
server/reflector/pipelines/main_multitrack_pipeline.py
Normal file
654
server/reflector/pipelines/main_multitrack_pipeline.py
Normal file
@@ -0,0 +1,654 @@
|
||||
import asyncio
|
||||
import io
|
||||
from fractions import Fraction
|
||||
|
||||
import av
|
||||
import boto3
|
||||
import structlog
|
||||
from av.audio.resampler import AudioResampler
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.transcripts import (
|
||||
TranscriptStatus,
|
||||
TranscriptWaveform,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_file_pipeline import task_send_webhook_if_needed
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.types import TitleSummary
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineMainMultitrack(PipelineMainBase):
|
||||
"""Process multiple participant tracks for a transcript without mixing audio."""
|
||||
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
|
||||
async def pad_track_for_transcription(
|
||||
self,
|
||||
track_data: bytes,
|
||||
track_idx: int,
|
||||
storage,
|
||||
) -> tuple[bytes, str]:
|
||||
"""
|
||||
Pad a single track with silence based on stream metadata start_time.
|
||||
This ensures Whisper timestamps will be relative to recording start.
|
||||
Uses ffmpeg subprocess approach proven to work with python-raw-tracks-align.
|
||||
|
||||
Returns: (padded_data, storage_url)
|
||||
"""
|
||||
import json
|
||||
import math
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
if not track_data:
|
||||
return b"", ""
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Create temp files for ffmpeg processing
|
||||
with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as input_file:
|
||||
input_file.write(track_data)
|
||||
input_file_path = input_file.name
|
||||
|
||||
output_file_path = input_file_path.replace(".webm", "_padded.webm")
|
||||
|
||||
try:
|
||||
# Get stream metadata using ffprobe
|
||||
ffprobe_cmd = [
|
||||
"ffprobe",
|
||||
"-v",
|
||||
"error",
|
||||
"-show_entries",
|
||||
"stream=start_time",
|
||||
"-of",
|
||||
"json",
|
||||
input_file_path,
|
||||
]
|
||||
|
||||
result = subprocess.run(
|
||||
ffprobe_cmd, capture_output=True, text=True, check=True
|
||||
)
|
||||
metadata = json.loads(result.stdout)
|
||||
|
||||
# Extract start_time from stream metadata
|
||||
start_time_seconds = 0.0
|
||||
if metadata.get("streams") and len(metadata["streams"]) > 0:
|
||||
start_time_str = metadata["streams"][0].get("start_time", "0")
|
||||
start_time_seconds = float(start_time_str)
|
||||
|
||||
self.logger.info(
|
||||
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s",
|
||||
track_idx=track_idx,
|
||||
)
|
||||
|
||||
# If no padding needed, use original
|
||||
if start_time_seconds <= 0:
|
||||
storage_path = f"file_pipeline/{transcript.id}/tracks/original_track_{track_idx}.webm"
|
||||
await storage.put_file(storage_path, track_data)
|
||||
url = await storage.get_file_url(storage_path)
|
||||
return track_data, url
|
||||
|
||||
# Calculate delay in milliseconds
|
||||
delay_ms = math.floor(start_time_seconds * 1000)
|
||||
|
||||
# Run ffmpeg to pad the audio while maintaining WebM/Opus format for Modal compatibility
|
||||
# ffmpeg quirk: aresample needs to come before adelay in the filter chain
|
||||
ffmpeg_cmd = [
|
||||
"ffmpeg",
|
||||
"-hide_banner",
|
||||
"-loglevel",
|
||||
"error",
|
||||
"-y", # overwrite output
|
||||
"-i",
|
||||
input_file_path,
|
||||
"-af",
|
||||
f"aresample=async=1,adelay={delay_ms}:all=true",
|
||||
"-c:a",
|
||||
"libopus", # Keep Opus codec for Modal compatibility
|
||||
"-b:a",
|
||||
"128k", # Standard bitrate for Opus
|
||||
output_file_path,
|
||||
]
|
||||
|
||||
self.logger.info(
|
||||
f"Padding track {track_idx} with {delay_ms}ms delay using ffmpeg",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
command=" ".join(ffmpeg_cmd),
|
||||
)
|
||||
|
||||
result = subprocess.run(ffmpeg_cmd, capture_output=True, text=True)
|
||||
if result.returncode != 0:
|
||||
self.logger.error(
|
||||
f"ffmpeg padding failed for track {track_idx}",
|
||||
track_idx=track_idx,
|
||||
stderr=result.stderr,
|
||||
returncode=result.returncode,
|
||||
)
|
||||
raise Exception(f"ffmpeg padding failed: {result.stderr}")
|
||||
|
||||
# Read the padded output
|
||||
with open(output_file_path, "rb") as f:
|
||||
padded_data = f.read()
|
||||
|
||||
# Store padded track
|
||||
storage_path = (
|
||||
f"file_pipeline/{transcript.id}/tracks/padded_track_{track_idx}.webm"
|
||||
)
|
||||
await storage.put_file(storage_path, padded_data)
|
||||
padded_url = await storage.get_file_url(storage_path)
|
||||
|
||||
self.logger.info(
|
||||
f"Successfully padded track {track_idx} with {start_time_seconds:.3f}s offset, stored at {storage_path}",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
padded_url=padded_url,
|
||||
padded_size=len(padded_data),
|
||||
)
|
||||
|
||||
return padded_data, padded_url
|
||||
|
||||
finally:
|
||||
# Clean up temp files
|
||||
import os
|
||||
|
||||
try:
|
||||
os.unlink(input_file_path)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
os.unlink(output_file_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
async def mixdown_tracks(
|
||||
self,
|
||||
track_datas: list[bytes],
|
||||
writer: AudioFileWriterProcessor,
|
||||
offsets_seconds: list[float] | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Minimal multi-track mixdown using a PyAV filter graph (amix), no resampling.
