mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
58 Commits
mathieu/ca
...
v0.12.0
| Author | SHA1 | Date | |
|---|---|---|---|
| 396a95d5ce | |||
| 6f680b5795 | |||
| ab859d65a6 | |||
| fa049e8d06 | |||
| 2ce7479967 | |||
| b42f7cfc60 | |||
| c546e69739 | |||
|
|
3f1fe8c9bf | ||
| 5f143fe364 | |||
|
|
79f161436e | ||
|
|
5cba5d310d | ||
| 43ea9349f5 | |||
|
|
b3a8e9739d | ||
|
|
369ecdff13 | ||
| fc363bd49b | |||
|
|
962038ee3f | ||
|
|
3b85ff3bdf | ||
|
|
cde99ca271 | ||
|
|
f81fe9948a | ||
|
|
5a5b323382 | ||
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 | |||
| 52f9f533d7 | |||
| 0c3878ac3c | |||
|
|
d70beee51b | ||
| bc5b351d2b | |||
|
|
07981e8090 | ||
| 7e366f6338 | |||
| 7592679a35 | |||
| af16178f86 | |||
| 3ea7f6b7b6 | |||
|
|
009590c080 | ||
|
|
fe5d344cff | ||
|
|
86455ce573 |
5
.github/workflows/db_migrations.yml
vendored
5
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
|||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
paths:
|
paths:
|
||||||
- "server/migrations/**"
|
- "server/migrations/**"
|
||||||
- "server/reflector/db/**"
|
- "server/reflector/db/**"
|
||||||
@@ -17,6 +19,9 @@ on:
|
|||||||
jobs:
|
jobs:
|
||||||
test-migrations:
|
test-migrations:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
concurrency:
|
||||||
|
group: db-ubuntu-latest-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
services:
|
services:
|
||||||
postgres:
|
postgres:
|
||||||
image: postgres:17
|
image: postgres:17
|
||||||
|
|||||||
77
.github/workflows/deploy.yml
vendored
77
.github/workflows/deploy.yml
vendored
@@ -8,18 +8,30 @@ env:
|
|||||||
ECR_REPOSITORY: reflector
|
ECR_REPOSITORY: reflector
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
deploy:
|
build:
|
||||||
runs-on: ubuntu-latest
|
strategy:
|
||||||
|
matrix:
|
||||||
|
include:
|
||||||
|
- platform: linux/amd64
|
||||||
|
runner: linux-amd64
|
||||||
|
arch: amd64
|
||||||
|
- platform: linux/arm64
|
||||||
|
runner: linux-arm64
|
||||||
|
arch: arm64
|
||||||
|
|
||||||
|
runs-on: ${{ matrix.runner }}
|
||||||
|
|
||||||
permissions:
|
permissions:
|
||||||
deployments: write
|
|
||||||
contents: read
|
contents: read
|
||||||
|
|
||||||
|
outputs:
|
||||||
|
registry: ${{ steps.login-ecr.outputs.registry }}
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Configure AWS credentials
|
- name: Configure AWS credentials
|
||||||
uses: aws-actions/configure-aws-credentials@0e613a0980cbf65ed5b322eb7a1e075d28913a83
|
uses: aws-actions/configure-aws-credentials@v4
|
||||||
with:
|
with:
|
||||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||||
@@ -27,21 +39,52 @@ jobs:
|
|||||||
|
|
||||||
- name: Login to Amazon ECR
|
- name: Login to Amazon ECR
|
||||||
id: login-ecr
|
id: login-ecr
|
||||||
uses: aws-actions/amazon-ecr-login@62f4f872db3836360b72999f4b87f1ff13310f3a
|
uses: aws-actions/amazon-ecr-login@v2
|
||||||
|
|
||||||
- name: Set up QEMU
|
|
||||||
uses: docker/setup-qemu-action@v2
|
|
||||||
|
|
||||||
- name: Set up Docker Buildx
|
- name: Set up Docker Buildx
|
||||||
uses: docker/setup-buildx-action@v2
|
uses: docker/setup-buildx-action@v3
|
||||||
|
|
||||||
- name: Build and push
|
- name: Build and push ${{ matrix.arch }}
|
||||||
id: docker_build
|
uses: docker/build-push-action@v5
|
||||||
uses: docker/build-push-action@v4
|
|
||||||
with:
|
with:
|
||||||
context: server
|
context: server
|
||||||
platforms: linux/amd64,linux/arm64
|
platforms: ${{ matrix.platform }}
|
||||||
push: true
|
push: true
|
||||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest
|
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
|
||||||
cache-from: type=gha
|
cache-from: type=gha,scope=${{ matrix.arch }}
|
||||||
cache-to: type=gha,mode=max
|
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
|
||||||
|
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||||
|
provenance: false
|
||||||
|
|
||||||
|
create-manifest:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
needs: [build]
|
||||||
|
|
||||||
|
permissions:
|
||||||
|
deployments: write
|
||||||
|
contents: read
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Configure AWS credentials
|
||||||
|
uses: aws-actions/configure-aws-credentials@v4
|
||||||
|
with:
|
||||||
|
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||||
|
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||||
|
aws-region: ${{ env.AWS_REGION }}
|
||||||
|
|
||||||
|
- name: Login to Amazon ECR
|
||||||
|
uses: aws-actions/amazon-ecr-login@v2
|
||||||
|
|
||||||
|
- name: Create and push multi-arch manifest
|
||||||
|
run: |
|
||||||
|
# Get the registry URL (since we can't easily access job outputs in matrix)
|
||||||
|
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
|
||||||
|
|
||||||
|
docker manifest create \
|
||||||
|
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
|
||||||
|
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
|
||||||
|
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
|
||||||
|
|
||||||
|
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
|
||||||
|
|
||||||
|
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"
|
||||||
|
|||||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
name: Test Next Server
|
||||||
|
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- "www/**"
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
paths:
|
||||||
|
- "www/**"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
test-next-server:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
working-directory: ./www
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Setup Node.js
|
||||||
|
uses: actions/setup-node@v4
|
||||||
|
with:
|
||||||
|
node-version: '20'
|
||||||
|
|
||||||
|
- name: Install pnpm
|
||||||
|
uses: pnpm/action-setup@v4
|
||||||
|
with:
|
||||||
|
version: 8
|
||||||
|
|
||||||
|
- name: Setup Node.js cache
|
||||||
|
uses: actions/setup-node@v4
|
||||||
|
with:
|
||||||
|
node-version: '20'
|
||||||
|
cache: 'pnpm'
|
||||||
|
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
run: pnpm install
|
||||||
|
|
||||||
|
- name: Run tests
|
||||||
|
run: pnpm test
|
||||||
49
.github/workflows/test_server.yml
vendored
49
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
|||||||
paths:
|
paths:
|
||||||
- "server/**"
|
- "server/**"
|
||||||
push:
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
paths:
|
paths:
|
||||||
- "server/**"
|
- "server/**"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
pytest:
|
pytest:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
concurrency:
|
||||||
|
group: pytest-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
services:
|
services:
|
||||||
redis:
|
redis:
|
||||||
image: redis:6
|
image: redis:6
|
||||||
@@ -19,29 +24,47 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- name: Install uv
|
- name: Install uv
|
||||||
uses: astral-sh/setup-uv@v3
|
uses: astral-sh/setup-uv@v6
|
||||||
with:
|
with:
|
||||||
enable-cache: true
|
enable-cache: true
|
||||||
working-directory: server
|
working-directory: server
|
||||||
|
|
||||||
- name: Tests
|
- name: Tests
|
||||||
run: |
|
run: |
|
||||||
cd server
|
cd server
|
||||||
uv run -m pytest -v tests
|
uv run -m pytest -v tests
|
||||||
|
|
||||||
docker:
|
docker-amd64:
|
||||||
runs-on: ubuntu-latest
|
runs-on: linux-amd64
|
||||||
|
concurrency:
|
||||||
|
group: docker-amd64-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- name: Set up QEMU
|
|
||||||
uses: docker/setup-qemu-action@v2
|
|
||||||
- name: Set up Docker Buildx
|
- name: Set up Docker Buildx
|
||||||
uses: docker/setup-buildx-action@v2
|
uses: docker/setup-buildx-action@v3
|
||||||
- name: Build and push
|
- name: Build AMD64
|
||||||
id: docker_build
|
uses: docker/build-push-action@v6
|
||||||
uses: docker/build-push-action@v4
|
|
||||||
with:
|
with:
|
||||||
context: server
|
context: server
|
||||||
platforms: linux/amd64,linux/arm64
|
platforms: linux/amd64
|
||||||
cache-from: type=gha
|
cache-from: type=gha,scope=amd64
|
||||||
cache-to: type=gha,mode=max
|
cache-to: type=gha,mode=max,scope=amd64
|
||||||
|
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||||
|
|
||||||
|
docker-arm64:
|
||||||
|
runs-on: linux-arm64
|
||||||
|
concurrency:
|
||||||
|
group: docker-arm64-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v3
|
||||||
|
- name: Build ARM64
|
||||||
|
uses: docker/build-push-action@v6
|
||||||
|
with:
|
||||||
|
context: server
|
||||||
|
platforms: linux/arm64
|
||||||
|
cache-from: type=gha,scope=arm64
|
||||||
|
cache-to: type=gha,mode=max,scope=arm64
|
||||||
|
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||||
|
|||||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -14,4 +14,7 @@ data/
|
|||||||
www/REFACTOR.md
|
www/REFACTOR.md
|
||||||
www/reload-frontend
|
www/reload-frontend
|
||||||
server/test.sqlite
|
server/test.sqlite
|
||||||
CLAUDE.local.md
|
CLAUDE.local.md
|
||||||
|
www/.env.development
|
||||||
|
www/.env.production
|
||||||
|
.playwright-mcp
|
||||||
|
|||||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
|||||||
|
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||||
@@ -27,3 +27,8 @@ repos:
|
|||||||
files: ^server/
|
files: ^server/
|
||||||
- id: ruff-format
|
- id: ruff-format
|
||||||
files: ^server/
|
files: ^server/
|
||||||
|
|
||||||
|
- repo: https://github.com/gitleaks/gitleaks
|
||||||
|
rev: v8.28.0
|
||||||
|
hooks:
|
||||||
|
- id: gitleaks
|
||||||
|
|||||||
127
CHANGELOG.md
127
CHANGELOG.md
@@ -1,5 +1,132 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## [0.12.0](https://github.com/Monadical-SAS/reflector/compare/v0.11.0...v0.12.0) (2025-09-17)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* calendar integration ([#608](https://github.com/Monadical-SAS/reflector/issues/608)) ([6f680b5](https://github.com/Monadical-SAS/reflector/commit/6f680b57954c688882c4ed49f40f161c52a00a24))
|
||||||
|
* self-hosted gpu api ([#636](https://github.com/Monadical-SAS/reflector/issues/636)) ([ab859d6](https://github.com/Monadical-SAS/reflector/commit/ab859d65a6bded904133a163a081a651b3938d42))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* ignore player hotkeys for text inputs ([#646](https://github.com/Monadical-SAS/reflector/issues/646)) ([fa049e8](https://github.com/Monadical-SAS/reflector/commit/fa049e8d068190ce7ea015fd9fcccb8543f54a3f))
|
||||||
|
|
||||||
|
## [0.11.0](https://github.com/Monadical-SAS/reflector/compare/v0.10.0...v0.11.0) (2025-09-16)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* remove profanity filter that was there for conference ([#652](https://github.com/Monadical-SAS/reflector/issues/652)) ([b42f7cf](https://github.com/Monadical-SAS/reflector/commit/b42f7cfc606783afcee792590efcc78b507468ab))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* zulip and consent handler on the file pipeline ([#645](https://github.com/Monadical-SAS/reflector/issues/645)) ([5f143fe](https://github.com/Monadical-SAS/reflector/commit/5f143fe3640875dcb56c26694254a93189281d17))
|
||||||
|
* zulip stream and topic selection in share dialog ([#644](https://github.com/Monadical-SAS/reflector/issues/644)) ([c546e69](https://github.com/Monadical-SAS/reflector/commit/c546e69739e68bb74fbc877eb62609928e5b8de6))
|
||||||
|
|
||||||
|
## [0.10.0](https://github.com/Monadical-SAS/reflector/compare/v0.9.0...v0.10.0) (2025-09-11)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* replace nextjs-config with environment variables ([#632](https://github.com/Monadical-SAS/reflector/issues/632)) ([369ecdf](https://github.com/Monadical-SAS/reflector/commit/369ecdff13f3862d926a9c0b87df52c9d94c4dde))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* anonymous users transcript permissions ([#621](https://github.com/Monadical-SAS/reflector/issues/621)) ([f81fe99](https://github.com/Monadical-SAS/reflector/commit/f81fe9948a9237b3e0001b2d8ca84f54d76878f9))
|
||||||
|
* auth post ([#624](https://github.com/Monadical-SAS/reflector/issues/624)) ([cde99ca](https://github.com/Monadical-SAS/reflector/commit/cde99ca2716f84ba26798f289047732f0448742e))
|
||||||
|
* auth post ([#626](https://github.com/Monadical-SAS/reflector/issues/626)) ([3b85ff3](https://github.com/Monadical-SAS/reflector/commit/3b85ff3bdf4fb053b103070646811bc990c0e70a))
|
||||||
|
* auth post ([#627](https://github.com/Monadical-SAS/reflector/issues/627)) ([962038e](https://github.com/Monadical-SAS/reflector/commit/962038ee3f2a555dc3c03856be0e4409456e0996))
|
||||||
|
* missing follow_redirects=True on modal endpoint ([#630](https://github.com/Monadical-SAS/reflector/issues/630)) ([fc363bd](https://github.com/Monadical-SAS/reflector/commit/fc363bd49b17b075e64f9186e5e0185abc325ea7))
|
||||||
|
* sync backend and frontend token refresh logic ([#614](https://github.com/Monadical-SAS/reflector/issues/614)) ([5a5b323](https://github.com/Monadical-SAS/reflector/commit/5a5b3233820df9536da75e87ce6184a983d4713a))
|
||||||
|
|
||||||
|
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||||
|
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||||
|
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||||
|
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||||
|
|
||||||
|
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||||
|
|
||||||
|
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||||
|
|
||||||
|
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||||
|
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||||
|
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||||
|
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||||
|
|
||||||
|
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||||
|
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||||
|
|
||||||
|
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* docker image not loading libgomp.so.1 for torch ([#560](https://github.com/Monadical-SAS/reflector/issues/560)) ([773fccd](https://github.com/Monadical-SAS/reflector/commit/773fccd93e887c3493abc2e4a4864dddce610177))
|
||||||
|
* include shared rooms to search ([#558](https://github.com/Monadical-SAS/reflector/issues/558)) ([499eced](https://github.com/Monadical-SAS/reflector/commit/499eced3360b84fb3a90e1c8a3b554290d21adc2))
|
||||||
|
|
||||||
|
## [0.7.1](https://github.com/Monadical-SAS/reflector/compare/v0.7.0...v0.7.1) (2025-08-21)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* webvtt db null expectation mismatch ([#556](https://github.com/Monadical-SAS/reflector/issues/556)) ([e67ad1a](https://github.com/Monadical-SAS/reflector/commit/e67ad1a4a2054467bfeb1e0258fbac5868aaaf21))
|
||||||
|
|
||||||
|
## [0.7.0](https://github.com/Monadical-SAS/reflector/compare/v0.6.1...v0.7.0) (2025-08-21)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* delete recording with transcript ([#547](https://github.com/Monadical-SAS/reflector/issues/547)) ([99cc984](https://github.com/Monadical-SAS/reflector/commit/99cc9840b3f5de01e0adfbfae93234042d706d13))
|
||||||
|
* pipeline improvement with file processing, parakeet, silero-vad ([#540](https://github.com/Monadical-SAS/reflector/issues/540)) ([bcc29c9](https://github.com/Monadical-SAS/reflector/commit/bcc29c9e0050ae215f89d460e9d645aaf6a5e486))
|
||||||
|
* postgresql migration and removal of sqlite in pytest ([#546](https://github.com/Monadical-SAS/reflector/issues/546)) ([cd1990f](https://github.com/Monadical-SAS/reflector/commit/cd1990f8f0fe1503ef5069512f33777a73a93d7f))
|
||||||
|
* search backend ([#537](https://github.com/Monadical-SAS/reflector/issues/537)) ([5f9b892](https://github.com/Monadical-SAS/reflector/commit/5f9b89260c9ef7f3c921319719467df22830453f))
|
||||||
|
* search frontend ([#551](https://github.com/Monadical-SAS/reflector/issues/551)) ([3657242](https://github.com/Monadical-SAS/reflector/commit/365724271ca6e615e3425125a69ae2b46ce39285))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* evaluation cli event wrap ([#536](https://github.com/Monadical-SAS/reflector/issues/536)) ([941c3db](https://github.com/Monadical-SAS/reflector/commit/941c3db0bdacc7b61fea412f3746cc5a7cb67836))
|
||||||
|
* use structlog not logging ([#550](https://github.com/Monadical-SAS/reflector/issues/550)) ([27e2f81](https://github.com/Monadical-SAS/reflector/commit/27e2f81fda5232e53edc729d3e99c5ef03adbfe9))
|
||||||
|
|
||||||
## [0.6.1](https://github.com/Monadical-SAS/reflector/compare/v0.6.0...v0.6.1) (2025-08-06)
|
## [0.6.1](https://github.com/Monadical-SAS/reflector/compare/v0.6.0...v0.6.1) (2025-08-06)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -66,7 +66,6 @@ pnpm install
|
|||||||
|
|
||||||
# Copy configuration templates
|
# Copy configuration templates
|
||||||
cp .env_template .env
|
cp .env_template .env
|
||||||
cp config-template.ts config.ts
|
|
||||||
```
|
```
|
||||||
|
|
||||||
**Development:**
|
**Development:**
|
||||||
|
|||||||
81
README.md
81
README.md
@@ -1,43 +1,60 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
|
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||||
|
|
||||||
# Reflector
|
# Reflector
|
||||||
|
|
||||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||||
|
|
||||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||||
[](https://opensource.org/licenses/MIT)
|
[](https://opensource.org/licenses/MIT)
|
||||||
</div>
|
</div>
|
||||||
|
</div>
|
||||||
## Screenshots
|
|
||||||
<table>
|
<table>
|
||||||
<tr>
|
<tr>
|
||||||
<td>
|
<td>
|
||||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||||
</a>
|
</a>
|
||||||
</td>
|
</td>
|
||||||
<td>
|
<td>
|
||||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||||
</a>
|
</a>
|
||||||
</td>
|
</td>
|
||||||
<td>
|
<td>
|
||||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||||
|
</a>
|
||||||
|
</td>
|
||||||
|
<td>
|
||||||
|
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||||
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||||
</a>
|
</a>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</table>
|
</table>
|
||||||
|
|
||||||
|
## What is Reflector?
|
||||||
|
|
||||||
|
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||||
|
|
||||||
|
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||||
|
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||||
|
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||||
|
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||||
|
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||||
|
|
||||||
|
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||||
|
|
||||||
## Background
|
## Background
|
||||||
|
|
||||||
The project architecture consists of three primary components:
|
The project architecture consists of three primary components:
|
||||||
|
|
||||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
|
||||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||||
|
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||||
|
|
||||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
It also uses authentik for authentication if activated.
|
||||||
|
|
||||||
## Contribution Guidelines
|
## Contribution Guidelines
|
||||||
|
|
||||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
|||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
|
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||||
|
|
||||||
### Frontend
|
### Frontend
|
||||||
|
|
||||||
Start with `cd www`.
|
Start with `cd www`.
|
||||||
@@ -80,11 +99,10 @@ Start with `cd www`.
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
pnpm install
|
pnpm install
|
||||||
cp .env_template .env
|
cp .env.example .env
|
||||||
cp config-template.ts config.ts
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Then, fill in the environment variables in `.env` and the configuration in `config.ts` as needed. If you are unsure on how to proceed, ask in Zulip.
|
Then, fill in the environment variables in `.env` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||||
|
|
||||||
**Run in development mode**
|
**Run in development mode**
|
||||||
|
|
||||||
@@ -149,3 +167,34 @@ You can manually process an audio file by calling the process tool:
|
|||||||
```bash
|
```bash
|
||||||
uv run python -m reflector.tools.process path/to/audio.wav
|
uv run python -m reflector.tools.process path/to/audio.wav
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Feature Flags
|
||||||
|
|
||||||
|
Reflector uses environment variable-based feature flags to control application functionality. These flags allow you to enable or disable features without code changes.
|
||||||
|
|
||||||
|
### Available Feature Flags
|
||||||
|
|
||||||
|
| Feature Flag | Environment Variable |
|
||||||
|
|-------------|---------------------|
|
||||||
|
| `requireLogin` | `NEXT_PUBLIC_FEATURE_REQUIRE_LOGIN` |
|
||||||
|
| `privacy` | `NEXT_PUBLIC_FEATURE_PRIVACY` |
|
||||||
|
| `browse` | `NEXT_PUBLIC_FEATURE_BROWSE` |
|
||||||
|
| `sendToZulip` | `NEXT_PUBLIC_FEATURE_SEND_TO_ZULIP` |
|
||||||
|
| `rooms` | `NEXT_PUBLIC_FEATURE_ROOMS` |
|
||||||
|
|
||||||
|
### Setting Feature Flags
|
||||||
|
|
||||||
|
Feature flags are controlled via environment variables using the pattern `NEXT_PUBLIC_FEATURE_{FEATURE_NAME}` where `{FEATURE_NAME}` is the SCREAMING_SNAKE_CASE version of the feature name.
|
||||||
|
|
||||||
|
**Examples:**
|
||||||
|
```bash
|
||||||
|
# Enable user authentication requirement
|
||||||
|
NEXT_PUBLIC_FEATURE_REQUIRE_LOGIN=true
|
||||||
|
|
||||||
|
# Disable browse functionality
|
||||||
|
NEXT_PUBLIC_FEATURE_BROWSE=false
|
||||||
|
|
||||||
|
# Enable Zulip integration
|
||||||
|
NEXT_PUBLIC_FEATURE_SEND_TO_ZULIP=true
|
||||||
|
```
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ services:
|
|||||||
- 1250:1250
|
- 1250:1250
|
||||||
volumes:
|
volumes:
|
||||||
- ./server/:/app/
|
- ./server/:/app/
|
||||||
|
- /app/.venv
|
||||||
env_file:
|
env_file:
|
||||||
- ./server/.env
|
- ./server/.env
|
||||||
environment:
|
environment:
|
||||||
@@ -16,6 +17,7 @@ services:
|
|||||||
context: server
|
context: server
|
||||||
volumes:
|
volumes:
|
||||||
- ./server/:/app/
|
- ./server/:/app/
|
||||||
|
- /app/.venv
|
||||||
env_file:
|
env_file:
|
||||||
- ./server/.env
|
- ./server/.env
|
||||||
environment:
|
environment:
|
||||||
@@ -26,6 +28,7 @@ services:
|
|||||||
context: server
|
context: server
|
||||||
volumes:
|
volumes:
|
||||||
- ./server/:/app/
|
- ./server/:/app/
|
||||||
|
- /app/.venv
|
||||||
env_file:
|
env_file:
|
||||||
- ./server/.env
|
- ./server/.env
|
||||||
environment:
|
environment:
|
||||||
|
|||||||
33
gpu/modal_deployments/.gitignore
vendored
Normal file
33
gpu/modal_deployments/.gitignore
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
# OS / Editor
|
||||||
|
.DS_Store
|
||||||
|
.vscode/
|
||||||
|
.idea/
|
||||||
|
|
||||||
|
# Python
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# Logs
|
||||||
|
*.log
|
||||||
|
|
||||||
|
# Env and secrets
|
||||||
|
.env
|
||||||
|
.env.*
|
||||||
|
*.env
|
||||||
|
*.secret
|
||||||
|
|
||||||
|
# Build / dist
|
||||||
|
build/
|
||||||
|
dist/
|
||||||
|
.eggs/
|
||||||
|
*.egg-info/
|
||||||
|
|
||||||
|
# Coverage / test
|
||||||
|
.pytest_cache/
|
||||||
|
.coverage*
|
||||||
|
htmlcov/
|
||||||
|
|
||||||
|
# Modal local state (if any)
|
||||||
|
modal_mounts/
|
||||||
|
.modal_cache/
|
||||||
171
gpu/modal_deployments/README.md
Normal file
171
gpu/modal_deployments/README.md
Normal file
@@ -0,0 +1,171 @@
|
|||||||
|
# Reflector GPU implementation - Transcription and LLM
|
||||||
|
|
||||||
|
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||||
|
and use [Modal.com](https://modal.com)
|
||||||
|
|
||||||
|
- `reflector_diarizer.py` - Diarization API
|
||||||
|
- `reflector_transcriber.py` - Transcription API (Whisper)
|
||||||
|
- `reflector_transcriber_parakeet.py` - Transcription API (NVIDIA Parakeet)
|
||||||
|
- `reflector_translator.py` - Translation API
|
||||||
|
|
||||||
|
## Modal.com deployment
|
||||||
|
|
||||||
|
Create a modal secret, and name it `reflector-gpu`.
|
||||||
|
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||||
|
|
||||||
|
The deployment is done using [Modal.com](https://modal.com) service.
|
||||||
|
|
||||||
|
```
|
||||||
|
$ modal deploy reflector_transcriber.py
|
||||||
|
...
|
||||||
|
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||||
|
|
||||||
|
$ modal deploy reflector_transcriber_parakeet.py
|
||||||
|
...
|
||||||
|
└── 🔨 Created web => https://xxxx--reflector-transcriber-parakeet-web.modal.run
|
||||||
|
|
||||||
|
$ modal deploy reflector_llm.py
|
||||||
|
...
|
||||||
|
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||||
|
```
|
||||||
|
|
||||||
|
Then in your reflector api configuration `.env`, you can set these keys:
|
||||||
|
|
||||||
|
```
|
||||||
|
TRANSCRIPT_BACKEND=modal
|
||||||
|
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||||
|
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||||
|
|
||||||
|
DIARIZATION_BACKEND=modal
|
||||||
|
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
||||||
|
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||||
|
|
||||||
|
TRANSLATION_BACKEND=modal
|
||||||
|
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
||||||
|
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||||
|
```
|
||||||
|
|
||||||
|
## API
|
||||||
|
|
||||||
|
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||||
|
|
||||||
|
```
|
||||||
|
Authorization: bearer <REFLECTOR_APIKEY>
|
||||||
|
```
|
||||||
|
|
||||||
|
### LLM
|
||||||
|
|
||||||
|
`POST /llm`
|
||||||
|
|
||||||
|
**request**
|
||||||
|
```
|
||||||
|
{
|
||||||
|
"prompt": "xxx"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**response**
|
||||||
|
```
|
||||||
|
{
|
||||||
|
"text": "xxx completed"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Transcription
|
||||||
|
|
||||||
|
#### Parakeet Transcriber (`reflector_transcriber_parakeet.py`)
|
||||||
|
|
||||||
|
NVIDIA Parakeet is a state-of-the-art ASR model optimized for real-time transcription with superior word-level timestamps.
|
||||||
|
|
||||||
|
**GPU Configuration:**
|
||||||
|
- **A10G GPU** - Used for `/v1/audio/transcriptions` endpoint (small files, live transcription)
|
||||||
|
- Higher concurrency (max_inputs=10)
|
||||||
|
- Optimized for multiple small audio files
|
||||||
|
- Supports batch processing for efficiency
|
||||||
|
|
||||||
|
- **L40S GPU** - Used for `/v1/audio/transcriptions-from-url` endpoint (large files)
|
||||||
|
- Lower concurrency but more powerful processing
|
||||||
|
- Optimized for single large audio files
|
||||||
|
- VAD-based chunking for long-form audio
|
||||||
|
|
||||||
|
##### `/v1/audio/transcriptions` - Small file transcription
|
||||||
|
|
||||||
|
**request** (multipart/form-data)
|
||||||
|
- `file` or `files[]` - audio file(s) to transcribe
|
||||||
|
- `model` - model name (default: `nvidia/parakeet-tdt-0.6b-v2`)
|
||||||
|
- `language` - language code (default: `en`)
|
||||||
|
- `batch` - whether to use batch processing for multiple files (default: `true`)
|
||||||
|
|
||||||
|
**response**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [
|
||||||
|
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||||
|
{"word": "world", "start": 0.5, "end": 1.0}
|
||||||
|
],
|
||||||
|
"filename": "audio.mp3"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
For multiple files with batch=true:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"results": [
|
||||||
|
{
|
||||||
|
"filename": "audio1.mp3",
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [...]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"filename": "audio2.mp3",
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [...]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
##### `/v1/audio/transcriptions-from-url` - Large file transcription
|
||||||
|
|
||||||
|
**request** (application/json)
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"audio_file_url": "https://example.com/audio.mp3",
|
||||||
|
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||||
|
"language": "en",
|
||||||
|
"timestamp_offset": 0.0
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**response**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text from large file",
|
||||||
|
"words": [
|
||||||
|
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||||
|
{"word": "world", "start": 0.5, "end": 1.0}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Supported file types:** mp3, mp4, mpeg, mpga, m4a, wav, webm
|
||||||
|
|
||||||
|
#### Whisper Transcriber (`reflector_transcriber.py`)
|
||||||
|
|
||||||
|
`POST /transcribe`
|
||||||
|
|
||||||
|
**request** (multipart/form-data)
|
||||||
|
|
||||||
|
- `file` - audio file
|
||||||
|
- `language` - language code (e.g. `en`)
|
||||||
|
|
||||||
|
**response**
|
||||||
|
```
|
||||||
|
{
|
||||||
|
"text": "xxx",
|
||||||
|
"words": [
|
||||||
|
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
@@ -0,0 +1,253 @@
|
|||||||
|
"""
|
||||||
|
Reflector GPU backend - diarizer
|
||||||
|
===================================
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
from typing import Mapping, NewType
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import modal
|
||||||
|
|
||||||
|
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||||
|
MODEL_DIR = "/root/diarization_models"
|
||||||
|
UPLOADS_PATH = "/uploads"
|
||||||
|
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||||
|
|
||||||
|
DiarizerUniqFilename = NewType("DiarizerUniqFilename", str)
|
||||||
|
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||||
|
|
||||||
|
app = modal.App(name="reflector-diarizer")
|
||||||
|
|
||||||
|
# Volume for temporary file uploads
|
||||||
|
upload_volume = modal.Volume.from_name("diarizer-uploads", create_if_missing=True)
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||||
|
parsed_url = urlparse(url)
|
||||||
|
url_path = parsed_url.path
|
||||||
|
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return AudioFileExtension(ext)
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return AudioFileExtension("mp3")
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return AudioFileExtension("wav")
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return AudioFileExtension("mp4")
|
||||||
|
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported audio format for URL: {url}. "
|
||||||
|
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(
|
||||||
|
audio_file_url: str,
|
||||||
|
) -> tuple[DiarizerUniqFilename, AudioFileExtension]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
print(f"Checking audio file at: {audio_file_url}")
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
print(f"Downloading audio file from: {audio_file_url}")
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
print(f"Download failed with status {response.status_code}: {response.text}")
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=response.status_code,
|
||||||
|
detail=f"Failed to download audio file: {response.status_code}",
|
||||||
|
)
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = DiarizerUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
print(f"Writing file to: {file_path} (size: {len(response.content)} bytes)")
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
print(f"File saved as: {unique_filename}")
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
|
def migrate_cache_llm():
|
||||||
|
"""
|
||||||
|
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||||
|
Migrating your old cache. This is a one-time only operation. You can
|
||||||
|
interrupt this and resume the migration later on by calling
|
||||||
|
`transformers.utils.move_cache()`.
|
||||||
|
"""
|
||||||
|
from transformers.utils.hub import move_cache
|
||||||
|
|
||||||
|
print("Moving LLM cache")
|
||||||
|
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||||
|
print("LLM cache moved")
|
||||||
|
|
||||||
|
|
||||||
|
def download_pyannote_audio():
|
||||||
|
from pyannote.audio import Pipeline
|
||||||
|
|
||||||
|
Pipeline.from_pretrained(
|
||||||
|
PYANNOTE_MODEL_NAME,
|
||||||
|
cache_dir=MODEL_DIR,
|
||||||
|
use_auth_token=os.environ["HF_TOKEN"],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
diarizer_image = (
|
||||||
|
modal.Image.debian_slim(python_version="3.10.8")
|
||||||
|
.pip_install(
|
||||||
|
"pyannote.audio==3.1.0",
|
||||||
|
"requests",
|
||||||
|
"onnx",
|
||||||
|
"torchaudio",
|
||||||
|
"onnxruntime-gpu",
|
||||||
|
"torch==2.0.0",
|
||||||
|
"transformers==4.34.0",
|
||||||
|
"sentencepiece",
|
||||||
|
"protobuf",
|
||||||
|
"numpy",
|
||||||
|
"huggingface_hub",
|
||||||
|
"hf-transfer",
|
||||||
|
)
|
||||||
|
.run_function(
|
||||||
|
download_pyannote_audio,
|
||||||
|
secrets=[modal.Secret.from_name("hf_token")],
|
||||||
|
)
|
||||||
|
.run_function(migrate_cache_llm)
|
||||||
|
.env(
|
||||||
|
{
|
||||||
|
"LD_LIBRARY_PATH": (
|
||||||
|
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||||
|
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||||
|
)
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.cls(
|
||||||
|
gpu="A100",
|
||||||
|
timeout=60 * 30,
|
||||||
|
image=diarizer_image,
|
||||||
|
volumes={UPLOADS_PATH: upload_volume},
|
||||||
|
enable_memory_snapshot=True,
|
||||||
|
experimental_options={"enable_gpu_snapshot": True},
|
||||||
|
secrets=[
|
||||||
|
modal.Secret.from_name("hf_token"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=1)
|
||||||
|
class Diarizer:
|
||||||
|
@modal.enter(snap=True)
|
||||||
|
def enter(self):
|
||||||
|
import torch
|
||||||
|
from pyannote.audio import Pipeline
|
||||||
|
|
||||||
|
self.use_gpu = torch.cuda.is_available()
|
||||||
|
self.device = "cuda" if self.use_gpu else "cpu"
|
||||||
|
print(f"Using device: {self.device}")
|
||||||
|
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||||
|
PYANNOTE_MODEL_NAME,
|
||||||
|
cache_dir=MODEL_DIR,
|
||||||
|
use_auth_token=os.environ["HF_TOKEN"],
|
||||||
|
)
|
||||||
|
self.diarization_pipeline.to(torch.device(self.device))
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def diarize(self, filename: str, timestamp: float = 0.0):
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
print(f"Diarizing audio from: {file_path}")
|
||||||
|
waveform, sample_rate = torchaudio.load(file_path)
|
||||||
|
diarization = self.diarization_pipeline(
|
||||||
|
{"waveform": waveform, "sample_rate": sample_rate}
|
||||||
|
)
|
||||||
|
|
||||||
|
words = []
|
||||||
|
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||||
|
words.append(
|
||||||
|
{
|
||||||
|
"start": round(timestamp + diarization_segment.start, 3),
|
||||||
|
"end": round(timestamp + diarization_segment.end, 3),
|
||||||
|
"speaker": int(speaker[-2:]),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
print("Diarization complete")
|
||||||
|
return {"diarization": words}
|
||||||
|
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------
|
||||||
|
# Web API
|
||||||
|
# -------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
@app.function(
|
||||||
|
timeout=60 * 10,
|
||||||
|
scaledown_window=60 * 3,
|
||||||
|
secrets=[
|
||||||
|
modal.Secret.from_name("reflector-gpu"),
|
||||||
|
],
|
||||||
|
volumes={UPLOADS_PATH: upload_volume},
|
||||||
|
image=diarizer_image,
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=40)
|
||||||
|
@modal.asgi_app()
|
||||||
|
def web():
|
||||||
|
from fastapi import Depends, FastAPI, HTTPException, status
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
diarizerstub = Diarizer()
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||||
|
|
||||||
|
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||||
|
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||||
|
detail="Invalid API key",
|
||||||
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
|
)
|
||||||
|
|
||||||
|
class DiarizationResponse(BaseModel):
|
||||||
|
result: dict
|
||||||
|
|
||||||
|
@app.post("/diarize", dependencies=[Depends(apikey_auth)])
|
||||||
|
def diarize(audio_file_url: str, timestamp: float = 0.0) -> DiarizationResponse:
|
||||||
|
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||||
|
|
||||||
|
try:
|
||||||
|
func = diarizerstub.diarize.spawn(
|
||||||
|
filename=unique_filename, timestamp=timestamp
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
return result
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
print(f"Deleting file: {file_path}")
|
||||||
|
os.remove(file_path)
|
||||||
|
upload_volume.commit()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error cleaning up {unique_filename}: {e}")
|
||||||
|
|
||||||
|
return app
|
||||||
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
@@ -0,0 +1,608 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import threading
|
||||||
|
import uuid
|
||||||
|
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import modal
|
||||||
|
|
||||||
|
MODEL_NAME = "large-v2"
|
||||||
|
MODEL_COMPUTE_TYPE: str = "float16"
|
||||||
|
MODEL_NUM_WORKERS: int = 1
|
||||||
|
MINUTES = 60 # seconds
|
||||||
|
SAMPLERATE = 16000
|
||||||
|
UPLOADS_PATH = "/uploads"
|
||||||
|
CACHE_PATH = "/models"
|
||||||
|
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||||
|
VAD_CONFIG = {
|
||||||
|
"batch_max_duration": 30.0,
|
||||||
|
"silence_padding": 0.5,
|
||||||
|
"window_size": 512,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||||
|
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||||
|
|
||||||
|
app = modal.App("reflector-transcriber")
|
||||||
|
|
||||||
|
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||||
|
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||||
|
|
||||||
|
|
||||||
|
class TimeSegment(NamedTuple):
|
||||||
|
"""Represents a time segment with start and end times."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
class AudioSegment(NamedTuple):
|
||||||
|
"""Represents an audio segment with timing and audio data."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
audio: any
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptResult(NamedTuple):
|
||||||
|
"""Represents a transcription result with text and word timings."""
|
||||||
|
|
||||||
|
text: str
|
||||||
|
words: list["WordTiming"]
|
||||||
|
|
||||||
|
|
||||||
|
class WordTiming(TypedDict):
|
||||||
|
"""Represents a word with its timing information."""
|
||||||
|
|
||||||
|
word: str
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
def download_model():
|
||||||
|
from faster_whisper import download_model
|
||||||
|
|
||||||
|
model_cache.reload()
|
||||||
|
|
||||||
|
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||||
|
|
||||||
|
model_cache.commit()
|
||||||
|
|
||||||
|
|
||||||
|
image = (
|
||||||
|
modal.Image.debian_slim(python_version="3.12")
|
||||||
|
.env(
|
||||||
|
{
|
||||||
|
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||||
|
"LD_LIBRARY_PATH": (
|
||||||
|
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||||
|
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
.apt_install("ffmpeg")
|
||||||
|
.pip_install(
|
||||||
|
"huggingface_hub==0.27.1",
|
||||||
|
"hf-transfer==0.1.9",
|
||||||
|
"torch==2.5.1",
|
||||||
|
"faster-whisper==1.1.1",
|
||||||
|
"fastapi==0.115.12",
|
||||||
|
"requests",
|
||||||
|
"librosa==0.10.1",
|
||||||
|
"numpy<2",
|
||||||
|
"silero-vad==5.1.0",
|
||||||
|
)
|
||||||
|
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||||
|
parsed_url = urlparse(url)
|
||||||
|
url_path = parsed_url.path
|
||||||
|
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return AudioFileExtension(ext)
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return AudioFileExtension("mp3")
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return AudioFileExtension("wav")
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return AudioFileExtension("mp4")
|
||||||
|
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported audio format for URL: {url}. "
|
||||||
|
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(
|
||||||
|
audio_file_url: str,
|
||||||
|
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
|
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||||
|
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||||
|
|
||||||
|
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||||
|
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
audio_duration = len(audio_array) / sample_rate
|
||||||
|
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||||
|
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||||
|
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||||
|
return np.concatenate([audio_array, silence])
|
||||||
|
return audio_array
|
||||||
|
|
||||||
|
|
||||||
|
@app.cls(
|
||||||
|
gpu="A10G",
|
||||||
|
timeout=5 * MINUTES,
|
||||||
|
scaledown_window=5 * MINUTES,
|
||||||
|
image=image,
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=10)
|
||||||
|
class TranscriberWhisperLive:
|
||||||
|
"""Live transcriber class for small audio segments (A10G).
|
||||||
|
|
||||||
|
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@modal.enter()
|
||||||
|
def enter(self):
|
||||||
|
import faster_whisper
|
||||||
|
import torch
|
||||||
|
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
self.use_gpu = torch.cuda.is_available()
|
||||||
|
self.device = "cuda" if self.use_gpu else "cpu"
|
||||||
|
self.model = faster_whisper.WhisperModel(
|
||||||
|
MODEL_NAME,
|
||||||
|
device=self.device,
|
||||||
|
compute_type=MODEL_COMPUTE_TYPE,
|
||||||
|
num_workers=MODEL_NUM_WORKERS,
|
||||||
|
download_root=CACHE_PATH,
|
||||||
|
local_files_only=True,
|
||||||
|
)
|
||||||
|
print(f"Model is on device: {self.device}")
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_segment(
|
||||||
|
self,
|
||||||
|
filename: str,
|
||||||
|
language: str = "en",
|
||||||
|
):
|
||||||
|
"""Transcribe a single uploaded audio file by filename."""