|
||||
"""
|
||||
|
||||
# Discover target sample rate from first decodable frame
|
||||
target_sample_rate: int | None = None
|
||||
for data in track_datas:
|
||||
if not data:
|
||||
continue
|
||||
try:
|
||||
container = av.open(io.BytesIO(data))
|
||||
try:
|
||||
for frame in container.decode(audio=0):
|
||||
target_sample_rate = frame.sample_rate
|
||||
break
|
||||
finally:
|
||||
container.close()
|
||||
except Exception:
|
||||
continue
|
||||
if target_sample_rate:
|
||||
break
|
||||
|
||||
if not target_sample_rate:
|
||||
self.logger.warning("Mixdown skipped - no decodable audio frames found")
|
||||
return
|
||||
|
||||
# Build PyAV filter graph:
|
||||
# N abuffer (s32/stereo)
|
||||
# -> optional adelay per input (for alignment)
|
||||
# -> amix (s32)
|
||||
# -> aformat(s16)
|
||||
# -> sink
|
||||
graph = av.filter.Graph()
|
||||
inputs = []
|
||||
valid_track_datas = [d for d in track_datas if d]
|
||||
# Align offsets list with the filtered inputs (skip empties)
|
||||
input_offsets_seconds = None
|
||||
if offsets_seconds is not None:
|
||||
input_offsets_seconds = [
|
||||
offsets_seconds[i] for i, d in enumerate(track_datas) if d
|
||||
]
|
||||
for idx, data in enumerate(valid_track_datas):
|
||||
args = (
|
||||
f"time_base=1/{target_sample_rate}:"
|
||||
f"sample_rate={target_sample_rate}:"
|
||||
f"sample_fmt=s32:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
|
||||
inputs.append(in_ctx)
|
||||
|
||||
if not inputs:
|
||||
self.logger.warning("Mixdown skipped - no valid inputs for graph")
|
||||
return
|
||||
|
||||
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
|
||||
|
||||
fmt = graph.add(
|
||||
"aformat",
|
||||
args=(
|
||||
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
|
||||
),
|
||||
name="fmt",
|
||||
)
|
||||
|
||||
sink = graph.add("abuffersink", name="out")
|
||||
|
||||
# Optional per-input delay before mixing
|
||||
delays_ms: list[int] = []
|
||||
if input_offsets_seconds is not None:
|
||||
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
|
||||
delays_ms = [
|
||||
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
|
||||
]
|
||||
else:
|
||||
delays_ms = [0 for _ in inputs]
|
||||
|
||||
for idx, in_ctx in enumerate(inputs):
|
||||
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
|
||||
if delay_ms > 0:
|
||||
# adelay requires one value per channel; use same for stereo
|
||||
adelay = graph.add(
|
||||
"adelay",
|
||||
args=f"delays={delay_ms}|{delay_ms}:all=1",
|
||||
name=f"delay{idx}",
|
||||
)
|
||||
in_ctx.link_to(adelay)
|
||||
adelay.link_to(mixer, 0, idx)
|
||||
else:
|
||||
in_ctx.link_to(mixer, 0, idx)
|
||||
mixer.link_to(fmt)
|
||||
fmt.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
# Open containers for decoding
|
||||
containers = []
|
||||
for i, d in enumerate(valid_track_datas):
|
||||
try:
|
||||
c = av.open(io.BytesIO(d))
|
||||
containers.append(c)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Mixdown: failed to open container", input=i, error=str(e)
|
||||
)
|
||||
containers.append(None)
|
||||
# Filter out Nones for decoders
|
||||
containers = [c for c in containers if c is not None]
|
||||
decoders = [c.decode(audio=0) for c in containers]
|
||||
active = [True] * len(decoders)
|
||||
# Per-input resamplers to enforce s32/stereo at the same rate (no resample of rate)
|
||||
resamplers = [
|
||||
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
|
||||
for _ in decoders
|
||||
]
|
||||
|
||||
try:
|
||||
# Round-robin feed frames into graph, pull mixed frames as they become available
|
||||
while any(active):
|
||||
for i, (dec, is_active) in enumerate(zip(decoders, active)):
|
||||
if not is_active:
|
||||
continue
|
||||
try:
|
||||
frame = next(dec)
|
||||
except StopIteration:
|
||||
active[i] = False
|
||||
continue
|
||||
|
||||
# Enforce same sample rate; convert format/layout to s16/stereo (no resample)
|
||||
if frame.sample_rate != target_sample_rate:
|
||||
# Skip frames with differing rate
|
||||
continue
|
||||
out_frames = resamplers[i].resample(frame) or []
|
||||
for rf in out_frames:
|
||||
rf.sample_rate = target_sample_rate
|
||||
rf.time_base = Fraction(1, target_sample_rate)
|
||||
inputs[i].push(rf)
|
||||
|
||||
# Drain available mixed frames
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
|
||||
# Signal EOF to inputs and drain remaining
|
||||
for in_ctx in inputs:
|
||||
in_ctx.push(None)
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
finally:
|
||||
for c in containers:
|
||||
c.close()
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def on_waveform(self, data):
|
||||
async with self.transaction():
|
||||
waveform = TranscriptWaveform(waveform=data)
|
||||
transcript = await self.get_transcript()
|
||||
return await transcripts_controller.append_event(
|
||||
transcript=transcript, event="WAVEFORM", data=waveform
|
||||
)
|
||||
|
||||
async def process(self, bucket_name: str, track_keys: list[str]):
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
s3 = boto3.client(
|
||||
"s3",
|
||||
region_name=settings.RECORDING_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.RECORDING_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.RECORDING_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
# Pre-download bytes for all tracks for mixing and transcription
|
||||
track_datas: list[bytes] = []
|
||||
for key in track_keys:
|
||||
try:
|
||||
obj = s3.get_object(Bucket=bucket_name, Key=key)
|
||||
track_datas.append(obj["Body"].read())
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Skipping track - cannot read S3 object", key=key, error=str(e)
|
||||
)
|
||||
track_datas.append(b"")
|
||||
|
||||
# PAD TRACKS FIRST - this creates full-length tracks with correct timeline
|
||||
padded_track_datas: list[bytes] = []
|
||||
padded_track_urls: list[str] = []
|
||||
for idx, data in enumerate(track_datas):
|
||||
if not data:
|
||||
padded_track_datas.append(b"")
|
||||
padded_track_urls.append("")
|
||||
continue
|
||||
|
||||
padded_data, padded_url = await self.pad_track_for_transcription(
|
||||
data, idx, storage
|
||||
)
|
||||
padded_track_datas.append(padded_data)
|
||||
padded_track_urls.append(padded_url)
|
||||
self.logger.info(f"Padded track {idx} for transcription: {padded_url}")
|
||||
|
||||
# Mixdown PADDED tracks (already aligned with timeline) into transcript.audio_mp3_filename
|
||||
try:
|
||||
# Ensure data directory exists
|
||||
transcript.data_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=str(transcript.audio_mp3_filename),
|
||||
on_duration=self.on_duration,
|
||||
)
|
||||
# Use PADDED tracks with NO additional offsets (already aligned by padding)
|
||||
await self.mixdown_tracks(
|
||||
padded_track_datas, mp3_writer, offsets_seconds=None
|
||||
)
|
||||
await mp3_writer.flush()
|
||||
|
||||
# Upload the mixed audio to S3 for web playback
|
||||
if transcript.audio_mp3_filename.exists():
|
||||
mp3_data = transcript.audio_mp3_filename.read_bytes()
|
||||
storage_path = f"{transcript.id}/audio.mp3"
|
||||
await storage.put_file(storage_path, mp3_data)
|
||||
mp3_url = await storage.get_file_url(storage_path)
|
||||
|
||||
# Update transcript to indicate audio is in storage
|
||||
await transcripts_controller.update(
|
||||
transcript, {"audio_location": "storage"}
|
||||
)
|
||||
|
||||
self.logger.info(
|
||||
f"Uploaded mixed audio to storage",
|
||||
storage_path=storage_path,
|
||||
size=len(mp3_data),
|
||||
url=mp3_url,
|
||||
)
|
||||
else:
|
||||
self.logger.warning("Mixdown file does not exist after processing")
|
||||
except Exception as e:
|
||||
self.logger.error("Mixdown failed", error=str(e), exc_info=True)
|
||||
|
||||
# Generate waveform from the mixed audio file
|
||||
if transcript.audio_mp3_filename.exists():
|
||||
try:
|
||||
self.logger.info("Generating waveform from mixed audio")
|
||||
waveform_processor = AudioWaveformProcessor(
|
||||
audio_path=transcript.audio_mp3_filename,
|
||||
waveform_path=transcript.audio_waveform_filename,
|
||||
on_waveform=self.on_waveform,
|
||||
)
|
||||
waveform_processor.set_pipeline(self.empty_pipeline)
|
||||
await waveform_processor.flush()
|
||||
self.logger.info("Waveform generated successfully")
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"Waveform generation failed", error=str(e), exc_info=True
|
||||
)
|
||||
|
||||
# Transcribe PADDED tracks - timestamps will be automatically correct!
|
||||
speaker_transcripts: list[TranscriptType] = []
|
||||
for idx, padded_url in enumerate(padded_track_urls):
|
||||
if not padded_url:
|
||||
continue
|
||||
|
||||
try:
|
||||
# Transcribe the PADDED track
|
||||
t = await self.transcribe_file(padded_url, transcript.source_language)
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"Transcription via default backend failed, trying local whisper",
|
||||
track_idx=idx,
|
||||
url=padded_url,
|
||||
error=str(e),
|
||||
)
|
||||
try:
|
||||
fallback = FileTranscriptAutoProcessor(name="whisper")
|
||||
result = None
|
||||
|
||||
async def capture_result(r):
|
||||
nonlocal result
|
||||
result = r
|
||||
|
||||
fallback.on(capture_result)
|
||||
await fallback.push(
|
||||
FileTranscriptInput(
|
||||
audio_url=padded_url, language=transcript.source_language
|
||||
)
|
||||
)
|
||||
await fallback.flush()
|
||||
if not result:
|
||||
raise Exception("No transcript captured in fallback")
|
||||
t = result
|
||||
except Exception as e2:
|
||||
self.logger.error(
|
||||
"Skipping track - transcription failed after fallback",
|
||||
track_idx=idx,
|
||||
url=padded_url,
|
||||
error=str(e2),
|
||||
)
|
||||
continue
|
||||
|
||||
if not t.words:
|
||||
continue
|
||||
|
||||
# NO OFFSET ADJUSTMENT NEEDED!
|
||||
# Timestamps are already correct because we transcribed padded tracks
|
||||
# Just set speaker ID
|
||||
for w in t.words:
|
||||
w.speaker = idx
|
||||
|
||||
speaker_transcripts.append(t)
|
||||
self.logger.info(
|
||||
f"Track {idx} transcribed successfully with {len(t.words)} words",
|
||||
track_idx=idx,
|
||||
)
|
||||
|
||||
if not speaker_transcripts:
|
||||
raise Exception("No valid track transcriptions")
|
||||
|
||||
# Merge all words and sort by timestamp
|
||||
merged_words = []
|
||||
for t in speaker_transcripts:
|
||||
merged_words.extend(t.words)
|
||||
merged_words.sort(
|
||||
key=lambda w: w.start if hasattr(w, "start") and w.start is not None else 0
|
||||
)
|
||||
|
||||
merged_transcript = TranscriptType(words=merged_words, translation=None)
|
||||
|
||||
# Emit TRANSCRIPT event through the shared handler (persists and broadcasts)
|
||||
await self.on_transcript(merged_transcript)
|
||||
|
||||
topics = await self.detect_topics(merged_transcript, transcript.target_language)
|
||||
await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(topics),
|
||||
return_exceptions=False,
|
||||
)
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_multitrack_process(
|
||||
*, transcript_id: str, bucket_name: str, track_keys: list[str]
|
||||
):
|
||||
pipeline = PipelineMainMultitrack(transcript_id=transcript_id)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
await pipeline.process(bucket_name, track_keys)
|
||||
except Exception:
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
629
server/reflector/pipelines/main_multitrack_pipeline_fixed.py
Normal file
629
server/reflector/pipelines/main_multitrack_pipeline_fixed.py
Normal file
@@ -0,0 +1,629 @@
|
||||
import asyncio
|
||||
import io
|
||||
from fractions import Fraction
|
||||
|
||||
import av
|
||||
import boto3
|
||||
import structlog
|
||||
from av.audio.resampler import AudioResampler
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.transcripts import (
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_file_pipeline import task_send_webhook_if_needed
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.types import TitleSummary
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineMainMultitrack(PipelineMainBase):
|
||||
"""Process multiple participant tracks for a transcript without mixing audio."""
|
||||
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
|
||||
async def pad_track_for_transcription(
|
||||
self,
|
||||
track_data: bytes,
|
||||
track_idx: int,
|
||||
storage,
|
||||
) -> tuple[bytes, str]:
|
||||
"""
|
||||
Pad a single track with silence based on stream metadata start_time.
|
||||
This ensures Whisper timestamps will be relative to recording start.
|
||||
|
||||
Returns: (padded_data, storage_url)
|
||||
"""
|
||||
if not track_data:
|
||||
return b"", ""
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Get stream metadata start_time using PyAV
|
||||
container = av.open(io.BytesIO(track_data))
|
||||
try:
|
||||
audio_stream = container.streams.audio[0]
|
||||
|
||||
# Extract start_time from stream metadata
|
||||
if (
|
||||
audio_stream.start_time is not None
|
||||
and audio_stream.time_base is not None
|
||||
):
|
||||
start_time_seconds = float(
|
||||
audio_stream.start_time * audio_stream.time_base
|
||||
)
|
||||
else:
|
||||
start_time_seconds = 0.0
|
||||
|
||||
sample_rate = audio_stream.sample_rate
|
||||
codec_name = audio_stream.codec.name
|
||||
finally:
|
||||
container.close()
|
||||
|
||||
self.logger.info(
|
||||
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s, sample_rate={sample_rate}",
|
||||
track_idx=track_idx,
|
||||
)
|
||||
|
||||
# If no padding needed, use original
|
||||
if start_time_seconds <= 0:
|
||||
storage_path = (
|
||||
f"file_pipeline/{transcript.id}/tracks/original_track_{track_idx}.webm"
|
||||
)
|
||||
await storage.put_file(storage_path, track_data)
|
||||
url = await storage.get_file_url(storage_path)
|
||||
return track_data, url
|
||||
|
||||
# Create PyAV filter graph for padding
|
||||
graph = av.filter.Graph()
|
||||
|
||||
# Input buffer
|
||||
in_args = (
|
||||
f"time_base=1/{sample_rate}:"
|
||||
f"sample_rate={sample_rate}:"
|
||||
f"sample_fmt=s16:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
input_buffer = graph.add("abuffer", args=in_args, name="in")
|
||||
|
||||
# Add delay filter for padding
|
||||
delay_ms = int(start_time_seconds * 1000)
|
||||
delay_filter = graph.add(
|
||||
"adelay", args=f"delays={delay_ms}|{delay_ms}:all=1", name="delay"
|
||||
)
|
||||
|
||||
# Output sink
|
||||
sink = graph.add("abuffersink", name="out")
|
||||
|
||||
# Link filters
|
||||
input_buffer.link_to(delay_filter)
|
||||
delay_filter.link_to(sink)
|
||||
|
||||
graph.configure()
|
||||
|
||||
# Process audio through filter
|
||||
output_bytes = io.BytesIO()
|
||||
output_container = av.open(output_bytes, "w", format="webm")
|
||||
output_stream = output_container.add_stream("libopus", rate=sample_rate)
|
||||
output_stream.channels = 2
|
||||
|
||||
# Reopen input for processing
|
||||
input_container = av.open(io.BytesIO(track_data))
|
||||
resampler = AudioResampler(format="s16", layout="stereo", rate=sample_rate)
|
||||
|
||||
try:
|
||||
# Process frames
|
||||
for frame in input_container.decode(audio=0):
|
||||
# Resample to match filter requirements
|
||||
resampled_frames = resampler.resample(frame)
|
||||
for resampled_frame in resampled_frames:
|
||||
resampled_frame.pts = frame.pts
|
||||
resampled_frame.time_base = Fraction(1, sample_rate)
|
||||
input_buffer.push(resampled_frame)
|
||||
|
||||
# Pull from filter and encode
|
||||
while True:
|
||||
try:
|
||||
out_frame = sink.pull()
|
||||
out_frame.pts = out_frame.pts if out_frame.pts else 0
|
||||
out_frame.time_base = Fraction(1, sample_rate)
|
||||
for packet in output_stream.encode(out_frame):
|
||||
output_container.mux(packet)
|
||||
except av.BlockingIOError:
|
||||
break
|
||||
|
||||
# Flush
|
||||
input_buffer.push(None)
|
||||
while True:
|
||||
try:
|
||||
out_frame = sink.pull()
|
||||
for packet in output_stream.encode(out_frame):
|
||||
output_container.mux(packet)
|
||||
except (av.BlockingIOError, av.EOFError):
|
||||
break
|
||||
|
||||
# Flush encoder
|
||||
for packet in output_stream.encode(None):
|
||||
output_container.mux(packet)
|
||||
|
||||
finally:
|
||||
input_container.close()
|
||||
output_container.close()
|
||||
|
||||
padded_data = output_bytes.getvalue()
|
||||
|
||||
# Store padded track
|
||||
storage_path = (
|
||||
f"file_pipeline/{transcript.id}/tracks/padded_track_{track_idx}.webm"
|
||||
)
|
||||
await storage.put_file(storage_path, padded_data)
|
||||
padded_url = await storage.get_file_url(storage_path)
|
||||
|
||||
self.logger.info(
|
||||
f"Padded track {track_idx} with {start_time_seconds:.3f}s offset, stored at {storage_path}",
|
||||
track_idx=track_idx,
|
||||
delay_ms=delay_ms,
|
||||
padded_url=padded_url,
|
||||
)
|
||||
|
||||
return padded_data, padded_url
|
||||
|
||||
async def mixdown_tracks(
|
||||
self,
|
||||
track_datas: list[bytes],
|
||||
writer: AudioFileWriterProcessor,
|
||||
offsets_seconds: list[float] | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Minimal multi-track mixdown using a PyAV filter graph (amix), no resampling.