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
segments, _ = self.model.transcribe(
|
||||||
|
file_path,
|
||||||
|
language=language,
|
||||||
|
beam_size=5,
|
||||||
|
word_timestamps=True,
|
||||||
|
vad_filter=True,
|
||||||
|
vad_parameters={"min_silence_duration_ms": 500},
|
||||||
|
)
|
||||||
|
|
||||||
|
segments = list(segments)
|
||||||
|
text = "".join(segment.text for segment in segments).strip()
|
||||||
|
words = [
|
||||||
|
{
|
||||||
|
"word": word.word,
|
||||||
|
"start": round(float(word.start), 2),
|
||||||
|
"end": round(float(word.end), 2),
|
||||||
|
}
|
||||||
|
for segment in segments
|
||||||
|
for word in segment.words
|
||||||
|
]
|
||||||
|
|
||||||
|
return {"text": text, "words": words}
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_batch(
|
||||||
|
self,
|
||||||
|
filenames: list[str],
|
||||||
|
language: str = "en",
|
||||||
|
):
|
||||||
|
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for filename in filenames:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
segments, _ = self.model.transcribe(
|
||||||
|
file_path,
|
||||||
|
language=language,
|
||||||
|
beam_size=5,
|
||||||
|
word_timestamps=True,
|
||||||
|
vad_filter=True,
|
||||||
|
vad_parameters={"min_silence_duration_ms": 500},
|
||||||
|
)
|
||||||
|
|
||||||
|
segments = list(segments)
|
||||||
|
text = "".join(seg.text for seg in segments).strip()
|
||||||
|
words = [
|
||||||
|
{
|
||||||
|
"word": w.word,
|
||||||
|
"start": round(float(w.start), 2),
|
||||||
|
"end": round(float(w.end), 2),
|
||||||
|
}
|
||||||
|
for seg in segments
|
||||||
|
for w in seg.words
|
||||||
|
]
|
||||||
|
|
||||||
|
results.append(
|
||||||
|
{
|
||||||
|
"filename": filename,
|
||||||
|
"text": text,
|
||||||
|
"words": words,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
@app.cls(
|
||||||
|
gpu="L40S",
|
||||||
|
timeout=15 * MINUTES,
|
||||||
|
image=image,
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
)
|
||||||
|
class TranscriberWhisperFile:
|
||||||
|
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||||
|
|
||||||
|
@modal.enter()
|
||||||
|
def enter(self):
|
||||||
|
import faster_whisper
|
||||||
|
import torch
|
||||||
|
from silero_vad import load_silero_vad
|
||||||
|
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
self.use_gpu = torch.cuda.is_available()
|
||||||
|
self.device = "cuda" if self.use_gpu else "cpu"
|
||||||
|
self.model = faster_whisper.WhisperModel(
|
||||||
|
MODEL_NAME,
|
||||||
|
device=self.device,
|
||||||
|
compute_type=MODEL_COMPUTE_TYPE,
|
||||||
|
num_workers=MODEL_NUM_WORKERS,
|
||||||
|
download_root=CACHE_PATH,
|
||||||
|
local_files_only=True,
|
||||||
|
)
|
||||||
|
self.vad_model = load_silero_vad(onnx=False)
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_segment(
|
||||||
|
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
from silero_vad import VADIterator
|
||||||
|
|
||||||
|
def vad_segments(
|
||||||
|
audio_array,
|
||||||
|
sample_rate: int = SAMPLERATE,
|
||||||
|
window_size: int = VAD_CONFIG["window_size"],
|
||||||
|
) -> Generator[TimeSegment, None, None]:
|
||||||
|
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||||
|
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||||
|
start = None
|
||||||
|
for i in range(0, len(audio_array), window_size):
|
||||||
|
chunk = audio_array[i : i + window_size]
|
||||||
|
if len(chunk) < window_size:
|
||||||
|
chunk = np.pad(
|
||||||
|
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||||
|
)
|
||||||
|
speech = iterator(chunk)
|
||||||
|
if not speech:
|
||||||
|
continue
|
||||||
|
if "start" in speech:
|
||||||
|
start = speech["start"]
|
||||||
|
continue
|
||||||
|
if "end" in speech and start is not None:
|
||||||
|
end = speech["end"]
|
||||||
|
yield TimeSegment(
|
||||||
|
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||||
|
)
|
||||||
|
start = None
|
||||||
|
iterator.reset_states()
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
|
||||||
|
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||||
|
merged_batches: list[TimeSegment] = []
|
||||||
|
batch_start = None
|
||||||
|
batch_end = None
|
||||||
|
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||||
|
for segment in vad_segments(audio_array):
|
||||||
|
seg_start, seg_end = segment.start, segment.end
|
||||||
|
if batch_start is None:
|
||||||
|
batch_start, batch_end = seg_start, seg_end
|
||||||
|
continue
|
||||||
|
if seg_end - batch_start <= max_duration:
|
||||||
|
batch_end = seg_end
|
||||||
|
else:
|
||||||
|
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||||
|
batch_start, batch_end = seg_start, seg_end
|
||||||
|
if batch_start is not None and batch_end is not None:
|
||||||
|
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||||
|
|
||||||
|
all_text = []
|
||||||
|
all_words = []
|
||||||
|
|
||||||
|
for segment in merged_batches:
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
s_idx = int(start_time * SAMPLERATE)
|
||||||
|
e_idx = int(end_time * SAMPLERATE)
|
||||||
|
segment = audio_array[s_idx:e_idx]
|
||||||
|
segment = pad_audio(segment, SAMPLERATE)
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
segments, _ = self.model.transcribe(
|
||||||
|
segment,
|
||||||
|
language=language,
|
||||||
|
beam_size=5,
|
||||||
|
word_timestamps=True,
|
||||||
|
vad_filter=True,
|
||||||
|
vad_parameters={"min_silence_duration_ms": 500},
|
||||||
|
)
|
||||||
|
|
||||||
|
segments = list(segments)
|
||||||
|
text = "".join(seg.text for seg in segments).strip()
|
||||||
|
words = [
|
||||||
|
{
|
||||||
|
"word": w.word,
|
||||||
|
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||||
|
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||||
|
}
|
||||||
|
for seg in segments
|
||||||
|
for w in seg.words
|
||||||
|
]
|
||||||
|
if text:
|
||||||
|
all_text.append(text)
|
||||||
|
all_words.extend(words)
|
||||||
|
|
||||||
|
return {"text": " ".join(all_text), "words": all_words}
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: dict) -> str:
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
url_path = urlparse(url).path
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return ext
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return "mp3"
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return "wav"
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return "mp4"
|
||||||
|
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=(
|
||||||
|
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
|
@app.function(
|
||||||
|
scaledown_window=60,
|
||||||
|
timeout=600,
|
||||||
|
secrets=[
|
||||||
|
modal.Secret.from_name("reflector-gpu"),
|
||||||
|
],
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
image=image,
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=40)
|
||||||
|
@modal.asgi_app()
|
||||||
|
def web():
|
||||||
|
from fastapi import (
|
||||||
|
Body,
|
||||||
|
Depends,
|
||||||
|
FastAPI,
|
||||||
|
Form,
|
||||||
|
HTTPException,
|
||||||
|
UploadFile,
|
||||||
|
status,
|
||||||
|
)
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
|
||||||
|
transcriber_live = TranscriberWhisperLive()
|
||||||
|
transcriber_file = TranscriberWhisperFile()
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||||
|
|
||||||
|
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||||
|
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||||
|
return
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||||
|
detail="Invalid API key",
|
||||||
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
|
)
|
||||||
|
|
||||||
|
class TranscriptResponse(dict):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||||
|
def transcribe(
|
||||||
|
file: UploadFile = None,
|
||||||
|
files: list[UploadFile] | None = None,
|
||||||
|
model: str = Form(MODEL_NAME),
|
||||||
|
language: str = Form("en"),
|
||||||
|
batch: bool = Form(False),
|
||||||
|
):
|
||||||
|
if not file and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||||
|
)
|
||||||
|
if batch and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Batch transcription requires 'files'"
|
||||||
|
)
|
||||||
|
|
||||||
|
upload_files = [file] if file else files
|
||||||
|
|
||||||
|
uploaded_filenames: list[str] = []
|
||||||
|
for upload_file in upload_files:
|
||||||
|
audio_suffix = upload_file.filename.split(".")[-1]
|
||||||
|
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=(
|
||||||
|
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
content = upload_file.file.read()
|
||||||
|
f.write(content)
|
||||||
|
uploaded_filenames.append(unique_filename)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
try:
|
||||||
|
if batch and len(upload_files) > 1:
|
||||||
|
func = transcriber_live.transcribe_batch.spawn(
|
||||||
|
filenames=uploaded_filenames,
|
||||||
|
language=language,
|
||||||
|
)
|
||||||
|
results = func.get()
|
||||||
|
return {"results": results}
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
func = transcriber_live.transcribe_segment.spawn(
|
||||||
|
filename=filename,
|
||||||
|
language=language,
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
result["filename"] = filename
|
||||||
|
results.append(result)
|
||||||
|
|
||||||
|
return {"results": results} if len(results) > 1 else results[0]
|
||||||
|
finally:
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
os.remove(file_path)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||||
|
def transcribe_from_url(
|
||||||
|
audio_file_url: str = Body(
|
||||||
|
..., description="URL of the audio file to transcribe"
|
||||||
|
),
|
||||||
|
model: str = Body(MODEL_NAME),
|
||||||
|
language: str = Body("en"),
|
||||||
|
timestamp_offset: float = Body(0.0),
|
||||||
|
):
|
||||||
|
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||||
|
try:
|
||||||
|
func = transcriber_file.transcribe_segment.spawn(
|
||||||
|
filename=unique_filename,
|
||||||
|
timestamp_offset=timestamp_offset,
|
||||||
|
language=language,
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
return result
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
os.remove(file_path)
|
||||||
|
upload_volume.commit()
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return app
|
||||||
|
|
||||||
|
|
||||||
|
class NoStdStreams:
|
||||||
|
def __init__(self):
|
||||||
|
self.devnull = open(os.devnull, "w")
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||||
|
self._stdout.flush()
|
||||||
|
self._stderr.flush()
|
||||||
|
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||||||
|
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||||
|
self.devnull.close()
|
||||||
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
@@ -0,0 +1,658 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import threading
|
||||||
|
import uuid
|
||||||
|
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import modal
|
||||||
|
|
||||||
|
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
|
||||||
|
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||||
|
SAMPLERATE = 16000
|
||||||
|
UPLOADS_PATH = "/uploads"
|
||||||
|
CACHE_PATH = "/cache"
|
||||||
|
VAD_CONFIG = {
|
||||||
|
"batch_max_duration": 30.0,
|
||||||
|
"silence_padding": 0.5,
|
||||||
|
"window_size": 512,
|
||||||
|
}
|
||||||
|
|
||||||
|
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||||
|
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||||
|
|
||||||
|
|
||||||
|
class TimeSegment(NamedTuple):
|
||||||
|
"""Represents a time segment with start and end times."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
class AudioSegment(NamedTuple):
|
||||||
|
"""Represents an audio segment with timing and audio data."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
audio: any
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptResult(NamedTuple):
|
||||||
|
"""Represents a transcription result with text and word timings."""
|
||||||
|
|
||||||
|
text: str
|
||||||
|
words: list["WordTiming"]
|
||||||
|
|
||||||
|
|
||||||
|
class WordTiming(TypedDict):
|
||||||
|
"""Represents a word with its timing information."""
|
||||||
|
|
||||||
|
word: str
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
app = modal.App("reflector-transcriber-parakeet")
|
||||||
|
|
||||||
|
# Volume for caching model weights
|
||||||
|
model_cache = modal.Volume.from_name("parakeet-model-cache", create_if_missing=True)
|
||||||
|
# Volume for temporary file uploads
|
||||||
|
upload_volume = modal.Volume.from_name("parakeet-uploads", create_if_missing=True)
|
||||||
|
|
||||||
|
image = (
|
||||||
|
modal.Image.from_registry(
|
||||||
|
"nvidia/cuda:12.8.0-cudnn-devel-ubuntu22.04", add_python="3.12"
|
||||||
|
)
|
||||||
|
.env(
|
||||||
|
{
|
||||||
|
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||||
|
"HF_HOME": "/cache",
|
||||||
|
"DEBIAN_FRONTEND": "noninteractive",
|
||||||
|
"CXX": "g++",
|
||||||
|
"CC": "g++",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
.apt_install("ffmpeg")
|
||||||
|
.pip_install(
|
||||||
|
"hf_transfer==0.1.9",
|
||||||
|
"huggingface_hub[hf-xet]==0.31.2",
|
||||||
|
"nemo_toolkit[asr]==2.3.0",
|
||||||
|
"cuda-python==12.8.0",
|
||||||
|
"fastapi==0.115.12",
|
||||||
|
"numpy<2",
|
||||||
|
"librosa==0.10.1",
|
||||||
|
"requests",
|
||||||
|
"silero-vad==5.1.0",
|
||||||
|
"torch",
|
||||||
|
)
|
||||||
|
.entrypoint([]) # silence chatty logs by container on start
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||||
|
parsed_url = urlparse(url)
|
||||||
|
url_path = parsed_url.path
|
||||||
|
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return AudioFileExtension(ext)
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return AudioFileExtension("mp3")
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return AudioFileExtension("wav")
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return AudioFileExtension("mp4")
|
||||||
|
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported audio format for URL: {url}. "
|
||||||
|
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(
|
||||||
|
audio_file_url: str,
|
||||||
|
) -> tuple[ParakeetUniqFilename, AudioFileExtension]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = ParakeetUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
|
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||||
|
"""Add 0.5 seconds of silence if audio is less than 500ms.
|
||||||
|
|
||||||
|
This is a workaround for a Parakeet bug where very short audio (<500ms) causes:
|
||||||
|
ValueError: `char_offsets`: [] and `processed_tokens`: [157, 834, 834, 841]
|
||||||
|
have to be of the same length
|
||||||
|
|
||||||
|
See: https://github.com/NVIDIA/NeMo/issues/8451
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
audio_duration = len(audio_array) / sample_rate
|
||||||
|
if audio_duration < 0.5:
|
||||||
|
silence_samples = int(sample_rate * 0.5)
|
||||||
|
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||||
|
return np.concatenate([audio_array, silence])
|
||||||
|
return audio_array
|
||||||
|
|
||||||
|
|
||||||
|
@app.cls(
|
||||||
|
gpu="A10G",
|
||||||
|
timeout=600,
|
||||||
|
scaledown_window=300,
|
||||||
|
image=image,
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
enable_memory_snapshot=True,
|
||||||
|
experimental_options={"enable_gpu_snapshot": True},
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=10)
|
||||||
|
class TranscriberParakeetLive:
|
||||||
|
@modal.enter(snap=True)
|
||||||
|
def enter(self):
|
||||||
|
import nemo.collections.asr as nemo_asr
|
||||||
|
|
||||||
|
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||||
|
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||||
|
device = next(self.model.parameters()).device
|
||||||
|
print(f"Model is on device: {device}")
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_segment(
|
||||||
|
self,
|
||||||
|
filename: str,
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
padded_audio = pad_audio(audio_array, sample_rate)
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||||
|
|
||||||
|
text = output.text.strip()
|
||||||
|
words: list[WordTiming] = [
|
||||||
|
WordTiming(
|
||||||
|
# XXX the space added here is to match the output of whisper
|
||||||
|
# whisper add space to each words, while parakeet don't
|
||||||
|
word=word_info["word"] + " ",
|
||||||
|
start=round(word_info["start"], 2),
|
||||||
|
end=round(word_info["end"], 2),
|
||||||
|
)
|
||||||
|
for word_info in output.timestamp["word"]
|
||||||
|
]
|
||||||
|
|
||||||
|
return {"text": text, "words": words}
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_batch(
|
||||||
|
self,
|
||||||
|
filenames: list[str],
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
results = []
|
||||||
|
audio_arrays = []
|
||||||
|
|
||||||
|
# Load all audio files with padding
|
||||||
|
for filename in filenames:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
padded_audio = pad_audio(audio_array, sample_rate)
|
||||||
|
audio_arrays.append(padded_audio)
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
outputs = self.model.transcribe(audio_arrays, timestamps=True)
|
||||||
|
|
||||||
|
# Process results for each file
|
||||||
|
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||||
|
text = output.text.strip()
|
||||||
|
|
||||||
|
words: list[WordTiming] = [
|
||||||
|
WordTiming(
|
||||||
|
word=word_info["word"] + " ",
|
||||||
|
start=round(word_info["start"], 2),
|
||||||
|
end=round(word_info["end"], 2),
|
||||||
|
)
|
||||||
|
for word_info in output.timestamp["word"]
|
||||||
|
]
|
||||||
|
|
||||||
|
results.append(
|
||||||
|
{
|
||||||
|
"filename": filename,
|
||||||
|
"text": text,
|
||||||
|
"words": words,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
# L40S class for file transcription (bigger files)
|
||||||
|
@app.cls(
|
||||||
|
gpu="L40S",
|
||||||
|
timeout=900,
|
||||||
|
image=image,
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
enable_memory_snapshot=True,
|
||||||
|
experimental_options={"enable_gpu_snapshot": True},
|
||||||
|
)
|
||||||
|
class TranscriberParakeetFile:
|
||||||
|
@modal.enter(snap=True)
|
||||||
|
def enter(self):
|
||||||
|
import nemo.collections.asr as nemo_asr
|
||||||
|
import torch
|
||||||
|
from silero_vad import load_silero_vad
|
||||||
|
|
||||||
|
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||||
|
|
||||||
|
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||||
|
device = next(self.model.parameters()).device
|
||||||
|
print(f"Model is on device: {device}")
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
self.vad_model = load_silero_vad(onnx=False)
|
||||||
|
print("Silero VAD initialized")
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_segment(
|
||||||
|
self,
|
||||||
|
filename: str,
|
||||||
|
timestamp_offset: float = 0.0,
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
from silero_vad import VADIterator
|
||||||
|
|
||||||
|
def load_and_convert_audio(file_path):
|
||||||
|
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
return audio_array
|
||||||
|
|
||||||
|
def vad_segment_generator(
|
||||||
|
audio_array,
|
||||||
|
) -> Generator[TimeSegment, None, None]:
|
||||||
|
"""Generate speech segments using VAD with start/end sample indices"""
|
||||||
|
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||||
|
window_size = VAD_CONFIG["window_size"]
|
||||||
|
start = None
|
||||||
|
|
||||||
|
for i in range(0, len(audio_array), window_size):
|
||||||
|
chunk = audio_array[i : i + window_size]
|
||||||
|
if len(chunk) < window_size:
|
||||||
|
chunk = np.pad(
|
||||||
|
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||||
|
)
|
||||||
|
|
||||||
|
speech_dict = vad_iterator(chunk)
|
||||||
|
if not speech_dict:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if "start" in speech_dict:
|
||||||
|
start = speech_dict["start"]
|
||||||
|
continue
|
||||||
|
|
||||||
|
if "end" in speech_dict and start is not None:
|
||||||
|
end = speech_dict["end"]
|
||||||
|
start_time = start / float(SAMPLERATE)
|
||||||
|
end_time = end / float(SAMPLERATE)
|
||||||
|
|
||||||
|
yield TimeSegment(start_time, end_time)
|
||||||
|
start = None
|
||||||
|
|
||||||
|
vad_iterator.reset_states()
|
||||||
|
|
||||||
|
def batch_speech_segments(
|
||||||
|
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||||
|
) -> Generator[TimeSegment, None, None]:
|
||||||
|
"""
|
||||||
|
Input segments:
|
||||||
|
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||||
|
|
||||||
|
↓ (max_duration=10)
|
||||||
|
|
||||||
|
Output batches:
|
||||||
|
[0-8] [10-19] [20-22]
|
||||||
|
|
||||||
|
Note: silences are kept for better transcription, previous implementation was
|
||||||
|
passing segments separatly, but the output was less accurate.
|
||||||
|
"""
|
||||||
|
batch_start_time = None
|
||||||
|
batch_end_time = None
|
||||||
|
|
||||||
|
for segment in segments:
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
if batch_start_time is None or batch_end_time is None:
|
||||||
|
batch_start_time = start_time
|
||||||
|
batch_end_time = end_time
|
||||||
|
continue
|
||||||
|
|
||||||
|
total_duration = end_time - batch_start_time
|
||||||
|
|
||||||
|
if total_duration <= max_duration:
|
||||||
|
batch_end_time = end_time
|
||||||
|
continue
|
||||||
|
|
||||||
|
yield TimeSegment(batch_start_time, batch_end_time)
|
||||||
|
batch_start_time = start_time
|
||||||
|
batch_end_time = end_time
|
||||||
|
|
||||||
|
if batch_start_time is None or batch_end_time is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
yield TimeSegment(batch_start_time, batch_end_time)
|
||||||
|
|
||||||
|
def batch_segment_to_audio_segment(
|
||||||
|
segments: Generator[TimeSegment, None, None],
|
||||||
|
audio_array,
|
||||||
|
) -> Generator[AudioSegment, None, None]:
|
||||||
|
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||||
|
|
||||||
|
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||||
|
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||||
|
segments, which are corrected by enforce_word_timing_constraints.
|
||||||
|
"""
|
||||||
|
for segment in segments:
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
start_sample = int(start_time * SAMPLERATE)
|
||||||
|
end_sample = int(end_time * SAMPLERATE)
|
||||||
|
audio_segment = audio_array[start_sample:end_sample]
|
||||||
|
|
||||||
|
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||||
|
|
||||||
|
yield AudioSegment(start_time, end_time, padded_segment)
|
||||||
|
|
||||||
|
def transcribe_batch(model, audio_segments: list) -> list:
|
||||||
|
with NoStdStreams():
|
||||||
|
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def enforce_word_timing_constraints(
|
||||||
|
words: list[WordTiming],
|
||||||
|
) -> list[WordTiming]:
|
||||||
|
"""Enforce that word end times don't exceed the start time of the next word.
|
||||||
|
|
||||||
|
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||||
|
transcription accuracy, word timings from different segments may overlap.
|
||||||
|
This function ensures there are no overlaps by adjusting end times.
|
||||||
|
"""
|
||||||
|
if len(words) <= 1:
|
||||||
|
return words
|
||||||
|
|
||||||
|
enforced_words = []
|
||||||
|
for i, word in enumerate(words):
|
||||||
|
enforced_word = word.copy()
|
||||||
|
|
||||||
|
if i < len(words) - 1:
|
||||||
|
next_start = words[i + 1]["start"]
|
||||||
|
if enforced_word["end"] > next_start:
|
||||||
|
enforced_word["end"] = next_start
|
||||||
|
|
||||||
|
enforced_words.append(enforced_word)
|
||||||
|
|
||||||
|
return enforced_words
|
||||||
|
|
||||||
|
def emit_results(
|
||||||
|
results: list,
|
||||||
|
segments_info: list[AudioSegment],
|
||||||
|
) -> Generator[TranscriptResult, None, None]:
|
||||||
|
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||||
|
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
text = output.text.strip()
|
||||||
|
words: list[WordTiming] = [
|
||||||
|
WordTiming(
|
||||||
|
word=word_info["word"] + " ",
|
||||||
|
start=round(
|
||||||
|
word_info["start"] + start_time + timestamp_offset, 2
|
||||||
|
),
|
||||||
|
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||||
|
)
|
||||||
|
for word_info in output.timestamp["word"]
|
||||||
|
]
|
||||||
|
|
||||||
|
yield TranscriptResult(text, words)
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array = load_and_convert_audio(file_path)
|
||||||
|
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||||
|
|
||||||
|
all_text_parts: list[str] = []
|
||||||
|
all_words: list[WordTiming] = []
|
||||||
|
|
||||||
|
raw_segments = vad_segment_generator(audio_array)
|
||||||
|
speech_segments = batch_speech_segments(
|
||||||
|
raw_segments,
|
||||||
|
VAD_CONFIG["batch_max_duration"],
|
||||||
|
)
|
||||||
|
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||||
|
|
||||||
|
for batch in audio_segments:
|
||||||
|
audio_segment = batch.audio
|
||||||
|
results = transcribe_batch(self.model, [audio_segment])
|
||||||
|
|
||||||
|
for result in emit_results(
|
||||||
|
results,
|
||||||
|
[batch],
|
||||||
|
):
|
||||||
|
if not result.text:
|
||||||
|
continue
|
||||||
|
all_text_parts.append(result.text)
|
||||||
|
all_words.extend(result.words)
|
||||||
|
|
||||||
|
all_words = enforce_word_timing_constraints(all_words)
|
||||||
|
|
||||||
|
combined_text = " ".join(all_text_parts)
|
||||||
|
return {"text": combined_text, "words": all_words}
|
||||||
|
|
||||||
|
|
||||||
|
@app.function(
|
||||||
|
scaledown_window=60,
|
||||||
|
timeout=600,
|
||||||
|
secrets=[
|
||||||
|
modal.Secret.from_name("reflector-gpu"),
|
||||||
|
],
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
image=image,
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=40)
|
||||||
|
@modal.asgi_app()
|
||||||
|
def web():
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
|
||||||
|
from fastapi import (
|
||||||
|
Body,
|
||||||
|
Depends,
|
||||||
|
FastAPI,
|
||||||
|
Form,
|
||||||
|
HTTPException,
|
||||||
|
UploadFile,
|
||||||
|
status,
|
||||||
|
)
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
transcriber_live = TranscriberParakeetLive()
|
||||||
|
transcriber_file = TranscriberParakeetFile()
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||||
|
|
||||||
|
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||||
|
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||||
|
return
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||||
|
detail="Invalid API key",
|
||||||
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
|
)
|
||||||
|
|
||||||
|
class TranscriptResponse(BaseModel):
|
||||||
|
result: dict
|
||||||
|
|
||||||
|
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||||
|
def transcribe(
|
||||||
|
file: UploadFile = None,
|
||||||
|
files: list[UploadFile] | None = None,
|
||||||
|
model: str = Form(MODEL_NAME),
|
||||||
|
language: str = Form("en"),
|
||||||
|
batch: bool = Form(False),
|
||||||
|
):
|
||||||
|
# Parakeet only supports English
|
||||||
|
if language != "en":
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||||
|
)
|
||||||
|
# Handle both single file and multiple files
|
||||||
|
if not file and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||||
|
)
|
||||||
|
if batch and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Batch transcription requires 'files'"
|
||||||
|
)
|
||||||
|
|
||||||
|
upload_files = [file] if file else files
|
||||||
|
|
||||||
|
# Upload files to volume
|
||||||
|
uploaded_filenames = []
|
||||||
|
for upload_file in upload_files:
|
||||||
|
audio_suffix = upload_file.filename.split(".")[-1]
|
||||||
|
assert audio_suffix in SUPPORTED_FILE_EXTENSIONS
|
||||||
|
|
||||||
|
# Generate unique filename
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
print(f"Writing file to: {file_path}")
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
content = upload_file.file.read()
|
||||||
|
f.write(content)
|
||||||
|
|
||||||
|
uploaded_filenames.append(unique_filename)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Use A10G live transcriber for per-file transcription
|
||||||
|
if batch and len(upload_files) > 1:
|
||||||
|
# Use batch transcription
|
||||||
|
func = transcriber_live.transcribe_batch.spawn(
|
||||||
|
filenames=uploaded_filenames,
|
||||||
|
)
|
||||||
|
results = func.get()
|
||||||
|
return {"results": results}
|
||||||
|
|
||||||
|
# Per-file transcription
|
||||||
|
results = []
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
func = transcriber_live.transcribe_segment.spawn(
|
||||||
|
filename=filename,
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
result["filename"] = filename
|
||||||
|
results.append(result)
|
||||||
|
|
||||||
|
return {"results": results} if len(results) > 1 else results[0]
|
||||||
|
|
||||||
|
finally:
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
print(f"Deleting file: {file_path}")
|
||||||
|
os.remove(file_path)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error deleting {filename}: {e}")
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||||
|
def transcribe_from_url(
|
||||||
|
audio_file_url: str = Body(
|
||||||
|
..., description="URL of the audio file to transcribe"
|
||||||
|
),
|
||||||
|
model: str = Body(MODEL_NAME),
|
||||||
|
language: str = Body("en", description="Language code (only 'en' supported)"),
|
||||||
|
timestamp_offset: float = Body(0.0),
|
||||||
|
):
|
||||||
|
# Parakeet only supports English
|
||||||
|
if language != "en":
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||||
|
)
|
||||||
|
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||||
|
|
||||||
|
try:
|
||||||
|
func = transcriber_file.transcribe_segment.spawn(
|
||||||
|
filename=unique_filename,
|
||||||
|
timestamp_offset=timestamp_offset,
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
return result
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
print(f"Deleting file: {file_path}")
|
||||||
|
os.remove(file_path)
|
||||||
|
upload_volume.commit()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error cleaning up {unique_filename}: {e}")
|
||||||
|
|
||||||
|
return app
|
||||||
|
|
||||||
|
|
||||||
|
class NoStdStreams:
|
||||||
|
def __init__(self):
|
||||||
|
self.devnull = open(os.devnull, "w")
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||||
|
self._stdout.flush()
|
||||||
|
self._stderr.flush()
|
||||||
|
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||||||
|
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||||
|
self.devnull.close()
|
||||||
2
gpu/self_hosted/.env.example
Normal file
2
gpu/self_hosted/.env.example
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
REFLECTOR_GPU_APIKEY=
|
||||||
|
HF_TOKEN=
|
||||||
38
gpu/self_hosted/.gitignore
vendored
Normal file
38
gpu/self_hosted/.gitignore
vendored
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
cache/
|
||||||
|
|
||||||
|
# OS / Editor
|
||||||
|
.DS_Store
|
||||||
|
.vscode/
|
||||||
|
.idea/
|
||||||
|
|
||||||
|
# Python
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# Env and secrets
|
||||||
|
.env
|
||||||
|
*.env
|
||||||
|
*.secret
|
||||||
|
HF_TOKEN
|
||||||
|
REFLECTOR_GPU_APIKEY
|
||||||
|
|
||||||
|
# Virtual env / uv
|
||||||
|
.venv/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
uv/
|
||||||
|
|
||||||
|
# Build / dist
|
||||||
|
build/
|
||||||
|
dist/
|
||||||
|
.eggs/
|
||||||
|
*.egg-info/
|
||||||
|
|
||||||
|
# Coverage / test
|
||||||
|
.pytest_cache/
|
||||||
|
.coverage*
|
||||||
|
htmlcov/
|
||||||
|
|
||||||
|
# Logs
|
||||||
|
*.log
|
||||||
46
gpu/self_hosted/Dockerfile
Normal file
46
gpu/self_hosted/Dockerfile
Normal file
@@ -0,0 +1,46 @@
|
|||||||
|
FROM python:3.12-slim
|
||||||
|
|
||||||
|
ENV PYTHONUNBUFFERED=1 \
|
||||||
|
UV_LINK_MODE=copy \
|
||||||
|
UV_NO_CACHE=1
|
||||||
|
|
||||||
|
WORKDIR /tmp
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
ffmpeg \
|
||||||
|
curl \
|
||||||
|
ca-certificates \
|
||||||
|
gnupg \
|
||||||
|
wget \
|
||||||
|
&& apt-get clean
|
||||||
|
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
|
||||||
|
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
|
||||||
|
RUN dpkg -i /cuda-keyring.deb \
|
||||||
|
&& rm /cuda-keyring.deb \
|
||||||
|
&& apt-get update \
|
||||||
|
&& apt-get install -y --no-install-recommends \
|
||||||
|
cuda-cudart-12-6 \
|
||||||
|
libcublas-12-6 \
|
||||||
|
libcudnn9-cuda-12 \
|
||||||
|
libcudnn9-dev-cuda-12 \
|
||||||
|
&& apt-get clean \
|
||||||
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
||||||
|
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
||||||
|
ENV PATH="/root/.local/bin/:$PATH"
|
||||||
|
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
|
||||||
|
|
||||||
|
RUN mkdir -p /app
|
||||||
|
WORKDIR /app
|
||||||
|
COPY pyproject.toml uv.lock /app/
|
||||||
|
|
||||||
|
|
||||||
|
COPY ./app /app/app
|
||||||
|
COPY ./main.py /app/
|
||||||
|
COPY ./runserver.sh /app/
|
||||||
|
|
||||||
|
EXPOSE 8000
|
||||||
|
|
||||||
|
CMD ["sh", "/app/runserver.sh"]
|
||||||
|
|
||||||
|
|
||||||
73
gpu/self_hosted/README.md
Normal file
73
gpu/self_hosted/README.md
Normal file
@@ -0,0 +1,73 @@
|
|||||||
|
# Self-hosted Model API
|
||||||
|
|
||||||
|
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
|
||||||
|
|
||||||
|
Environment variables
|
||||||
|
|
||||||
|
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
|
||||||
|
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
|
||||||
|
|
||||||
|
Requirements
|
||||||
|
|
||||||
|
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
|
||||||
|
- Python 3.12+
|
||||||
|
- NVIDIA GPU optional. If available, it will be used automatically
|
||||||
|
|
||||||
|
Local run
|
||||||
|
Set env vars in self_hosted/.env file
|
||||||
|
uv sync
|
||||||
|
|
||||||
|
uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||||
|
|
||||||
|
Authentication
|
||||||
|
|
||||||
|
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
|
||||||
|
|
||||||
|
Endpoints
|
||||||
|
|
||||||
|
- POST /v1/audio/transcriptions
|
||||||
|
|
||||||
|
- multipart/form-data
|
||||||
|
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
|
||||||
|
- response: single { text, words, filename } or { results: [ ... ] }
|
||||||
|
|
||||||
|
- POST /v1/audio/transcriptions-from-url
|
||||||
|
|
||||||
|
- application/json
|
||||||
|
- body: { audio_file_url, language, timestamp_offset }
|
||||||
|
- response: { text, words }
|
||||||
|
|
||||||
|
- POST /translate
|
||||||
|
|
||||||
|
- text: query parameter
|
||||||
|
- body (application/json): { source_language, target_language }
|
||||||
|
- response: { text: { <src>: original, <tgt>: translated } }
|
||||||
|
|
||||||
|
- POST /diarize
|
||||||
|
- query parameters: audio_file_url, timestamp (optional)
|
||||||
|
- requires HF_TOKEN to be set (for pyannote)
|
||||||
|
- response: { diarization: [ { start, end, speaker } ] }
|
||||||
|
|
||||||
|
OpenAPI docs
|
||||||
|
|
||||||
|
- Visit /docs when the server is running
|
||||||
|
|
||||||
|
Docker
|
||||||
|
|
||||||
|
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
|
||||||
|
|
||||||
|
Conformance tests
|
||||||
|
|
||||||
|
# From this directory
|
||||||
|
|
||||||
|
TRANSCRIPT_URL=http://localhost:8000 \
|
||||||
|
TRANSCRIPT_API_KEY=dev-key \
|
||||||
|
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
|
||||||
|
|
||||||
|
TRANSLATION_URL=http://localhost:8000 \
|
||||||
|
TRANSLATION_API_KEY=dev-key \
|
||||||
|
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
|
||||||
|
|
||||||
|
DIARIZATION_URL=http://localhost:8000 \
|
||||||
|
DIARIZATION_API_KEY=dev-key \
|
||||||
|
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py
|
||||||
19
gpu/self_hosted/app/auth.py
Normal file
19
gpu/self_hosted/app/auth.py
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from fastapi import Depends, HTTPException, status
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
|
||||||
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||||
|
|
||||||
|
|
||||||
|
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||||
|
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
|
||||||
|
if not required_key:
|
||||||
|
return
|
||||||
|
if apikey == required_key:
|
||||||
|
return
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||||
|
detail="Invalid API key",
|
||||||
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
|
)
|
||||||
12
gpu/self_hosted/app/config.py
Normal file
12
gpu/self_hosted/app/config.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||||
|
SAMPLE_RATE = 16000
|
||||||
|
VAD_CONFIG = {
|
||||||
|
"batch_max_duration": 30.0,
|
||||||
|
"silence_padding": 0.5,
|
||||||
|
"window_size": 512,
|
||||||
|
}
|
||||||
|
|
||||||
|
# App-level paths
|
||||||
|
UPLOADS_PATH = Path("/tmp/whisper-uploads")
|
||||||
30
gpu/self_hosted/app/factory.py
Normal file
30
gpu/self_hosted/app/factory.py
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
from contextlib import asynccontextmanager
|
||||||
|
|
||||||
|
from fastapi import FastAPI
|
||||||
|
|
||||||
|
from .routers.diarization import router as diarization_router
|
||||||
|
from .routers.transcription import router as transcription_router
|
||||||
|
from .routers.translation import router as translation_router
|
||||||
|
from .services.transcriber import WhisperService
|
||||||
|
from .services.diarizer import PyannoteDiarizationService
|
||||||
|
from .utils import ensure_dirs
|
||||||
|
|
||||||
|
|
||||||
|
@asynccontextmanager
|
||||||
|
async def lifespan(app: FastAPI):
|
||||||
|
ensure_dirs()
|
||||||
|
whisper_service = WhisperService()
|
||||||
|
whisper_service.load()
|
||||||
|
app.state.whisper = whisper_service
|
||||||
|
diarization_service = PyannoteDiarizationService()
|
||||||
|
diarization_service.load()
|
||||||
|
app.state.diarizer = diarization_service
|
||||||
|
yield
|
||||||
|
|
||||||
|
|
||||||
|
def create_app() -> FastAPI:
|
||||||
|
app = FastAPI(lifespan=lifespan)
|
||||||
|
app.include_router(transcription_router)
|
||||||
|
app.include_router(translation_router)
|
||||||
|
app.include_router(diarization_router)
|
||||||
|
return app
|
||||||
30
gpu/self_hosted/app/routers/diarization.py
Normal file
30
gpu/self_hosted/app/routers/diarization.py
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
from typing import List
|
||||||
|
|
||||||
|
from fastapi import APIRouter, Depends, Request
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from ..auth import apikey_auth
|
||||||
|
from ..services.diarizer import PyannoteDiarizationService
|
||||||
|
from ..utils import download_audio_file
|
||||||
|
|
||||||
|
router = APIRouter(tags=["diarization"])
|
||||||
|
|
||||||
|
|
||||||
|
class DiarizationSegment(BaseModel):
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
speaker: int
|
||||||
|
|
||||||
|
|
||||||
|
class DiarizationResponse(BaseModel):
|
||||||
|
diarization: List[DiarizationSegment]
|
||||||
|
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
|
||||||
|
)
|
||||||
|
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
|
||||||
|
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||||
|
file_path = str(file_path)
|
||||||
|
diarizer: PyannoteDiarizationService = request.app.state.diarizer
|
||||||
|
return diarizer.diarize_file(file_path, timestamp=timestamp)
|
||||||
109
gpu/self_hosted/app/routers/transcription.py
Normal file
109
gpu/self_hosted/app/routers/transcription.py
Normal file
@@ -0,0 +1,109 @@
|
|||||||
|
import uuid