|
||||
"""
|
||||
|
||||
# Discover target sample rate from first decodable frame
|
||||
target_sample_rate: int | None = None
|
||||
for data in track_datas:
|
||||
if not data:
|
||||
continue
|
||||
try:
|
||||
container = av.open(io.BytesIO(data))
|
||||
try:
|
||||
for frame in container.decode(audio=0):
|
||||
target_sample_rate = frame.sample_rate
|
||||
break
|
||||
finally:
|
||||
container.close()
|
||||
except Exception:
|
||||
continue
|
||||
if target_sample_rate:
|
||||
break
|
||||
|
||||
if not target_sample_rate:
|
||||
self.logger.warning("Mixdown skipped - no decodable audio frames found")
|
||||
return
|
||||
|
||||
# Build PyAV filter graph:
|
||||
# N abuffer (s32/stereo)
|
||||
# -> optional adelay per input (for alignment)
|
||||
# -> amix (s32)
|
||||
# -> aformat(s16)
|
||||
# -> sink
|
||||
graph = av.filter.Graph()
|
||||
inputs = []
|
||||
valid_track_datas = [d for d in track_datas if d]
|
||||
# Align offsets list with the filtered inputs (skip empties)
|
||||
input_offsets_seconds = None
|
||||
if offsets_seconds is not None:
|
||||
input_offsets_seconds = [
|
||||
offsets_seconds[i] for i, d in enumerate(track_datas) if d
|
||||
]
|
||||
for idx, data in enumerate(valid_track_datas):
|
||||
args = (
|
||||
f"time_base=1/{target_sample_rate}:"
|
||||
f"sample_rate={target_sample_rate}:"
|
||||
f"sample_fmt=s32:"
|
||||
f"channel_layout=stereo"
|
||||
)
|
||||
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
|
||||
inputs.append(in_ctx)
|
||||
|
||||
if not inputs:
|
||||
self.logger.warning("Mixdown skipped - no valid inputs for graph")
|
||||
return
|
||||
|
||||
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
|
||||
|
||||
fmt = graph.add(
|
||||
"aformat",
|
||||
args=(
|
||||
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
|
||||
),
|
||||
name="fmt",
|
||||
)
|
||||
|
||||
sink = graph.add("abuffersink", name="out")
|
||||
|
||||
# Optional per-input delay before mixing
|
||||
delays_ms: list[int] = []
|
||||
if input_offsets_seconds is not None:
|
||||
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
|
||||
delays_ms = [
|
||||
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
|
||||
]
|
||||
else:
|
||||
delays_ms = [0 for _ in inputs]
|
||||
|
||||
for idx, in_ctx in enumerate(inputs):
|
||||
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
|
||||
if delay_ms > 0:
|
||||
# adelay requires one value per channel; use same for stereo
|
||||
adelay = graph.add(
|
||||
"adelay",
|
||||
args=f"delays={delay_ms}|{delay_ms}:all=1",
|
||||
name=f"delay{idx}",
|
||||
)
|
||||
in_ctx.link_to(adelay)
|
||||
adelay.link_to(mixer, 0, idx)
|
||||
else:
|
||||
in_ctx.link_to(mixer, 0, idx)
|
||||
mixer.link_to(fmt)
|
||||
fmt.link_to(sink)
|
||||
graph.configure()
|
||||
|
||||
# Open containers for decoding
|
||||
containers = []
|
||||
for i, d in enumerate(valid_track_datas):
|
||||
try:
|
||||
c = av.open(io.BytesIO(d))
|
||||
containers.append(c)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Mixdown: failed to open container", input=i, error=str(e)
|
||||
)
|
||||
containers.append(None)
|
||||
# Filter out Nones for decoders
|
||||
containers = [c for c in containers if c is not None]
|
||||
decoders = [c.decode(audio=0) for c in containers]
|
||||
active = [True] * len(decoders)
|
||||
# Per-input resamplers to enforce s32/stereo at the same rate (no resample of rate)
|
||||
resamplers = [
|
||||
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
|
||||
for _ in decoders
|
||||
]
|
||||
|
||||
try:
|
||||
# Round-robin feed frames into graph, pull mixed frames as they become available
|
||||
while any(active):
|
||||
for i, (dec, is_active) in enumerate(zip(decoders, active)):
|
||||
if not is_active:
|
||||
continue
|
||||
try:
|
||||
frame = next(dec)
|
||||
except StopIteration:
|
||||
active[i] = False
|
||||
continue
|
||||
|
||||
# Enforce same sample rate; convert format/layout to s16/stereo (no resample)
|
||||
if frame.sample_rate != target_sample_rate:
|
||||
# Skip frames with differing rate
|
||||
continue
|
||||
out_frames = resamplers[i].resample(frame) or []
|
||||
for rf in out_frames:
|
||||
rf.sample_rate = target_sample_rate
|
||||
rf.time_base = Fraction(1, target_sample_rate)
|
||||
inputs[i].push(rf)
|
||||
|
||||
# Drain available mixed frames
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
|
||||
# Signal EOF to inputs and drain remaining
|
||||
for in_ctx in inputs:
|
||||
in_ctx.push(None)
|
||||
while True:
|
||||
try:
|
||||
mixed = sink.pull()
|
||||
except Exception:
|
||||
break
|
||||
mixed.sample_rate = target_sample_rate
|
||||
mixed.time_base = Fraction(1, target_sample_rate)
|
||||
await writer.push(mixed)
|
||||
finally:
|
||||
for c in containers:
|
||||
c.close()
|
||||
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def process(self, bucket_name: str, track_keys: list[str]):
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
s3 = boto3.client(
|
||||
"s3",
|
||||
region_name=settings.RECORDING_STORAGE_AWS_REGION,
|
||||
aws_access_key_id=settings.RECORDING_STORAGE_AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=settings.RECORDING_STORAGE_AWS_SECRET_ACCESS_KEY,
|
||||
)
|
||||
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
# Pre-download bytes for all tracks for mixing and transcription
|
||||
track_datas: list[bytes] = []
|
||||
for key in track_keys:
|
||||
try:
|
||||
obj = s3.get_object(Bucket=bucket_name, Key=key)
|
||||
track_datas.append(obj["Body"].read())
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"Skipping track - cannot read S3 object", key=key, error=str(e)
|
||||
)
|
||||
track_datas.append(b"")
|
||||
|
||||
# REMOVED: Filename offset extraction - not needed anymore!
|
||||
# We use stream metadata start_time for padding instead
|
||||
|
||||
# Get stream metadata start_times for mixing (still useful for mixdown)
|
||||
stream_start_times: list[float] = []
|
||||
for data in track_datas:
|
||||
if not data:
|
||||
stream_start_times.append(0.0)
|
||||
continue
|
||||
|
||||
container = av.open(io.BytesIO(data))
|
||||
try:
|
||||
audio_stream = container.streams.audio[0]
|
||||
if (
|
||||
audio_stream.start_time is not None
|
||||
and audio_stream.time_base is not None
|
||||
):
|
||||
start_time = float(audio_stream.start_time * audio_stream.time_base)
|
||||
else:
|
||||
start_time = 0.0
|
||||
stream_start_times.append(start_time)
|
||||
finally:
|
||||
container.close()
|
||||
|
||||
# Mixdown all available tracks into transcript.audio_mp3_filename, using stream metadata offsets
|
||||
try:
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=str(transcript.audio_mp3_filename)
|
||||
)
|
||||
await self.mixdown_tracks(track_datas, mp3_writer, stream_start_times)
|
||||
await mp3_writer.flush()
|
||||
except Exception as e:
|
||||
self.logger.error("Mixdown failed", error=str(e))
|
||||
|
||||
# PAD TRACKS BEFORE TRANSCRIPTION - THIS IS THE KEY FIX!
|
||||
padded_track_urls: list[str] = []
|
||||
for idx, data in enumerate(track_datas):
|
||||
if not data:
|
||||
padded_track_urls.append("")
|
||||
continue
|
||||
|
||||
_, padded_url = await self.pad_track_for_transcription(data, idx, storage)
|
||||
padded_track_urls.append(padded_url)
|
||||
self.logger.info(f"Padded track {idx} for transcription: {padded_url}")
|
||||
|
||||
# Transcribe PADDED tracks - timestamps will be automatically correct!
|
||||
speaker_transcripts: list[TranscriptType] = []
|
||||
for idx, padded_url in enumerate(padded_track_urls):
|
||||
if not padded_url:
|
||||
continue
|
||||
|
||||
try:
|
||||
# Transcribe the PADDED track
|
||||
t = await self.transcribe_file(padded_url, transcript.source_language)
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
"Transcription via default backend failed, trying local whisper",
|
||||
track_idx=idx,
|
||||
url=padded_url,
|
||||
error=str(e),
|
||||
)
|
||||
try:
|
||||
fallback = FileTranscriptAutoProcessor(name="whisper")
|
||||
result = None
|
||||
|
||||
async def capture_result(r):
|
||||
nonlocal result
|
||||
result = r
|
||||
|
||||
fallback.on(capture_result)
|
||||
await fallback.push(
|
||||
FileTranscriptInput(
|
||||
audio_url=padded_url, language=transcript.source_language
|
||||
)
|
||||
)
|
||||
await fallback.flush()
|
||||
if not result:
|
||||
raise Exception("No transcript captured in fallback")
|
||||
t = result
|
||||
except Exception as e2:
|
||||
self.logger.error(
|
||||
"Skipping track - transcription failed after fallback",
|
||||
track_idx=idx,
|
||||
url=padded_url,
|
||||
error=str(e2),
|
||||
)
|
||||
continue
|
||||
|
||||
if not t.words:
|
||||
continue
|
||||
|
||||
# NO OFFSET ADJUSTMENT NEEDED!
|
||||
# Timestamps are already correct because we transcribed padded tracks
|
||||
# Just set speaker ID
|
||||
for w in t.words:
|
||||
w.speaker = idx
|
||||
|
||||
speaker_transcripts.append(t)
|
||||
self.logger.info(
|
||||
f"Track {idx} transcribed successfully with {len(t.words)} words",
|
||||
track_idx=idx,
|
||||
)
|
||||
|
||||
if not speaker_transcripts:
|
||||
raise Exception("No valid track transcriptions")
|
||||
|
||||
# Merge all words and sort by timestamp
|
||||
merged_words = []
|
||||
for t in speaker_transcripts:
|
||||
merged_words.extend(t.words)
|
||||
merged_words.sort(
|
||||
key=lambda w: w.start if hasattr(w, "start") and w.start is not None else 0
|
||||
)
|
||||
|
||||
merged_transcript = TranscriptType(words=merged_words, translation=None)
|
||||
|
||||
await transcripts_controller.append_event(
|
||||
transcript,
|
||||
event="TRANSCRIPT",
|
||||
data=TranscriptText(
|
||||
text=merged_transcript.text, translation=merged_transcript.translation
|
||||
),
|
||||
)
|
||||
|
||||
topics = await self.detect_topics(merged_transcript, transcript.target_language)
|
||||
await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(topics),
|
||||
return_exceptions=False,
|
||||
)
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_multitrack_process(
|
||||
*, transcript_id: str, bucket_name: str, track_keys: list[str]
|
||||
):
|
||||
pipeline = PipelineMainMultitrack(transcript_id=transcript_id)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
await pipeline.process(bucket_name, track_keys)
|
||||
except Exception:
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
@@ -18,22 +18,14 @@ During its lifecycle, it will emit the following status:
|
||||
import asyncio
|
||||
from typing import Generic, TypeVar
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.processors import Pipeline
|
||||
|
||||
PipelineMessage = TypeVar("PipelineMessage")
|
||||
|
||||
|
||||
class PipelineRunner(BaseModel, Generic[PipelineMessage]):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
status: str = "idle"
|
||||
pipeline: Pipeline | None = None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
class PipelineRunner(Generic[PipelineMessage]):
|
||||
def __init__(self):
|
||||
self._task = None
|
||||
self._q_cmd = asyncio.Queue(maxsize=4096)
|
||||
self._ev_done = asyncio.Event()
|
||||
@@ -42,6 +34,8 @@ class PipelineRunner(BaseModel, Generic[PipelineMessage]):
|
||||
runner=id(self),
|
||||
runner_cls=self.__class__.__name__,
|
||||
)
|
||||
self.status = "idle"
|
||||
self.pipeline: Pipeline | None = None
|
||||
|
||||
async def create(self) -> Pipeline:
|
||||
"""
|
||||
|
||||
9
server/reflector/platform_types.py
Normal file
9
server/reflector/platform_types.py
Normal file
@@ -0,0 +1,9 @@
|
||||
"""Platform type definitions.
|
||||
|
||||
This module exists solely to define the Platform literal type without any imports,
|
||||
preventing circular import issues when used across the codebase.