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from pathlib import Path
|
||||||
|
from ..auth import apikey_auth
|
||||||
|
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||||
|
from ..services.transcriber import MODEL_NAME
|
||||||
|
from ..utils import cleanup_uploaded_files, download_audio_file
|
||||||
|
|
||||||
|
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
|
||||||
|
|
||||||
|
|
||||||
|
class WordTiming(BaseModel):
|
||||||
|
word: str
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptResult(BaseModel):
|
||||||
|
text: str
|
||||||
|
words: list[WordTiming]
|
||||||
|
filename: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptBatchResponse(BaseModel):
|
||||||
|
results: list[TranscriptResult]
|
||||||
|
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/transcriptions",
|
||||||
|
dependencies=[Depends(apikey_auth)],
|
||||||
|
response_model=Union[TranscriptResult, TranscriptBatchResponse],
|
||||||
|
)
|
||||||
|
def transcribe(
|
||||||
|
request: Request,
|
||||||
|
file: UploadFile = None,
|
||||||
|
files: list[UploadFile] | None = None,
|
||||||
|
model: str = Form(MODEL_NAME),
|
||||||
|
language: str = Form("en"),
|
||||||
|
batch: bool = Form(False),
|
||||||
|
):
|
||||||
|
service = request.app.state.whisper
|
||||||
|
if not file and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||||
|
)
|
||||||
|
if batch and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Batch transcription requires 'files'"
|
||||||
|
)
|
||||||
|
|
||||||
|
upload_files = [file] if file else files
|
||||||
|
|
||||||
|
uploaded_paths: list[Path] = []
|
||||||
|
with cleanup_uploaded_files(uploaded_paths):
|
||||||
|
for upload_file in upload_files:
|
||||||
|
audio_suffix = upload_file.filename.split(".")[-1].lower()
|
||||||
|
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=(
|
||||||
|
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path = UPLOADS_PATH / unique_filename
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
content = upload_file.file.read()
|
||||||
|
f.write(content)
|
||||||
|
uploaded_paths.append(file_path)
|
||||||
|
|
||||||
|
if batch and len(upload_files) > 1:
|
||||||
|
results = []
|
||||||
|
for path in uploaded_paths:
|
||||||
|
result = service.transcribe_file(str(path), language=language)
|
||||||
|
result["filename"] = path.name
|
||||||
|
results.append(result)
|
||||||
|
return {"results": results}
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for path in uploaded_paths:
|
||||||
|
result = service.transcribe_file(str(path), language=language)
|
||||||
|
result["filename"] = path.name
|
||||||
|
results.append(result)
|
||||||
|
|
||||||
|
return {"results": results} if len(results) > 1 else results[0]
|
||||||
|
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/transcriptions-from-url",
|
||||||
|
dependencies=[Depends(apikey_auth)],
|
||||||
|
response_model=TranscriptResult,
|
||||||
|
)
|
||||||
|
def transcribe_from_url(
|
||||||
|
request: Request,
|
||||||
|
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
|
||||||
|
model: str = Body(MODEL_NAME),
|
||||||
|
language: str = Body("en"),
|
||||||
|
timestamp_offset: float = Body(0.0),
|
||||||
|
):
|
||||||
|
service = request.app.state.whisper
|
||||||
|
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||||
|
file_path = str(file_path)
|
||||||
|
result = service.transcribe_vad_url_segment(
|
||||||
|
file_path=file_path, timestamp_offset=timestamp_offset, language=language
|
||||||
|
)
|
||||||
|
return result
|
||||||
28
gpu/self_hosted/app/routers/translation.py
Normal file
28
gpu/self_hosted/app/routers/translation.py
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
from fastapi import APIRouter, Body, Depends
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from ..auth import apikey_auth
|
||||||
|
from ..services.translator import TextTranslatorService
|
||||||
|
|
||||||
|
router = APIRouter(tags=["translation"])
|
||||||
|
|
||||||
|
translator = TextTranslatorService()
|
||||||
|
|
||||||
|
|
||||||
|
class TranslationResponse(BaseModel):
|
||||||
|
text: Dict[str, str]
|
||||||
|
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/translate",
|
||||||
|
dependencies=[Depends(apikey_auth)],
|
||||||
|
response_model=TranslationResponse,
|
||||||
|
)
|
||||||
|
def translate(
|
||||||
|
text: str,
|
||||||
|
source_language: str = Body("en"),
|
||||||
|
target_language: str = Body("fr"),
|
||||||
|
):
|
||||||
|
return translator.translate(text, source_language, target_language)
|
||||||
42
gpu/self_hosted/app/services/diarizer.py
Normal file
42
gpu/self_hosted/app/services/diarizer.py
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
import os
|
||||||
|
import threading
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from pyannote.audio import Pipeline
|
||||||
|
|
||||||
|
|
||||||
|
class PyannoteDiarizationService:
|
||||||
|
def __init__(self):
|
||||||
|
self._pipeline = None
|
||||||
|
self._device = "cpu"
|
||||||
|
self._lock = threading.Lock()
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
self._pipeline = Pipeline.from_pretrained(
|
||||||
|
"pyannote/speaker-diarization-3.1",
|
||||||
|
use_auth_token=os.environ.get("HF_TOKEN"),
|
||||||
|
)
|
||||||
|
self._pipeline.to(torch.device(self._device))
|
||||||
|
|
||||||
|
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
|
||||||
|
if self._pipeline is None:
|
||||||
|
self.load()
|
||||||
|
waveform, sample_rate = torchaudio.load(file_path)
|
||||||
|
with self._lock:
|
||||||
|
diarization = self._pipeline(
|
||||||
|
{"waveform": waveform, "sample_rate": sample_rate}
|
||||||
|
)
|
||||||
|
words = []
|
||||||
|
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||||
|
words.append(
|
||||||
|
{
|
||||||
|
"start": round(timestamp + diarization_segment.start, 3),
|
||||||
|
"end": round(timestamp + diarization_segment.end, 3),
|
||||||
|
"speaker": int(speaker[-2:])
|
||||||
|
if speaker and speaker[-2:].isdigit()
|
||||||
|
else 0,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return {"diarization": words}
|
||||||
208
gpu/self_hosted/app/services/transcriber.py
Normal file
208
gpu/self_hosted/app/services/transcriber.py
Normal file
@@ -0,0 +1,208 @@
|
|||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import subprocess
|
||||||
|
import threading
|
||||||
|
from typing import Generator
|
||||||
|
|
||||||
|
import faster_whisper
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from fastapi import HTTPException
|
||||||
|
from silero_vad import VADIterator, load_silero_vad
|
||||||
|
|
||||||
|
from ..config import SAMPLE_RATE, VAD_CONFIG
|
||||||
|
|
||||||
|
# Whisper configuration (service-local defaults)
|
||||||
|
MODEL_NAME = "large-v2"
|
||||||
|
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
|
||||||
|
MODEL_COMPUTE_TYPE = None
|
||||||
|
MODEL_NUM_WORKERS = 1
|
||||||
|
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
|
||||||
|
from ..utils import NoStdStreams
|
||||||
|
|
||||||
|
|
||||||
|
class WhisperService:
|
||||||
|
def __init__(self):
|
||||||
|
self.model = None
|
||||||
|
self.device = "cpu"
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
compute_type = MODEL_COMPUTE_TYPE or (
|
||||||
|
"float16" if self.device == "cuda" else "int8"
|
||||||
|
)
|
||||||
|
self.model = faster_whisper.WhisperModel(
|
||||||
|
MODEL_NAME,
|
||||||
|
device=self.device,
|
||||||
|
compute_type=compute_type,
|
||||||
|
num_workers=MODEL_NUM_WORKERS,
|
||||||
|
download_root=CACHE_PATH,
|
||||||
|
)
|
||||||
|
|
||||||
|
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
|
||||||
|
audio_duration = len(audio_array) / sample_rate
|
||||||
|
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||||
|
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||||
|
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||||
|
return np.concatenate([audio_array, silence])
|
||||||
|
return audio_array
|
||||||
|
|
||||||
|
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
|
||||||
|
if len(words) <= 1:
|
||||||
|
return words
|
||||||
|
enforced: list[dict] = []
|
||||||
|
for i, word in enumerate(words):
|
||||||
|
current = dict(word)
|
||||||
|
if i < len(words) - 1:
|
||||||
|
next_start = words[i + 1]["start"]
|
||||||
|
if current["end"] > next_start:
|
||||||
|
current["end"] = next_start
|
||||||
|
enforced.append(current)
|
||||||
|
return enforced
|
||||||
|
|
||||||
|
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
|
||||||
|
input_for_model: str | "object" = file_path
|
||||||
|
try:
|
||||||
|
audio_array, _sample_rate = librosa.load(
|
||||||
|
file_path, sr=SAMPLE_RATE, mono=True
|
||||||
|
)
|
||||||
|
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
|
||||||
|
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
segments, _ = self.model.transcribe(
|
||||||
|
input_for_model,
|
||||||
|
language=language,
|
||||||
|
beam_size=5,
|
||||||
|
word_timestamps=True,
|
||||||
|
vad_filter=True,
|
||||||
|
vad_parameters={"min_silence_duration_ms": 500},
|
||||||
|
)
|
||||||
|
|
||||||
|
segments = list(segments)
|
||||||
|
text = "".join(segment.text for segment in segments).strip()
|
||||||
|
words = [
|
||||||
|
{
|
||||||
|
"word": word.word,
|
||||||
|
"start": round(float(word.start), 2),
|
||||||
|
"end": round(float(word.end), 2),
|
||||||
|
}
|
||||||
|
for segment in segments
|
||||||
|
for word in segment.words
|
||||||
|
]
|
||||||
|
words = self.enforce_word_timing_constraints(words)
|
||||||
|
return {"text": text, "words": words}
|
||||||
|
|
||||||
|
def transcribe_vad_url_segment(
|
||||||
|
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||||
|
) -> dict:
|
||||||
|
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
|
||||||
|
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
|
||||||
|
cmd = [
|
||||||
|
ffmpeg_bin,
|
||||||
|
"-nostdin",
|
||||||
|
"-threads",
|
||||||
|
"1",
|
||||||
|
"-i",
|
||||||
|
input_path,
|
||||||
|
"-f",
|
||||||
|
"f32le",
|
||||||
|
"-acodec",
|
||||||
|
"pcm_f32le",
|
||||||
|
"-ac",
|
||||||
|
"1",
|
||||||
|
"-ar",
|
||||||
|
str(sample_rate),
|
||||||
|
"pipe:1",
|
||||||
|
]
|
||||||
|
try:
|
||||||
|
proc = subprocess.run(
|
||||||
|
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
|
||||||
|
audio = np.frombuffer(proc.stdout, dtype=np.float32)
|
||||||
|
return audio
|
||||||
|
|
||||||
|
def vad_segments(
|
||||||
|
audio_array,
|
||||||
|
sample_rate: int = SAMPLE_RATE,
|
||||||
|
window_size: int = VAD_CONFIG["window_size"],
|
||||||
|
) -> Generator[tuple[float, float], None, None]:
|
||||||
|
vad_model = load_silero_vad(onnx=False)
|
||||||
|
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
|
||||||
|
start = None
|
||||||
|
for i in range(0, len(audio_array), window_size):
|
||||||
|
chunk = audio_array[i : i + window_size]
|
||||||
|
if len(chunk) < window_size:
|
||||||
|
chunk = np.pad(
|
||||||
|
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||||
|
)
|
||||||
|
speech = iterator(chunk)
|
||||||
|
if not speech:
|
||||||
|
continue
|
||||||
|
if "start" in speech:
|
||||||
|
start = speech["start"]
|
||||||
|
continue
|
||||||
|
if "end" in speech and start is not None:
|
||||||
|
end = speech["end"]
|
||||||
|
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
|
||||||
|
start = None
|
||||||
|
iterator.reset_states()
|
||||||
|
|
||||||
|
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
|
||||||
|
|
||||||
|
merged_batches: list[tuple[float, float]] = []
|
||||||
|
batch_start = None
|
||||||
|
batch_end = None
|
||||||
|
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||||
|
for seg_start, seg_end in vad_segments(audio_array):
|
||||||
|
if batch_start is None:
|
||||||
|
batch_start, batch_end = seg_start, seg_end
|
||||||
|
continue
|
||||||
|
if seg_end - batch_start <= max_duration:
|
||||||
|
batch_end = seg_end
|
||||||
|
else:
|
||||||
|
merged_batches.append((batch_start, batch_end))
|
||||||
|
batch_start, batch_end = seg_start, seg_end
|
||||||
|
if batch_start is not None and batch_end is not None:
|
||||||
|
merged_batches.append((batch_start, batch_end))
|
||||||
|
|
||||||
|
all_text = []
|
||||||
|
all_words = []
|
||||||
|
for start_time, end_time in merged_batches:
|
||||||
|
s_idx = int(start_time * SAMPLE_RATE)
|
||||||
|
e_idx = int(end_time * SAMPLE_RATE)
|
||||||
|
segment = audio_array[s_idx:e_idx]
|
||||||
|
segment = self.pad_audio(segment, SAMPLE_RATE)
|
||||||
|
with self.lock:
|
||||||
|
segments, _ = self.model.transcribe(
|
||||||
|
segment,
|
||||||
|
language=language,
|
||||||
|
beam_size=5,
|
||||||
|
word_timestamps=True,
|
||||||
|
vad_filter=True,
|
||||||
|
vad_parameters={"min_silence_duration_ms": 500},
|
||||||
|
)
|
||||||
|
segments = list(segments)
|
||||||
|
text = "".join(seg.text for seg in segments).strip()
|
||||||
|
words = [
|
||||||
|
{
|
||||||
|
"word": w.word,
|
||||||
|
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||||
|
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||||
|
}
|
||||||
|
for seg in segments
|
||||||
|
for w in seg.words
|
||||||
|
]
|
||||||
|
if text:
|
||||||
|
all_text.append(text)
|
||||||
|
all_words.extend(words)
|
||||||
|
|
||||||
|
all_words = self.enforce_word_timing_constraints(all_words)
|
||||||
|
return {"text": " ".join(all_text), "words": all_words}
|
||||||
44
gpu/self_hosted/app/services/translator.py
Normal file
44
gpu/self_hosted/app/services/translator.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
import threading
|
||||||
|
|
||||||
|
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
||||||
|
|
||||||
|
|
||||||
|
class TextTranslatorService:
|
||||||
|
"""Simple text-to-text translator using HuggingFace MarianMT models.
|
||||||
|
|
||||||
|
This mirrors the modal translator API shape but uses text translation only.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self._pipeline = None
|
||||||
|
self._lock = threading.Lock()
|
||||||
|
|
||||||
|
def load(self, source_language: str = "en", target_language: str = "fr"):
|
||||||
|
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
|
||||||
|
model_name = self._resolve_model_name(source_language, target_language)
|
||||||
|
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||||
|
model = MarianMTModel.from_pretrained(model_name)
|
||||||
|
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
||||||
|
|
||||||
|
def _resolve_model_name(self, src: str, tgt: str) -> str:
|
||||||
|
# Minimal mapping; extend as needed
|
||||||
|
pair = (src.lower(), tgt.lower())
|
||||||
|
mapping = {
|
||||||
|
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
|
||||||
|
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
|
||||||
|
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
|
||||||
|
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
|
||||||
|
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
|
||||||
|
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
|
||||||
|
}
|
||||||
|
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
|
||||||
|
|
||||||
|
def translate(self, text: str, source_language: str, target_language: str) -> dict:
|
||||||
|
if self._pipeline is None:
|
||||||
|
self.load(source_language, target_language)
|
||||||
|
with self._lock:
|
||||||
|
results = self._pipeline(
|
||||||
|
text, src_lang=source_language, tgt_lang=target_language
|
||||||
|
)
|
||||||
|
translated = results[0]["translation_text"] if results else ""
|
||||||
|
return {"text": {source_language: text, target_language: translated}}
|
||||||
107
gpu/self_hosted/app/utils.py
Normal file
107
gpu/self_hosted/app/utils.py
Normal file
@@ -0,0 +1,107 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import uuid
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from typing import Mapping
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class NoStdStreams:
|
||||||
|
def __init__(self):
|
||||||
|
self.devnull = open(os.devnull, "w")
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||||
|
self._stdout.flush()
|
||||||
|
self._stderr.flush()
|
||||||
|
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||||||
|
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||||
|
self.devnull.close()
|
||||||
|
|
||||||
|
|
||||||
|
def ensure_dirs():
|
||||||
|
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
|
||||||
|
url_path = urlparse(url).path
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return ext
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return "mp3"
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return "wav"
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return "mp4"
|
||||||
|
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=(
|
||||||
|
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path: Path = UPLOADS_PATH / unique_filename
|
||||||
|
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
return file_path, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def download_audio_file(audio_file_url: str):
|
||||||
|
"""Download an audio file to UPLOADS_PATH and remove it after use.
|
||||||
|
|
||||||
|
Yields (file_path: Path, audio_suffix: str).
|
||||||
|
"""
|
||||||
|
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
|
||||||
|
try:
|
||||||
|
yield file_path, audio_suffix
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
file_path.unlink(missing_ok=True)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error("Error deleting temporary file %s: %s", file_path, e)
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def cleanup_uploaded_files(file_paths: list[Path]):
|
||||||
|
"""Ensure provided file paths are removed after use.
|
||||||
|
|
||||||
|
The provided list can be populated inside the context; all present entries
|
||||||
|
at exit will be deleted.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
yield file_paths
|
||||||
|
finally:
|
||||||
|
for path in list(file_paths):
|
||||||
|
try:
|
||||||
|
path.unlink(missing_ok=True)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error("Error deleting temporary file %s: %s", path, e)
|
||||||
10
gpu/self_hosted/compose.yml
Normal file
10
gpu/self_hosted/compose.yml
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
services:
|
||||||
|
reflector_gpu:
|
||||||
|
build:
|
||||||
|
context: .
|
||||||
|
ports:
|
||||||
|
- "8000:8000"
|
||||||
|
env_file:
|
||||||
|
- .env
|
||||||
|
volumes:
|
||||||
|
- ./cache:/root/.cache
|
||||||
3
gpu/self_hosted/main.py
Normal file
3
gpu/self_hosted/main.py
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
from app.factory import create_app
|
||||||
|
|
||||||
|
app = create_app()
|
||||||
19
gpu/self_hosted/pyproject.toml
Normal file
19
gpu/self_hosted/pyproject.toml
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
[project]
|
||||||
|
name = "reflector-gpu"
|
||||||
|
version = "0.1.0"
|
||||||
|
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
|
||||||
|
readme = "README.md"
|
||||||
|
requires-python = ">=3.12"
|
||||||
|
dependencies = [
|
||||||
|
"fastapi[standard]>=0.116.1",
|
||||||
|
"uvicorn[standard]>=0.30.0",
|
||||||
|
"torch>=2.3.0",
|
||||||
|
"faster-whisper>=1.1.0",
|
||||||
|
"librosa==0.10.1",
|
||||||
|
"numpy<2",
|
||||||
|
"silero-vad==5.1.0",
|
||||||
|
"transformers>=4.35.0",
|
||||||
|
"sentencepiece",
|
||||||
|
"pyannote.audio==3.1.0",
|
||||||
|
"torchaudio>=2.3.0",
|
||||||
|
]
|
||||||
17
gpu/self_hosted/runserver.sh
Normal file
17
gpu/self_hosted/runserver.sh
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
#!/bin/sh
|
||||||
|
set -e
|
||||||
|
|
||||||
|
export PATH="/root/.local/bin:$PATH"
|
||||||
|
cd /app
|
||||||
|
|
||||||
|
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
|
||||||
|
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
|
||||||
|
echo "[startup] Installing Python dependencies with uv..."
|
||||||
|
uv sync --compile-bytecode --locked
|
||||||
|
else
|
||||||
|
echo "[startup] Using existing virtual environment at /app/.venv"
|
||||||
|
fi
|
||||||
|
|
||||||
|
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||||
|
|
||||||
|
|
||||||
3013
gpu/self_hosted/uv.lock
generated
Normal file
3013
gpu/self_hosted/uv.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
3
server/.gitignore
vendored
3
server/.gitignore
vendored
@@ -176,7 +176,8 @@ artefacts/
|
|||||||
audio_*.wav
|
audio_*.wav
|
||||||
|
|
||||||
# ignore local database
|
# ignore local database
|
||||||
reflector.sqlite3
|
*.sqlite3
|
||||||
|
*.db
|
||||||
data/
|
data/
|
||||||
|
|
||||||
dump.rdb
|
dump.rdb
|
||||||
|
|||||||
@@ -1,7 +1,8 @@
|
|||||||
FROM python:3.12-slim
|
FROM python:3.12-slim
|
||||||
|
|
||||||
ENV PYTHONUNBUFFERED=1 \
|
ENV PYTHONUNBUFFERED=1 \
|
||||||
UV_LINK_MODE=copy
|
UV_LINK_MODE=copy \
|
||||||
|
UV_NO_CACHE=1
|
||||||
|
|
||||||
# builder install base dependencies
|
# builder install base dependencies
|
||||||
WORKDIR /tmp
|
WORKDIR /tmp
|
||||||
@@ -13,8 +14,8 @@ ENV PATH="/root/.local/bin/:$PATH"
|
|||||||
# install application dependencies
|
# install application dependencies
|
||||||
RUN mkdir -p /app
|
RUN mkdir -p /app
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
COPY pyproject.toml uv.lock /app/
|
COPY pyproject.toml uv.lock README.md /app/
|
||||||
RUN touch README.md && env uv sync --compile-bytecode --locked
|
RUN uv sync --compile-bytecode --locked
|
||||||
|
|
||||||
# pre-download nltk packages
|
# pre-download nltk packages
|
||||||
RUN uv run python -c "import nltk; nltk.download('punkt_tab'); nltk.download('averaged_perceptron_tagger_eng')"
|
RUN uv run python -c "import nltk; nltk.download('punkt_tab'); nltk.download('averaged_perceptron_tagger_eng')"
|
||||||
@@ -26,4 +27,15 @@ COPY migrations /app/migrations
|
|||||||
COPY reflector /app/reflector
|
COPY reflector /app/reflector
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Create symlink for libgomp if it doesn't exist (for ARM64 compatibility)
|
||||||
|
RUN if [ "$(uname -m)" = "aarch64" ] && [ ! -f /usr/lib/libgomp.so.1 ]; then \
|
||||||
|
LIBGOMP_PATH=$(find /app/.venv/lib -path "*/torch.libs/libgomp*.so.*" 2>/dev/null | head -n1); \
|
||||||
|
if [ -n "$LIBGOMP_PATH" ]; then \
|
||||||
|
ln -sf "$LIBGOMP_PATH" /usr/lib/libgomp.so.1; \
|
||||||
|
fi \
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Pre-check just to make sure the image will not fail
|
||||||
|
RUN uv run python -c "import silero_vad.model"
|
||||||
|
|
||||||
CMD ["./runserver.sh"]
|
CMD ["./runserver.sh"]
|
||||||
|
|||||||
@@ -40,3 +40,5 @@ uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeli
|
|||||||
```bash
|
```bash
|
||||||
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
|
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
.
|
||||||
|
|||||||
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
|||||||
|
# Data Retention and Cleanup
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
### Environment Variables
|
||||||
|
|
||||||
|
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||||
|
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||||
|
|
||||||
|
### What Gets Deleted
|
||||||
|
|
||||||
|
When data reaches the retention period, the following items are automatically removed:
|
||||||
|
|
||||||
|
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||||
|
- Database records
|
||||||
|
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||||
|
- Storage files (cloud storage if configured)
|
||||||
|
|
||||||
|
## Automatic Cleanup
|
||||||
|
|
||||||
|
### Celery Beat Schedule
|
||||||
|
|
||||||
|
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Automatically scheduled when PUBLIC_MODE=true
|
||||||
|
"cleanup_old_public_data": {
|
||||||
|
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||||
|
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Running the Worker
|
||||||
|
|
||||||
|
Ensure both Celery worker and beat scheduler are running:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Start Celery worker
|
||||||
|
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||||
|
|
||||||
|
# Start Celery beat scheduler (in another terminal)
|
||||||
|
uv run celery -A reflector.worker.app beat
|
||||||
|
```
|
||||||
|
|
||||||
|
## Manual Cleanup
|
||||||
|
|
||||||
|
For testing or manual intervention, use the cleanup tool:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Delete data older than 7 days (default)
|
||||||
|
uv run python -m reflector.tools.cleanup_old_data
|
||||||
|
|
||||||
|
# Delete data older than 30 days
|
||||||
|
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||||
|
|
||||||
|
## Important Notes
|
||||||
|
|
||||||
|
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||||
|
|
||||||
|
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||||
|
|
||||||
|
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||||
|
|
||||||
|
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||||
|
|
||||||
|
## Testing
|
||||||
|
|
||||||
|
Run the cleanup tests:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv run pytest tests/test_cleanup.py -v
|
||||||
|
```
|
||||||
|
|
||||||
|
## Monitoring
|
||||||
|
|
||||||
|
Check Celery logs for cleanup task execution:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Look for cleanup task logs
|
||||||
|
grep "cleanup_old_public_data" celery.log
|
||||||
|
grep "Starting cleanup of old public data" celery.log
|
||||||
|
```
|
||||||
|
|
||||||
|
Task statistics are logged after each run:
|
||||||
|
- Number of transcripts deleted
|
||||||
|
- Number of meetings deleted
|
||||||
|
- Number of orphaned recordings deleted
|
||||||
|
- Any errors encountered
|
||||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
|||||||
|
## Reflector GPU Transcription API (Specification)
|
||||||
|
|
||||||
|
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||||
|
|
||||||
|
### Base URL and Authentication
|
||||||
|
|
||||||
|
- Example base URLs (Modal web endpoints):
|
||||||
|
|
||||||
|
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||||
|
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||||
|
|
||||||
|
- All endpoints are served under `/v1` and require a Bearer token:
|
||||||
|
|
||||||
|
```
|
||||||
|
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||||
|
|
||||||
|
### Supported file types
|
||||||
|
|
||||||
|
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||||
|
|
||||||
|
### Models and languages
|
||||||
|
|
||||||
|
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||||
|
- Language support: only `en`. Other languages return HTTP 400.
|
||||||
|
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||||
|
- Language support: multilingual (per Whisper model capabilities).
|
||||||
|
|
||||||
|
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||||
|
|
||||||
|
### Endpoints
|
||||||
|
|
||||||
|
#### POST /v1/audio/transcriptions
|
||||||
|
|
||||||
|
Transcribe one or more uploaded audio files.
|
||||||
|
|
||||||
|
Request: multipart/form-data
|
||||||
|
|
||||||
|
- `file` (File) — optional. Single file to transcribe.
|
||||||
|
- `files` (File[]) — optional. One or more files to transcribe.
|
||||||
|
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||||
|
- `language` (string) — optional, defaults to `en`.
|
||||||
|
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||||
|
- Whisper: model-dependent; typically multilingual
|
||||||
|
- `batch` (boolean) — optional, defaults to `false`.
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
|
||||||
|
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||||
|
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||||
|
- Response shape for multiple files is the same regardless of `batch`.
|
||||||
|
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||||
|
|
||||||
|
Responses
|
||||||
|
|
||||||
|
Single file response:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [
|
||||||
|
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||||
|
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||||
|
],
|
||||||
|
"filename": "audio.mp3"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Multiple files response:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"results": [
|
||||||
|
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||||
|
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
|
||||||
|
- Word objects always include keys: `word`, `start`, `end`.
|
||||||
|
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||||
|
|
||||||
|
Example curl (single file):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -X POST \
|
||||||
|
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||||
|
-F "file=@/path/to/audio.mp3" \
|
||||||
|
-F "language=en" \
|
||||||
|
"$BASE_URL/v1/audio/transcriptions"
|
||||||
|
```
|
||||||
|
|
||||||
|
Example curl (multiple files, batch):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -X POST \
|
||||||
|
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||||
|
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||||
|
-F "batch=true" -F "language=en" \
|
||||||
|
"$BASE_URL/v1/audio/transcriptions"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### POST /v1/audio/transcriptions-from-url
|
||||||
|
|
||||||
|
Transcribe a single remote audio file by URL.
|
||||||
|
|
||||||
|
Request: application/json
|
||||||
|
|
||||||
|
Body parameters:
|
||||||
|
|
||||||
|
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||||
|
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||||
|
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||||
|
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"audio_file_url": "https://example.com/audio.mp3",
|
||||||
|
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||||
|
"language": "en",
|
||||||
|
"timestamp_offset": 0.0
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Response:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [
|
||||||
|
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||||
|
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
|
||||||
|
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||||
|
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||||
|
|
||||||
|
Example curl:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -X POST \
|
||||||
|
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"audio_file_url": "https://example.com/audio.mp3",
|
||||||
|
"language": "en",
|
||||||
|
"timestamp_offset": 0
|
||||||
|
}' \
|
||||||
|
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Error handling
|
||||||
|
|
||||||
|
- 400 Bad Request
|
||||||
|
- Parakeet: `language` other than `en`
|
||||||
|
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||||
|
- Unsupported file extension
|
||||||
|
- 401 Unauthorized
|
||||||
|
- Missing or invalid Bearer token
|
||||||
|
- 404 Not Found
|
||||||
|
- `audio_file_url` does not exist
|
||||||
|
|
||||||
|
### Implementation details
|
||||||
|
|
||||||
|
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||||
|
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||||
|
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||||
|
|
||||||
|
### Server configuration (Reflector API)
|
||||||
|
|
||||||
|
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||||
|
|
||||||
|
```
|
||||||
|
TRANSCRIPT_BACKEND=modal
|
||||||
|
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||||
|
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||||
|
```
|
||||||
|
|
||||||
|
### Conformance tests
|
||||||
|
|
||||||
|
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||||
|
|
||||||
|
```
|
||||||
|
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||||
|
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||||
|
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
|
||||||
|
```
|
||||||
212
server/docs/webhook.md
Normal file
212
server/docs/webhook.md
Normal file
@@ -0,0 +1,212 @@
|
|||||||
|
# Reflector Webhook Documentation
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
Webhooks are configured at the room level with two fields:
|
||||||
|
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||||
|
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||||
|
|
||||||
|
## Events
|
||||||
|
|
||||||
|
### `transcript.completed`
|
||||||
|
|
||||||
|
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, and topic detection.
|
||||||
|
|
||||||
|
### `test`
|
||||||
|
|
||||||
|
A test event that can be triggered manually to verify webhook configuration.
|
||||||
|
|
||||||
|
## Webhook Request Format
|
||||||
|
|
||||||
|
### Headers
|
||||||
|
|
||||||
|
All webhook requests include the following headers:
|
||||||
|
|
||||||
|
| Header | Description | Example |
|
||||||
|
|--------|-------------|---------|
|
||||||
|
| `Content-Type` | Always `application/json` | `application/json` |
|
||||||
|
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||||
|
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||||
|
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||||
|
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||||
|
|
||||||
|
### Signature Verification
|
||||||
|
|
||||||
|
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||||
|
|
||||||
|
The signature format is: `t={timestamp},v1={signature}`
|
||||||
|
|
||||||
|
To verify the signature:
|
||||||
|
1. Extract the timestamp and signature from the header
|
||||||
|
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||||
|
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||||
|
4. Compare the computed signature with the received signature
|
||||||
|
|
||||||
|
Example verification (Python):
|
||||||
|
```python
|
||||||
|
import hmac
|
||||||
|
import hashlib
|
||||||
|
|
||||||
|
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||||
|
# Parse header: "t=1735306800,v1=abc123..."
|
||||||
|
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||||
|
timestamp = parts["t"]
|
||||||
|
received_signature = parts["v1"]
|
||||||
|
|
||||||
|
# Create signed payload
|
||||||
|
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||||
|
|
||||||
|
# Compute expected signature
|
||||||
|
expected_signature = hmac.new(
|
||||||
|
secret.encode("utf-8"),
|
||||||
|
signed_payload.encode("utf-8"),
|
||||||
|
hashlib.sha256
|
||||||
|
).hexdigest()
|
||||||
|
|
||||||
|
# Compare signatures
|
||||||
|
return hmac.compare_digest(expected_signature, received_signature)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Event Payloads
|
||||||
|
|
||||||
|
### `transcript.completed` Event
|
||||||
|
|
||||||
|
This event includes a convenient URL for accessing the transcript:
|
||||||
|
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"event": "transcript.completed",
|
||||||
|
"event_id": "transcript.completed-abc-123-def-456",
|
||||||
|
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||||
|
"transcript": {
|
||||||
|
"id": "abc-123-def-456",
|
||||||
|
"room_id": "room-789",
|
||||||
|
"created_at": "2025-08-27T12:00:00Z",
|
||||||
|
"duration": 1800.5,
|
||||||
|
"title": "Q3 Product Planning Meeting",
|
||||||
|
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||||
|
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||||
|
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||||
|
"topics": [
|
||||||
|
{
|
||||||
|
"title": "Introduction and Agenda",
|
||||||
|
"summary": "Meeting kickoff with agenda review",
|
||||||
|
"timestamp": 0.0,
|
||||||
|
"duration": 120.0,
|
||||||
|
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Mobile App Features Discussion",
|
||||||
|
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||||
|
"timestamp": 120.0,
|
||||||
|
"duration": 600.0,
|
||||||
|
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"participants": [
|
||||||
|
{
|
||||||
|
"id": "participant-1",
|
||||||
|
"name": "John Doe",
|
||||||
|
"speaker": "Speaker 1"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "participant-2",
|
||||||
|
"name": "Jane Smith",
|
||||||
|
"speaker": "Speaker 2"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source_language": "en",
|
||||||
|
"target_language": "en",
|
||||||
|
"status": "completed",
|
||||||
|
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||||
|
},
|
||||||
|
"room": {
|
||||||
|
"id": "room-789",
|
||||||
|
"name": "Product Team Room"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### `test` Event
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"event": "test",
|
||||||
|
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||||
|
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||||
|
"message": "This is a test webhook from Reflector",
|
||||||
|
"room": {
|
||||||
|
"id": "room-789",
|
||||||
|
"name": "Product Team Room"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Retry Policy
|
||||||
|
|
||||||
|
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||||
|
|
||||||
|
### Retry Mechanism
|
||||||
|
|
||||||
|
Reflector implements an exponential backoff strategy for webhook retries:
|
||||||
|
|
||||||
|
- **Initial retry delay**: 60 seconds after the first failure
|
||||||
|
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||||
|
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||||
|
- **Maximum retry attempts**: 30 attempts total
|
||||||
|
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||||
|
|
||||||
|
### How Retries Work
|
||||||
|
|
||||||
|
When a webhook fails, Reflector will:
|
||||||
|
1. Wait 60 seconds, then retry (attempt #1)
|
||||||
|
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||||
|
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||||
|
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||||
|
|
||||||
|
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||||
|
|
||||||
|
### Retry Behavior by HTTP Status Code
|
||||||
|
|
||||||
|
| Status Code | Behavior |
|
||||||
|
|-------------|----------|
|
||||||
|
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||||
|
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||||
|
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||||
|
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||||
|
|
||||||
|
**Important Notes:**
|
||||||
|
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||||
|
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||||
|
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||||
|
|
||||||
|
## Testing Webhooks
|
||||||
|
|
||||||
|
You can test your webhook configuration before processing transcripts:
|
||||||
|
|
||||||
|
```http
|
||||||
|
POST /v1/rooms/{room_id}/webhook/test
|
||||||
|
```
|
||||||
|
|
||||||
|
Response:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"success": true,
|
||||||
|
"status_code": 200,
|
||||||
|
"message": "Webhook test successful",
|
||||||
|
"response_preview": "OK"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Or in case of failure:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"success": false,
|
||||||
|
"error": "Webhook request timed out (10 seconds)"
|
||||||
|
}
|
||||||
|
```
|
||||||
@@ -1,86 +0,0 @@
|
|||||||
# Reflector GPU implementation - Transcription and LLM
|
|
||||||
|
|
||||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
|
||||||
and use [Modal.com](https://modal.com)
|
|
||||||
|
|
||||||
- `reflector_diarizer.py` - Diarization API
|
|
||||||
- `reflector_transcriber.py` - Transcription API
|
|
||||||
- `reflector_translator.py` - Translation API
|
|
||||||
|
|
||||||
## Modal.com deployment
|
|
||||||
|
|
||||||
Create a modal secret, and name it `reflector-gpu`.