|
||||
"""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
Platform = Literal["whereby", "daily"]
|
||||
@@ -1,5 +1,7 @@
|
||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||
@@ -11,6 +13,13 @@ from .base import ( # noqa: F401
|
||||
Processor,
|
||||
ThreadedProcessor,
|
||||
)
|
||||
from .file_diarization import FileDiarizationProcessor # noqa: F401
|
||||
from .file_diarization_auto import FileDiarizationAutoProcessor # noqa: F401
|
||||
from .file_transcript import FileTranscriptProcessor # noqa: F401
|
||||
from .file_transcript_auto import FileTranscriptAutoProcessor # noqa: F401
|
||||
from .transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerProcessor, # noqa: F401
|
||||
)
|
||||
from .transcript_final_summary import TranscriptFinalSummaryProcessor # noqa: F401
|
||||
from .transcript_final_title import TranscriptFinalTitleProcessor # noqa: F401
|
||||
from .transcript_liner import TranscriptLinerProcessor # noqa: F401
|
||||
|
||||
@@ -1,28 +1,78 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from prometheus_client import Counter, Histogram
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
class AudioChunkerProcessor(Processor):
|
||||
"""
|
||||
Assemble audio frames into chunks
|
||||
Base class for assembling audio frames into chunks
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = list[av.AudioFrame]
|
||||
|
||||
def __init__(self, max_frames=256):
|
||||
super().__init__()
|
||||
m_chunk = Histogram(
|
||||
"audio_chunker",
|
||||
"Time spent in AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_call = Counter(
|
||||
"audio_chunker_call",
|
||||
"Number of calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_success = Counter(
|
||||
"audio_chunker_success",
|
||||
"Number of successful calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_failure = Counter(
|
||||
"audio_chunker_failure",
|
||||
"Number of failed calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
name = self.__class__.__name__
|
||||
self.m_chunk = self.m_chunk.labels(name)
|
||||
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.frames: list[av.AudioFrame] = []
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
await self.flush()
|
||||
"""Process incoming audio frame"""
|
||||
# Validate audio format on first frame
|
||||
if len(self.frames) == 0:
|
||||
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||
raise ValueError(
|
||||
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||
f"with {len(data.layout.channels)} channel(s). "
|
||||
f"Use AudioDownscaleProcessor before this processor."
|
||||
)
|
||||
|
||||
try:
|
||||
self.m_chunk_call.inc()
|
||||
with self.m_chunk.time():
|
||||
result = await self._chunk(data)
|
||||
self.m_chunk_success.inc()
|
||||
if result:
|
||||
await self.emit(result)
|
||||
except Exception:
|
||||
self.m_chunk_failure.inc()
|
||||
raise
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""
|
||||
Process audio frame and return chunk when ready.
|
||||
Subclasses should implement their chunking logic here.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
"""Flush any remaining frames when processing ends"""
|
||||
raise NotImplementedError
|
||||
|
||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.AUDIO_CHUNKER_BACKEND
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "AUDIO_CHUNKER_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||
"""
|
||||
|
||||
def __init__(self, max_frames=256, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
return frames_to_emit
|
||||
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||
298
server/reflector/processors/audio_chunker_silero.py
Normal file
298
server/reflector/processors/audio_chunker_silero.py
Normal file
@@ -0,0 +1,298 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
use_onnx=True,
|
||||
min_frames=2,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""Process audio frame and return chunk when ready"""
|
||||
self.frames.append(data)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
return await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return None
|
||||
|
||||
# Processing block with current buffer size
|
||||
print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return None
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return None
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
if len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
frame_index = speech_end // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)
|
||||
@@ -1,6 +1,7 @@
|
||||
from reflector.processors.base import Processor
|
||||
from reflector.processors.types import (
|
||||
AudioDiarizationInput,
|
||||
DiarizationSegment,
|
||||
TitleSummary,
|
||||
Word,
|
||||
)
|
||||
@@ -37,18 +38,21 @@ class AudioDiarizationProcessor(Processor):
|
||||
async def _diarize(self, data: AudioDiarizationInput):
|
||||
raise NotImplementedError
|
||||
|
||||
def assign_speaker(self, words: list[Word], diarization: list[dict]):
|
||||
self._diarization_remove_overlap(diarization)
|
||||
self._diarization_remove_segment_without_words(words, diarization)
|
||||
self._diarization_merge_same_speaker(words, diarization)
|
||||
self._diarization_assign_speaker(words, diarization)
|
||||
@classmethod
|
||||
def assign_speaker(cls, words: list[Word], diarization: list[DiarizationSegment]):
|
||||
cls._diarization_remove_overlap(diarization)
|
||||
cls._diarization_remove_segment_without_words(words, diarization)
|
||||
cls._diarization_merge_same_speaker(diarization)
|
||||
cls._diarization_assign_speaker(words, diarization)
|
||||
|
||||
def iter_words_from_topics(self, topics: TitleSummary):
|
||||
@staticmethod
|
||||
def iter_words_from_topics(topics: list[TitleSummary]):
|
||||
for topic in topics:
|
||||
for word in topic.transcript.words:
|
||||
yield word
|
||||
|
||||
def is_word_continuation(self, word_prev, word):
|
||||
@staticmethod
|
||||
def is_word_continuation(word_prev, word):
|
||||
"""
|
||||
Return True if the word is a continuation of the previous word
|
||||
by checking if the previous word is ending with a punctuation
|
||||
@@ -61,7 +65,8 @@ class AudioDiarizationProcessor(Processor):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _diarization_remove_overlap(self, diarization: list[dict]):
|
||||
@staticmethod
|
||||
def _diarization_remove_overlap(diarization: list[DiarizationSegment]):
|
||||
"""
|
||||
Remove overlap in diarization results
|
||||
|
||||
@@ -86,8 +91,9 @@ class AudioDiarizationProcessor(Processor):
|
||||
else:
|
||||
diarization_idx += 1
|
||||
|
||||
@staticmethod
|
||||
def _diarization_remove_segment_without_words(
|
||||
self, words: list[Word], diarization: list[dict]
|
||||
words: list[Word], diarization: list[DiarizationSegment]
|
||||
):
|
||||
"""
|
||||
Remove diarization segments without words
|
||||
@@ -116,9 +122,8 @@ class AudioDiarizationProcessor(Processor):
|
||||
else:
|
||||
diarization_idx += 1
|
||||
|
||||
def _diarization_merge_same_speaker(
|
||||
self, words: list[Word], diarization: list[dict]
|
||||
):
|
||||
@staticmethod
|
||||
def _diarization_merge_same_speaker(diarization: list[DiarizationSegment]):
|
||||
"""
|
||||
Merge diarization contigous segments with the same speaker
|
||||
|
||||
@@ -135,7 +140,10 @@ class AudioDiarizationProcessor(Processor):
|
||||
else:
|
||||
diarization_idx += 1
|
||||
|
||||
def _diarization_assign_speaker(self, words: list[Word], diarization: list[dict]):
|
||||
@classmethod
|
||||
def _diarization_assign_speaker(
|
||||
cls, words: list[Word], diarization: list[DiarizationSegment]
|
||||
):
|
||||
"""
|
||||
Assign speaker to words based on diarization
|
||||
|
||||
@@ -143,7 +151,7 @@ class AudioDiarizationProcessor(Processor):
|
||||
"""
|
||||
|
||||
word_idx = 0
|
||||
last_speaker = None
|
||||
last_speaker = 0
|
||||
for d in diarization:
|
||||
start = d["start"]
|
||||
end = d["end"]
|
||||
@@ -158,7 +166,7 @@ class AudioDiarizationProcessor(Processor):
|
||||
# If it's a continuation, assign with the last speaker
|
||||
is_continuation = False
|
||||
if word_idx > 0 and word_idx < len(words) - 1:
|
||||
is_continuation = self.is_word_continuation(
|
||||
is_continuation = cls.is_word_continuation(
|
||||
*words[word_idx - 1 : word_idx + 1]
|
||||
)
|
||||
if is_continuation:
|
||||
|
||||
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
from reflector.processors.audio_diarization import AudioDiarizationProcessor
|
||||
from reflector.processors.audio_diarization_auto import AudioDiarizationAutoProcessor
|
||||
from reflector.processors.types import AudioDiarizationInput, DiarizationSegment
|
||||
|
||||
|
||||
class AudioDiarizationPyannoteProcessor(AudioDiarizationProcessor):
|
||||
"""Local diarization processor using pyannote.audio library"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "pyannote/speaker-diarization-3.1",
|
||||
pyannote_auth_token: str | None = None,
|
||||
device: str | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.model_name = model_name
|
||||
self.auth_token = pyannote_auth_token or os.environ.get("HF_TOKEN")
|
||||
self.device = device
|
||||
|
||||
if device is None:
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
self.logger.info(f"Loading pyannote diarization model: {self.model_name}")
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
self.model_name, use_auth_token=self.auth_token
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
self.logger.info(f"Diarization model loaded on device: {self.device}")
|
||||
|
||||
async def _diarize(self, data: AudioDiarizationInput) -> list[DiarizationSegment]:
|
||||
try:
|
||||
# Load audio file (audio_url is assumed to be a local file path)
|
||||
self.logger.info(f"Loading local audio file: {data.audio_url}")
|
||||
waveform, sample_rate = torchaudio.load(data.audio_url)
|
||||
audio_input = {"waveform": waveform, "sample_rate": sample_rate}
|
||||
self.logger.info("Running speaker diarization")
|
||||
diarization = self.diarization_pipeline(audio_input)
|
||||
|
||||
# Convert pyannote diarization output to our format
|
||||
segments = []
|
||||
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
# Extract speaker number from label (e.g., "SPEAKER_00" -> 0)
|
||||
speaker_id = 0
|
||||
if speaker.startswith("SPEAKER_"):
|
||||
try:
|
||||
speaker_id = int(speaker.split("_")[-1])
|
||||
except (ValueError, IndexError):
|
||||
# Fallback to hash-based ID if parsing fails
|
||||
speaker_id = hash(speaker) % 1000
|
||||
|
||||
segments.append(
|
||||
{
|
||||
"start": round(segment.start, 3),
|
||||
"end": round(segment.end, 3),
|
||||
"speaker": speaker_id,
|
||||
}
|
||||
)
|
||||
|
||||
self.logger.info(f"Diarization completed with {len(segments)} segments")
|
||||
return segments
|
||||
|
||||
except Exception as e:
|
||||
self.logger.exception(f"Diarization failed: {e}")
|
||||
raise
|
||||
|
||||
|
||||
AudioDiarizationAutoProcessor.register("pyannote", AudioDiarizationPyannoteProcessor)
|
||||
60
server/reflector/processors/audio_downscale.py
Normal file
60
server/reflector/processors/audio_downscale.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioDownscaleProcessor(Processor):
|
||||
"""
|
||||
Downscale audio frames to 16kHz mono format
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = av.AudioFrame
|
||||
|
||||
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.target_rate = target_rate
|
||||
self.target_layout = target_layout
|
||||
self.resampler: Optional[AudioResampler] = None
|
||||
self.needs_resampling: Optional[bool] = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
if self.needs_resampling is None:
|
||||
self.needs_resampling = (
|
||||
data.sample_rate != self.target_rate
|
||||
or data.layout.name != self.target_layout
|
||||
)
|
||||
|
||||
if self.needs_resampling:
|
||||
self.resampler = AudioResampler(
|
||||
format="s16", layout=self.target_layout, rate=self.target_rate
|
||||
)
|
||||
|
||||
if not self.needs_resampling or not self.resampler:
|
||||
await self.emit(data)
|
||||
return
|
||||
|
||||
resampled_frames = self.resampler.resample(copy_frame(data))
|
||||
for resampled_frame in resampled_frames:
|
||||
await self.emit(resampled_frame)
|
||||
|
||||
async def _flush(self):
|
||||
if self.needs_resampling and self.resampler:
|
||||
final_frames = self.resampler.resample(None)
|
||||
for frame in final_frames:
|
||||
await self.emit(frame)
|
||||
@@ -16,37 +16,46 @@ class AudioMergeProcessor(Processor):
|
||||
INPUT_TYPE = list[av.AudioFrame]
|
||||
OUTPUT_TYPE = AudioFile
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def _push(self, data: list[av.AudioFrame]):
|
||||
if not data:
|
||||
return
|
||||
|
||||
# get audio information from first frame
|
||||
frame = data[0]
|
||||
channels = len(frame.layout.channels)
|
||||
sample_rate = frame.sample_rate
|
||||
sample_width = frame.format.bytes
|
||||
output_channels = len(frame.layout.channels)
|
||||
output_sample_rate = frame.sample_rate
|
||||
output_sample_width = frame.format.bytes
|
||||
|
||||
# create audio file
|
||||
uu = uuid4().hex
|
||||
fd = io.BytesIO()
|
||||
|
||||
# Use PyAV to write frames
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=sample_rate)
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = frame.layout.name
|
||||
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
|
||||
fd.seek(0)
|
||||
|
||||
# emit audio file
|
||||
audiofile = AudioFile(
|
||||
name=f"{monotonic_ns()}-{uu}.wav",
|
||||
fd=fd,
|
||||
sample_rate=sample_rate,
|
||||
channels=channels,
|
||||
sample_width=sample_width,
|
||||
sample_rate=output_sample_rate,
|
||||
channels=output_channels,
|
||||
sample_width=output_sample_width,
|
||||
timestamp=data[0].pts * data[0].time_base,
|
||||
)
|
||||
|
||||
|
||||
@@ -21,7 +21,11 @@ from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
modal_api_key: str | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if not settings.TRANSCRIPT_URL:
|
||||
raise Exception(
|
||||
|
||||
@@ -173,6 +173,7 @@ class Processor(Emitter):
|
||||
except Exception:
|
||||
self.m_processor_failure.inc()
|
||||
self.logger.exception("Error in push")
|
||||
raise
|
||||
|
||||
async def flush(self):
|
||||
"""
|
||||
@@ -240,33 +241,45 @@ class ThreadedProcessor(Processor):
|
||||
self.INPUT_TYPE = processor.INPUT_TYPE
|
||||
self.OUTPUT_TYPE = processor.OUTPUT_TYPE
|
||||
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||
self.queue = asyncio.Queue()
|
||||
self.task = asyncio.get_running_loop().create_task(self.loop())
|
||||
self.queue = asyncio.Queue(maxsize=50)
|
||||
self.task: asyncio.Task | None = None
|
||||
|
||||
def set_pipeline(self, pipeline: "Pipeline"):
|
||||
super().set_pipeline(pipeline)
|
||||
self.processor.set_pipeline(pipeline)
|
||||
|
||||
async def loop(self):
|
||||
while True:
|
||||
data = await self.queue.get()
|
||||
self.m_processor_queue.set(self.queue.qsize())
|
||||
with self.m_processor_queue_in_progress.track_inprogress():
|
||||
try:
|
||||
if data is None:
|
||||
await self.processor.flush()
|
||||
break
|
||||
try:
|
||||
while True:
|
||||
data = await self.queue.get()
|
||||
self.m_processor_queue.set(self.queue.qsize())
|
||||
with self.m_processor_queue_in_progress.track_inprogress():
|
||||
try:
|
||||
await self.processor.push(data)
|
||||
except Exception:
|
||||
self.logger.error(
|
||||
f"Error in push {self.processor.__class__.__name__}"
|
||||
", continue"
|
||||
)
|
||||
finally:
|
||||
self.queue.task_done()
|
||||
if data is None:
|
||||
await self.processor.flush()
|
||||
break
|
||||
try:
|
||||
await self.processor.push(data)
|
||||
except Exception:
|
||||
self.logger.error(
|
||||
f"Error in push {self.processor.__class__.__name__}"
|
||||
", continue"
|
||||
)
|
||||
finally:
|
||||
self.queue.task_done()
|
||||
except Exception as e:
|
||||
logger.error(f"Crash in {self.__class__.__name__}: {e}", exc_info=e)
|
||||
|
||||
async def _ensure_task(self):
|
||||
if self.task is None:
|
||||
self.task = asyncio.get_running_loop().create_task(self.loop())