|
|
||||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
|
||||||
|
|
||||||
The deployment is done using [Modal.com](https://modal.com) service.
|
|
||||||
|
|
||||||
```
|
|
||||||
$ modal deploy reflector_transcriber.py
|
|
||||||
...
|
|
||||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
|
||||||
|
|
||||||
$ modal deploy reflector_llm.py
|
|
||||||
...
|
|
||||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
|
||||||
```
|
|
||||||
|
|
||||||
Then in your reflector api configuration `.env`, you can set these keys:
|
|
||||||
|
|
||||||
```
|
|
||||||
TRANSCRIPT_BACKEND=modal
|
|
||||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
|
||||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
|
||||||
|
|
||||||
DIARIZATION_BACKEND=modal
|
|
||||||
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
|
||||||
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
|
||||||
|
|
||||||
TRANSLATION_BACKEND=modal
|
|
||||||
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
|
||||||
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
|
||||||
```
|
|
||||||
|
|
||||||
## API
|
|
||||||
|
|
||||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
|
||||||
|
|
||||||
```
|
|
||||||
Authorization: bearer <REFLECTOR_APIKEY>
|
|
||||||
```
|
|
||||||
|
|
||||||
### LLM
|
|
||||||
|
|
||||||
`POST /llm`
|
|
||||||
|
|
||||||
**request**
|
|
||||||
```
|
|
||||||
{
|
|
||||||
"prompt": "xxx"
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
**response**
|
|
||||||
```
|
|
||||||
{
|
|
||||||
"text": "xxx completed"
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
### Transcription
|
|
||||||
|
|
||||||
`POST /transcribe`
|
|
||||||
|
|
||||||
**request** (multipart/form-data)
|
|
||||||
|
|
||||||
- `file` - audio file
|
|
||||||
- `language` - language code (e.g. `en`)
|
|
||||||
|
|
||||||
**response**
|
|
||||||
```
|
|
||||||
{
|
|
||||||
"text": "xxx",
|
|
||||||
"words": [
|
|
||||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
```
|
|
||||||
@@ -1,187 +0,0 @@
|
|||||||
"""
|
|
||||||
Reflector GPU backend - diarizer
|
|
||||||
===================================
|
|
||||||
"""
|
|
||||||
|
|
||||||
import os
|
|
||||||
|
|
||||||
import modal.gpu
|
|
||||||
from modal import App, Image, Secret, asgi_app, enter, method
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
|
||||||
MODEL_DIR = "/root/diarization_models"
|
|
||||||
app = App(name="reflector-diarizer")
|
|
||||||
|
|
||||||
|
|
||||||
def migrate_cache_llm():
|
|
||||||
"""
|
|
||||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
|
||||||
Migrating your old cache. This is a one-time only operation. You can
|
|
||||||
interrupt this and resume the migration later on by calling
|
|
||||||
`transformers.utils.move_cache()`.
|
|
||||||
"""
|
|
||||||
from transformers.utils.hub import move_cache
|
|
||||||
|
|
||||||
print("Moving LLM cache")
|
|
||||||
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
|
||||||
print("LLM cache moved")
|
|
||||||
|
|
||||||
|
|
||||||
def download_pyannote_audio():
|
|
||||||
from pyannote.audio import Pipeline
|
|
||||||
|
|
||||||
Pipeline.from_pretrained(
|
|
||||||
PYANNOTE_MODEL_NAME,
|
|
||||||
cache_dir=MODEL_DIR,
|
|
||||||
use_auth_token=os.environ["HF_TOKEN"],
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
diarizer_image = (
|
|
||||||
Image.debian_slim(python_version="3.10.8")
|
|
||||||
.pip_install(
|
|
||||||
"pyannote.audio==3.1.0",
|
|
||||||
"requests",
|
|
||||||
"onnx",
|
|
||||||
"torchaudio",
|
|
||||||
"onnxruntime-gpu",
|
|
||||||
"torch==2.0.0",
|
|
||||||
"transformers==4.34.0",
|
|
||||||
"sentencepiece",
|
|
||||||
"protobuf",
|
|
||||||
"numpy",
|
|
||||||
"huggingface_hub",
|
|
||||||
"hf-transfer",
|
|
||||||
)
|
|
||||||
.run_function(
|
|
||||||
download_pyannote_audio, secrets=[Secret.from_name("my-huggingface-secret")]
|
|
||||||
)
|
|
||||||
.run_function(migrate_cache_llm)
|
|
||||||
.env(
|
|
||||||
{
|
|
||||||
"LD_LIBRARY_PATH": (
|
|
||||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
|
||||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
|
||||||
)
|
|
||||||
}
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app.cls(
|
|
||||||
gpu=modal.gpu.A100(size="40GB"),
|
|
||||||
timeout=60 * 30,
|
|
||||||
scaledown_window=60,
|
|
||||||
allow_concurrent_inputs=1,
|
|
||||||
image=diarizer_image,
|
|
||||||
)
|
|
||||||
class Diarizer:
|
|
||||||
@enter()
|
|
||||||
def enter(self):
|
|
||||||
import torch
|
|
||||||
from pyannote.audio import Pipeline
|
|
||||||
|
|
||||||
self.use_gpu = torch.cuda.is_available()
|
|
||||||
self.device = "cuda" if self.use_gpu else "cpu"
|
|
||||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
|
||||||
PYANNOTE_MODEL_NAME, cache_dir=MODEL_DIR
|
|
||||||
)
|
|
||||||
self.diarization_pipeline.to(torch.device(self.device))
|
|
||||||
|
|
||||||
@method()
|
|
||||||
def diarize(self, audio_data: str, audio_suffix: str, timestamp: float):
|
|
||||||
import tempfile
|
|
||||||
|
|
||||||
import torchaudio
|
|
||||||
|
|
||||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
|
||||||
fp.write(audio_data)
|
|
||||||
|
|
||||||
print("Diarizing audio")
|
|
||||||
waveform, sample_rate = torchaudio.load(fp.name)
|
|
||||||
diarization = self.diarization_pipeline(
|
|
||||||
{"waveform": waveform, "sample_rate": sample_rate}
|
|
||||||
)
|
|
||||||
|
|
||||||
words = []
|
|
||||||
for diarization_segment, _, speaker in diarization.itertracks(
|
|
||||||
yield_label=True
|
|
||||||
):
|
|
||||||
words.append(
|
|
||||||
{
|
|
||||||
"start": round(timestamp + diarization_segment.start, 3),
|
|
||||||
"end": round(timestamp + diarization_segment.end, 3),
|
|
||||||
"speaker": int(speaker[-2:]),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
print("Diarization complete")
|
|
||||||
return {"diarization": words}
|
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------------------------------
|
|
||||||
# Web API
|
|
||||||
# -------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
@app.function(
|
|
||||||
timeout=60 * 10,
|
|
||||||
scaledown_window=60 * 3,
|
|
||||||
allow_concurrent_inputs=40,
|
|
||||||
secrets=[
|
|
||||||
Secret.from_name("reflector-gpu"),
|
|
||||||
],
|
|
||||||
image=diarizer_image,
|
|
||||||
)
|
|
||||||
@asgi_app()
|
|
||||||
def web():
|
|
||||||
import requests
|
|
||||||
from fastapi import Depends, FastAPI, HTTPException, status
|
|
||||||
from fastapi.security import OAuth2PasswordBearer
|
|
||||||
|
|
||||||
diarizerstub = Diarizer()
|
|
||||||
|
|
||||||
app = FastAPI()
|
|
||||||
|
|
||||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
|
||||||
|
|
||||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
|
||||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
|
||||||
raise HTTPException(
|
|
||||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
|
||||||
detail="Invalid API key",
|
|
||||||
headers={"WWW-Authenticate": "Bearer"},
|
|
||||||
)
|
|
||||||
|
|
||||||
def validate_audio_file(audio_file_url: str):
|
|
||||||
# Check if the audio file exists
|
|
||||||
response = requests.head(audio_file_url, allow_redirects=True)
|
|
||||||
if response.status_code == 404:
|
|
||||||
raise HTTPException(
|
|
||||||
status_code=response.status_code,
|
|
||||||
detail="The audio file does not exist.",
|
|
||||||
)
|
|
||||||
|
|
||||||
class DiarizationResponse(BaseModel):
|
|
||||||
result: dict
|
|
||||||
|
|
||||||
@app.post(
|
|
||||||
"/diarize", dependencies=[Depends(apikey_auth), Depends(validate_audio_file)]
|
|
||||||
)
|
|
||||||
def diarize(
|
|
||||||
audio_file_url: str, timestamp: float = 0.0
|
|
||||||
) -> HTTPException | DiarizationResponse:
|
|
||||||
# Currently the uploaded files are in mp3 format
|
|
||||||
audio_suffix = "mp3"
|
|
||||||
|
|
||||||
print("Downloading audio file")
|
|
||||||
response = requests.get(audio_file_url, allow_redirects=True)
|
|
||||||
print("Audio file downloaded successfully")
|
|
||||||
|
|
||||||
func = diarizerstub.diarize.spawn(
|
|
||||||
audio_data=response.content, audio_suffix=audio_suffix, timestamp=timestamp
|
|
||||||
)
|
|
||||||
result = func.get()
|
|
||||||
return result
|
|
||||||
|
|
||||||
return app
|
|
||||||
@@ -1,161 +0,0 @@
|
|||||||
import os
|
|
||||||
import tempfile
|
|
||||||
import threading
|
|
||||||
|
|
||||||
import modal
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
MODELS_DIR = "/models"
|
|
||||||
|
|
||||||
MODEL_NAME = "large-v2"
|
|
||||||
MODEL_COMPUTE_TYPE: str = "float16"
|
|
||||||
MODEL_NUM_WORKERS: int = 1
|
|
||||||
|
|
||||||
MINUTES = 60 # seconds
|
|
||||||
|
|
||||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
|
||||||
|
|
||||||
app = modal.App("reflector-transcriber")
|
|
||||||
|
|
||||||
|
|
||||||
def download_model():
|
|
||||||
from faster_whisper import download_model
|
|
||||||
|
|
||||||
volume.reload()
|
|
||||||
|
|
||||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
|
||||||
|
|
||||||
volume.commit()
|
|
||||||
|
|
||||||
|
|
||||||
image = (
|
|
||||||
modal.Image.debian_slim(python_version="3.12")
|
|
||||||
.pip_install(
|
|
||||||
"huggingface_hub==0.27.1",
|
|
||||||
"hf-transfer==0.1.9",
|
|
||||||
"torch==2.5.1",
|
|
||||||
"faster-whisper==1.1.1",
|
|
||||||
)
|
|
||||||
.env(
|
|
||||||
{
|
|
||||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
|
||||||
"LD_LIBRARY_PATH": (
|
|
||||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
|
||||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
|
||||||
),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app.cls(
|
|
||||||
gpu="A10G",
|
|
||||||
timeout=5 * MINUTES,
|
|
||||||
scaledown_window=5 * MINUTES,
|
|
||||||
allow_concurrent_inputs=6,
|
|
||||||
image=image,
|
|
||||||
volumes={MODELS_DIR: volume},
|
|
||||||
)
|
|
||||||
class Transcriber:
|
|
||||||
@modal.enter()
|
|
||||||
def enter(self):
|
|
||||||
import faster_whisper
|
|
||||||
import torch
|
|
||||||
|
|
||||||
self.lock = threading.Lock()
|
|
||||||
self.use_gpu = torch.cuda.is_available()
|
|
||||||
self.device = "cuda" if self.use_gpu else "cpu"
|
|
||||||
self.model = faster_whisper.WhisperModel(
|
|
||||||
MODEL_NAME,
|
|
||||||
device=self.device,
|
|
||||||
compute_type=MODEL_COMPUTE_TYPE,
|
|
||||||
num_workers=MODEL_NUM_WORKERS,
|
|
||||||
download_root=MODELS_DIR,
|
|
||||||
local_files_only=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
@modal.method()
|
|
||||||
def transcribe_segment(
|
|
||||||
self,
|
|
||||||
audio_data: str,
|
|
||||||
audio_suffix: str,
|
|
||||||
language: str,
|
|
||||||
):
|
|
||||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
|
||||||
fp.write(audio_data)
|
|
||||||
|
|
||||||
with self.lock:
|
|
||||||
segments, _ = self.model.transcribe(
|
|
||||||
fp.name,
|
|
||||||
language=language,
|
|
||||||
beam_size=5,
|
|
||||||
word_timestamps=True,
|
|
||||||
vad_filter=True,
|
|
||||||
vad_parameters={"min_silence_duration_ms": 500},
|
|
||||||
)
|
|
||||||
|
|
||||||
segments = list(segments)
|
|
||||||
text = "".join(segment.text for segment in segments)
|
|
||||||
words = [
|
|
||||||
{"word": word.word, "start": word.start, "end": word.end}
|
|
||||||
for segment in segments
|
|
||||||
for word in segment.words
|
|
||||||
]
|
|
||||||
|
|
||||||
return {"text": text, "words": words}
|
|
||||||
|
|
||||||
|
|
||||||
@app.function(
|
|
||||||
scaledown_window=60,
|
|
||||||
timeout=60,
|
|
||||||
allow_concurrent_inputs=40,
|
|
||||||
secrets=[
|
|
||||||
modal.Secret.from_name("reflector-gpu"),
|
|
||||||
],
|
|
||||||
volumes={MODELS_DIR: volume},
|
|
||||||
)
|
|
||||||
@modal.asgi_app()
|
|
||||||
def web():
|
|
||||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
|
||||||
from fastapi.security import OAuth2PasswordBearer
|
|
||||||
from typing_extensions import Annotated
|
|
||||||
|
|
||||||
transcriber = Transcriber()
|
|
||||||
|
|
||||||
app = FastAPI()
|
|
||||||
|
|
||||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
|
||||||
|
|
||||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
|
||||||
|
|
||||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
|
||||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
|
||||||
raise HTTPException(
|
|
||||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
|
||||||
detail="Invalid API key",
|
|
||||||
headers={"WWW-Authenticate": "Bearer"},
|
|
||||||
)
|
|
||||||
|
|
||||||
class TranscriptResponse(BaseModel):
|
|
||||||
result: dict
|
|
||||||
|
|
||||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
|
||||||
def transcribe(
|
|
||||||
file: UploadFile,
|
|
||||||
model: str = "whisper-1",
|
|
||||||
language: Annotated[str, Body(...)] = "en",
|
|
||||||
) -> TranscriptResponse:
|
|
||||||
audio_data = file.file.read()
|
|
||||||
audio_suffix = file.filename.split(".")[-1]
|
|
||||||
assert audio_suffix in supported_file_types
|
|
||||||
|
|
||||||
func = transcriber.transcribe_segment.spawn(
|
|
||||||
audio_data=audio_data,
|
|
||||||
audio_suffix=audio_suffix,
|
|
||||||
language=language,
|
|
||||||
)
|
|
||||||
result = func.get()
|
|
||||||
return result
|
|
||||||
|
|
||||||
return app
|
|
||||||
@@ -0,0 +1,36 @@
|
|||||||
|
"""Add webhook fields to rooms
|
||||||
|
|
||||||
|
Revision ID: 0194f65cd6d3
|
||||||
|
Revises: 5a8907fd1d78
|
||||||
|
Create Date: 2025-08-27 09:03:19.610995
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "0194f65cd6d3"
|
||||||
|
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||||
|
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.drop_column("webhook_secret")
|
||||||
|
batch_op.drop_column("webhook_url")
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,64 @@
|
|||||||
|
"""add_long_summary_to_search_vector
|
||||||
|
|
||||||
|
Revision ID: 0ab2d7ffaa16
|
||||||
|
Revises: b1c33bd09963
|
||||||
|
Create Date: 2025-08-15 13:27:52.680211
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "0ab2d7ffaa16"
|
||||||
|
down_revision: Union[str, None] = "b1c33bd09963"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Drop the existing search vector column and index
|
||||||
|
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||||
|
op.drop_column("transcript", "search_vector_en")
|
||||||
|
|
||||||
|
# Recreate the search vector column with long_summary included
|
||||||
|
op.execute("""
|
||||||
|
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||||
|
GENERATED ALWAYS AS (
|
||||||
|
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||||
|
setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') ||
|
||||||
|
setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')
|
||||||
|
) STORED
|
||||||
|
""")
|
||||||
|
|
||||||
|
# Recreate the GIN index for the search vector
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_search_vector_en",
|
||||||
|
"transcript",
|
||||||
|
["search_vector_en"],
|
||||||
|
postgresql_using="gin",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# Drop the updated search vector column and index
|
||||||
|
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||||
|
op.drop_column("transcript", "search_vector_en")
|
||||||
|
|
||||||
|
# Recreate the original search vector column without long_summary
|
||||||
|
op.execute("""
|
||||||
|
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||||
|
GENERATED ALWAYS AS (
|
||||||
|
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||||
|
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||||
|
) STORED
|
||||||
|
""")
|
||||||
|
|
||||||
|
# Recreate the GIN index for the search vector
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_search_vector_en",
|
||||||
|
"transcript",
|
||||||
|
["search_vector_en"],
|
||||||
|
postgresql_using="gin",
|
||||||
|
)
|
||||||
@@ -0,0 +1,36 @@
|
|||||||
|
"""remove user_id from meeting table
|
||||||
|
|
||||||
|
Revision ID: 0ce521cda2ee
|
||||||
|
Revises: 6dec9fb5b46c
|
||||||
|
Create Date: 2025-09-10 12:40:55.688899
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "0ce521cda2ee"
|
||||||
|
down_revision: Union[str, None] = "6dec9fb5b46c"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.drop_column("user_id")
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.add_column(
|
||||||
|
sa.Column("user_id", sa.VARCHAR(), autoincrement=False, nullable=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,32 @@
|
|||||||
|
"""clean up orphaned room_id references in meeting table
|
||||||
|
|
||||||
|
Revision ID: 2ae3db106d4e
|
||||||
|
Revises: def1b5867d4c
|
||||||
|
Create Date: 2025-09-11 10:35:15.759967
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "2ae3db106d4e"
|
||||||
|
down_revision: Union[str, None] = "def1b5867d4c"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Set room_id to NULL for meetings that reference non-existent rooms
|
||||||
|
op.execute("""
|
||||||
|
UPDATE meeting
|
||||||
|
SET room_id = NULL
|
||||||
|
WHERE room_id IS NOT NULL
|
||||||
|
AND room_id NOT IN (SELECT id FROM room WHERE id IS NOT NULL)
|
||||||
|
""")
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# Cannot restore orphaned references - no operation needed
|
||||||
|
pass
|
||||||
@@ -0,0 +1,50 @@
|
|||||||
|
"""add cascade delete to meeting consent foreign key
|
||||||
|
|
||||||
|
Revision ID: 5a8907fd1d78
|
||||||
|
Revises: 0ab2d7ffaa16
|
||||||
|
Create Date: 2025-08-26 17:26:50.945491
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "5a8907fd1d78"
|
||||||
|
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||||
|
batch_op.drop_constraint(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||||
|
)
|
||||||
|
batch_op.create_foreign_key(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||||
|
"meeting",
|
||||||
|
["meeting_id"],
|
||||||
|
["id"],
|
||||||
|
ondelete="CASCADE",
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||||
|
batch_op.drop_constraint(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||||
|
)
|
||||||
|
batch_op.create_foreign_key(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||||
|
"meeting",
|
||||||
|
["meeting_id"],
|
||||||
|
["id"],
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,53 @@
|
|||||||
|
"""remove_one_active_meeting_per_room_constraint
|
||||||
|
|
||||||
|
Revision ID: 6025e9b2bef2
|
||||||
|
Revises: 2ae3db106d4e
|
||||||
|
Create Date: 2025-08-18 18:45:44.418392
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "6025e9b2bef2"
|
||||||
|
down_revision: Union[str, None] = "2ae3db106d4e"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Remove the unique constraint that prevents multiple active meetings per room
|
||||||
|
# This is needed to support calendar integration with overlapping meetings
|
||||||
|
# Check if index exists before trying to drop it
|
||||||
|
from alembic import context
|
||||||
|
|
||||||
|
if context.get_context().dialect.name == "postgresql":
|
||||||
|
conn = op.get_bind()
|
||||||
|
result = conn.execute(
|
||||||
|
sa.text(
|
||||||
|
"SELECT 1 FROM pg_indexes WHERE indexname = 'idx_one_active_meeting_per_room'"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if result.fetchone():
|
||||||
|
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||||
|
else:
|
||||||
|
# For SQLite, just try to drop it
|
||||||
|
try:
|
||||||
|
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# Restore the unique constraint
|
||||||
|
op.create_index(
|
||||||
|
"idx_one_active_meeting_per_room",
|
||||||
|
"meeting",
|
||||||
|
["room_id"],
|
||||||
|
unique=True,
|
||||||
|
postgresql_where=sa.text("is_active = true"),
|
||||||
|
sqlite_where=sa.text("is_active = 1"),
|
||||||
|
)
|
||||||
@@ -0,0 +1,28 @@
|
|||||||
|
"""webhook url and secret null by default
|
||||||
|
|
||||||
|
|
||||||
|
Revision ID: 61882a919591
|
||||||
|
Revises: 0194f65cd6d3
|
||||||
|
Create Date: 2025-08-29 11:46:36.738091
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "61882a919591"
|
||||||
|
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
pass
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
pass
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,38 @@
|
|||||||
|
"""make meeting room_id required and add foreign key
|
||||||
|
|
||||||
|
Revision ID: 6dec9fb5b46c
|
||||||
|
Revises: 61882a919591
|
||||||
|
Create Date: 2025-09-10 10:47:06.006819
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "6dec9fb5b46c"
|
||||||
|
down_revision: Union[str, None] = "61882a919591"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
|
||||||
|
batch_op.create_foreign_key(
|
||||||
|
None, "room", ["room_id"], ["id"], ondelete="CASCADE"
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.drop_constraint("meeting_room_id_fkey", type_="foreignkey")
|
||||||
|
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,41 @@
|
|||||||
|
"""add_search_optimization_indexes
|
||||||
|
|
||||||
|
Revision ID: b1c33bd09963
|
||||||
|
Revises: 9f5c78d352d6
|
||||||
|
Create Date: 2025-08-14 17:26:02.117408
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "b1c33bd09963"
|
||||||
|
down_revision: Union[str, None] = "9f5c78d352d6"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Add indexes for actual search filtering patterns used in frontend
|
||||||
|
# Based on /browse page filters: room_id and source_kind
|
||||||
|
|
||||||
|
# Index for room_id + created_at (for room-specific searches with date ordering)
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_room_id_created_at",
|
||||||
|
"transcript",
|
||||||
|
["room_id", "created_at"],
|
||||||
|
if_not_exists=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Index for source_kind alone (actively used filter in frontend)
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_source_kind", "transcript", ["source_kind"], if_not_exists=True
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# Remove the indexes in reverse order
|
||||||
|
op.drop_index("idx_transcript_source_kind", "transcript", if_exists=True)
|
||||||
|
op.drop_index("idx_transcript_room_id_created_at", "transcript", if_exists=True)
|
||||||
@@ -0,0 +1,34 @@
|
|||||||
|
"""add_grace_period_fields_to_meeting
|
||||||
|
|
||||||
|
Revision ID: d4a1c446458c
|
||||||
|
Revises: 6025e9b2bef2
|
||||||
|
Create Date: 2025-08-18 18:50:37.768052
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "d4a1c446458c"
|
||||||
|
down_revision: Union[str, None] = "6025e9b2bef2"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Add fields to track when participants left for grace period logic
|
||||||
|
op.add_column(
|
||||||
|
"meeting", sa.Column("last_participant_left_at", sa.DateTime(timezone=True))
|
||||||
|
)
|
||||||
|
op.add_column(
|
||||||
|
"meeting",
|
||||||
|
sa.Column("grace_period_minutes", sa.Integer, server_default=sa.text("15")),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
op.drop_column("meeting", "grace_period_minutes")
|
||||||
|
op.drop_column("meeting", "last_participant_left_at")
|
||||||
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
@@ -0,0 +1,129 @@
|
|||||||
|
"""add calendar
|
||||||
|
|
||||||
|
Revision ID: d8e204bbf615
|
||||||
|
Revises: d4a1c446458c
|
||||||
|
Create Date: 2025-09-10 19:56:22.295756
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
from sqlalchemy.dialects import postgresql
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "d8e204bbf615"
|
||||||
|
down_revision: Union[str, None] = "d4a1c446458c"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
op.create_table(
|
||||||
|
"calendar_event",
|
||||||
|
sa.Column("id", sa.String(), nullable=False),
|
||||||
|
sa.Column("room_id", sa.String(), nullable=False),
|
||||||
|
sa.Column("ics_uid", sa.Text(), nullable=False),
|
||||||
|
sa.Column("title", sa.Text(), nullable=True),
|
||||||
|
sa.Column("description", sa.Text(), nullable=True),
|
||||||
|
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column("attendees", postgresql.JSONB(astext_type=sa.Text()), nullable=True),
|
||||||
|
sa.Column("location", sa.Text(), nullable=True),
|
||||||
|
sa.Column("ics_raw_data", sa.Text(), nullable=True),
|
||||||
|
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column(
|
||||||
|
"is_deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||||
|
),
|
||||||
|
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.ForeignKeyConstraint(
|
||||||
|
["room_id"],
|
||||||
|
["room.id"],
|
||||||
|
name="fk_calendar_event_room_id",
|
||||||
|
ondelete="CASCADE",
|
||||||
|
),
|
||||||
|
sa.PrimaryKeyConstraint("id"),
|
||||||
|
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||||
|
)
|
||||||
|
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||||
|
batch_op.create_index(
|
||||||
|
"idx_calendar_event_deleted",
|
||||||
|
["is_deleted"],
|
||||||
|
unique=False,
|
||||||
|
postgresql_where=sa.text("NOT is_deleted"),
|
||||||
|
)
|
||||||
|
batch_op.create_index(
|
||||||
|
"idx_calendar_event_room_start", ["room_id", "start_time"], unique=False
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.add_column(sa.Column("calendar_event_id", sa.String(), nullable=True))
|
||||||
|
batch_op.add_column(
|
||||||
|
sa.Column(
|
||||||
|
"calendar_metadata",
|
||||||
|
postgresql.JSONB(astext_type=sa.Text()),
|
||||||
|
nullable=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
batch_op.create_index(
|
||||||
|
"idx_meeting_calendar_event", ["calendar_event_id"], unique=False
|
||||||
|
)
|
||||||
|
batch_op.create_foreign_key(
|
||||||
|
"fk_meeting_calendar_event_id",
|
||||||
|
"calendar_event",
|
||||||
|
["calendar_event_id"],
|
||||||
|
["id"],
|
||||||
|
ondelete="SET NULL",
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.add_column(sa.Column("ics_url", sa.Text(), nullable=True))
|
||||||
|
batch_op.add_column(
|
||||||
|
sa.Column(
|
||||||
|
"ics_fetch_interval", sa.Integer(), server_default="300", nullable=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
batch_op.add_column(
|
||||||
|
sa.Column(
|
||||||
|
"ics_enabled",
|
||||||
|
sa.Boolean(),
|
||||||
|
server_default=sa.text("false"),
|
||||||
|
nullable=False,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
batch_op.add_column(
|
||||||
|
sa.Column("ics_last_sync", sa.DateTime(timezone=True), nullable=True)
|
||||||
|
)
|
||||||
|
batch_op.add_column(sa.Column("ics_last_etag", sa.Text(), nullable=True))
|
||||||
|
batch_op.create_index("idx_room_ics_enabled", ["ics_enabled"], unique=False)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.drop_index("idx_room_ics_enabled")
|
||||||
|
batch_op.drop_column("ics_last_etag")
|
||||||
|
batch_op.drop_column("ics_last_sync")
|
||||||
|
batch_op.drop_column("ics_enabled")
|
||||||
|
batch_op.drop_column("ics_fetch_interval")
|
||||||
|
batch_op.drop_column("ics_url")
|
||||||
|
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.drop_constraint("fk_meeting_calendar_event_id", type_="foreignkey")
|
||||||
|
batch_op.drop_index("idx_meeting_calendar_event")
|
||||||
|
batch_op.drop_column("calendar_metadata")
|
||||||
|
batch_op.drop_column("calendar_event_id")
|
||||||
|
|
||||||
|
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||||
|
batch_op.drop_index("idx_calendar_event_room_start")
|
||||||
|
batch_op.drop_index(
|
||||||
|
"idx_calendar_event_deleted", postgresql_where=sa.text("NOT is_deleted")
|
||||||
|
)
|
||||||
|
|
||||||
|
op.drop_table("calendar_event")
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,43 @@
|
|||||||
|
"""remove_grace_period_fields
|
||||||
|
|
||||||
|
Revision ID: dc035ff72fd5
|
||||||
|
Revises: d8e204bbf615
|
||||||
|
Create Date: 2025-09-11 10:36:45.197588
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "dc035ff72fd5"
|
||||||
|
down_revision: Union[str, None] = "d8e204bbf615"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Remove grace period columns from meeting table
|
||||||
|
op.drop_column("meeting", "last_participant_left_at")
|
||||||
|
op.drop_column("meeting", "grace_period_minutes")
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# Add back grace period columns to meeting table
|
||||||
|
op.add_column(
|
||||||
|
"meeting",
|
||||||
|
sa.Column(
|
||||||
|
"last_participant_left_at", sa.DateTime(timezone=True), nullable=True
|
||||||
|
),
|
||||||
|
)
|
||||||
|
op.add_column(
|
||||||
|
"meeting",
|
||||||
|
sa.Column(
|
||||||
|
"grace_period_minutes",
|
||||||
|
sa.Integer(),
|
||||||
|
server_default=sa.text("15"),
|
||||||
|
nullable=True,
|
||||||
|
),
|
||||||
|
)
|
||||||
@@ -0,0 +1,34 @@
|
|||||||
|
"""make meeting room_id nullable but keep foreign key
|
||||||
|
|
||||||
|
Revision ID: def1b5867d4c
|
||||||
|
Revises: 0ce521cda2ee
|
||||||
|
Create Date: 2025-09-11 09:42:18.697264
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "def1b5867d4c"
|
||||||
|
down_revision: Union[str, None] = "0ce521cda2ee"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -12,7 +12,6 @@ dependencies = [
|
|||||||
"requests>=2.31.0",
|
"requests>=2.31.0",
|
||||||
"aiortc>=1.5.0",
|
"aiortc>=1.5.0",
|
||||||
"sortedcontainers>=2.4.0",
|
"sortedcontainers>=2.4.0",
|
||||||
"loguru>=0.7.0",
|
|
||||||
"pydantic-settings>=2.0.2",
|
"pydantic-settings>=2.0.2",
|
||||||
"structlog>=23.1.0",
|
"structlog>=23.1.0",
|
||||||
"uvicorn[standard]>=0.23.1",
|
"uvicorn[standard]>=0.23.1",
|
||||||
@@ -27,12 +26,10 @@ dependencies = [
|
|||||||
"prometheus-fastapi-instrumentator>=6.1.0",
|
"prometheus-fastapi-instrumentator>=6.1.0",
|
||||||
"sentencepiece>=0.1.99",
|
"sentencepiece>=0.1.99",
|
||||||
"protobuf>=4.24.3",
|
"protobuf>=4.24.3",
|
||||||
"profanityfilter>=2.0.6",
|
|
||||||
"celery>=5.3.4",
|
"celery>=5.3.4",
|
||||||
"redis>=5.0.1",
|
"redis>=5.0.1",
|
||||||
"python-jose[cryptography]>=3.3.0",
|
"python-jose[cryptography]>=3.3.0",
|
||||||
"python-multipart>=0.0.6",
|
"python-multipart>=0.0.6",
|
||||||
"faster-whisper>=0.10.0",
|
|
||||||
"transformers>=4.36.2",
|
"transformers>=4.36.2",
|
||||||
"jsonschema>=4.23.0",
|
"jsonschema>=4.23.0",
|
||||||
"openai>=1.59.7",
|
"openai>=1.59.7",
|
||||||
@@ -41,6 +38,7 @@ dependencies = [
|
|||||||
"llama-index-llms-openai-like>=0.4.0",
|
"llama-index-llms-openai-like>=0.4.0",
|
||||||
"pytest-env>=1.1.5",
|
"pytest-env>=1.1.5",
|
||||||
"webvtt-py>=0.5.0",
|
"webvtt-py>=0.5.0",
|
||||||
|
"icalendar>=6.0.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
[dependency-groups]
|
[dependency-groups]
|
||||||
@@ -57,6 +55,7 @@ tests = [
|
|||||||
"httpx-ws>=0.4.1",
|
"httpx-ws>=0.4.1",
|
||||||
"pytest-httpx>=0.23.1",
|
"pytest-httpx>=0.23.1",
|
||||||
"pytest-celery>=0.0.0",
|
"pytest-celery>=0.0.0",
|
||||||
|
"pytest-recording>=0.13.4",
|
||||||
"pytest-docker>=3.2.3",
|
"pytest-docker>=3.2.3",
|
||||||
"asgi-lifespan>=2.1.0",
|
"asgi-lifespan>=2.1.0",
|
||||||
]
|
]
|
||||||
@@ -67,6 +66,15 @@ evaluation = [
|
|||||||
"tqdm>=4.66.0",
|
"tqdm>=4.66.0",
|
||||||
"pydantic>=2.1.1",
|
"pydantic>=2.1.1",
|
||||||
]
|
]
|
||||||
|
local = [
|
||||||
|
"pyannote-audio>=3.3.2",
|
||||||
|
"faster-whisper>=0.10.0",
|
||||||
|
]
|
||||||
|
silero-vad = [
|
||||||
|
"silero-vad>=5.1.2",
|
||||||
|
"torch>=2.8.0",
|
||||||
|
"torchaudio>=2.8.0",
|
||||||
|
]
|
||||||
|
|
||||||
[tool.uv]
|
[tool.uv]
|
||||||
default-groups = [
|
default-groups = [
|
||||||
@@ -74,6 +82,21 @@ default-groups = [
|
|||||||
"tests",
|
"tests",
|
||||||
"aws",
|
"aws",
|
||||||
"evaluation",
|
"evaluation",
|
||||||
|
"local",
|
||||||
|
"silero-vad"
|
||||||
|
]
|
||||||
|
|
||||||
|
[[tool.uv.index]]
|
||||||
|
name = "pytorch-cpu"
|
||||||
|
url = "https://download.pytorch.org/whl/cpu"
|
||||||
|
explicit = true
|
||||||
|
|
||||||
|
[tool.uv.sources]
|
||||||
|
torch = [
|
||||||
|
{ index = "pytorch-cpu" },
|
||||||
|
]
|
||||||
|
torchaudio = [
|
||||||
|
{ index = "pytorch-cpu" },
|
||||||
]
|
]
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
@@ -94,6 +117,9 @@ DATABASE_URL = "postgresql://test_user:test_password@localhost:15432/reflector_t
|
|||||||
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
||||||
testpaths = ["tests"]
|
testpaths = ["tests"]
|
||||||
asyncio_mode = "auto"
|
asyncio_mode = "auto"
|
||||||
|
markers = [
|
||||||
|
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
|
||||||
|
]
|
||||||
|
|
||||||
[tool.ruff.lint]
|
[tool.ruff.lint]
|
||||||
select = [
|
select = [
|
||||||
@@ -104,7 +130,7 @@ select = [
|
|||||||
|
|
||||||
[tool.ruff.lint.per-file-ignores]
|
[tool.ruff.lint.per-file-ignores]
|
||||||
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
||||||
"gpu/**.py" = ["PLC0415"]
|
"gpu/modal_deployments/**.py" = ["PLC0415"]
|
||||||
"reflector/tools/**.py" = ["PLC0415"]
|
"reflector/tools/**.py" = ["PLC0415"]
|
||||||
"migrations/versions/**.py" = ["PLC0415"]
|
"migrations/versions/**.py" = ["PLC0415"]
|
||||||
"tests/**.py" = ["PLC0415"]
|
"tests/**.py" = ["PLC0415"]
|
||||||
|
|||||||
27
server/reflector/asynctask.py
Normal file
27
server/reflector/asynctask.py
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
import asyncio
|
||||||
|
import functools
|
||||||
|
|
||||||
|
from reflector.db import get_database
|
||||||
|
|
||||||
|
|
||||||
|
def asynctask(f):
|
||||||
|
@functools.wraps(f)
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
async def run_with_db():
|
||||||
|
database = get_database()
|
||||||
|
await database.connect()
|
||||||
|
try:
|
||||||
|
return await f(*args, **kwargs)
|
||||||
|
finally:
|
||||||
|
await database.disconnect()
|
||||||
|
|
||||||
|
coro = run_with_db()
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_running_loop()
|
||||||
|
except RuntimeError:
|
||||||
|
loop = None
|
||||||
|
if loop and loop.is_running():
|
||||||
|
return loop.run_until_complete(coro)
|
||||||
|
return asyncio.run(coro)
|
||||||
|
|
||||||
|
return wrapper
|
||||||
@@ -67,7 +67,8 @@ def current_user(
|
|||||||
try:
|
try:
|
||||||
payload = jwtauth.verify_token(token)
|
payload = jwtauth.verify_token(token)
|
||||||
sub = payload["sub"]
|
sub = payload["sub"]
|
||||||
return UserInfo(sub=sub)
|
email = payload["email"]
|
||||||
|
return UserInfo(sub=sub, email=email)
|
||||||
except JWTError as e:
|
except JWTError as e:
|
||||||
logger.error(f"JWT error: {e}")
|
logger.error(f"JWT error: {e}")
|
||||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||||
|
|||||||
@@ -24,6 +24,7 @@ def get_database() -> databases.Database:
|
|||||||
|
|
||||||
|
|
||||||
# import models
|
# import models
|
||||||
|
import reflector.db.calendar_events # noqa
|
||||||
import reflector.db.meetings # noqa
|
import reflector.db.meetings # noqa
|
||||||
import reflector.db.recordings # noqa
|
import reflector.db.recordings # noqa
|
||||||
import reflector.db.rooms # noqa
|
import reflector.db.rooms # noqa
|
||||||
|
|||||||
182
server/reflector/db/calendar_events.py
Normal file
182
server/reflector/db/calendar_events.py
Normal file
@@ -0,0 +1,182 @@
|
|||||||
|
from datetime import datetime, timedelta, timezone
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from sqlalchemy.dialects.postgresql import JSONB
|
||||||
|
|
||||||
|
from reflector.db import get_database, metadata
|
||||||
|
from reflector.utils import generate_uuid4
|
||||||
|
|
||||||
|
calendar_events = sa.Table(
|
||||||
|
"calendar_event",
|
||||||
|
metadata,
|
||||||
|
sa.Column("id", sa.String, primary_key=True),
|
||||||
|
sa.Column(
|
||||||
|
"room_id",
|
||||||
|
sa.String,
|
||||||
|
sa.ForeignKey("room.id", ondelete="CASCADE", name="fk_calendar_event_room_id"),
|
||||||
|
nullable=False,
|
||||||
|
),
|
||||||
|
sa.Column("ics_uid", sa.Text, nullable=False),
|
||||||
|
sa.Column("title", sa.Text),
|
||||||
|
sa.Column("description", sa.Text),
|
||||||
|
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column("attendees", JSONB),
|
||||||
|
sa.Column("location", sa.Text),
|
||||||
|
sa.Column("ics_raw_data", sa.Text),
|
||||||
|
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column("is_deleted", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||||
|
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||||
|
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||||
|
sa.Index("idx_calendar_event_room_start", "room_id", "start_time"),
|
||||||
|
sa.Index(
|
||||||
|
"idx_calendar_event_deleted",
|
||||||
|
"is_deleted",
|
||||||
|
postgresql_where=sa.text("NOT is_deleted"),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class CalendarEvent(BaseModel):
|
||||||
|
id: str = Field(default_factory=generate_uuid4)
|
||||||
|
room_id: str
|
||||||
|
ics_uid: str
|
||||||
|
title: str | None = None
|
||||||
|
description: str | None = None
|
||||||
|
start_time: datetime
|
||||||
|
end_time: datetime
|
||||||
|
attendees: list[dict[str, Any]] | None = None
|
||||||
|
location: str | None = None
|
||||||
|
ics_raw_data: str | None = None
|
||||||
|
last_synced: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||||
|
is_deleted: bool = False
|
||||||
|
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||||
|
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||||
|
|
||||||
|
|
||||||
|
class CalendarEventController:
|
||||||
|
async def get_by_room(
|
||||||
|
self,
|
||||||
|
room_id: str,
|
||||||
|
include_deleted: bool = False,
|
||||||
|
start_after: datetime | None = None,
|
||||||
|
end_before: datetime | None = None,
|
||||||
|
) -> list[CalendarEvent]:
|
||||||
|
query = calendar_events.select().where(calendar_events.c.room_id == room_id)
|
||||||
|
|
||||||
|
if not include_deleted:
|
||||||
|
query = query.where(calendar_events.c.is_deleted == False)
|
||||||
|
|
||||||
|
if start_after:
|
||||||
|
query = query.where(calendar_events.c.start_time >= start_after)
|
||||||
|
|
||||||
|
if end_before:
|
||||||
|
query = query.where(calendar_events.c.end_time <= end_before)
|
||||||
|
|
||||||
|
query = query.order_by(calendar_events.c.start_time.asc())
|
||||||
|
|
||||||
|
results = await get_database().fetch_all(query)
|
||||||
|
return [CalendarEvent(**result) for result in results]
|
||||||
|
|
||||||
|
async def get_upcoming(
|
||||||
|
self, room_id: str, minutes_ahead: int = 120
|
||||||
|
) -> list[CalendarEvent]:
|
||||||
|
"""Get upcoming events for a room within the specified minutes, including currently happening events."""
|
||||||
|
now = datetime.now(timezone.utc)
|
||||||
|
future_time = now + timedelta(minutes=minutes_ahead)
|
||||||
|
|
||||||
|
query = (
|
||||||
|
calendar_events.select()
|
||||||
|
.where(
|
||||||
|
sa.and_(
|
||||||
|
calendar_events.c.room_id == room_id,
|
||||||
|
calendar_events.c.is_deleted == False,
|
||||||
|
calendar_events.c.start_time <= future_time,
|
||||||
|
calendar_events.c.end_time >= now,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
.order_by(calendar_events.c.start_time.asc())
|
||||||
|
)
|
||||||
|
|
||||||
|
results = await get_database().fetch_all(query)
|
||||||
|
return [CalendarEvent(**result) for result in results]
|
||||||
|
|
||||||
|
async def get_by_ics_uid(self, room_id: str, ics_uid: str) -> CalendarEvent | None:
|
||||||
|
query = calendar_events.select().where(
|
||||||
|
sa.and_(
|
||||||
|
calendar_events.c.room_id == room_id,
|
||||||
|
calendar_events.c.ics_uid == ics_uid,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
result = await get_database().fetch_one(query)
|
||||||
|
return CalendarEvent(**result) if result else None
|
||||||
|
|
||||||
|
async def upsert(self, event: CalendarEvent) -> CalendarEvent:
|
||||||
|
existing = await self.get_by_ics_uid(event.room_id, event.ics_uid)
|
||||||
|
|
||||||
|
if existing:
|
||||||
|
event.id = existing.id
|
||||||
|
event.created_at = existing.created_at
|
||||||
|
event.updated_at = datetime.now(timezone.utc)
|
||||||
|
|
||||||
|
query = (
|
||||||
|
calendar_events.update()
|
||||||
|
.where(calendar_events.c.id == existing.id)
|
||||||
|
.values(**event.model_dump())
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
query = calendar_events.insert().values(**event.model_dump())
|
||||||
|
|
||||||
|
await get_database().execute(query)
|
||||||
|
return event
|
||||||
|
|
||||||
|
async def soft_delete_missing(
|
||||||
|
self, room_id: str, current_ics_uids: list[str]
|
||||||
|
) -> int:
|
||||||
|
"""Soft delete future events that are no longer in the calendar."""
|
||||||
|
now = datetime.now(timezone.utc)
|
||||||
|
|
||||||
|
select_query = calendar_events.select().where(
|
||||||
|
sa.and_(
|
||||||
|
calendar_events.c.room_id == room_id,
|
||||||
|
calendar_events.c.start_time > now,
|
||||||
|
calendar_events.c.is_deleted == False,
|
||||||
|
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||||
|
if current_ics_uids
|
||||||
|
else True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
to_delete = await get_database().fetch_all(select_query)
|
||||||
|
delete_count = len(to_delete)
|
||||||
|
|
||||||
|
if delete_count > 0:
|
||||||
|
update_query = (
|
||||||
|
calendar_events.update()
|
||||||
|
.where(
|
||||||
|
sa.and_(
|
||||||
|
calendar_events.c.room_id == room_id,
|
||||||
|
calendar_events.c.start_time > now,
|
||||||
|
calendar_events.c.is_deleted == False,
|
||||||
|
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||||
|
if current_ics_uids
|
||||||
|
else True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
.values(is_deleted=True, updated_at=now)
|
||||||
|
)
|
||||||
|
|
||||||
|
await get_database().execute(update_query)
|
||||||
|
|
||||||
|
return delete_count
|
||||||
|
|
||||||
|
async def delete_by_room(self, room_id: str) -> int:
|
||||||
|
query = calendar_events.delete().where(calendar_events.c.room_id == room_id)
|
||||||
|
result = await get_database().execute(query)
|
||||||
|
return result.rowcount
|
||||||
|
|
||||||
|
|
||||||
|
calendar_events_controller = CalendarEventController()
|
||||||
@@ -1,9 +1,9 @@
|
|||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Literal
|
from typing import Any, Literal
|
||||||
|
|
||||||
import sqlalchemy as sa
|
import sqlalchemy as sa
|
||||||
from fastapi import HTTPException
|
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
from sqlalchemy.dialects.postgresql import JSONB
|
||||||
|
|
||||||
from reflector.db import get_database, metadata
|
from reflector.db import get_database, metadata
|
||||||
from reflector.db.rooms import Room
|
from reflector.db.rooms import Room
|
||||||
@@ -18,8 +18,12 @@ meetings = sa.Table(
|
|||||||
sa.Column("host_room_url", sa.String),
|
sa.Column("host_room_url", sa.String),
|
||||||
sa.Column("start_date", sa.DateTime(timezone=True)),
|
sa.Column("start_date", sa.DateTime(timezone=True)),
|
||||||
sa.Column("end_date", sa.DateTime(timezone=True)),
|
sa.Column("end_date", sa.DateTime(timezone=True)),
|
||||||
sa.Column("user_id", sa.String),
|
sa.Column(
|
||||||
sa.Column("room_id", sa.String),
|
"room_id",
|
||||||
|
sa.String,
|
||||||
|
sa.ForeignKey("room.id", ondelete="CASCADE"),
|
||||||
|
nullable=True,
|
||||||
|
),
|
||||||
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||||
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
|
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
|
||||||
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
|
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
|
||||||
@@ -41,20 +45,30 @@ meetings = sa.Table(
|
|||||||
nullable=False,
|
nullable=False,
|
||||||
server_default=sa.true(),
|
server_default=sa.true(),
|
||||||
),
|
),
|
||||||
sa.Index("idx_meeting_room_id", "room_id"),
|
sa.Column(
|
||||||
sa.Index(
|
"calendar_event_id",
|
||||||
"idx_one_active_meeting_per_room",
|
sa.String,
|
||||||
"room_id",
|
sa.ForeignKey(
|
||||||
unique=True,
|
"calendar_event.id",
|
||||||
postgresql_where=sa.text("is_active = true"),
|
ondelete="SET NULL",
|
||||||
|
name="fk_meeting_calendar_event_id",
|
||||||
|
),
|
||||||
),
|
),
|
||||||
|
sa.Column("calendar_metadata", JSONB),
|
||||||
|
sa.Index("idx_meeting_room_id", "room_id"),
|
||||||
|
sa.Index("idx_meeting_calendar_event", "calendar_event_id"),
|
||||||
)
|
)
|
||||||
|
|
||||||
meeting_consent = sa.Table(
|
meeting_consent = sa.Table(
|
||||||
"meeting_consent",
|
"meeting_consent",
|
||||||
metadata,
|
metadata,
|
||||||
sa.Column("id", sa.String, primary_key=True),
|
sa.Column("id", sa.String, primary_key=True),
|
||||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
sa.Column(
|
||||||
|
"meeting_id",
|
||||||
|
sa.String,
|
||||||
|
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||||
|
nullable=False,
|
||||||
|
),
|
||||||
sa.Column("user_id", sa.String),
|
sa.Column("user_id", sa.String),
|
||||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||||
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
||||||
@@ -76,8 +90,7 @@ class Meeting(BaseModel):
|
|||||||
host_room_url: str
|
host_room_url: str
|
||||||
start_date: datetime
|
start_date: datetime
|
||||||
end_date: datetime
|
end_date: datetime
|
||||||
user_id: str | None = None
|
room_id: str | None
|
||||||
room_id: str | None = None
|
|
||||||
is_locked: bool = False
|
is_locked: bool = False
|
||||||
room_mode: Literal["normal", "group"] = "normal"
|
room_mode: Literal["normal", "group"] = "normal"
|
||||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||||
@@ -85,6 +98,9 @@ class Meeting(BaseModel):
|
|||||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||||
] = "automatic-2nd-participant"
|
] = "automatic-2nd-participant"
|
||||||
num_clients: int = 0
|
num_clients: int = 0
|
||||||
|
is_active: bool = True
|
||||||
|
calendar_event_id: str | None = None
|
||||||
|
calendar_metadata: dict[str, Any] | None = None
|
||||||
|
|
||||||
|
|
||||||
class MeetingController:
|
class MeetingController:
|
||||||
@@ -96,12 +112,10 @@ class MeetingController:
|
|||||||
host_room_url: str,
|
host_room_url: str,
|
||||||
start_date: datetime,
|
start_date: datetime,
|
||||||
end_date: datetime,
|
end_date: datetime,
|
||||||
user_id: str,
|
|
||||||
room: Room,
|
room: Room,
|
||||||
|
calendar_event_id: str | None = None,
|
||||||
|
calendar_metadata: dict[str, Any] | None = None,
|
||||||
):
|
):
|
||||||
"""
|
|
||||||
Create a new meeting
|
|
||||||
"""
|
|
||||||
meeting = Meeting(
|
meeting = Meeting(
|
||||||
id=id,
|
id=id,
|
||||||
room_name=room_name,
|
room_name=room_name,
|
||||||
@@ -109,41 +123,46 @@ class MeetingController:
|
|||||||
host_room_url=host_room_url,
|
host_room_url=host_room_url,
|
||||||
start_date=start_date,
|
start_date=start_date,
|
||||||
end_date=end_date,
|
end_date=end_date,
|
||||||
user_id=user_id,
|
|
||||||
room_id=room.id,
|
room_id=room.id,
|
||||||
is_locked=room.is_locked,
|
is_locked=room.is_locked,
|
||||||
room_mode=room.room_mode,
|
room_mode=room.room_mode,
|
||||||
recording_type=room.recording_type,
|
recording_type=room.recording_type,
|
||||||
recording_trigger=room.recording_trigger,
|
recording_trigger=room.recording_trigger,
|
||||||
|
calendar_event_id=calendar_event_id,
|
||||||
|
calendar_metadata=calendar_metadata,
|
||||||
)
|
)
|
||||||
query = meetings.insert().values(**meeting.model_dump())
|
query = meetings.insert().values(**meeting.model_dump())
|
||||||
await get_database().execute(query)
|
await get_database().execute(query)
|
||||||
return meeting
|
return meeting
|
||||||
|
|
||||||
async def get_all_active(self) -> list[Meeting]:
|
async def get_all_active(self) -> list[Meeting]:
|
||||||
"""
|
|
||||||
Get active meetings.
|
|
||||||
"""
|
|
||||||
query = meetings.select().where(meetings.c.is_active)
|
query = meetings.select().where(meetings.c.is_active)
|
||||||
return await get_database().fetch_all(query)
|
return await get_database().fetch_all(query)
|
||||||
|
|
||||||
async def get_by_room_name(
|
async def get_by_room_name(
|
||||||
self,
|
self,
|
||||||
room_name: str,
|
room_name: str,
|
||||||
) -> Meeting:
|
) -> Meeting | None:
|
||||||
"""
|
"""
|
||||||
Get a meeting by room name.
|
Get a meeting by room name.
|
||||||
|
For backward compatibility, returns the most recent meeting.
|
||||||
"""
|
"""
|
||||||
query = meetings.select().where(meetings.c.room_name == room_name)
|
end_date = getattr(meetings.c, "end_date")
|
||||||
|
query = (
|
||||||
|
meetings.select()
|
||||||
|
.where(meetings.c.room_name == room_name)
|
||||||
|
.order_by(end_date.desc())
|
||||||
|
)
|
||||||
result = await get_database().fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return Meeting(**result)
|
return Meeting(**result)
|
||||||
|
|
||||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting:
|
async def get_active(self, room: Room, current_time: datetime) -> Meeting | None:
|
||||||
"""
|
"""
|
||||||
Get latest active meeting for a room.
|
Get latest active meeting for a room.
|
||||||
|
For backward compatibility, returns the most recent active meeting.
|
||||||
"""
|
"""
|
||||||
end_date = getattr(meetings.c, "end_date")
|
end_date = getattr(meetings.c, "end_date")
|
||||||
query = (
|
query = (
|
||||||
@@ -163,32 +182,58 @@ class MeetingController:
|
|||||||
|
|
||||||
return Meeting(**result)
|
return Meeting(**result)
|
||||||
|
|
||||||
|
async def get_all_active_for_room(
|
||||||
|
self, room: Room, current_time: datetime
|
||||||
|
) -> list[Meeting]:
|
||||||
|
end_date = getattr(meetings.c, "end_date")
|
||||||
|
query = (
|
||||||
|
meetings.select()
|
||||||
|
.where(
|
||||||
|
sa.and_(
|
||||||
|
meetings.c.room_id == room.id,
|
||||||
|
meetings.c.end_date > current_time,
|
||||||
|
meetings.c.is_active,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
.order_by(end_date.desc())
|
||||||
|
)
|
||||||
|
results = await get_database().fetch_all(query)
|
||||||
|
return [Meeting(**result) for result in results]
|
||||||
|
|
||||||
|
async def get_active_by_calendar_event(
|
||||||
|
self, room: Room, calendar_event_id: str, current_time: datetime
|
||||||
|
) -> Meeting | None:
|
||||||
|
"""
|
||||||
|
Get active meeting for a specific calendar event.
|
||||||
|
"""
|
||||||
|
query = meetings.select().where(
|
||||||
|
sa.and_(
|
||||||
|
meetings.c.room_id == room.id,
|
||||||
|
meetings.c.calendar_event_id == calendar_event_id,
|
||||||
|
meetings.c.end_date > current_time,
|
||||||
|
meetings.c.is_active,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
result = await get_database().fetch_one(query)
|
||||||
|
if not result:
|
||||||
|
return None
|
||||||
|
return Meeting(**result)
|
||||||
|
|
||||||
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
|
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
|
||||||
"""
|
|
||||||
Get a meeting by id
|
|
||||||
"""
|
|
||||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||||
result = await get_database().fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
return Meeting(**result)
|
return Meeting(**result)
|
||||||
|
|
||||||
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Meeting:
|
async def get_by_calendar_event(self, calendar_event_id: str) -> Meeting | None:
|
||||||
"""
|
query = meetings.select().where(
|
||||||
Get a meeting by ID for HTTP request.
|
meetings.c.calendar_event_id == calendar_event_id
|
||||||
|
)
|
||||||
If not found, it will raise a 404 error.
|
|
||||||
"""
|
|
||||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
|
||||||
result = await get_database().fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
return None
|
||||||
|
return Meeting(**result)
|
||||||
meeting = Meeting(**result)
|
|
||||||
if result["user_id"] != user_id:
|
|
||||||
meeting.host_room_url = ""
|
|
||||||
|
|
||||||
return meeting
|
|
||||||
|
|
||||||
async def update_meeting(self, meeting_id: str, **kwargs):
|
async def update_meeting(self, meeting_id: str, **kwargs):
|
||||||
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
||||||
@@ -214,10 +259,9 @@ class MeetingConsentController:
|
|||||||
result = await get_database().fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if result is None:
|
if result is None:
|
||||||
return None
|
return None
|
||||||
return MeetingConsent(**result) if result else None
|
return MeetingConsent(**result)
|
||||||
|
|
||||||
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
|
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
|
||||||
"""Create new consent or update existing one for authenticated users"""
|
|
||||||
if consent.user_id:
|
if consent.user_id:
|
||||||
# For authenticated users, check if consent already exists
|
# For authenticated users, check if consent already exists
|
||||||
# not transactional but we're ok with that; the consents ain't deleted anyways
|
# not transactional but we're ok with that; the consents ain't deleted anyways
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
import secrets
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
from sqlite3 import IntegrityError
|
from sqlite3 import IntegrityError
|
||||||
from typing import Literal
|
from typing import Literal
|
||||||
@@ -40,7 +41,17 @@ rooms = sqlalchemy.Table(
|
|||||||
sqlalchemy.Column(
|
sqlalchemy.Column(
|
||||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||||
),
|
),
|
||||||
|
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
|
||||||
|
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
|
||||||
|
sqlalchemy.Column("ics_url", sqlalchemy.Text),
|
||||||
|
sqlalchemy.Column("ics_fetch_interval", sqlalchemy.Integer, server_default="300"),
|
||||||
|
sqlalchemy.Column(
|
||||||
|
"ics_enabled", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||||
|
),
|
||||||
|
sqlalchemy.Column("ics_last_sync", sqlalchemy.DateTime(timezone=True)),
|
||||||
|
sqlalchemy.Column("ics_last_etag", sqlalchemy.Text),
|
||||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||||
|
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -59,6 +70,13 @@ class Room(BaseModel):
|
|||||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||||
] = "automatic-2nd-participant"
|
] = "automatic-2nd-participant"
|
||||||
is_shared: bool = False
|
is_shared: bool = False
|
||||||
|
webhook_url: str | None = None
|
||||||
|
webhook_secret: str | None = None
|
||||||
|
ics_url: str | None = None
|
||||||
|
ics_fetch_interval: int = 300
|
||||||
|
ics_enabled: bool = False
|
||||||
|
ics_last_sync: datetime | None = None
|
||||||
|
ics_last_etag: str | None = None
|
||||||
|
|
||||||
|
|
||||||
class RoomController:
|
class RoomController:
|
||||||
@@ -107,10 +125,18 @@ class RoomController:
|
|||||||
recording_type: str,
|
recording_type: str,
|
||||||
recording_trigger: str,
|
recording_trigger: str,
|
||||||
is_shared: bool,
|
is_shared: bool,
|
||||||
|
webhook_url: str = "",
|
||||||
|
webhook_secret: str = "",
|
||||||
|
ics_url: str | None = None,
|
||||||
|
ics_fetch_interval: int = 300,
|
||||||
|
ics_enabled: bool = False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Add a new room
|
Add a new room
|
||||||
"""
|
"""
|
||||||
|
if webhook_url and not webhook_secret:
|
||||||
|
webhook_secret = secrets.token_urlsafe(32)
|
||||||
|
|
||||||
room = Room(
|
room = Room(
|
||||||
name=name,
|
name=name,
|
||||||
user_id=user_id,
|
user_id=user_id,
|
||||||
@@ -122,6 +148,11 @@ class RoomController:
|
|||||||
recording_type=recording_type,
|
recording_type=recording_type,
|
||||||
recording_trigger=recording_trigger,
|
recording_trigger=recording_trigger,
|
||||||
is_shared=is_shared,
|
is_shared=is_shared,
|
||||||
|
webhook_url=webhook_url,
|
||||||
|
webhook_secret=webhook_secret,
|
||||||
|
ics_url=ics_url,
|
||||||
|
ics_fetch_interval=ics_fetch_interval,
|
||||||
|
ics_enabled=ics_enabled,
|
||||||
)
|
)
|
||||||
query = rooms.insert().values(**room.model_dump())
|
query = rooms.insert().values(**room.model_dump())
|
||||||
try:
|
try:
|
||||||
@@ -134,6 +165,9 @@ class RoomController:
|
|||||||
"""
|
"""
|
||||||
Update a room fields with key/values in values
|
Update a room fields with key/values in values
|
||||||
"""
|
"""
|
||||||
|
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||||
|
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||||
|
|
||||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||||
try:
|
try:
|
||||||
await get_database().execute(query)
|
await get_database().execute(query)
|
||||||
@@ -183,6 +217,13 @@ class RoomController:
|
|||||||
|
|
||||||
return room
|
return room
|
||||||
|
|
||||||
|
async def get_ics_enabled(self) -> list[Room]:
|
||||||
|
query = rooms.select().where(
|
||||||
|
rooms.c.ics_enabled == True, rooms.c.ics_url != None
|
||||||
|
)
|
||||||
|
results = await get_database().fetch_all(query)
|
||||||
|
return [Room(**result) for result in results]
|
||||||
|
|
||||||
async def remove_by_id(
|
async def remove_by_id(
|
||||||
self,
|
self,
|
||||||
room_id: str,
|
room_id: str,
|
||||||
|
|||||||
@@ -1,22 +1,38 @@
|
|||||||
"""Search functionality for transcripts and other entities."""
|
"""Search functionality for transcripts and other entities."""
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
from dataclasses import dataclass
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from io import StringIO
|
from io import StringIO
|
||||||
from typing import Annotated, Any, Dict
|
from typing import Annotated, Any, Dict, Iterator
|
||||||
|
|
||||||
import sqlalchemy
|
import sqlalchemy
|
||||||
import webvtt
|
import webvtt
|
||||||
from pydantic import BaseModel, Field, constr, field_serializer
|
from databases.interfaces import Record as DbRecord
|
||||||
|
from fastapi import HTTPException
|
||||||
|
from pydantic import (
|
||||||
|
BaseModel,
|
||||||
|
Field,
|
||||||
|
NonNegativeFloat,
|
||||||
|
NonNegativeInt,
|
||||||
|
TypeAdapter,
|
||||||
|
ValidationError,
|
||||||
|
constr,
|
||||||
|
field_serializer,
|
||||||
|
)
|
||||||
|
|
||||||
from reflector.db import get_database
|
from reflector.db import get_database
|
||||||
from reflector.db.transcripts import SourceKind, transcripts
|
from reflector.db.rooms import rooms
|
||||||
|
from reflector.db.transcripts import SourceKind, TranscriptStatus, transcripts
|
||||||
from reflector.db.utils import is_postgresql
|
from reflector.db.utils import is_postgresql
|
||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
|
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||||
|
|
||||||
DEFAULT_SEARCH_LIMIT = 20
|
DEFAULT_SEARCH_LIMIT = 20
|
||||||
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||||
DEFAULT_SNIPPET_MAX_LENGTH = 150
|
DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||||
DEFAULT_MAX_SNIPPETS = 3
|
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||||
|
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||||
|
|
||||||
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||||
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||||
@@ -24,6 +40,7 @@ SearchOffsetBase = Annotated[int, Field(ge=0)]
|
|||||||
SearchTotalBase = Annotated[int, Field(ge=0)]
|
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||||
|
|
||||||
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||||
|
search_query_adapter = TypeAdapter(SearchQuery)
|
||||||
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||||
SearchOffset = Annotated[
|
SearchOffset = Annotated[
|
||||||
SearchOffsetBase, Field(description="Number of results to skip")
|
SearchOffsetBase, Field(description="Number of results to skip")
|
||||||
@@ -32,15 +49,92 @@ SearchTotal = Annotated[
|
|||||||
SearchTotalBase, Field(description="Total number of search results")
|
SearchTotalBase, Field(description="Total number of search results")
|
||||||
]
|
]
|
||||||
|
|
||||||
|
WEBVTT_SPEC_HEADER = "WEBVTT"
|
||||||
|
|
||||||
|
WebVTTContent = Annotated[
|
||||||
|
str,
|
||||||
|
Field(min_length=len(WEBVTT_SPEC_HEADER), description="WebVTT content"),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class WebVTTProcessor:
|
||||||
|
"""Stateless processor for WebVTT content operations."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def parse(raw_content: str) -> WebVTTContent:
|
||||||
|
"""Parse WebVTT content and return it as a string."""
|
||||||
|
if not raw_content.startswith(WEBVTT_SPEC_HEADER):
|
||||||
|
raise ValueError(f"Invalid WebVTT content, no header {WEBVTT_SPEC_HEADER}")
|
||||||
|
return raw_content
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def extract_text(webvtt_content: WebVTTContent) -> str:
|
||||||
|
"""Extract plain text from WebVTT content using webvtt library."""
|
||||||
|
try:
|
||||||
|
buffer = StringIO(webvtt_content)
|
||||||
|
vtt = webvtt.read_buffer(buffer)
|
||||||
|
return " ".join(caption.text for caption in vtt if caption.text)
|
||||||
|
except webvtt.errors.MalformedFileError as e:
|
||||||
|
logger.warning(f"Malformed WebVTT content: {e}")
|
||||||
|
return ""
|
||||||
|
except (UnicodeDecodeError, ValueError) as e:
|
||||||
|
logger.warning(f"Failed to decode WebVTT content: {e}")
|
||||||
|
return ""
|
||||||
|
except AttributeError as e:
|
||||||
|
logger.error(
|
||||||
|
f"WebVTT parsing error - unexpected format: {e}", exc_info=True
|
||||||
|
)
|
||||||
|
return ""
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Unexpected error parsing WebVTT: {e}", exc_info=True)
|
||||||
|
return ""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def generate_snippets(
|
||||||
|
webvtt_content: WebVTTContent,
|
||||||
|
query: SearchQuery,
|
||||||
|
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||||
|
) -> list[str]:
|
||||||
|
"""Generate snippets from WebVTT content."""
|
||||||
|
return SnippetGenerator.generate(
|
||||||
|
WebVTTProcessor.extract_text(webvtt_content),
|
||||||
|
query,
|
||||||
|
max_snippets=max_snippets,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class SnippetCandidate:
|
||||||
|
"""Represents a candidate snippet with its position."""
|
||||||
|
|
||||||
|
_text: str
|
||||||
|
start: NonNegativeInt
|
||||||
|
_original_text_length: int
|
||||||
|
|
||||||
|
@property
|
||||||
|
def end(self) -> NonNegativeInt:
|
||||||
|
"""Calculate end position from start and raw text length."""
|
||||||
|
return self.start + len(self._text)
|
||||||
|
|
||||||
|
def text(self) -> str:
|
||||||
|
"""Get display text with ellipses added if needed."""
|
||||||
|
result = self._text.strip()
|
||||||
|
if self.start > 0:
|
||||||
|
result = "..." + result
|
||||||
|
if self.end < self._original_text_length:
|
||||||
|
result = result + "..."
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
class SearchParameters(BaseModel):
|
class SearchParameters(BaseModel):
|
||||||
"""Validated search parameters for full-text search."""
|
"""Validated search parameters for full-text search."""
|
||||||
|
|
||||||
query_text: SearchQuery
|
query_text: SearchQuery | None = None
|
||||||
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||||
offset: SearchOffset = 0
|
offset: SearchOffset = 0
|
||||||
user_id: str | None = None
|
user_id: str | None = None
|
||||||
room_id: str | None = None
|
room_id: str | None = None
|
||||||
|
source_kind: SourceKind | None = None
|
||||||
|
|
||||||
|
|
||||||
class SearchResultDB(BaseModel):
|
class SearchResultDB(BaseModel):
|
||||||
@@ -64,13 +158,18 @@ class SearchResult(BaseModel):
|
|||||||
title: str | None = None
|
title: str | None = None
|
||||||
user_id: str | None = None
|
user_id: str | None = None
|
||||||
room_id: str | None = None
|
room_id: str | None = None
|
||||||
|
room_name: str | None = None
|
||||||
|
source_kind: SourceKind
|
||||||
created_at: datetime
|
created_at: datetime
|
||||||
status: str = Field(..., min_length=1)
|
status: TranscriptStatus = Field(..., min_length=1)
|
||||||
rank: float = Field(..., ge=0, le=1)
|
rank: float = Field(..., ge=0, le=1)
|
||||||
duration: float | None = Field(..., ge=0, description="Duration in seconds")
|
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
|
||||||
search_snippets: list[str] = Field(
|
search_snippets: list[str] = Field(
|
||||||
description="Text snippets around search matches"
|
description="Text snippets around search matches"
|
||||||
)
|
)
|
||||||
|
total_match_count: NonNegativeInt = Field(
|
||||||
|
default=0, description="Total number of matches found in the transcript"
|
||||||
|
)
|
||||||
|
|
||||||
@field_serializer("created_at", when_used="json")
|
@field_serializer("created_at", when_used="json")
|
||||||
def serialize_datetime(self, dt: datetime) -> str:
|
def serialize_datetime(self, dt: datetime) -> str:
|
||||||
@@ -79,84 +178,157 @@ class SearchResult(BaseModel):
|
|||||||
return dt.isoformat()
|
return dt.isoformat()
|
||||||
|
|
||||||
|
|
||||||
class SearchController:
|
class SnippetGenerator:
|
||||||
"""Controller for search operations across different entities."""
|
"""Stateless generator for text snippets and match operations."""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _extract_webvtt_text(webvtt_content: str) -> str:
|
def find_all_matches(text: str, query: str) -> Iterator[int]:
|
||||||
"""Extract plain text from WebVTT content using webvtt library."""
|
"""Generate all match positions for a query in text."""
|
||||||
if not webvtt_content:
|
if not text:
|
||||||
return ""
|
logger.warning("Empty text for search query in find_all_matches")
|
||||||
|
return
|
||||||
|
if not query:
|
||||||
|
logger.warning("Empty query for search text in find_all_matches")
|
||||||
|
return
|
||||||
|
|
||||||
try:
|
text_lower = text.lower()
|
||||||
buffer = StringIO(webvtt_content)
|
query_lower = query.lower()
|
||||||
vtt = webvtt.read_buffer(buffer)
|
start = 0
|
||||||
return " ".join(caption.text for caption in vtt if caption.text)
|
prev_start = start
|
||||||
except (webvtt.errors.MalformedFileError, UnicodeDecodeError, ValueError) as e:
|
while (pos := text_lower.find(query_lower, start)) != -1:
|
||||||
logger.warning(f"Failed to parse WebVTT content: {e}", exc_info=e)
|
yield pos
|
||||||
return ""
|
start = pos + len(query_lower)
|
||||||
except AttributeError as e:
|
if start <= prev_start:
|
||||||
logger.warning(f"WebVTT parsing error - unexpected format: {e}", exc_info=e)
|
raise ValueError("panic! find_all_matches is not incremental")
|
||||||
return ""
|
prev_start = start
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _generate_snippets(
|
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||||
|
"""Count total number of matches for a query in text."""
|
||||||
|
ZERO = NonNegativeInt(0)
|
||||||
|
if not text:
|
||||||
|
logger.warning("Empty text for search query in count_matches")
|
||||||
|
return ZERO
|
||||||
|
assert query is not None
|
||||||
|
return NonNegativeInt(
|
||||||
|
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create_snippet(
|
||||||
|
text: str, match_pos: int, max_length: int = DEFAULT_SNIPPET_MAX_LENGTH
|
||||||
|
) -> SnippetCandidate:
|
||||||
|
"""Create a snippet from a match position."""
|
||||||
|
snippet_start = NonNegativeInt(max(0, match_pos - SNIPPET_CONTEXT_LENGTH))
|
||||||
|
snippet_end = min(len(text), match_pos + max_length - SNIPPET_CONTEXT_LENGTH)
|
||||||
|
|
||||||
|
snippet_text = text[snippet_start:snippet_end]
|
||||||
|
|
||||||
|
return SnippetCandidate(
|
||||||
|
_text=snippet_text, start=snippet_start, _original_text_length=len(text)
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def filter_non_overlapping(
|
||||||
|
candidates: Iterator[SnippetCandidate],
|
||||||
|
) -> Iterator[str]:
|
||||||
|
"""Filter out overlapping snippets and return only display text."""
|
||||||
|
last_end = 0
|
||||||
|
for candidate in candidates:
|
||||||
|
display_text = candidate.text()
|
||||||
|
# it means that next overlapping snippets simply don't get included
|
||||||
|
# it's fine as simplistic logic and users probably won't care much because they already have their search results just fin
|
||||||
|
if candidate.start >= last_end and display_text:
|
||||||
|
yield display_text
|
||||||
|
last_end = candidate.end
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def generate(
|
||||||
text: str,
|
text: str,
|
||||||
q: SearchQuery,
|
query: SearchQuery,
|
||||||
max_length: int = DEFAULT_SNIPPET_MAX_LENGTH,
|
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||||
max_snippets: int = DEFAULT_MAX_SNIPPETS,
|
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||||
) -> list[str]:
|
) -> list[str]:
|
||||||
"""Generate multiple snippets around all occurrences of search term."""
|
"""Generate snippets from text."""
|
||||||
if not text or not q:
|
assert query is not None
|
||||||
|
if not text:
|
||||||
|
logger.warning("Empty text for generate_snippets")
|
||||||
return []
|
return []
|
||||||
|
|
||||||
snippets = []
|
candidates = (
|
||||||
lower_text = text.lower()
|
SnippetGenerator.create_snippet(text, pos, max_length)
|
||||||
search_lower = q.lower()
|
for pos in SnippetGenerator.find_all_matches(text, query)
|
||||||
|
)
|
||||||
|
filtered = SnippetGenerator.filter_non_overlapping(candidates)
|
||||||
|
snippets = list(itertools.islice(filtered, max_snippets))
|
||||||
|
|
||||||
last_snippet_end = 0
|
# Fallback to first word search if no full matches
|
||||||
start_pos = 0
|
# it's another assumption: proper snippet logic generation is quite complicated and tied to db logic, so simplification is used here
|
||||||
|
if not snippets and " " in query:
|
||||||
while len(snippets) < max_snippets:
|
first_word = query.split()[0]
|
||||||
match_pos = lower_text.find(search_lower, start_pos)
|
return SnippetGenerator.generate(text, first_word, max_length, max_snippets)
|
||||||
|
|
||||||
if match_pos == -1:
|
|
||||||
if not snippets and search_lower.split():
|
|
||||||
first_word = search_lower.split()[0]
|
|
||||||
match_pos = lower_text.find(first_word, start_pos)
|
|
||||||
if match_pos == -1:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
|
|
||||||
snippet_start = max(0, match_pos - SNIPPET_CONTEXT_LENGTH)
|
|
||||||
snippet_end = min(
|
|
||||||
len(text), match_pos + max_length - SNIPPET_CONTEXT_LENGTH
|
|
||||||
)
|
|
||||||
|
|
||||||
if snippet_start < last_snippet_end:
|
|
||||||
start_pos = match_pos + len(search_lower)
|
|
||||||
continue
|
|
||||||
|
|
||||||
snippet = text[snippet_start:snippet_end]
|
|
||||||
|
|
||||||
if snippet_start > 0:
|
|
||||||
snippet = "..." + snippet
|
|
||||||
if snippet_end < len(text):
|
|
||||||
snippet = snippet + "..."
|
|
||||||
|
|
||||||
snippet = snippet.strip()
|
|
||||||
|
|
||||||
if snippet:
|
|
||||||
snippets.append(snippet)
|
|
||||||
last_snippet_end = snippet_end
|
|
||||||
|
|
||||||
start_pos = match_pos + len(search_lower)
|
|
||||||
if start_pos >= len(text):
|
|
||||||
break
|
|
||||||
|
|
||||||
return snippets
|
return snippets
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def from_summary(
|
||||||
|
summary: str,
|
||||||
|
query: SearchQuery,
|
||||||
|
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||||
|
) -> list[str]:
|
||||||
|
"""Generate snippets from summary text."""
|
||||||
|
return SnippetGenerator.generate(summary, query, max_snippets=max_snippets)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def combine_sources(
|
||||||
|
summary: NonEmptyString | None,
|
||||||
|
webvtt: WebVTTContent | None,
|
||||||
|
query: SearchQuery,
|
||||||
|
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||||
|
) -> tuple[list[str], NonNegativeInt]:
|
||||||
|
"""Combine snippets from multiple sources and return total match count.
|
||||||
|
|
||||||
|
Returns (snippets, total_match_count) tuple.
|
||||||
|
|
||||||
|
snippets can be empty for real in case of e.g. title match
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert (
|
||||||
|
summary is not None or webvtt is not None
|
||||||
|
), "At least one source must be present"
|
||||||
|
|
||||||
|
webvtt_matches = 0
|
||||||
|
summary_matches = 0
|
||||||
|
|
||||||
|
if webvtt:
|
||||||
|
webvtt_text = WebVTTProcessor.extract_text(webvtt)
|
||||||
|
webvtt_matches = SnippetGenerator.count_matches(webvtt_text, query)
|
||||||
|
|
||||||
|
if summary:
|
||||||
|
summary_matches = SnippetGenerator.count_matches(summary, query)
|
||||||
|
|
||||||
|
total_matches = NonNegativeInt(webvtt_matches + summary_matches)
|
||||||
|
|
||||||
|
summary_snippets = (
|
||||||
|
SnippetGenerator.from_summary(summary, query) if summary else []
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(summary_snippets) >= max_total:
|
||||||
|
return summary_snippets[:max_total], total_matches
|
||||||
|
|
||||||
|
remaining = max_total - len(summary_snippets)
|
||||||
|
webvtt_snippets = (
|
||||||
|
WebVTTProcessor.generate_snippets(webvtt, query, remaining)
|
||||||
|
if webvtt
|
||||||
|
else []
|
||||||
|
)
|
||||||
|
|
||||||
|
return summary_snippets + webvtt_snippets, total_matches
|
||||||
|
|
||||||
|
|
||||||
|
class SearchController:
|
||||||
|
"""Controller for search operations across different entities."""