|
||||
|
||||
# XXX not doing a sleep here make the whole pipeline prior the thread
|
||||
# to be running without having a chance to work on the task here.
|
||||
await asyncio.sleep(0)
|
||||
|
||||
async def _push(self, data):
|
||||
await self._ensure_task()
|
||||
await self.queue.put(data)
|
||||
|
||||
async def _flush(self):
|
||||
|
||||
33
server/reflector/processors/file_diarization.py
Normal file
33
server/reflector/processors/file_diarization.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
from reflector.processors.types import DiarizationSegment
|
||||
|
||||
|
||||
class FileDiarizationInput(BaseModel):
|
||||
"""Input for file diarization containing audio URL"""
|
||||
|
||||
audio_url: str
|
||||
|
||||
|
||||
class FileDiarizationOutput(BaseModel):
|
||||
"""Output for file diarization containing speaker segments"""
|
||||
|
||||
diarization: list[DiarizationSegment]
|
||||
|
||||
|
||||
class FileDiarizationProcessor(Processor):
|
||||
"""
|
||||
Diarize complete audio files from URL
|
||||
"""
|
||||
|
||||
INPUT_TYPE = FileDiarizationInput
|
||||
OUTPUT_TYPE = FileDiarizationOutput
|
||||
|
||||
async def _push(self, data: FileDiarizationInput):
|
||||
result = await self._diarize(data)
|
||||
if result:
|
||||
await self.emit(result)
|
||||
|
||||
async def _diarize(self, data: FileDiarizationInput):
|
||||
raise NotImplementedError
|
||||
33
server/reflector/processors/file_diarization_auto.py
Normal file
33
server/reflector/processors/file_diarization_auto.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.file_diarization import FileDiarizationProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class FileDiarizationAutoProcessor(FileDiarizationProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.DIARIZATION_BACKEND
|
||||
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.file_diarization_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `DIARIZATION_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "DIARIZATION_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
58
server/reflector/processors/file_diarization_modal.py
Normal file
58
server/reflector/processors/file_diarization_modal.py
Normal file
@@ -0,0 +1,58 @@
|
||||
"""
|
||||
File diarization implementation using the GPU service from modal.com
|
||||
|
||||
API will be a POST request to DIARIZATION_URL:
|
||||
|
||||
```
|
||||
POST /diarize?audio_file_url=...×tamp=0
|
||||
Authorization: Bearer <modal_api_key>
|
||||
```
|
||||
"""
|
||||
|
||||
import httpx
|
||||
|
||||
from reflector.processors.file_diarization import (
|
||||
FileDiarizationInput,
|
||||
FileDiarizationOutput,
|
||||
FileDiarizationProcessor,
|
||||
)
|
||||
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class FileDiarizationModalProcessor(FileDiarizationProcessor):
|
||||
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
if not settings.DIARIZATION_URL:
|
||||
raise Exception(
|
||||
"DIARIZATION_URL required to use FileDiarizationModalProcessor"
|
||||
)
|
||||
self.diarization_url = settings.DIARIZATION_URL + "/diarize"
|
||||
self.file_timeout = settings.DIARIZATION_FILE_TIMEOUT
|
||||
self.modal_api_key = modal_api_key
|
||||
|
||||
async def _diarize(self, data: FileDiarizationInput):
|
||||
"""Get speaker diarization for file"""
|
||||
self.logger.info(f"Starting diarization from {data.audio_url}")
|
||||
|
||||
headers = {}
|
||||
if self.modal_api_key:
|
||||
headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||
|
||||
async with httpx.AsyncClient(timeout=self.file_timeout) as client:
|
||||
response = await client.post(
|
||||
self.diarization_url,
|
||||
headers=headers,
|
||||
params={
|
||||
"audio_file_url": data.audio_url,
|
||||
"timestamp": 0,
|
||||
},
|
||||
follow_redirects=True,
|
||||
)
|
||||
response.raise_for_status()
|
||||
diarization_data = response.json()["diarization"]
|
||||
|
||||
return FileDiarizationOutput(diarization=diarization_data)
|
||||
|
||||
|
||||
FileDiarizationAutoProcessor.register("modal", FileDiarizationModalProcessor)
|
||||
65
server/reflector/processors/file_transcript.py
Normal file
65
server/reflector/processors/file_transcript.py
Normal file
@@ -0,0 +1,65 @@
|
||||
from prometheus_client import Counter, Histogram
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
from reflector.processors.types import Transcript
|
||||
|
||||
|
||||
class FileTranscriptInput:
|
||||
"""Input for file transcription containing audio URL and language settings"""
|
||||
|
||||
def __init__(self, audio_url: str, language: str = "en"):
|
||||
self.audio_url = audio_url
|
||||
self.language = language
|
||||
|
||||
|
||||
class FileTranscriptProcessor(Processor):
|
||||
"""
|
||||
Transcript complete audio files from URL
|
||||
"""
|
||||
|
||||
INPUT_TYPE = FileTranscriptInput
|
||||
OUTPUT_TYPE = Transcript
|
||||
|
||||
m_transcript = Histogram(
|
||||
"file_transcript",
|
||||
"Time spent in FileTranscript.transcript",
|
||||
["backend"],
|
||||
)
|
||||
m_transcript_call = Counter(
|
||||
"file_transcript_call",
|
||||
"Number of calls to FileTranscript.transcript",
|
||||
["backend"],
|
||||
)
|
||||
m_transcript_success = Counter(
|
||||
"file_transcript_success",
|
||||
"Number of successful calls to FileTranscript.transcript",
|
||||
["backend"],
|
||||
)
|
||||
m_transcript_failure = Counter(
|
||||
"file_transcript_failure",
|
||||
"Number of failed calls to FileTranscript.transcript",
|
||||
["backend"],
|
||||
)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
name = self.__class__.__name__
|
||||
self.m_transcript = self.m_transcript.labels(name)
|
||||
self.m_transcript_call = self.m_transcript_call.labels(name)
|
||||
self.m_transcript_success = self.m_transcript_success.labels(name)
|
||||
self.m_transcript_failure = self.m_transcript_failure.labels(name)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
async def _push(self, data: FileTranscriptInput):
|
||||
try:
|
||||
self.m_transcript_call.inc()
|
||||
with self.m_transcript.time():
|
||||
result = await self._transcript(data)
|
||||
self.m_transcript_success.inc()
|
||||
if result:
|
||||
await self.emit(result)
|
||||
except Exception:
|
||||
self.m_transcript_failure.inc()
|
||||
raise
|
||||
|
||||
async def _transcript(self, data: FileTranscriptInput):
|
||||
raise NotImplementedError
|
||||
32
server/reflector/processors/file_transcript_auto.py
Normal file
32
server/reflector/processors/file_transcript_auto.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.file_transcript import FileTranscriptProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class FileTranscriptAutoProcessor(FileTranscriptProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.TRANSCRIPT_BACKEND
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.file_transcript_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `TRANSCRIPT_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "TRANSCRIPT_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user