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
async def search_transcripts(
|
async def search_transcripts(
|
||||||
cls, params: SearchParameters
|
cls, params: SearchParameters
|
||||||
@@ -172,39 +344,72 @@ class SearchController:
|
|||||||
)
|
)
|
||||||
return [], 0
|
return [], 0
|
||||||
|
|
||||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
base_columns = [
|
||||||
"english", params.query_text
|
transcripts.c.id,
|
||||||
|
transcripts.c.title,
|
||||||
|
transcripts.c.created_at,
|
||||||
|
transcripts.c.duration,
|
||||||
|
transcripts.c.status,
|
||||||
|
transcripts.c.user_id,
|
||||||
|
transcripts.c.room_id,
|
||||||
|
transcripts.c.source_kind,
|
||||||
|
transcripts.c.webvtt,
|
||||||
|
transcripts.c.long_summary,
|
||||||
|
sqlalchemy.case(
|
||||||
|
(
|
||||||
|
transcripts.c.room_id.isnot(None) & rooms.c.id.is_(None),
|
||||||
|
"Deleted Room",
|
||||||
|
),
|
||||||
|
else_=rooms.c.name,
|
||||||
|
).label("room_name"),
|
||||||
|
]
|
||||||
|
search_query = None
|
||||||
|
if params.query_text is not None:
|
||||||
|
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||||
|
"english", params.query_text
|
||||||
|
)
|
||||||
|
rank_column = sqlalchemy.func.ts_rank(
|
||||||
|
transcripts.c.search_vector_en,
|
||||||
|
search_query,
|
||||||
|
32, # normalization flag: rank/(rank+1) for 0-1 range
|
||||||
|
).label("rank")
|
||||||
|
else:
|
||||||
|
rank_column = sqlalchemy.cast(1.0, sqlalchemy.Float).label("rank")
|
||||||
|
|
||||||
|
columns = base_columns + [rank_column]
|
||||||
|
base_query = sqlalchemy.select(columns).select_from(
|
||||||
|
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
|
||||||
)
|
)
|
||||||
|
|
||||||
base_query = sqlalchemy.select(
|
if params.query_text is not None:
|
||||||
[
|
# because already initialized based on params.query_text presence above
|
||||||
transcripts.c.id,
|
assert search_query is not None
|
||||||
transcripts.c.title,
|
base_query = base_query.where(
|
||||||
transcripts.c.created_at,
|
transcripts.c.search_vector_en.op("@@")(search_query)
|
||||||
transcripts.c.duration,
|
)
|
||||||
transcripts.c.status,
|
|
||||||
transcripts.c.user_id,
|
|
||||||
transcripts.c.room_id,
|
|
||||||
transcripts.c.source_kind,
|
|
||||||
transcripts.c.webvtt,
|
|
||||||
sqlalchemy.func.ts_rank(
|
|
||||||
transcripts.c.search_vector_en,
|
|
||||||
search_query,
|
|
||||||
32, # normalization flag: rank/(rank+1) for 0-1 range
|
|
||||||
).label("rank"),
|
|
||||||
]
|
|
||||||
).where(transcripts.c.search_vector_en.op("@@")(search_query))
|
|
||||||
|
|
||||||
if params.user_id:
|
if params.user_id:
|
||||||
base_query = base_query.where(transcripts.c.user_id == params.user_id)
|
base_query = base_query.where(
|
||||||
|
sqlalchemy.or_(
|
||||||
|
transcripts.c.user_id == params.user_id, rooms.c.is_shared
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
base_query = base_query.where(rooms.c.is_shared)
|
||||||
if params.room_id:
|
if params.room_id:
|
||||||
base_query = base_query.where(transcripts.c.room_id == params.room_id)
|
base_query = base_query.where(transcripts.c.room_id == params.room_id)
|
||||||
|
if params.source_kind:
|
||||||
|
base_query = base_query.where(
|
||||||
|
transcripts.c.source_kind == params.source_kind
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.query_text is not None:
|
||||||
|
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||||
|
else:
|
||||||
|
order_by = sqlalchemy.desc(transcripts.c.created_at)
|
||||||
|
|
||||||
|
query = base_query.order_by(order_by).limit(params.limit).offset(params.offset)
|
||||||
|
|
||||||
query = (
|
|
||||||
base_query.order_by(sqlalchemy.desc(sqlalchemy.text("rank")))
|
|
||||||
.limit(params.limit)
|
|
||||||
.offset(params.offset)
|
|
||||||
)
|
|
||||||
rs = await get_database().fetch_all(query)
|
rs = await get_database().fetch_all(query)
|
||||||
|
|
||||||
count_query = sqlalchemy.select([sqlalchemy.func.count()]).select_from(
|
count_query = sqlalchemy.select([sqlalchemy.func.count()]).select_from(
|
||||||
@@ -212,20 +417,52 @@ class SearchController:
|
|||||||
)
|
)
|
||||||
total = await get_database().fetch_val(count_query)
|
total = await get_database().fetch_val(count_query)
|
||||||
|
|
||||||
def _process_result(r) -> SearchResult:
|
def _process_result(r: DbRecord) -> SearchResult:
|
||||||
r_dict: Dict[str, Any] = dict(r)
|
r_dict: Dict[str, Any] = dict(r)
|
||||||
webvtt: str | None = r_dict.pop("webvtt", None)
|
|
||||||
|
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||||
|
webvtt: WebVTTContent | None
|
||||||
|
if webvtt_raw:
|
||||||
|
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||||
|
else:
|
||||||
|
webvtt = None
|
||||||
|
|
||||||
|
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||||
|
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||||
|
room_name: str | None = r_dict.pop("room_name", None)
|
||||||
db_result = SearchResultDB.model_validate(r_dict)
|
db_result = SearchResultDB.model_validate(r_dict)
|
||||||
|
|
||||||
snippets = []
|
at_least_one_source = webvtt is not None or long_summary is not None
|
||||||
if webvtt:
|
has_query = params.query_text is not None
|
||||||
plain_text = cls._extract_webvtt_text(webvtt)
|
snippets, total_match_count = (
|
||||||
snippets = cls._generate_snippets(plain_text, params.query_text)
|
SnippetGenerator.combine_sources(
|
||||||
|
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||||
|
)
|
||||||
|
if has_query and at_least_one_source
|
||||||
|
else ([], 0)
|
||||||
|
)
|
||||||
|
|
||||||
return SearchResult(**db_result.model_dump(), search_snippets=snippets)
|
return SearchResult(
|
||||||
|
**db_result.model_dump(),
|
||||||
|
room_name=room_name,
|
||||||
|
search_snippets=snippets,
|
||||||
|
total_match_count=total_match_count,
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = [_process_result(r) for r in rs]
|
||||||
|
except ValidationError as e:
|
||||||
|
logger.error(f"Invalid search result data: {e}", exc_info=True)
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=500, detail="Internal search result data consistency error"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing search results: {e}", exc_info=True)
|
||||||
|
raise
|
||||||
|
|
||||||
results = [_process_result(r) for r in rs]
|
|
||||||
return results, total
|
return results, total
|
||||||
|
|
||||||
|
|
||||||
search_controller = SearchController()
|
search_controller = SearchController()
|
||||||
|
webvtt_processor = WebVTTProcessor()
|
||||||
|
snippet_generator = SnippetGenerator()
|
||||||
|
|||||||
@@ -88,6 +88,8 @@ transcripts = sqlalchemy.Table(
|
|||||||
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
||||||
sqlalchemy.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
sqlalchemy.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
||||||
sqlalchemy.Index("idx_transcript_room_id", "room_id"),
|
sqlalchemy.Index("idx_transcript_room_id", "room_id"),
|
||||||
|
sqlalchemy.Index("idx_transcript_source_kind", "source_kind"),
|
||||||
|
sqlalchemy.Index("idx_transcript_room_id_created_at", "room_id", "created_at"),
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add PostgreSQL-specific full-text search column
|
# Add PostgreSQL-specific full-text search column
|
||||||
@@ -99,7 +101,8 @@ if is_postgresql():
|
|||||||
TSVECTOR,
|
TSVECTOR,
|
||||||
sqlalchemy.Computed(
|
sqlalchemy.Computed(
|
||||||
"setweight(to_tsvector('english', coalesce(title, '')), 'A') || "
|
"setweight(to_tsvector('english', coalesce(title, '')), 'A') || "
|
||||||
"setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')",
|
"setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') || "
|
||||||
|
"setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')",
|
||||||
persisted=True,
|
persisted=True,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
@@ -119,6 +122,15 @@ def generate_transcript_name() -> str:
|
|||||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||||
|
|
||||||
|
|
||||||
|
TranscriptStatus = Literal[
|
||||||
|
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class StrValue(BaseModel):
|
||||||
|
value: str
|
||||||
|
|
||||||
|
|
||||||
class AudioWaveform(BaseModel):
|
class AudioWaveform(BaseModel):
|
||||||
data: list[float]
|
data: list[float]
|
||||||
|
|
||||||
@@ -182,7 +194,7 @@ class Transcript(BaseModel):
|
|||||||
id: str = Field(default_factory=generate_uuid4)
|
id: str = Field(default_factory=generate_uuid4)
|
||||||
user_id: str | None = None
|
user_id: str | None = None
|
||||||
name: str = Field(default_factory=generate_transcript_name)
|
name: str = Field(default_factory=generate_transcript_name)
|
||||||
status: str = "idle"
|
status: TranscriptStatus = "idle"
|
||||||
duration: float = 0
|
duration: float = 0
|
||||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||||
title: str | None = None
|
title: str | None = None
|
||||||
@@ -729,5 +741,27 @@ class TranscriptController:
|
|||||||
transcript.delete_participant(participant_id)
|
transcript.delete_participant(participant_id)
|
||||||
await self.update(transcript, {"participants": transcript.participants_dump()})
|
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||||
|
|
||||||
|
async def set_status(
|
||||||
|
self, transcript_id: str, status: TranscriptStatus
|
||||||
|
) -> TranscriptEvent | None:
|
||||||
|
"""
|
||||||
|
Update the status of a transcript
|
||||||
|
|
||||||
|
Will add an event STATUS + update the status field of transcript
|
||||||
|
"""
|
||||||
|
async with self.transaction():
|
||||||
|
transcript = await self.get_by_id(transcript_id)
|
||||||
|
if not transcript:
|
||||||
|
raise Exception(f"Transcript {transcript_id} not found")
|
||||||
|
if transcript.status == status:
|
||||||
|
return
|
||||||
|
resp = await self.append_event(
|
||||||
|
transcript=transcript,
|
||||||
|
event="STATUS",
|
||||||
|
data=StrValue(value=status),
|
||||||
|
)
|
||||||
|
await self.update(transcript, {"status": status})
|
||||||
|
return resp
|
||||||
|
|
||||||
|
|
||||||
transcripts_controller = TranscriptController()
|
transcripts_controller = TranscriptController()
|
||||||
|
|||||||
439
server/reflector/pipelines/main_file_pipeline.py
Normal file
439
server/reflector/pipelines/main_file_pipeline.py
Normal file
@@ -0,0 +1,439 @@
|
|||||||
|
"""
|
||||||
|
File-based processing pipeline
|
||||||
|
==============================
|
||||||
|
|
||||||
|
Optimized pipeline for processing complete audio/video files.
|
||||||
|
Uses parallel processing for transcription, diarization, and waveform generation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import uuid
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import av
|
||||||
|
import structlog
|
||||||
|
from celery import chain, shared_task
|
||||||
|
|
||||||
|
from reflector.asynctask import asynctask
|
||||||
|
from reflector.db.rooms import rooms_controller
|
||||||
|
from reflector.db.transcripts import (
|
||||||
|
SourceKind,
|
||||||
|
Transcript,
|
||||||
|
TranscriptStatus,
|
||||||
|
transcripts_controller,
|
||||||
|
)
|
||||||
|
from reflector.logger import logger
|
||||||
|
from reflector.pipelines.main_live_pipeline import (
|
||||||
|
PipelineMainBase,
|
||||||
|
broadcast_to_sockets,
|
||||||
|
task_cleanup_consent,
|
||||||
|
task_pipeline_post_to_zulip,
|
||||||
|
)
|
||||||
|
from reflector.processors import (
|
||||||
|
AudioFileWriterProcessor,
|
||||||
|
TranscriptFinalSummaryProcessor,
|
||||||
|
TranscriptFinalTitleProcessor,
|
||||||
|
TranscriptTopicDetectorProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||||
|
from reflector.processors.file_diarization import FileDiarizationInput
|
||||||
|
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||||
|
from reflector.processors.file_transcript import FileTranscriptInput
|
||||||
|
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||||
|
from reflector.processors.transcript_diarization_assembler import (
|
||||||
|
TranscriptDiarizationAssemblerInput,
|
||||||
|
TranscriptDiarizationAssemblerProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.types import (
|
||||||
|
DiarizationSegment,
|
||||||
|
TitleSummary,
|
||||||
|
)
|
||||||
|
from reflector.processors.types import (
|
||||||
|
Transcript as TranscriptType,
|
||||||
|
)
|
||||||
|
from reflector.settings import settings
|
||||||
|
from reflector.storage import get_transcripts_storage
|
||||||
|
from reflector.worker.webhook import send_transcript_webhook
|
||||||
|
|
||||||
|
|
||||||
|
class EmptyPipeline:
|
||||||
|
"""Empty pipeline for processors that need a pipeline reference"""
|
||||||
|
|
||||||
|
def __init__(self, logger: structlog.BoundLogger):
|
||||||
|
self.logger = logger
|
||||||
|
|
||||||
|
def get_pref(self, k, d=None):
|
||||||
|
return d
|
||||||
|
|
||||||
|
async def emit(self, event):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineMainFile(PipelineMainBase):
|
||||||
|
"""
|
||||||
|
Optimized file processing pipeline.
|
||||||
|
Processes complete audio/video files with parallel execution.
|
||||||
|
"""
|
||||||
|
|
||||||
|
logger: structlog.BoundLogger = None
|
||||||
|
empty_pipeline = None
|
||||||
|
|
||||||
|
def __init__(self, transcript_id: str):
|
||||||
|
super().__init__(transcript_id=transcript_id)
|
||||||
|
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||||
|
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||||
|
|
||||||
|
def _handle_gather_exceptions(self, results: list, operation: str) -> None:
|
||||||
|
"""Handle exceptions from asyncio.gather with return_exceptions=True"""
|
||||||
|
for i, result in enumerate(results):
|
||||||
|
if not isinstance(result, Exception):
|
||||||
|
continue
|
||||||
|
self.logger.error(
|
||||||
|
f"Error in {operation} (task {i}): {result}",
|
||||||
|
transcript_id=self.transcript_id,
|
||||||
|
exc_info=result,
|
||||||
|
)
|
||||||
|
|
||||||
|
@broadcast_to_sockets
|
||||||
|
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||||
|
async with self.lock_transaction():
|
||||||
|
return await transcripts_controller.set_status(transcript_id, status)
|
||||||
|
|
||||||
|
async def process(self, file_path: Path):
|
||||||
|
"""Main entry point for file processing"""
|
||||||
|
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||||
|
|
||||||
|
transcript = await self.get_transcript()
|
||||||
|
|
||||||
|
# Clear transcript as we're going to regenerate everything
|
||||||
|
async with self.transaction():
|
||||||
|
await transcripts_controller.update(
|
||||||
|
transcript,
|
||||||
|
{
|
||||||
|
"events": [],
|
||||||
|
"topics": [],
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract audio and write to transcript location
|
||||||
|
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||||
|
|
||||||
|
# Upload for processing
|
||||||
|
audio_url = await self.upload_audio(audio_path, transcript)
|
||||||
|
|
||||||
|
# Run parallel processing
|
||||||
|
await self.run_parallel_processing(
|
||||||
|
audio_path,
|
||||||
|
audio_url,
|
||||||
|
transcript.source_language,
|
||||||
|
transcript.target_language,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.logger.info("File pipeline complete")
|
||||||
|
|
||||||
|
await transcripts_controller.set_status(transcript.id, "ended")
|
||||||
|
|
||||||
|
async def extract_and_write_audio(
|
||||||
|
self, file_path: Path, transcript: Transcript
|
||||||
|
) -> Path:
|
||||||
|
"""Extract audio from video if needed and write to transcript location as MP3"""
|
||||||
|
self.logger.info(f"Processing audio file: {file_path}")
|
||||||
|
|
||||||
|
# Check if it's already audio-only
|
||||||
|
container = av.open(str(file_path))
|
||||||
|
has_video = len(container.streams.video) > 0
|
||||||
|
container.close()
|
||||||
|
|
||||||
|
# Use AudioFileWriterProcessor to write MP3 to transcript location
|
||||||
|
mp3_writer = AudioFileWriterProcessor(
|
||||||
|
path=transcript.audio_mp3_filename,
|
||||||
|
on_duration=self.on_duration,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process audio frames and write to transcript location
|
||||||
|
input_container = av.open(str(file_path))
|
||||||
|
for frame in input_container.decode(audio=0):
|
||||||
|
await mp3_writer.push(frame)
|
||||||
|
|
||||||
|
await mp3_writer.flush()
|
||||||
|
input_container.close()
|
||||||
|
|
||||||
|
if has_video:
|
||||||
|
self.logger.info(
|
||||||
|
f"Extracted audio from video and saved to {transcript.audio_mp3_filename}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.logger.info(
|
||||||
|
f"Converted audio file and saved to {transcript.audio_mp3_filename}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return transcript.audio_mp3_filename
|
||||||
|
|
||||||
|
async def upload_audio(self, audio_path: Path, transcript: Transcript) -> str:
|
||||||
|
"""Upload audio to storage for processing"""
|
||||||
|
storage = get_transcripts_storage()
|
||||||
|
|
||||||
|
if not storage:
|
||||||
|
raise Exception(
|
||||||
|
"Storage backend required for file processing. Configure TRANSCRIPT_STORAGE_* settings."
|
||||||
|
)
|
||||||
|
|
||||||
|
self.logger.info("Uploading audio to storage")
|
||||||
|
|
||||||
|
with open(audio_path, "rb") as f:
|
||||||
|
audio_data = f.read()
|
||||||
|
|
||||||
|
storage_path = f"file_pipeline/{transcript.id}/audio.mp3"
|
||||||
|
await storage.put_file(storage_path, audio_data)
|
||||||
|
|
||||||
|
audio_url = await storage.get_file_url(storage_path)
|
||||||
|
|
||||||
|
self.logger.info(f"Audio uploaded to {audio_url}")
|
||||||
|
return audio_url
|
||||||
|
|
||||||
|
async def run_parallel_processing(
|
||||||
|
self,
|
||||||
|
audio_path: Path,
|
||||||
|
audio_url: str,
|
||||||
|
source_language: str,
|
||||||
|
target_language: str,
|
||||||
|
):
|
||||||
|
"""Coordinate parallel processing of transcription, diarization, and waveform"""
|
||||||
|
self.logger.info(
|
||||||
|
"Starting parallel processing", transcript_id=self.transcript_id
|
||||||
|
)
|
||||||
|
|
||||||
|
# Phase 1: Parallel processing of independent tasks
|
||||||
|
transcription_task = self.transcribe_file(audio_url, source_language)
|
||||||
|
diarization_task = self.diarize_file(audio_url)
|
||||||
|
waveform_task = self.generate_waveform(audio_path)
|
||||||
|
|
||||||
|
results = await asyncio.gather(
|
||||||
|
transcription_task, diarization_task, waveform_task, return_exceptions=True
|
||||||
|
)
|
||||||
|
|
||||||
|
transcript_result = results[0]
|
||||||
|
diarization_result = results[1]
|
||||||
|
|
||||||
|
# Handle errors - raise any exception that occurred
|
||||||
|
self._handle_gather_exceptions(results, "parallel processing")
|
||||||
|
for result in results:
|
||||||
|
if isinstance(result, Exception):
|
||||||
|
raise result
|
||||||
|
|
||||||
|
# Phase 2: Assemble transcript with diarization
|
||||||
|
self.logger.info(
|
||||||
|
"Assembling transcript with diarization", transcript_id=self.transcript_id
|
||||||
|
)
|
||||||
|
processor = TranscriptDiarizationAssemblerProcessor()
|
||||||
|
input_data = TranscriptDiarizationAssemblerInput(
|
||||||
|
transcript=transcript_result, diarization=diarization_result or []
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store result for retrieval
|
||||||
|
diarized_transcript: Transcript | None = None
|
||||||
|
|
||||||
|
async def capture_result(transcript):
|
||||||
|
nonlocal diarized_transcript
|
||||||
|
diarized_transcript = transcript
|
||||||
|
|
||||||
|
processor.on(capture_result)
|
||||||
|
await processor.push(input_data)
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
if not diarized_transcript:
|
||||||
|
raise ValueError("No diarized transcript captured")
|
||||||
|
|
||||||
|
# Phase 3: Generate topics from diarized transcript
|
||||||
|
self.logger.info("Generating topics", transcript_id=self.transcript_id)
|
||||||
|
topics = await self.detect_topics(diarized_transcript, target_language)
|
||||||
|
|
||||||
|
# Phase 4: Generate title and summaries in parallel
|
||||||
|
self.logger.info(
|
||||||
|
"Generating title and summaries", transcript_id=self.transcript_id
|
||||||
|
)
|
||||||
|
results = await asyncio.gather(
|
||||||
|
self.generate_title(topics),
|
||||||
|
self.generate_summaries(topics),
|
||||||
|
return_exceptions=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._handle_gather_exceptions(results, "title and summary generation")
|
||||||
|
|
||||||
|
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||||
|
"""Transcribe complete file"""
|
||||||
|
processor = FileTranscriptAutoProcessor()
|
||||||
|
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||||
|
|
||||||
|
# Store result for retrieval
|
||||||
|
result: TranscriptType | None = None
|
||||||
|
|
||||||
|
async def capture_result(transcript):
|
||||||
|
nonlocal result
|
||||||
|
result = transcript
|
||||||
|
|
||||||
|
processor.on(capture_result)
|
||||||
|
await processor.push(input_data)
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
if not result:
|
||||||
|
raise ValueError("No transcript captured")
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
async def diarize_file(self, audio_url: str) -> list[DiarizationSegment] | None:
|
||||||
|
"""Get diarization for file"""
|
||||||
|
if not settings.DIARIZATION_BACKEND:
|
||||||
|
self.logger.info("Diarization disabled")
|
||||||
|
return None
|
||||||
|
|
||||||
|
processor = FileDiarizationAutoProcessor()
|
||||||
|
input_data = FileDiarizationInput(audio_url=audio_url)
|
||||||
|
|
||||||
|
# Store result for retrieval
|
||||||
|
result = None
|
||||||
|
|
||||||
|
async def capture_result(diarization_output):
|
||||||
|
nonlocal result
|
||||||
|
result = diarization_output.diarization
|
||||||
|
|
||||||
|
try:
|
||||||
|
processor.on(capture_result)
|
||||||
|
await processor.push(input_data)
|
||||||
|
await processor.flush()
|
||||||
|
return result
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Diarization failed: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def generate_waveform(self, audio_path: Path):
|
||||||
|
"""Generate and save waveform"""
|
||||||
|
transcript = await self.get_transcript()
|
||||||
|
|
||||||
|
processor = AudioWaveformProcessor(
|
||||||
|
audio_path=audio_path,
|
||||||
|
waveform_path=transcript.audio_waveform_filename,
|
||||||
|
on_waveform=self.on_waveform,
|
||||||
|
)
|
||||||
|
processor.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
async def detect_topics(
|
||||||
|
self, transcript: TranscriptType, target_language: str
|
||||||
|
) -> list[TitleSummary]:
|
||||||
|
"""Detect topics from complete transcript"""
|
||||||
|
chunk_size = 300
|
||||||
|
topics: list[TitleSummary] = []
|
||||||
|
|
||||||
|
async def on_topic(topic: TitleSummary):
|
||||||
|
topics.append(topic)
|
||||||
|
return await self.on_topic(topic)
|
||||||
|
|
||||||
|
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||||
|
topic_detector.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
for i in range(0, len(transcript.words), chunk_size):
|
||||||
|
chunk_words = transcript.words[i : i + chunk_size]
|
||||||
|
if not chunk_words:
|
||||||
|
continue
|
||||||
|
|
||||||
|
chunk_transcript = TranscriptType(
|
||||||
|
words=chunk_words, translation=transcript.translation
|
||||||
|
)
|
||||||
|
|
||||||
|
await topic_detector.push(chunk_transcript)
|
||||||
|
|
||||||
|
await topic_detector.flush()
|
||||||
|
return topics
|
||||||
|
|
||||||
|
async def generate_title(self, topics: list[TitleSummary]):
|
||||||
|
"""Generate title from topics"""
|
||||||
|
if not topics:
|
||||||
|
self.logger.warning("No topics for title generation")
|
||||||
|
return
|
||||||
|
|
||||||
|
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||||
|
processor.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
for topic in topics:
|
||||||
|
await processor.push(topic)
|
||||||
|
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||||
|
"""Generate long and short summaries from topics"""
|
||||||
|
if not topics:
|
||||||
|
self.logger.warning("No topics for summary generation")
|
||||||
|
return
|
||||||
|
|
||||||
|
transcript = await self.get_transcript()
|
||||||
|
processor = TranscriptFinalSummaryProcessor(
|
||||||
|
transcript=transcript,
|
||||||
|
callback=self.on_long_summary,
|
||||||
|
on_short_summary=self.on_short_summary,
|
||||||
|
)
|
||||||
|
processor.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
for topic in topics:
|
||||||
|
await processor.push(topic)
|
||||||
|
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
|
||||||
|
@shared_task
|
||||||
|
@asynctask
|
||||||
|
async def task_send_webhook_if_needed(*, transcript_id: str):
|
||||||
|
"""Send webhook if this is a room recording with webhook configured"""
|
||||||
|
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||||
|
if not transcript:
|
||||||
|
return
|
||||||
|
|
||||||
|
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||||
|
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||||
|
if room and room.webhook_url:
|
||||||
|
logger.info(
|
||||||
|
"Dispatching webhook",
|
||||||
|
transcript_id=transcript_id,
|
||||||
|
room_id=room.id,
|
||||||
|
webhook_url=room.webhook_url,
|
||||||
|
)
|
||||||
|
send_transcript_webhook.delay(
|
||||||
|
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@shared_task
|
||||||
|
@asynctask
|
||||||
|
async def task_pipeline_file_process(*, transcript_id: str):
|
||||||
|
"""Celery task for file pipeline processing"""
|
||||||
|
|
||||||
|
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||||
|
if not transcript:
|
||||||
|
raise Exception(f"Transcript {transcript_id} not found")
|
||||||
|
|
||||||
|
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||||
|
try:
|
||||||
|
await pipeline.set_status(transcript_id, "processing")
|
||||||
|
|
||||||
|
# Find the file to process
|
||||||
|
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||||
|
if not audio_file:
|
||||||
|
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||||
|
|
||||||
|
if not audio_file:
|
||||||
|
raise Exception("No audio file found to process")
|
||||||
|
|
||||||
|
await pipeline.process(audio_file)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
await pipeline.set_status(transcript_id, "error")
|
||||||
|
raise
|
||||||
|
|
||||||
|
# Run post-processing chain: consent cleanup -> zulip -> webhook
|
||||||
|
post_chain = chain(
|
||||||
|
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||||
|
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||||
|
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||||
|
)
|
||||||
|
post_chain.delay()
|
||||||
@@ -22,7 +22,7 @@ from celery import chord, current_task, group, shared_task
|
|||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from structlog import BoundLogger as Logger
|
from structlog import BoundLogger as Logger
|
||||||
|
|
||||||
from reflector.db import get_database
|
from reflector.asynctask import asynctask
|
||||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||||
from reflector.db.recordings import recordings_controller
|
from reflector.db.recordings import recordings_controller
|
||||||
from reflector.db.rooms import rooms_controller
|
from reflector.db.rooms import rooms_controller
|
||||||
@@ -32,6 +32,7 @@ from reflector.db.transcripts import (
|
|||||||
TranscriptFinalLongSummary,
|
TranscriptFinalLongSummary,
|
||||||
TranscriptFinalShortSummary,
|
TranscriptFinalShortSummary,
|
||||||
TranscriptFinalTitle,
|
TranscriptFinalTitle,
|
||||||
|
TranscriptStatus,
|
||||||
TranscriptText,
|
TranscriptText,
|
||||||
TranscriptTopic,
|
TranscriptTopic,
|
||||||
TranscriptWaveform,
|
TranscriptWaveform,
|
||||||
@@ -40,8 +41,9 @@ from reflector.db.transcripts import (
|
|||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||||
from reflector.processors import (
|
from reflector.processors import (
|
||||||
AudioChunkerProcessor,
|
AudioChunkerAutoProcessor,
|
||||||
AudioDiarizationAutoProcessor,
|
AudioDiarizationAutoProcessor,
|
||||||
|
AudioDownscaleProcessor,
|
||||||
AudioFileWriterProcessor,
|
AudioFileWriterProcessor,
|
||||||
AudioMergeProcessor,
|
AudioMergeProcessor,
|
||||||
AudioTranscriptAutoProcessor,
|
AudioTranscriptAutoProcessor,
|
||||||
@@ -68,29 +70,6 @@ from reflector.zulip import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def asynctask(f):
|
|
||||||
@functools.wraps(f)
|
|
||||||
def wrapper(*args, **kwargs):
|
|
||||||
async def run_with_db():
|
|
||||||
database = get_database()
|
|
||||||
await database.connect()
|
|
||||||
try:
|
|
||||||
return await f(*args, **kwargs)
|
|
||||||
finally:
|
|
||||||
await database.disconnect()
|
|
||||||
|
|
||||||
coro = run_with_db()
|
|
||||||
try:
|
|
||||||
loop = asyncio.get_running_loop()
|
|
||||||
except RuntimeError:
|
|
||||||
loop = None
|
|
||||||
if loop and loop.is_running():
|
|
||||||
return loop.run_until_complete(coro)
|
|
||||||
return asyncio.run(coro)
|
|
||||||
|
|
||||||
return wrapper
|
|
||||||
|
|
||||||
|
|
||||||
def broadcast_to_sockets(func):
|
def broadcast_to_sockets(func):
|
||||||
"""
|
"""
|
||||||
Decorator to broadcast transcript event to websockets
|
Decorator to broadcast transcript event to websockets
|
||||||
@@ -147,15 +126,18 @@ class StrValue(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]):
|
class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]):
|
||||||
transcript_id: str
|
def __init__(self, transcript_id: str):
|
||||||
ws_room_id: str | None = None
|
super().__init__()
|
||||||
ws_manager: WebsocketManager | None = None
|
|
||||||
|
|
||||||
def prepare(self):
|
|
||||||
# prepare websocket
|
|
||||||
self._lock = asyncio.Lock()
|
self._lock = asyncio.Lock()
|
||||||
|
self.transcript_id = transcript_id
|
||||||
self.ws_room_id = f"ts:{self.transcript_id}"
|
self.ws_room_id = f"ts:{self.transcript_id}"
|
||||||
self.ws_manager = get_ws_manager()
|
self._ws_manager = None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def ws_manager(self) -> WebsocketManager:
|
||||||
|
if self._ws_manager is None:
|
||||||
|
self._ws_manager = get_ws_manager()
|
||||||
|
return self._ws_manager
|
||||||
|
|
||||||
async def get_transcript(self) -> Transcript:
|
async def get_transcript(self) -> Transcript:
|
||||||
# fetch the transcript
|
# fetch the transcript
|
||||||
@@ -184,8 +166,15 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
|||||||
]
|
]
|
||||||
|
|
||||||
@asynccontextmanager
|
@asynccontextmanager
|
||||||
async def transaction(self):
|
async def lock_transaction(self):
|
||||||
|
# This lock is to prevent multiple processor starting adding
|
||||||
|
# into event array at the same time
|
||||||
async with self._lock:
|
async with self._lock:
|
||||||
|
yield
|
||||||
|
|
||||||
|
@asynccontextmanager
|
||||||
|
async def transaction(self):
|
||||||
|
async with self.lock_transaction():
|
||||||
async with transcripts_controller.transaction():
|
async with transcripts_controller.transaction():
|
||||||
yield
|
yield
|
||||||
|
|
||||||
@@ -194,14 +183,14 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
|||||||
# if it's the first part, update the status of the transcript
|
# if it's the first part, update the status of the transcript
|
||||||
# but do not set the ended status yet.
|
# but do not set the ended status yet.
|
||||||
if isinstance(self, PipelineMainLive):
|
if isinstance(self, PipelineMainLive):
|
||||||
status_mapping = {
|
status_mapping: dict[str, TranscriptStatus] = {
|
||||||
"started": "recording",
|
"started": "recording",
|
||||||
"push": "recording",
|
"push": "recording",
|
||||||
"flush": "processing",
|
"flush": "processing",
|
||||||
"error": "error",
|
"error": "error",
|
||||||
}
|
}
|
||||||
elif isinstance(self, PipelineMainFinalSummaries):
|
elif isinstance(self, PipelineMainFinalSummaries):
|
||||||
status_mapping = {
|
status_mapping: dict[str, TranscriptStatus] = {
|
||||||
"push": "processing",
|
"push": "processing",
|
||||||
"flush": "processing",
|
"flush": "processing",
|
||||||
"error": "error",
|
"error": "error",
|
||||||
@@ -217,22 +206,8 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
|||||||
return
|
return
|
||||||
|
|
||||||
# when the status of the pipeline changes, update the transcript
|
# when the status of the pipeline changes, update the transcript
|
||||||
async with self.transaction():
|
async with self._lock:
|
||||||
transcript = await self.get_transcript()
|
return await transcripts_controller.set_status(self.transcript_id, status)
|
||||||
if status == transcript.status:
|
|
||||||
return
|
|
||||||
resp = await transcripts_controller.append_event(
|
|
||||||
transcript=transcript,
|
|
||||||
event="STATUS",
|
|
||||||
data=StrValue(value=status),
|
|
||||||
)
|
|
||||||
await transcripts_controller.update(
|
|
||||||
transcript,
|
|
||||||
{
|
|
||||||
"status": status,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
return resp
|
|
||||||
|
|
||||||
@broadcast_to_sockets
|
@broadcast_to_sockets
|
||||||
async def on_transcript(self, data):
|
async def on_transcript(self, data):
|
||||||
@@ -355,7 +330,6 @@ class PipelineMainLive(PipelineMainBase):
|
|||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
# create a context for the whole rtc transaction
|
# create a context for the whole rtc transaction
|
||||||
# add a customised logger to the context
|
# add a customised logger to the context
|
||||||
self.prepare()
|
|
||||||
transcript = await self.get_transcript()
|
transcript = await self.get_transcript()
|
||||||
|
|
||||||
processors = [
|
processors = [
|
||||||
@@ -363,7 +337,8 @@ class PipelineMainLive(PipelineMainBase):
|
|||||||
path=transcript.audio_wav_filename,
|
path=transcript.audio_wav_filename,
|
||||||
on_duration=self.on_duration,
|
on_duration=self.on_duration,
|
||||||
),
|
),
|
||||||
AudioChunkerProcessor(),
|
AudioDownscaleProcessor(),
|
||||||
|
AudioChunkerAutoProcessor(),
|
||||||
AudioMergeProcessor(),
|
AudioMergeProcessor(),
|
||||||
AudioTranscriptAutoProcessor.as_threaded(),
|
AudioTranscriptAutoProcessor.as_threaded(),
|
||||||
TranscriptLinerProcessor(),
|
TranscriptLinerProcessor(),
|
||||||
@@ -376,6 +351,7 @@ class PipelineMainLive(PipelineMainBase):
|
|||||||
pipeline.set_pref("audio:target_language", transcript.target_language)
|
pipeline.set_pref("audio:target_language", transcript.target_language)
|
||||||
pipeline.logger.bind(transcript_id=transcript.id)
|
pipeline.logger.bind(transcript_id=transcript.id)
|
||||||
pipeline.logger.info("Pipeline main live created")
|
pipeline.logger.info("Pipeline main live created")
|
||||||
|
pipeline.describe()
|
||||||
|
|
||||||
return pipeline
|
return pipeline
|
||||||
|
|
||||||
@@ -394,7 +370,6 @@ class PipelineMainDiarization(PipelineMainBase[AudioDiarizationInput]):
|
|||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
# create a context for the whole rtc transaction
|
# create a context for the whole rtc transaction
|
||||||
# add a customised logger to the context
|
# add a customised logger to the context
|
||||||
self.prepare()
|
|
||||||
pipeline = Pipeline(
|
pipeline = Pipeline(
|
||||||
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
||||||
)
|
)
|
||||||
@@ -435,8 +410,6 @@ class PipelineMainFromTopics(PipelineMainBase[TitleSummaryWithIdProcessorType]):
|
|||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
self.prepare()
|
|
||||||
|
|
||||||
# get transcript
|
# get transcript
|
||||||
self._transcript = transcript = await self.get_transcript()
|
self._transcript = transcript = await self.get_transcript()
|
||||||
|
|
||||||
@@ -792,7 +765,7 @@ def pipeline_post(*, transcript_id: str):
|
|||||||
chain_final_summaries,
|
chain_final_summaries,
|
||||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||||
|
|
||||||
chain.delay()
|
return chain.delay()
|
||||||
|
|
||||||
|
|
||||||
@get_transcript
|
@get_transcript
|
||||||
|
|||||||
@@ -18,22 +18,14 @@ During its lifecycle, it will emit the following status:
|
|||||||
import asyncio
|
import asyncio
|
||||||
from typing import Generic, TypeVar
|
from typing import Generic, TypeVar
|
||||||
|
|
||||||
from pydantic import BaseModel, ConfigDict
|
|
||||||
|
|
||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
from reflector.processors import Pipeline
|
from reflector.processors import Pipeline
|
||||||
|
|
||||||
PipelineMessage = TypeVar("PipelineMessage")
|
PipelineMessage = TypeVar("PipelineMessage")
|
||||||
|
|
||||||
|
|
||||||
class PipelineRunner(BaseModel, Generic[PipelineMessage]):
|
class PipelineRunner(Generic[PipelineMessage]):
|
||||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
def __init__(self):
|
||||||
|
|
||||||
status: str = "idle"
|
|
||||||
pipeline: Pipeline | None = None
|
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
self._task = None
|
self._task = None
|
||||||
self._q_cmd = asyncio.Queue(maxsize=4096)
|
self._q_cmd = asyncio.Queue(maxsize=4096)
|
||||||
self._ev_done = asyncio.Event()
|
self._ev_done = asyncio.Event()
|
||||||
@@ -42,6 +34,8 @@ class PipelineRunner(BaseModel, Generic[PipelineMessage]):
|
|||||||
runner=id(self),
|
runner=id(self),
|
||||||
runner_cls=self.__class__.__name__,
|
runner_cls=self.__class__.__name__,
|
||||||
)
|
)
|
||||||
|
self.status = "idle"
|
||||||
|
self.pipeline: Pipeline | None = None
|
||||||
|
|
||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -1,5 +1,7 @@
|
|||||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||||
|
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||||
|
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||||
@@ -11,6 +13,13 @@ from .base import ( # noqa: F401
|
|||||||
Processor,
|
Processor,
|
||||||
ThreadedProcessor,
|
ThreadedProcessor,
|
||||||
)
|
)
|
||||||
|
from .file_diarization import FileDiarizationProcessor # noqa: F401
|
||||||
|
from .file_diarization_auto import FileDiarizationAutoProcessor # noqa: F401
|
||||||
|
from .file_transcript import FileTranscriptProcessor # noqa: F401
|
||||||
|
from .file_transcript_auto import FileTranscriptAutoProcessor # noqa: F401
|
||||||
|
from .transcript_diarization_assembler import (
|
||||||
|
TranscriptDiarizationAssemblerProcessor, # noqa: F401
|
||||||
|
)
|
||||||
from .transcript_final_summary import TranscriptFinalSummaryProcessor # noqa: F401
|
from .transcript_final_summary import TranscriptFinalSummaryProcessor # noqa: F401
|
||||||
from .transcript_final_title import TranscriptFinalTitleProcessor # noqa: F401
|
from .transcript_final_title import TranscriptFinalTitleProcessor # noqa: F401
|
||||||
from .transcript_liner import TranscriptLinerProcessor # noqa: F401
|
from .transcript_liner import TranscriptLinerProcessor # noqa: F401
|
||||||
|
|||||||
@@ -1,28 +1,78 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
import av
|
import av
|
||||||
|
from prometheus_client import Counter, Histogram
|
||||||
|
|
||||||
from reflector.processors.base import Processor
|
from reflector.processors.base import Processor
|
||||||
|
|
||||||
|
|
||||||
class AudioChunkerProcessor(Processor):
|
class AudioChunkerProcessor(Processor):
|
||||||
"""
|
"""
|
||||||
Assemble audio frames into chunks
|
Base class for assembling audio frames into chunks
|
||||||
"""
|
"""
|
||||||
|
|
||||||
INPUT_TYPE = av.AudioFrame
|
INPUT_TYPE = av.AudioFrame
|
||||||
OUTPUT_TYPE = list[av.AudioFrame]
|
OUTPUT_TYPE = list[av.AudioFrame]
|
||||||
|
|
||||||
def __init__(self, max_frames=256):
|
m_chunk = Histogram(
|
||||||
super().__init__()
|
"audio_chunker",
|
||||||
|
"Time spent in AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_chunk_call = Counter(
|
||||||
|
"audio_chunker_call",
|
||||||
|
"Number of calls to AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_chunk_success = Counter(
|
||||||
|
"audio_chunker_success",
|
||||||
|
"Number of successful calls to AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_chunk_failure = Counter(
|
||||||
|
"audio_chunker_failure",
|
||||||
|
"Number of failed calls to AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
name = self.__class__.__name__
|
||||||
|
self.m_chunk = self.m_chunk.labels(name)
|
||||||
|
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||||
|
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||||
|
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
self.frames: list[av.AudioFrame] = []
|
self.frames: list[av.AudioFrame] = []
|
||||||
self.max_frames = max_frames
|
|
||||||
|
|
||||||
async def _push(self, data: av.AudioFrame):
|
async def _push(self, data: av.AudioFrame):
|
||||||
self.frames.append(data)
|
"""Process incoming audio frame"""
|
||||||
if len(self.frames) >= self.max_frames:
|
# Validate audio format on first frame
|
||||||
await self.flush()
|
if len(self.frames) == 0:
|
||||||
|
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||||
|
f"with {len(data.layout.channels)} channel(s). "
|
||||||
|
f"Use AudioDownscaleProcessor before this processor."
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.m_chunk_call.inc()
|
||||||
|
with self.m_chunk.time():
|
||||||
|
result = await self._chunk(data)
|
||||||
|
self.m_chunk_success.inc()
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
except Exception:
|
||||||
|
self.m_chunk_failure.inc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||||
|
"""
|
||||||
|
Process audio frame and return chunk when ready.
|
||||||
|
Subclasses should implement their chunking logic here.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
async def _flush(self):
|
async def _flush(self):
|
||||||
frames = self.frames[:]
|
"""Flush any remaining frames when processing ends"""
|
||||||
self.frames = []
|
raise NotImplementedError
|
||||||
if frames:
|
|
||||||
await self.emit(frames)
|
|
||||||
|
|||||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||||
|
_registry = {}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def register(cls, name, kclass):
|
||||||
|
cls._registry[name] = kclass
|
||||||
|
|
||||||
|
def __new__(cls, name: str | None = None, **kwargs):
|
||||||
|
if name is None:
|
||||||
|
name = settings.AUDIO_CHUNKER_BACKEND
|
||||||
|
if name not in cls._registry:
|
||||||
|
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||||
|
importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# gather specific configuration for the processor
|
||||||
|
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||||
|
config = {}
|
||||||
|
name_upper = name.upper()
|
||||||
|
settings_prefix = "AUDIO_CHUNKER_"
|
||||||
|
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||||
|
for key, value in settings:
|
||||||
|
if key.startswith(config_prefix):
|
||||||
|
config_name = key[len(settings_prefix) :].lower()
|
||||||
|
config[config_name] = value
|
||||||
|
|
||||||
|
return cls._registry[name](**config | kwargs)
|
||||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import av
|
||||||
|
|
||||||
|
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||||
|
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||||
|
|
||||||
|
|
||||||
|
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||||
|
"""
|
||||||
|
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, max_frames=256, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.max_frames = max_frames
|
||||||
|
|
||||||
|
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||||
|
self.frames.append(data)
|
||||||
|
if len(self.frames) >= self.max_frames:
|
||||||
|
frames_to_emit = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
return frames_to_emit
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _flush(self):
|
||||||
|
frames = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
if frames:
|
||||||
|
await self.emit(frames)
|
||||||
|
|
||||||
|
|
||||||
|
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||||
298
server/reflector/processors/audio_chunker_silero.py
Normal file
298
server/reflector/processors/audio_chunker_silero.py
Normal file
@@ -0,0 +1,298 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import av
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from silero_vad import VADIterator, load_silero_vad
|
||||||
|
|
||||||
|
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||||
|
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||||
|
|
||||||
|
|
||||||
|
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
|
||||||
|
"""
|
||||||
|
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
block_frames=256,
|
||||||
|
max_frames=1024,
|
||||||
|
use_onnx=True,
|
||||||
|
min_frames=2,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.block_frames = block_frames
|
||||||
|
self.max_frames = max_frames
|
||||||
|
self.min_frames = min_frames
|
||||||
|
|
||||||
|
# Initialize Silero VAD
|
||||||
|
self._init_vad(use_onnx)
|
||||||
|
|
||||||
|
def _init_vad(self, use_onnx=False):
|
||||||
|
"""Initialize Silero VAD model"""
|
||||||
|
try:
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||||
|
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||||
|
self.logger.info("Silero VAD initialized successfully")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||||
|
self.vad_model = None
|
||||||
|
self.vad_iterator = None
|
||||||
|
|
||||||
|
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||||
|
"""Process audio frame and return chunk when ready"""
|
||||||
|
self.frames.append(data)
|
||||||
|
|
||||||
|
# Check for speech segments every 32 frames (~1 second)
|
||||||
|
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||||
|
return await self._process_block()
|
||||||
|
|
||||||
|
# Safety fallback - emit if we hit max frames
|
||||||
|
elif len(self.frames) >= self.max_frames:
|
||||||
|
self.logger.warning(
|
||||||
|
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
|
||||||
|
f"emitting first {self.max_frames // 2} frames"
|
||||||
|
)
|
||||||
|
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||||
|
self.frames = self.frames[self.max_frames // 2 :]
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
|
||||||
|
# Need at least 32 frames for VAD detection (~1 second)
|
||||||
|
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Processing block with current buffer size
|
||||||
|
print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Convert frames to numpy array for VAD
|
||||||
|
audio_array = self._frames_to_numpy(self.frames)
|
||||||
|
|
||||||
|
if audio_array is None:
|
||||||
|
# Fallback: emit all frames if conversion failed
|
||||||
|
frames_to_emit = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Find complete speech segments in the buffer
|
||||||
|
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||||
|
|
||||||
|
if speech_end_frame is None or speech_end_frame <= 0:
|
||||||
|
# No speech found but buffer is getting large
|
||||||
|
if len(self.frames) > 512:
|
||||||
|
# Check if it's all silence and can be discarded
|
||||||
|
# No speech segment found, buffer at {len(self.frames)} frames
|
||||||
|
|
||||||
|
# Could emit silence or discard old frames here
|
||||||
|
# For now, keep first 256 frames and discard older silence
|
||||||
|
if len(self.frames) > 768:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||||
|
)
|
||||||
|
self.frames = self.frames[-256:]
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Calculate segment timing information
|
||||||
|
frames_to_emit = self.frames[:speech_end_frame]
|
||||||
|
|
||||||
|
# Get timing from av.AudioFrame
|
||||||
|
if frames_to_emit:
|
||||||
|
first_frame = frames_to_emit[0]
|
||||||
|
last_frame = frames_to_emit[-1]
|
||||||
|
sample_rate = first_frame.sample_rate
|
||||||
|
|
||||||
|
# Calculate duration
|
||||||
|
total_samples = sum(f.samples for f in frames_to_emit)
|
||||||
|
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||||
|
|
||||||
|
# Get timestamps if available
|
||||||
|
start_time = (
|
||||||
|
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||||
|
)
|
||||||
|
end_time = (
|
||||||
|
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||||
|
)
|
||||||
|
|
||||||
|
# Convert to HH:MM:SS format for logging
|
||||||
|
def format_time(seconds):
|
||||||
|
if not seconds:
|
||||||
|
return "00:00:00"
|
||||||
|
total_seconds = int(float(seconds))
|
||||||
|
hours = total_seconds // 3600
|
||||||
|
minutes = (total_seconds % 3600) // 60
|
||||||
|
secs = total_seconds % 60
|
||||||
|
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||||
|
|
||||||
|
start_formatted = format_time(start_time)
|
||||||
|
end_formatted = format_time(end_time)
|
||||||
|
|
||||||
|
# Keep remaining frames for next processing
|
||||||
|
remaining_after = len(self.frames) - speech_end_frame
|
||||||
|
|
||||||
|
# Single structured log line
|
||||||
|
self.logger.info(
|
||||||
|
"Speech segment found",
|
||||||
|
start=start_formatted,
|
||||||
|
end=end_formatted,
|
||||||
|
frames=speech_end_frame,
|
||||||
|
duration=round(duration_seconds, 2),
|
||||||
|
buffer_before=len(self.frames),
|
||||||
|
remaining=remaining_after,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Keep remaining frames for next processing
|
||||||
|
self.frames = self.frames[speech_end_frame:]
|
||||||
|
|
||||||
|
# Filter out segments with too few frames
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Error in VAD processing: {e}")
|
||||||
|
# Fallback to simple chunking
|
||||||
|
if len(self.frames) >= self.block_frames:
|
||||||
|
frames_to_emit = self.frames[: self.block_frames]
|
||||||
|
self.frames = self.frames[self.block_frames :]
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||||
|
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||||
|
if not frames:
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
audio_data = []
|
||||||
|
for frame in frames:
|
||||||
|
frame_array = frame.to_ndarray()
|
||||||
|
|
||||||
|
if len(frame_array.shape) == 2:
|
||||||
|
frame_array = frame_array.flatten()
|
||||||
|
|
||||||
|
audio_data.append(frame_array)
|
||||||
|
|
||||||
|
if not audio_data:
|
||||||
|
return None
|
||||||
|
|
||||||
|
combined_audio = np.concatenate(audio_data)
|
||||||
|
|
||||||
|
# Ensure float32 format
|
||||||
|
if combined_audio.dtype == np.int16:
|
||||||
|
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||||
|
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||||
|
elif combined_audio.dtype != np.float32:
|
||||||
|
combined_audio = combined_audio.astype(np.float32)
|
||||||
|
|
||||||
|
return combined_audio
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||||
|
"""Find complete speech segments and return frame index at segment end"""
|
||||||
|
if self.vad_iterator is None or len(audio_array) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Process audio in 512-sample windows for VAD
|
||||||
|
window_size = 512
|
||||||
|
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||||
|
|
||||||
|
# Track speech state
|
||||||
|
in_speech = False
|
||||||
|
speech_start = None
|
||||||
|
speech_end = None
|
||||||
|
silence_count = 0
|
||||||
|
|
||||||
|
for i in range(0, len(audio_array), window_size):
|
||||||
|
chunk = audio_array[i : i + window_size]
|
||||||
|
if len(chunk) < window_size:
|
||||||
|
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||||
|
|
||||||
|
# Detect if this window has speech
|
||||||
|
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||||
|
|
||||||
|
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||||
|
if speech_dict:
|
||||||
|
if not in_speech:
|
||||||
|
# Speech started
|
||||||
|
speech_start = i
|
||||||
|
in_speech = True
|
||||||
|
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||||
|
silence_count = 0 # Reset silence counter
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not in_speech:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# We're in speech but found silence
|
||||||
|
silence_count += 1
|
||||||
|
if silence_count < min_silence_windows:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Found end of speech segment
|
||||||
|
speech_end = i - (min_silence_windows - 1) * window_size
|
||||||
|
# Debug: print(f"Speech END at sample {speech_end}")
|
||||||
|
|
||||||
|
# Convert sample position to frame index
|
||||||
|
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||||
|
frame_index = speech_end // samples_per_frame
|
||||||
|
|
||||||
|
# Ensure we don't exceed buffer
|
||||||
|
frame_index = min(frame_index, len(self.frames))
|
||||||
|
return frame_index
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Error finding speech segment: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _flush(self):
|
||||||
|
frames = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
if frames:
|
||||||
|
if len(frames) >= self.min_frames:
|
||||||
|
await self.emit(frames)
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring flush segment with {len(frames)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
from reflector.processors.base import Processor
|
from reflector.processors.base import Processor
|
||||||
from reflector.processors.types import (
|
from reflector.processors.types import (
|
||||||
AudioDiarizationInput,
|
AudioDiarizationInput,
|
||||||
|
DiarizationSegment,
|
||||||
TitleSummary,
|
TitleSummary,
|
||||||
Word,
|
Word,
|
||||||
)
|
)
|
||||||
@@ -37,18 +38,21 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
async def _diarize(self, data: AudioDiarizationInput):
|
async def _diarize(self, data: AudioDiarizationInput):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def assign_speaker(self, words: list[Word], diarization: list[dict]):
|
@classmethod
|
||||||
self._diarization_remove_overlap(diarization)
|
def assign_speaker(cls, words: list[Word], diarization: list[DiarizationSegment]):
|
||||||
self._diarization_remove_segment_without_words(words, diarization)
|
cls._diarization_remove_overlap(diarization)
|
||||||
self._diarization_merge_same_speaker(words, diarization)
|
cls._diarization_remove_segment_without_words(words, diarization)
|
||||||
self._diarization_assign_speaker(words, diarization)
|
cls._diarization_merge_same_speaker(diarization)
|
||||||
|
cls._diarization_assign_speaker(words, diarization)
|
||||||
|
|
||||||
def iter_words_from_topics(self, topics: TitleSummary):
|
@staticmethod
|
||||||
|
def iter_words_from_topics(topics: list[TitleSummary]):
|
||||||
for topic in topics:
|
for topic in topics:
|
||||||
for word in topic.transcript.words:
|
for word in topic.transcript.words:
|
||||||
yield word
|
yield word
|
||||||
|
|
||||||
def is_word_continuation(self, word_prev, word):
|
@staticmethod
|
||||||
|
def is_word_continuation(word_prev, word):
|
||||||
"""
|
"""
|
||||||
Return True if the word is a continuation of the previous word
|
Return True if the word is a continuation of the previous word
|
||||||
by checking if the previous word is ending with a punctuation
|
by checking if the previous word is ending with a punctuation
|
||||||
@@ -61,7 +65,8 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def _diarization_remove_overlap(self, diarization: list[dict]):
|
@staticmethod
|
||||||
|
def _diarization_remove_overlap(diarization: list[DiarizationSegment]):
|
||||||
"""
|
"""
|
||||||
Remove overlap in diarization results
|
Remove overlap in diarization results
|
||||||
|
|
||||||
@@ -86,8 +91,9 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
else:
|
else:
|
||||||
diarization_idx += 1
|
diarization_idx += 1
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
def _diarization_remove_segment_without_words(
|
def _diarization_remove_segment_without_words(
|
||||||
self, words: list[Word], diarization: list[dict]
|
words: list[Word], diarization: list[DiarizationSegment]
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Remove diarization segments without words
|
Remove diarization segments without words
|
||||||
@@ -116,9 +122,8 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
else:
|
else:
|
||||||
diarization_idx += 1
|
diarization_idx += 1
|
||||||
|
|
||||||
def _diarization_merge_same_speaker(
|
@staticmethod
|
||||||
self, words: list[Word], diarization: list[dict]
|
def _diarization_merge_same_speaker(diarization: list[DiarizationSegment]):
|
||||||
):
|
|
||||||
"""
|
"""
|
||||||
Merge diarization contigous segments with the same speaker
|
Merge diarization contigous segments with the same speaker
|
||||||
|
|
||||||
@@ -135,7 +140,10 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
else:
|
else:
|
||||||
diarization_idx += 1
|
diarization_idx += 1
|
||||||
|
|
||||||
def _diarization_assign_speaker(self, words: list[Word], diarization: list[dict]):
|
@classmethod
|
||||||
|
def _diarization_assign_speaker(
|
||||||
|
cls, words: list[Word], diarization: list[DiarizationSegment]
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Assign speaker to words based on diarization
|
Assign speaker to words based on diarization
|
||||||
|
|
||||||
@@ -143,7 +151,7 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
word_idx = 0
|
word_idx = 0
|
||||||
last_speaker = None
|
last_speaker = 0
|
||||||
for d in diarization:
|
for d in diarization:
|
||||||
start = d["start"]
|
start = d["start"]
|
||||||
end = d["end"]
|
end = d["end"]
|
||||||
@@ -158,7 +166,7 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
# If it's a continuation, assign with the last speaker
|
# If it's a continuation, assign with the last speaker
|
||||||
is_continuation = False
|
is_continuation = False
|
||||||
if word_idx > 0 and word_idx < len(words) - 1:
|
if word_idx > 0 and word_idx < len(words) - 1:
|
||||||
is_continuation = self.is_word_continuation(
|
is_continuation = cls.is_word_continuation(
|
||||||
*words[word_idx - 1 : word_idx + 1]
|
*words[word_idx - 1 : word_idx + 1]
|
||||||
)
|
)
|
||||||
if is_continuation:
|
if is_continuation:
|
||||||
|
|||||||
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from pyannote.audio import Pipeline
|
||||||
|
|
||||||
|
from reflector.processors.audio_diarization import AudioDiarizationProcessor
|
||||||
|
from reflector.processors.audio_diarization_auto import AudioDiarizationAutoProcessor
|
||||||
|
from reflector.processors.types import AudioDiarizationInput, DiarizationSegment
|
||||||
|
|
||||||
|
|
||||||
|
class AudioDiarizationPyannoteProcessor(AudioDiarizationProcessor):
|
||||||
|
"""Local diarization processor using pyannote.audio library"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = "pyannote/speaker-diarization-3.1",
|
||||||
|
pyannote_auth_token: str | None = None,
|
||||||
|
device: str | None = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.model_name = model_name
|
||||||
|
self.auth_token = pyannote_auth_token or os.environ.get("HF_TOKEN")
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
if device is None:
|
||||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
|
self.logger.info(f"Loading pyannote diarization model: {self.model_name}")
|
||||||
|
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||||
|
self.model_name, use_auth_token=self.auth_token
|
||||||
|
)
|
||||||
|
self.diarization_pipeline.to(torch.device(self.device))
|
||||||
|
self.logger.info(f"Diarization model loaded on device: {self.device}")
|
||||||
|
|
||||||
|
async def _diarize(self, data: AudioDiarizationInput) -> list[DiarizationSegment]:
|
||||||
|
try:
|
||||||
|
# Load audio file (audio_url is assumed to be a local file path)
|
||||||
|
self.logger.info(f"Loading local audio file: {data.audio_url}")
|
||||||
|
waveform, sample_rate = torchaudio.load(data.audio_url)
|
||||||
|
audio_input = {"waveform": waveform, "sample_rate": sample_rate}
|
||||||
|
self.logger.info("Running speaker diarization")
|
||||||
|
diarization = self.diarization_pipeline(audio_input)
|
||||||
|
|
||||||
|
# Convert pyannote diarization output to our format
|
||||||
|
segments = []
|
||||||
|
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||||
|
# Extract speaker number from label (e.g., "SPEAKER_00" -> 0)
|
||||||
|
speaker_id = 0
|
||||||
|
if speaker.startswith("SPEAKER_"):
|
||||||
|
try:
|
||||||
|
speaker_id = int(speaker.split("_")[-1])
|
||||||
|
except (ValueError, IndexError):
|
||||||
|
# Fallback to hash-based ID if parsing fails
|
||||||
|
speaker_id = hash(speaker) % 1000
|
||||||
|
|
||||||
|
segments.append(
|
||||||
|
{
|
||||||
|
"start": round(segment.start, 3),
|
||||||
|
"end": round(segment.end, 3),
|
||||||
|
"speaker": speaker_id,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
self.logger.info(f"Diarization completed with {len(segments)} segments")
|
||||||
|
return segments
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.exception(f"Diarization failed: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
AudioDiarizationAutoProcessor.register("pyannote", AudioDiarizationPyannoteProcessor)
|
||||||
60
server/reflector/processors/audio_downscale.py
Normal file
60
server/reflector/processors/audio_downscale.py
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import av
|
||||||
|
from av.audio.resampler import AudioResampler
|
||||||
|
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
|
||||||
|
|
||||||
|
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||||
|
frame_copy = frame.from_ndarray(
|
||||||
|
frame.to_ndarray(),
|
||||||
|
format=frame.format.name,
|
||||||
|
layout=frame.layout.name,
|
||||||
|
)
|
||||||
|
frame_copy.sample_rate = frame.sample_rate
|
||||||
|
frame_copy.pts = frame.pts
|
||||||
|
frame_copy.time_base = frame.time_base
|
||||||
|
return frame_copy
|
||||||
|
|
||||||
|
|
||||||
|
class AudioDownscaleProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Downscale audio frames to 16kHz mono format
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = av.AudioFrame
|
||||||
|
OUTPUT_TYPE = av.AudioFrame
|
||||||
|
|
||||||
|
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.target_rate = target_rate
|
||||||
|
self.target_layout = target_layout
|
||||||
|
self.resampler: Optional[AudioResampler] = None
|
||||||
|
self.needs_resampling: Optional[bool] = None
|
||||||
|
|
||||||
|
async def _push(self, data: av.AudioFrame):
|
||||||
|
if self.needs_resampling is None:
|
||||||
|
self.needs_resampling = (
|
||||||
|
data.sample_rate != self.target_rate
|
||||||
|
or data.layout.name != self.target_layout
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.needs_resampling:
|
||||||
|
self.resampler = AudioResampler(
|
||||||
|
format="s16", layout=self.target_layout, rate=self.target_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
if not self.needs_resampling or not self.resampler:
|
||||||
|
await self.emit(data)
|
||||||
|
return
|
||||||
|
|
||||||
|
resampled_frames = self.resampler.resample(copy_frame(data))
|
||||||
|
for resampled_frame in resampled_frames:
|
||||||
|
await self.emit(resampled_frame)
|
||||||
|
|
||||||
|
async def _flush(self):
|
||||||
|
if self.needs_resampling and self.resampler:
|
||||||
|
final_frames = self.resampler.resample(None)
|
||||||
|
for frame in final_frames:
|
||||||
|
await self.emit(frame)
|
||||||
@@ -16,37 +16,46 @@ class AudioMergeProcessor(Processor):
|
|||||||
INPUT_TYPE = list[av.AudioFrame]
|
INPUT_TYPE = list[av.AudioFrame]
|
||||||
OUTPUT_TYPE = AudioFile
|
OUTPUT_TYPE = AudioFile
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
async def _push(self, data: list[av.AudioFrame]):
|
async def _push(self, data: list[av.AudioFrame]):
|
||||||
if not data:
|
if not data:
|
||||||
return
|
return
|
||||||
|
|
||||||
# get audio information from first frame
|
# get audio information from first frame
|
||||||
frame = data[0]
|
frame = data[0]
|
||||||
channels = len(frame.layout.channels)
|
output_channels = len(frame.layout.channels)
|
||||||
sample_rate = frame.sample_rate
|
output_sample_rate = frame.sample_rate
|
||||||
sample_width = frame.format.bytes
|
output_sample_width = frame.format.bytes
|
||||||
|
|
||||||
# create audio file
|
# create audio file
|
||||||
uu = uuid4().hex
|
uu = uuid4().hex
|
||||||
fd = io.BytesIO()
|
fd = io.BytesIO()
|
||||||
|
|
||||||
|
# Use PyAV to write frames
|
||||||
out_container = av.open(fd, "w", format="wav")
|
out_container = av.open(fd, "w", format="wav")
|
||||||
out_stream = out_container.add_stream("pcm_s16le", rate=sample_rate)
|
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||||
|
out_stream.layout = frame.layout.name
|
||||||
|
|
||||||
for frame in data:
|
for frame in data:
|
||||||
for packet in out_stream.encode(frame):
|
for packet in out_stream.encode(frame):
|
||||||
out_container.mux(packet)
|
out_container.mux(packet)
|
||||||
|
|
||||||
|
# Flush the encoder
|
||||||
for packet in out_stream.encode(None):
|
for packet in out_stream.encode(None):
|
||||||
out_container.mux(packet)
|
out_container.mux(packet)
|
||||||
out_container.close()
|
out_container.close()
|
||||||
|
|
||||||
fd.seek(0)
|
fd.seek(0)
|
||||||
|
|
||||||
# emit audio file
|
# emit audio file
|
||||||
audiofile = AudioFile(
|
audiofile = AudioFile(
|
||||||
name=f"{monotonic_ns()}-{uu}.wav",
|
name=f"{monotonic_ns()}-{uu}.wav",
|
||||||
fd=fd,
|
fd=fd,
|
||||||
sample_rate=sample_rate,
|
sample_rate=output_sample_rate,
|
||||||
channels=channels,
|
channels=output_channels,
|
||||||
sample_width=sample_width,
|
sample_width=output_sample_width,
|
||||||
timestamp=data[0].pts * data[0].time_base,
|
timestamp=data[0].pts * data[0].time_base,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -21,7 +21,11 @@ from reflector.settings import settings
|
|||||||
|
|
||||||
|
|
||||||
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||||
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
def __init__(
|
||||||
|
self,
|
||||||
|
modal_api_key: str | None = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if not settings.TRANSCRIPT_URL:
|
if not settings.TRANSCRIPT_URL:
|
||||||
raise Exception(
|
raise Exception(
|
||||||
|
|||||||
@@ -173,6 +173,7 @@ class Processor(Emitter):
|
|||||||
except Exception:
|
except Exception:
|
||||||
self.m_processor_failure.inc()
|
self.m_processor_failure.inc()
|
||||||
self.logger.exception("Error in push")
|
self.logger.exception("Error in push")
|
||||||
|
raise
|
||||||
|
|
||||||
async def flush(self):
|
async def flush(self):
|
||||||
"""
|
"""
|
||||||
@@ -240,33 +241,45 @@ class ThreadedProcessor(Processor):
|
|||||||
self.INPUT_TYPE = processor.INPUT_TYPE
|
self.INPUT_TYPE = processor.INPUT_TYPE
|
||||||
self.OUTPUT_TYPE = processor.OUTPUT_TYPE
|
self.OUTPUT_TYPE = processor.OUTPUT_TYPE
|
||||||
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||||
self.queue = asyncio.Queue()
|
self.queue = asyncio.Queue(maxsize=50)
|
||||||
self.task = asyncio.get_running_loop().create_task(self.loop())
|
self.task: asyncio.Task | None = None
|
||||||
|
|
||||||
def set_pipeline(self, pipeline: "Pipeline"):
|
def set_pipeline(self, pipeline: "Pipeline"):
|
||||||
super().set_pipeline(pipeline)
|
super().set_pipeline(pipeline)
|
||||||
self.processor.set_pipeline(pipeline)
|
self.processor.set_pipeline(pipeline)
|
||||||
|
|
||||||
async def loop(self):
|
async def loop(self):
|
||||||
while True:
|
try:
|
||||||
data = await self.queue.get()
|
while True:
|
||||||
self.m_processor_queue.set(self.queue.qsize())
|
data = await self.queue.get()
|
||||||
with self.m_processor_queue_in_progress.track_inprogress():
|
self.m_processor_queue.set(self.queue.qsize())
|
||||||
try:
|
with self.m_processor_queue_in_progress.track_inprogress():
|
||||||
if data is None:
|
|
||||||
await self.processor.flush()
|
|
||||||
break
|
|
||||||
try:
|
try:
|
||||||
await self.processor.push(data)
|
if data is None:
|
||||||
except Exception:
|
await self.processor.flush()
|
||||||
self.logger.error(
|
break
|
||||||
f"Error in push {self.processor.__class__.__name__}"
|
try:
|
||||||
", continue"
|
await self.processor.push(data)
|
||||||
)
|
except Exception:
|
||||||
finally:
|
self.logger.error(
|
||||||
self.queue.task_done()
|
f"Error in push {self.processor.__class__.__name__}"
|
||||||
|
", continue"
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
self.queue.task_done()
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Crash in {self.__class__.__name__}: {e}", exc_info=e)
|
||||||
|
|
||||||
|
async def _ensure_task(self):
|
||||||
|
if self.task is None:
|
||||||
|
self.task = asyncio.get_running_loop().create_task(self.loop())
|
||||||
|
|
||||||
|
# XXX not doing a sleep here make the whole pipeline prior the thread
|
||||||
|
# to be running without having a chance to work on the task here.
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
|
||||||
async def _push(self, data):
|
async def _push(self, data):
|
||||||
|
await self._ensure_task()
|
||||||
await self.queue.put(data)
|
await self.queue.put(data)
|
||||||
|
|
||||||
async def _flush(self):
|
async def _flush(self):
|
||||||
|
|||||||
33
server/reflector/processors/file_diarization.py
Normal file
33
server/reflector/processors/file_diarization.py
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
from reflector.processors.types import DiarizationSegment
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationInput(BaseModel):
|
||||||
|
"""Input for file diarization containing audio URL"""
|
||||||
|
|
||||||
|
audio_url: str
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationOutput(BaseModel):
|
||||||
|
"""Output for file diarization containing speaker segments"""
|
||||||
|
|
||||||
|
diarization: list[DiarizationSegment]
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Diarize complete audio files from URL
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = FileDiarizationInput
|
||||||
|
OUTPUT_TYPE = FileDiarizationOutput
|
||||||
|
|
||||||
|
async def _push(self, data: FileDiarizationInput):
|
||||||
|
result = await self._diarize(data)
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
|
||||||
|
async def _diarize(self, data: FileDiarizationInput):
|
||||||
|
raise NotImplementedError
|
||||||
33
server/reflector/processors/file_diarization_auto.py
Normal file
33
server/reflector/processors/file_diarization_auto.py
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
from reflector.processors.file_diarization import FileDiarizationProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationAutoProcessor(FileDiarizationProcessor):
|
||||||
|
_registry = {}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def register(cls, name, kclass):
|
||||||
|
cls._registry[name] = kclass
|
||||||
|
|
||||||
|
def __new__(cls, name: str | None = None, **kwargs):
|
||||||
|
if name is None:
|
||||||
|
name = settings.DIARIZATION_BACKEND
|
||||||
|
|
||||||
|
if name not in cls._registry:
|
||||||
|
module_name = f"reflector.processors.file_diarization_{name}"
|
||||||
|
importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# gather specific configuration for the processor
|
||||||
|
# search `DIARIZATION_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||||
|
config = {}
|
||||||
|
name_upper = name.upper()
|
||||||
|
settings_prefix = "DIARIZATION_"
|
||||||
|
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||||
|
for key, value in settings:
|
||||||
|
if key.startswith(config_prefix):
|
||||||
|
config_name = key[len(settings_prefix) :].lower()
|
||||||
|
config[config_name] = value
|
||||||
|
|
||||||
|
return cls._registry[name](**config | kwargs)
|
||||||
58
server/reflector/processors/file_diarization_modal.py
Normal file
58
server/reflector/processors/file_diarization_modal.py
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
"""
|
||||||
|
File diarization implementation using the GPU service from modal.com
|
||||||
|
|
||||||
|
API will be a POST request to DIARIZATION_URL:
|
||||||
|
|
||||||
|
```
|
||||||
|
POST /diarize?audio_file_url=...×tamp=0
|
||||||
|
Authorization: Bearer <modal_api_key>
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
|
||||||
|
from reflector.processors.file_diarization import (
|
||||||
|
FileDiarizationInput,
|
||||||
|
FileDiarizationOutput,
|
||||||
|
FileDiarizationProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationModalProcessor(FileDiarizationProcessor):
|
||||||
|
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
if not settings.DIARIZATION_URL:
|
||||||
|
raise Exception(
|
||||||
|
"DIARIZATION_URL required to use FileDiarizationModalProcessor"
|
||||||
|
)
|
||||||
|
self.diarization_url = settings.DIARIZATION_URL + "/diarize"
|
||||||
|
self.file_timeout = settings.DIARIZATION_FILE_TIMEOUT
|
||||||
|
self.modal_api_key = modal_api_key
|
||||||
|
|
||||||
|
async def _diarize(self, data: FileDiarizationInput):
|
||||||
|
"""Get speaker diarization for file"""
|
||||||
|
self.logger.info(f"Starting diarization from {data.audio_url}")
|
||||||
|
|
||||||
|
headers = {}
|
||||||
|
if self.modal_api_key:
|
||||||
|
headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||||
|
|
||||||
|
async with httpx.AsyncClient(timeout=self.file_timeout) as client:
|
||||||
|
response = await client.post(
|
||||||
|
self.diarization_url,
|
||||||
|
headers=headers,
|
||||||
|
params={
|
||||||
|
"audio_file_url": data.audio_url,
|
||||||
|
"timestamp": 0,
|
||||||
|
},
|
||||||
|
follow_redirects=True,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
diarization_data = response.json()["diarization"]
|
||||||
|
|
||||||
|
return FileDiarizationOutput(diarization=diarization_data)
|
||||||
|
|
||||||
|
|
||||||
|
FileDiarizationAutoProcessor.register("modal", FileDiarizationModalProcessor)
|
||||||
65
server/reflector/processors/file_transcript.py
Normal file
65
server/reflector/processors/file_transcript.py
Normal file
@@ -0,0 +1,65 @@
|
|||||||
|
from prometheus_client import Counter, Histogram
|
||||||
|
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
from reflector.processors.types import Transcript
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptInput:
|
||||||
|
"""Input for file transcription containing audio URL and language settings"""
|
||||||
|
|
||||||
|
def __init__(self, audio_url: str, language: str = "en"):
|
||||||
|
self.audio_url = audio_url
|
||||||
|
self.language = language
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Transcript complete audio files from URL
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = FileTranscriptInput
|
||||||
|
OUTPUT_TYPE = Transcript
|
||||||
|
|
||||||
|
m_transcript = Histogram(
|
||||||
|
"file_transcript",
|
||||||
|
"Time spent in FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_transcript_call = Counter(
|
||||||
|
"file_transcript_call",
|
||||||
|
"Number of calls to FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_transcript_success = Counter(
|
||||||
|
"file_transcript_success",
|
||||||
|
"Number of successful calls to FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_transcript_failure = Counter(
|
||||||
|
"file_transcript_failure",
|
||||||
|
"Number of failed calls to FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
name = self.__class__.__name__
|
||||||
|
self.m_transcript = self.m_transcript.labels(name)
|
||||||
|
self.m_transcript_call = self.m_transcript_call.labels(name)
|
||||||
|
self.m_transcript_success = self.m_transcript_success.labels(name)
|
||||||
|
self.m_transcript_failure = self.m_transcript_failure.labels(name)
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
async def _push(self, data: FileTranscriptInput):
|
||||||
|
try:
|
||||||
|
self.m_transcript_call.inc()
|
||||||
|
with self.m_transcript.time():
|
||||||
|
result = await self._transcript(data)
|
||||||
|
self.m_transcript_success.inc()
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
except Exception:
|
||||||
|
self.m_transcript_failure.inc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def _transcript(self, data: FileTranscriptInput):
|
||||||
|
raise NotImplementedError
|
||||||
32
server/reflector/processors/file_transcript_auto.py
Normal file
32
server/reflector/processors/file_transcript_auto.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
from reflector.processors.file_transcript import FileTranscriptProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptAutoProcessor(FileTranscriptProcessor):
|
||||||
|
_registry = {}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def register(cls, name, kclass):
|
||||||
|
cls._registry[name] = kclass
|
||||||
|
|
||||||
|
def __new__(cls, name: str | None = None, **kwargs):
|
||||||
|
if name is None:
|
||||||
|
name = settings.TRANSCRIPT_BACKEND
|
||||||
|
if name not in cls._registry:
|
||||||
|
module_name = f"reflector.processors.file_transcript_{name}"
|
||||||
|
importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# gather specific configuration for the processor
|
||||||
|
# search `TRANSCRIPT_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||||
|
config = {}
|
||||||
|
name_upper = name.upper()
|
||||||
|
settings_prefix = "TRANSCRIPT_"
|
||||||
|
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||||
|
for key, value in settings:
|
||||||
|
if key.startswith(config_prefix):
|
||||||
|
config_name = key[len(settings_prefix) :].lower()
|
||||||
|
config[config_name] = value
|
||||||
|
|
||||||
|
return cls._registry[name](**config | kwargs)
|
||||||
78
server/reflector/processors/file_transcript_modal.py
Normal file
78
server/reflector/processors/file_transcript_modal.py
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
"""
|
||||||
|
File transcription implementation using the GPU service from modal.com
|
||||||
|
|
||||||
|
API will be a POST request to TRANSCRIPT_URL:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"audio_file_url": "https://...",
|
||||||
|
"language": "en",
|
||||||
|
"model": "parakeet-tdt-0.6b-v2",
|
||||||
|
"batch": true
|
||||||
|
}
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
|
||||||
|
from reflector.processors.file_transcript import (
|
||||||
|
FileTranscriptInput,
|
||||||
|
FileTranscriptProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||||
|
from reflector.processors.types import Transcript, Word
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptModalProcessor(FileTranscriptProcessor):
|
||||||
|
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
if not settings.TRANSCRIPT_URL:
|
||||||
|
raise Exception(
|
||||||
|
"TRANSCRIPT_URL required to use FileTranscriptModalProcessor"
|
||||||
|
)
|
||||||
|
self.transcript_url = settings.TRANSCRIPT_URL
|
||||||
|
self.file_timeout = settings.TRANSCRIPT_FILE_TIMEOUT
|
||||||
|
self.modal_api_key = modal_api_key
|
||||||
|
|
||||||
|
async def _transcript(self, data: FileTranscriptInput):
|
||||||
|
"""Send full file to Modal for transcription"""
|
||||||
|
url = f"{self.transcript_url}/v1/audio/transcriptions-from-url"
|
||||||
|
|
||||||
|
self.logger.info(f"Starting file transcription from {data.audio_url}")
|
||||||
|
|
||||||
|
headers = {}
|
||||||
|
if self.modal_api_key:
|
||||||
|
headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||||
|
|
||||||
|
async with httpx.AsyncClient(timeout=self.file_timeout) as client:
|
||||||
|
response = await client.post(
|
||||||
|
url,
|
||||||
|
headers=headers,
|
||||||
|
json={
|
||||||
|
"audio_file_url": data.audio_url,
|
||||||
|
"language": data.language,
|
||||||
|
"batch": True,
|
||||||
|
},
|
||||||
|
follow_redirects=True,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
words = [
|
||||||
|
Word(
|
||||||
|
text=word_info["word"],
|
||||||
|
start=word_info["start"],
|
||||||
|
end=word_info["end"],
|
||||||
|
)
|
||||||
|
for word_info in result.get("words", [])
|
||||||
|
]
|
||||||
|
|
||||||
|
# words come not in order
|
||||||
|
words.sort(key=lambda w: w.start)
|
||||||
|
|
||||||
|
return Transcript(words=words)
|
||||||
|
|
||||||
|
|
||||||
|
# Register with the auto processor
|
||||||
|
FileTranscriptAutoProcessor.register("modal", FileTranscriptModalProcessor)
|
||||||
@@ -0,0 +1,45 @@
|
|||||||
|
"""
|
||||||
|
Processor to assemble transcript with diarization results
|
||||||
|
"""
|
||||||
|
|
||||||
|
from reflector.processors.audio_diarization import AudioDiarizationProcessor
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
from reflector.processors.types import DiarizationSegment, Transcript
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptDiarizationAssemblerInput:
|
||||||
|
"""Input containing transcript and diarization data"""
|
||||||
|
|
||||||
|
def __init__(self, transcript: Transcript, diarization: list[DiarizationSegment]):
|
||||||
|
self.transcript = transcript
|
||||||
|
self.diarization = diarization
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptDiarizationAssemblerProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Assemble transcript with diarization results by applying speaker assignments
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = TranscriptDiarizationAssemblerInput
|
||||||
|
OUTPUT_TYPE = Transcript
|
||||||
|
|
||||||
|
async def _push(self, data: TranscriptDiarizationAssemblerInput):
|
||||||
|
result = await self._assemble(data)
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
|
||||||
|
async def _assemble(self, data: TranscriptDiarizationAssemblerInput):
|
||||||
|
"""Apply diarization to transcript words"""
|
||||||
|
if not data.diarization:
|
||||||
|
self.logger.info(
|
||||||
|
"No diarization data provided, returning original transcript"
|
||||||
|
)
|
||||||
|
return data.transcript
|
||||||
|
|
||||||
|
# Reuse logic from AudioDiarizationProcessor
|
||||||
|
processor = AudioDiarizationProcessor()
|
||||||
|
words = data.transcript.words
|
||||||
|
processor.assign_speaker(words, data.diarization)
|
||||||
|
|
||||||
|
self.logger.info(f"Applied diarization to {len(words)} words")
|
||||||
|
return data.transcript
|
||||||
@@ -2,18 +2,21 @@ import io
|
|||||||
import re
|
import re
|
||||||
import tempfile
|
import tempfile
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Annotated
|
from typing import Annotated, TypedDict
|
||||||
|
|
||||||
from profanityfilter import ProfanityFilter
|
|
||||||
from pydantic import BaseModel, Field, PrivateAttr
|
from pydantic import BaseModel, Field, PrivateAttr
|
||||||
|
|
||||||
from reflector.redis_cache import redis_cache
|
|
||||||
|
class DiarizationSegment(TypedDict):
|
||||||
|
"""Type definition for diarization segment containing speaker information"""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
speaker: int
|
||||||
|
|
||||||
|
|
||||||
PUNC_RE = re.compile(r"[.;:?!…]")
|
PUNC_RE = re.compile(r"[.;:?!…]")
|
||||||
|
|
||||||
profanity_filter = ProfanityFilter()
|
|
||||||
profanity_filter.set_censor("*")
|
|
||||||
|
|
||||||
|
|
||||||
class AudioFile(BaseModel):
|
class AudioFile(BaseModel):
|
||||||
name: str
|
name: str
|
||||||
@@ -115,21 +118,11 @@ def words_to_segments(words: list[Word]) -> list[TranscriptSegment]:
|
|||||||
|
|
||||||
class Transcript(BaseModel):
|
class Transcript(BaseModel):
|
||||||
translation: str | None = None
|
translation: str | None = None
|
||||||
words: list[Word] = None
|
words: list[Word] = []
|
||||||
|
|
||||||
@property
|
|
||||||
def raw_text(self):
|
|
||||||
# Uncensored text
|
|
||||||
return "".join([word.text for word in self.words])
|
|
||||||
|
|
||||||
@redis_cache(prefix="profanity", duration=3600 * 24 * 7)
|
|
||||||
def _get_censored_text(self, text: str):
|
|
||||||
return profanity_filter.censor(text).strip()
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def text(self):
|
def text(self):
|
||||||
# Censored text
|
return "".join([word.text for word in self.words])
|
||||||
return self._get_censored_text(self.raw_text)
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def human_timestamp(self):
|
def human_timestamp(self):
|
||||||
@@ -161,12 +154,6 @@ class Transcript(BaseModel):
|
|||||||
word.start += offset
|
word.start += offset
|
||||||
word.end += offset
|
word.end += offset
|
||||||
|
|
||||||
def clone(self):
|
|
||||||
words = [
|
|
||||||
Word(text=word.text, start=word.start, end=word.end) for word in self.words
|
|
||||||
]
|
|
||||||
return Transcript(text=self.text, translation=self.translation, words=words)
|
|
||||||
|
|
||||||
def as_segments(self) -> list[TranscriptSegment]:
|
def as_segments(self) -> list[TranscriptSegment]:
|
||||||
return words_to_segments(self.words)
|
return words_to_segments(self.words)
|
||||||
|
|
||||||
|
|||||||
@@ -1,10 +1,17 @@
|
|||||||
|
import asyncio
|
||||||
import functools
|
import functools
|
||||||
import json
|
import json
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import redis
|
import redis
|
||||||
|
import redis.asyncio as redis_async
|
||||||
|
import structlog
|
||||||
|
from redis.exceptions import LockError
|
||||||
|
|
||||||
from reflector.settings import settings
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
logger = structlog.get_logger(__name__)
|
||||||
|
|
||||||
redis_clients = {}
|
redis_clients = {}
|
||||||
|
|
||||||
|
|
||||||
@@ -21,6 +28,12 @@ def get_redis_client(db=0):
|
|||||||
return redis_clients[db]
|
return redis_clients[db]
|
||||||
|
|
||||||
|
|
||||||
|
async def get_async_redis_client(db: int = 0):
|
||||||
|
return await redis_async.from_url(
|
||||||
|
f"redis://{settings.REDIS_HOST}:{settings.REDIS_PORT}/{db}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def redis_cache(prefix="cache", duration=3600, db=settings.REDIS_CACHE_DB, argidx=1):
|
def redis_cache(prefix="cache", duration=3600, db=settings.REDIS_CACHE_DB, argidx=1):
|
||||||
"""
|
"""
|
||||||
Cache the result of a function in Redis.
|
Cache the result of a function in Redis.
|
||||||
@@ -49,3 +62,87 @@ def redis_cache(prefix="cache", duration=3600, db=settings.REDIS_CACHE_DB, argid
|
|||||||
return wrapper
|
return wrapper
|
||||||
|
|
||||||
return decorator
|
return decorator
|
||||||
|
|
||||||
|
|
||||||
|
class RedisAsyncLock:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
key: str,
|
||||||
|
timeout: int = 120,
|
||||||
|
extend_interval: int = 30,
|
||||||
|
skip_if_locked: bool = False,
|
||||||
|
blocking: bool = True,
|
||||||
|
blocking_timeout: Optional[float] = None,
|
||||||
|
):
|
||||||
|
self.key = f"async_lock:{key}"
|
||||||
|
self.timeout = timeout
|
||||||
|
self.extend_interval = extend_interval
|
||||||
|
self.skip_if_locked = skip_if_locked
|
||||||
|
self.blocking = blocking
|
||||||
|
self.blocking_timeout = blocking_timeout
|
||||||
|
self._lock = None
|
||||||
|
self._redis = None
|
||||||
|
self._extend_task = None
|
||||||
|
self._acquired = False
|
||||||
|
|
||||||
|
async def _extend_lock_periodically(self):
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
await asyncio.sleep(self.extend_interval)
|
||||||
|
if self._lock:
|
||||||
|
await self._lock.extend(self.timeout, replace_ttl=True)
|
||||||
|
logger.debug("Extended lock", key=self.key)
|
||||||
|
except LockError:
|
||||||
|
logger.warning("Failed to extend lock", key=self.key)
|
||||||
|
break
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
logger.error("Error extending lock", key=self.key, error=str(e))
|
||||||
|
break
|
||||||
|
|
||||||
|
async def __aenter__(self):
|
||||||
|
self._redis = await get_async_redis_client()
|
||||||
|
self._lock = self._redis.lock(
|
||||||
|
self.key,
|
||||||
|
timeout=self.timeout,
|
||||||
|
blocking=self.blocking,
|
||||||
|
blocking_timeout=self.blocking_timeout,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._acquired = await self._lock.acquire()
|
||||||
|
|
||||||
|
if not self._acquired:
|
||||||
|
if self.skip_if_locked:
|
||||||
|
logger.warning(
|
||||||
|
"Lock already acquired by another process, skipping", key=self.key
|
||||||
|
)
|
||||||
|
return self
|
||||||
|
else:
|
||||||
|
raise LockError(f"Failed to acquire lock: {self.key}")
|
||||||
|
|
||||||
|
self._extend_task = asyncio.create_task(self._extend_lock_periodically())
|
||||||
|
logger.info("Acquired lock", key=self.key)
|
||||||
|
return self
|
||||||
|
|
||||||
|
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
if self._extend_task:
|
||||||
|
self._extend_task.cancel()
|
||||||
|
try:
|
||||||
|
await self._extend_task
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if self._acquired and self._lock:
|
||||||
|
try:
|
||||||
|
await self._lock.release()
|
||||||
|
logger.info("Released lock", key=self.key)
|
||||||
|
except LockError:
|
||||||
|
logger.debug("Lock already released or expired", key=self.key)
|
||||||
|
|
||||||
|
if self._redis:
|
||||||
|
await self._redis.aclose()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def acquired(self) -> bool:
|
||||||
|
return self._acquired
|
||||||
|
|||||||
408
server/reflector/services/ics_sync.py
Normal file
408
server/reflector/services/ics_sync.py
Normal file
@@ -0,0 +1,408 @@
|
|||||||
|
"""
|
||||||
|
ICS Calendar Synchronization Service
|
||||||
|
|
||||||
|
This module provides services for fetching, parsing, and synchronizing ICS (iCalendar)
|
||||||
|
calendar feeds with room booking data in the database.
|
||||||
|
|
||||||
|
Key Components:
|
||||||
|
- ICSFetchService: Handles HTTP fetching and parsing of ICS calendar data
|
||||||
|
- ICSSyncService: Manages the synchronization process between ICS feeds and database
|
||||||
|
|
||||||
|
Example Usage:
|
||||||
|
# Sync a room's calendar
|
||||||
|
room = Room(id="room1", name="conference-room", ics_url="https://cal.example.com/room.ics")
|
||||||
|
result = await ics_sync_service.sync_room_calendar(room)
|
||||||
|
|
||||||
|
# Result structure:
|
||||||
|
{
|
||||||
|
"status": "success", # success|unchanged|error|skipped
|
||||||
|
"hash": "abc123...", # MD5 hash of ICS content
|
||||||
|
"events_found": 5, # Events matching this room
|
||||||
|
"total_events": 12, # Total events in calendar within time window
|
||||||
|
"events_created": 2, # New events added to database
|
||||||
|
"events_updated": 3, # Existing events modified
|
||||||
|
"events_deleted": 1 # Events soft-deleted (no longer in calendar)
|
||||||
|
}
|
||||||
|
|
||||||
|
Event Matching:
|
||||||
|
Events are matched to rooms by checking if the room's full URL appears in the
|
||||||
|
event's LOCATION or DESCRIPTION fields. Only events within a 25-hour window
|
||||||
|
(1 hour ago to 24 hours from now) are processed.
|
||||||
|
|
||||||
|
Input: ICS calendar URL (e.g., "https://calendar.google.com/calendar/ical/...")
|
||||||
|
Output: EventData objects with structured calendar information:
|
||||||
|
{
|
||||||
|
"ics_uid": "event123@google.com",
|
||||||
|
"title": "Team Meeting",
|
||||||
|
"description": "Weekly sync meeting",
|
||||||
|
"location": "https://meet.company.com/conference-room",
|
||||||
|
"start_time": datetime(2024, 1, 15, 14, 0, tzinfo=UTC),
|
||||||
|
"end_time": datetime(2024, 1, 15, 15, 0, tzinfo=UTC),
|
||||||
|
"attendees": [
|
||||||
|
{"email": "user@company.com", "name": "John Doe", "role": "ORGANIZER"},
|
||||||
|
{"email": "attendee@company.com", "name": "Jane Smith", "status": "ACCEPTED"}
|
||||||
|
],
|
||||||
|
"ics_raw_data": "BEGIN:VEVENT\nUID:event123@google.com\n..."
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
|
import hashlib
|
||||||
|
from datetime import date, datetime, timedelta, timezone
|
||||||
|
from enum import Enum
|
||||||
|
from typing import TypedDict
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
import pytz
|
||||||
|
import structlog
|
||||||
|
from icalendar import Calendar, Event
|
||||||
|
|
||||||
|
from reflector.db.calendar_events import CalendarEvent, calendar_events_controller
|
||||||
|
from reflector.db.rooms import Room, rooms_controller
|
||||||
|
from reflector.redis_cache import RedisAsyncLock
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
logger = structlog.get_logger()
|
||||||
|
|
||||||
|
EVENT_WINDOW_DELTA_START = timedelta(hours=-1)
|
||||||
|
EVENT_WINDOW_DELTA_END = timedelta(hours=24)
|
||||||
|
|
||||||
|
|
||||||
|
class SyncStatus(str, Enum):
|
||||||
|
SUCCESS = "success"
|
||||||
|
UNCHANGED = "unchanged"
|
||||||
|
ERROR = "error"
|
||||||
|
SKIPPED = "skipped"
|
||||||
|
|
||||||
|
|
||||||
|
class AttendeeData(TypedDict, total=False):
|
||||||
|
email: str | None
|
||||||
|
name: str | None
|
||||||
|
status: str | None
|
||||||
|
role: str | None
|
||||||
|
|
||||||
|
|
||||||
|
class EventData(TypedDict):
|
||||||
|
ics_uid: str
|
||||||
|
title: str | None
|
||||||
|
description: str | None
|
||||||
|
location: str | None
|
||||||
|
start_time: datetime
|
||||||
|
end_time: datetime
|
||||||
|
attendees: list[AttendeeData]
|
||||||
|
ics_raw_data: str
|
||||||
|
|
||||||
|
|
||||||
|
class SyncStats(TypedDict):
|
||||||
|
events_created: int
|
||||||
|
events_updated: int
|
||||||
|
events_deleted: int
|
||||||
|
|
||||||
|
|
||||||
|
class SyncResultBase(TypedDict):
|
||||||
|
status: SyncStatus
|
||||||
|
|
||||||
|
|
||||||
|
class SyncResult(SyncResultBase, total=False):
|
||||||
|
hash: str | None
|
||||||
|
events_found: int
|
||||||
|
total_events: int
|
||||||
|
events_created: int
|
||||||
|
events_updated: int
|
||||||
|
events_deleted: int
|
||||||
|
error: str | None
|
||||||
|
reason: str | None
|
||||||
|
|
||||||
|
|
||||||
|
class ICSFetchService:
|
||||||
|
def __init__(self):
|
||||||
|
self.client = httpx.AsyncClient(
|
||||||
|
timeout=30.0, headers={"User-Agent": "Reflector/1.0"}
|
||||||
|
)
|
||||||
|
|
||||||
|
async def fetch_ics(self, url: str) -> str:
|
||||||
|
response = await self.client.get(url)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
return response.text
|
||||||
|
|
||||||
|
def parse_ics(self, ics_content: str) -> Calendar:
|
||||||
|
return Calendar.from_ical(ics_content)
|
||||||
|
|
||||||
|
def extract_room_events(
|
||||||
|
self, calendar: Calendar, room_name: str, room_url: str
|
||||||
|
) -> tuple[list[EventData], int]:
|
||||||
|
events = []
|
||||||
|
total_events = 0
|
||||||
|
now = datetime.now(timezone.utc)
|
||||||
|
window_start = now + EVENT_WINDOW_DELTA_START
|
||||||
|
window_end = now + EVENT_WINDOW_DELTA_END
|
||||||
|
|
||||||
|
for component in calendar.walk():
|
||||||
|
if component.name != "VEVENT":
|
||||||
|
continue
|
||||||
|
|
||||||
|
status = component.get("STATUS", "").upper()
|
||||||
|
if status == "CANCELLED":
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Count total non-cancelled events in the time window
|
||||||
|
event_data = self._parse_event(component)
|
||||||
|
if event_data and window_start <= event_data["start_time"] <= window_end:
|
||||||
|
total_events += 1
|
||||||
|
|
||||||
|
# Check if event matches this room
|
||||||
|
if self._event_matches_room(component, room_name, room_url):
|
||||||
|
events.append(event_data)
|
||||||
|
|
||||||
|
return events, total_events
|
||||||
|
|
||||||
|
def _event_matches_room(self, event: Event, room_name: str, room_url: str) -> bool:
|
||||||
|
location = str(event.get("LOCATION", ""))
|
||||||
|
description = str(event.get("DESCRIPTION", ""))
|
||||||
|
|
||||||
|
# Only match full room URL
|
||||||
|
# XXX leaved here as a patterns, to later be extended with tinyurl or such too
|
||||||
|
patterns = [
|
||||||
|
room_url,
|
||||||
|
]
|
||||||
|
|
||||||
|
# Check location and description for patterns
|
||||||
|
text_to_check = f"{location} {description}".lower()
|
||||||
|
for pattern in patterns:
|
||||||
|
if pattern.lower() in text_to_check:
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _parse_event(self, event: Event) -> EventData | None:
|
||||||
|
uid = str(event.get("UID", ""))
|
||||||
|
summary = str(event.get("SUMMARY", ""))
|
||||||
|
description = str(event.get("DESCRIPTION", ""))
|
||||||
|
location = str(event.get("LOCATION", ""))
|
||||||
|
dtstart = event.get("DTSTART")
|
||||||
|
dtend = event.get("DTEND")
|
||||||
|
|
||||||
|
if not dtstart:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Convert fields
|
||||||
|
start_time = self._normalize_datetime(
|
||||||
|
dtstart.dt if hasattr(dtstart, "dt") else dtstart
|
||||||
|
)
|
||||||
|
end_time = (
|
||||||
|
self._normalize_datetime(dtend.dt if hasattr(dtend, "dt") else dtend)
|
||||||
|
if dtend
|
||||||
|
else start_time + timedelta(hours=1)
|
||||||
|
)
|
||||||
|
attendees = self._parse_attendees(event)
|
||||||
|
|
||||||
|
# Get raw event data for storage
|
||||||
|
raw_data = event.to_ical().decode("utf-8")
|
||||||
|
|
||||||
|
return {
|
||||||
|
"ics_uid": uid,
|
||||||
|
"title": summary,
|
||||||
|
"description": description,
|
||||||
|
"location": location,
|
||||||
|
"start_time": start_time,
|
||||||
|
"end_time": end_time,
|
||||||
|
"attendees": attendees,
|
||||||
|
"ics_raw_data": raw_data,
|
||||||
|
}
|
||||||
|
|
||||||
|
def _normalize_datetime(self, dt) -> datetime:
|
||||||
|
# Ensure datetime is with timezone, if not, assume UTC
|
||||||
|
if isinstance(dt, date) and not isinstance(dt, datetime):
|
||||||
|
dt = datetime.combine(dt, datetime.min.time())
|
||||||
|
dt = pytz.UTC.localize(dt)
|
||||||
|
elif isinstance(dt, datetime):
|
||||||
|
if dt.tzinfo is None:
|
||||||
|
dt = pytz.UTC.localize(dt)
|
||||||
|
else:
|
||||||
|
dt = dt.astimezone(pytz.UTC)
|
||||||
|
|
||||||
|
return dt
|
||||||
|
|
||||||
|
def _parse_attendees(self, event: Event) -> list[AttendeeData]:
|
||||||
|
# Extracts attendee information from both ATTENDEE and ORGANIZER properties.
|
||||||
|
# Handles malformed comma-separated email addresses in single ATTENDEE fields
|
||||||
|
# by splitting them into separate attendee entries. Returns a list of attendee
|
||||||
|
# data including email, name, status, and role information.
|
||||||
|
final_attendees = []
|
||||||
|
|
||||||
|
attendees = event.get("ATTENDEE", [])
|
||||||
|
if not isinstance(attendees, list):
|
||||||
|
attendees = [attendees]
|
||||||
|
for att in attendees:
|
||||||
|
email_str = str(att).replace("mailto:", "") if att else None
|
||||||
|
|
||||||
|
# Handle malformed comma-separated email addresses in a single ATTENDEE field
|
||||||
|
if email_str and "," in email_str:
|
||||||
|
# Split comma-separated emails and create separate attendee entries
|
||||||
|
email_parts = [email.strip() for email in email_str.split(",")]
|
||||||
|
for email in email_parts:
|
||||||
|
if email and "@" in email:
|
||||||
|
clean_email = email.replace("MAILTO:", "").replace(
|
||||||
|
"mailto:", ""
|
||||||
|
)
|
||||||
|
att_data: AttendeeData = {
|
||||||
|
"email": clean_email,
|
||||||
|
"name": att.params.get("CN")
|
||||||
|
if hasattr(att, "params") and email == email_parts[0]
|
||||||
|
else None,
|
||||||
|
"status": att.params.get("PARTSTAT")
|
||||||
|
if hasattr(att, "params") and email == email_parts[0]
|
||||||
|
else None,
|
||||||
|
"role": att.params.get("ROLE")
|
||||||
|
if hasattr(att, "params") and email == email_parts[0]
|
||||||
|
else None,
|
||||||
|
}
|
||||||
|
final_attendees.append(att_data)
|
||||||
|
else:
|
||||||
|
# Normal single attendee
|
||||||
|
att_data: AttendeeData = {
|
||||||
|
"email": email_str,
|
||||||
|
"name": att.params.get("CN") if hasattr(att, "params") else None,
|
||||||
|
"status": att.params.get("PARTSTAT")
|
||||||
|
if hasattr(att, "params")
|
||||||
|
else None,
|
||||||
|
"role": att.params.get("ROLE") if hasattr(att, "params") else None,
|
||||||
|
}
|
||||||
|
final_attendees.append(att_data)
|
||||||
|
|
||||||
|
# Add organizer
|
||||||
|
organizer = event.get("ORGANIZER")
|
||||||
|
if organizer:
|
||||||
|
org_email = (
|
||||||
|
str(organizer).replace("mailto:", "").replace("MAILTO:", "")
|
||||||
|
if organizer
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
org_data: AttendeeData = {
|
||||||
|
"email": org_email,
|
||||||
|
"name": organizer.params.get("CN")
|
||||||
|
if hasattr(organizer, "params")
|
||||||
|
else None,
|
||||||
|
"role": "ORGANIZER",
|
||||||
|
}
|
||||||
|
final_attendees.append(org_data)
|
||||||
|
|
||||||
|
return final_attendees
|
||||||
|
|
||||||
|
|
||||||
|
class ICSSyncService:
|
||||||
|
def __init__(self):
|
||||||
|
self.fetch_service = ICSFetchService()
|
||||||
|
|
||||||
|
async def sync_room_calendar(self, room: Room) -> SyncResult:
|
||||||
|
async with RedisAsyncLock(
|
||||||
|
f"ics_sync_room:{room.id}", skip_if_locked=True
|
||||||
|
) as lock:
|
||||||
|
if not lock.acquired:
|
||||||
|
logger.warning("ICS sync already in progress for room", room_id=room.id)
|
||||||
|
return {
|
||||||
|
"status": SyncStatus.SKIPPED,
|
||||||
|
"reason": "Sync already in progress",
|
||||||
|
}
|
||||||
|
|
||||||
|
return await self._sync_room_calendar(room)
|
||||||
|
|
||||||
|
async def _sync_room_calendar(self, room: Room) -> SyncResult:
|
||||||
|
if not room.ics_enabled or not room.ics_url:
|
||||||
|
return {"status": SyncStatus.SKIPPED, "reason": "ICS not configured"}
|
||||||
|
|
||||||
|
try:
|
||||||
|
if not self._should_sync(room):
|
||||||
|
return {"status": SyncStatus.SKIPPED, "reason": "Not time to sync yet"}
|
||||||
|
|
||||||
|
ics_content = await self.fetch_service.fetch_ics(room.ics_url)
|
||||||
|
calendar = self.fetch_service.parse_ics(ics_content)
|
||||||
|
|
||||||
|
content_hash = hashlib.md5(ics_content.encode()).hexdigest()
|
||||||
|
if room.ics_last_etag == content_hash:
|
||||||
|
logger.info("No changes in ICS for room", room_id=room.id)
|
||||||
|
room_url = f"{settings.UI_BASE_URL}/{room.name}"
|
||||||
|
events, total_events = self.fetch_service.extract_room_events(
|
||||||
|
calendar, room.name, room_url
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"status": SyncStatus.UNCHANGED,
|
||||||
|
"hash": content_hash,
|
||||||
|
"events_found": len(events),
|
||||||
|
"total_events": total_events,
|
||||||
|
"events_created": 0,
|
||||||
|
"events_updated": 0,
|
||||||
|
"events_deleted": 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Extract matching events
|
||||||
|
room_url = f"{settings.UI_BASE_URL}/{room.name}"
|
||||||
|
events, total_events = self.fetch_service.extract_room_events(
|
||||||
|
calendar, room.name, room_url
|
||||||
|
)
|
||||||
|
sync_result = await self._sync_events_to_database(room.id, events)
|
||||||
|
|
||||||
|
# Update room sync metadata
|
||||||
|
await rooms_controller.update(
|
||||||
|
room,
|
||||||
|
{
|
||||||
|
"ics_last_sync": datetime.now(timezone.utc),
|
||||||
|
"ics_last_etag": content_hash,
|
||||||
|
},
|
||||||
|
mutate=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"status": SyncStatus.SUCCESS,
|
||||||
|
"hash": content_hash,
|
||||||
|
"events_found": len(events),
|
||||||
|
"total_events": total_events,
|
||||||
|
**sync_result,
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error("Failed to sync ICS for room", room_id=room.id, error=str(e))
|
||||||
|
return {"status": SyncStatus.ERROR, "error": str(e)}
|
||||||
|
|
||||||
|
def _should_sync(self, room: Room) -> bool:
|
||||||
|
if not room.ics_last_sync:
|
||||||
|
return True
|
||||||
|
|
||||||
|
time_since_sync = datetime.now(timezone.utc) - room.ics_last_sync
|
||||||
|
return time_since_sync.total_seconds() >= room.ics_fetch_interval
|
||||||
|
|
||||||
|
async def _sync_events_to_database(
|
||||||
|
self, room_id: str, events: list[EventData]
|
||||||
|
) -> SyncStats:
|
||||||
|
created = 0
|
||||||
|
updated = 0
|
||||||
|
|
||||||
|
current_ics_uids = []
|
||||||
|
|
||||||
|
for event_data in events:
|
||||||
|
calendar_event = CalendarEvent(room_id=room_id, **event_data)
|
||||||
|
existing = await calendar_events_controller.get_by_ics_uid(
|
||||||
|
room_id, event_data["ics_uid"]
|
||||||
|
)
|
||||||
|
|
||||||
|
if existing:
|
||||||
|
updated += 1
|
||||||
|
else:
|
||||||
|
created += 1
|
||||||
|
|
||||||
|
await calendar_events_controller.upsert(calendar_event)
|
||||||
|
current_ics_uids.append(event_data["ics_uid"])
|
||||||
|
|
||||||
|
# Soft delete events that are no longer in calendar
|
||||||
|
deleted = await calendar_events_controller.soft_delete_missing(
|
||||||
|
room_id, current_ics_uids
|
||||||
|
)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"events_created": created,
|
||||||
|
"events_updated": updated,
|
||||||
|
"events_deleted": deleted,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
ics_sync_service = ICSSyncService()
|
||||||
@@ -1,5 +1,8 @@
|
|||||||
|
from pydantic.types import PositiveInt
|
||||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||||
|
|
||||||
|
from reflector.utils.string import NonEmptyString
|
||||||
|
|
||||||
|
|
||||||
class Settings(BaseSettings):
|
class Settings(BaseSettings):
|
||||||
model_config = SettingsConfigDict(
|
model_config = SettingsConfigDict(
|
||||||
@@ -21,11 +24,16 @@ class Settings(BaseSettings):
|
|||||||
# local data directory
|
# local data directory
|
||||||
DATA_DIR: str = "./data"
|
DATA_DIR: str = "./data"
|
||||||
|
|
||||||
|
# Audio Chunking
|
||||||
|
# backends: silero, frames
|
||||||
|
AUDIO_CHUNKER_BACKEND: str = "frames"
|
||||||
|
|
||||||
# Audio Transcription
|
# Audio Transcription
|
||||||
# backends: whisper, modal
|
# backends: whisper, modal
|
||||||
TRANSCRIPT_BACKEND: str = "whisper"
|
TRANSCRIPT_BACKEND: str = "whisper"
|
||||||
TRANSCRIPT_URL: str | None = None
|
TRANSCRIPT_URL: str | None = None
|
||||||
TRANSCRIPT_TIMEOUT: int = 90
|
TRANSCRIPT_TIMEOUT: int = 90
|
||||||
|
TRANSCRIPT_FILE_TIMEOUT: int = 600
|
||||||
|
|
||||||
# Audio Transcription: modal backend
|
# Audio Transcription: modal backend
|
||||||
TRANSCRIPT_MODAL_API_KEY: str | None = None
|
TRANSCRIPT_MODAL_API_KEY: str | None = None
|
||||||
@@ -66,10 +74,14 @@ class Settings(BaseSettings):
|
|||||||
DIARIZATION_ENABLED: bool = True
|
DIARIZATION_ENABLED: bool = True
|
||||||
DIARIZATION_BACKEND: str = "modal"
|
DIARIZATION_BACKEND: str = "modal"
|
||||||
DIARIZATION_URL: str | None = None
|
DIARIZATION_URL: str | None = None
|
||||||
|
DIARIZATION_FILE_TIMEOUT: int = 600
|
||||||
|
|
||||||
# Diarization: modal backend
|
# Diarization: modal backend
|
||||||
DIARIZATION_MODAL_API_KEY: str | None = None
|
DIARIZATION_MODAL_API_KEY: str | None = None
|
||||||
|
|
||||||
|
# Diarization: local pyannote.audio
|
||||||
|
DIARIZATION_PYANNOTE_AUTH_TOKEN: str | None = None
|
||||||
|
|
||||||
# Sentry
|
# Sentry
|
||||||
SENTRY_DSN: str | None = None
|
SENTRY_DSN: str | None = None
|
||||||
|
|
||||||
@@ -81,9 +93,8 @@ class Settings(BaseSettings):
|
|||||||
AUTH_JWT_PUBLIC_KEY: str | None = "authentik.monadical.com_public.pem"
|
AUTH_JWT_PUBLIC_KEY: str | None = "authentik.monadical.com_public.pem"
|
||||||
AUTH_JWT_AUDIENCE: str | None = None
|
AUTH_JWT_AUDIENCE: str | None = None
|
||||||
|
|
||||||
# API public mode
|
|
||||||
# if set, all anonymous record will be public
|
|
||||||
PUBLIC_MODE: bool = False
|
PUBLIC_MODE: bool = False
|
||||||
|
PUBLIC_DATA_RETENTION_DAYS: PositiveInt = 7
|
||||||
|
|
||||||
# Min transcript length to generate topic + summary
|
# Min transcript length to generate topic + summary
|
||||||
MIN_TRANSCRIPT_LENGTH: int = 750
|
MIN_TRANSCRIPT_LENGTH: int = 750
|
||||||
@@ -111,7 +122,7 @@ class Settings(BaseSettings):
|
|||||||
|
|
||||||
# Whereby integration
|
# Whereby integration
|
||||||
WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
|
WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
|
||||||
WHEREBY_API_KEY: str | None = None
|
WHEREBY_API_KEY: NonEmptyString | None = None
|
||||||
WHEREBY_WEBHOOK_SECRET: str | None = None
|
WHEREBY_WEBHOOK_SECRET: str | None = None
|
||||||
AWS_WHEREBY_ACCESS_KEY_ID: str | None = None
|
AWS_WHEREBY_ACCESS_KEY_ID: str | None = None
|
||||||
AWS_WHEREBY_ACCESS_KEY_SECRET: str | None = None
|
AWS_WHEREBY_ACCESS_KEY_SECRET: str | None = None
|
||||||
|
|||||||
72
server/reflector/tools/cleanup_old_data.py
Normal file
72
server/reflector/tools/cleanup_old_data.py
Normal file
@@ -0,0 +1,72 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
"""
|
||||||
|
Manual cleanup tool for old public data.
|
||||||
|
Uses the same implementation as the Celery worker task.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import asyncio
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import structlog
|
||||||
|
|
||||||
|
from reflector.settings import settings
|
||||||
|
from reflector.worker.cleanup import _cleanup_old_public_data
|
||||||
|
|
||||||
|
logger = structlog.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
async def cleanup_old_data(days: int = 7):
|
||||||
|
logger.info(
|
||||||
|
"Starting manual cleanup",
|
||||||
|
retention_days=days,
|
||||||
|
public_mode=settings.PUBLIC_MODE,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not settings.PUBLIC_MODE:
|
||||||
|
logger.critical(
|
||||||
|
"WARNING: PUBLIC_MODE is False. "
|
||||||
|
"This tool is intended for public instances only."
|
||||||
|
)
|
||||||
|
raise Exception("Tool intended for public instances only")
|
||||||
|
|
||||||
|
result = await _cleanup_old_public_data(days=days)
|
||||||
|
|
||||||
|
if result:
|
||||||
|
logger.info(
|
||||||
|
"Cleanup completed",
|
||||||
|
transcripts_deleted=result.get("transcripts_deleted", 0),
|
||||||
|
meetings_deleted=result.get("meetings_deleted", 0),
|
||||||
|
recordings_deleted=result.get("recordings_deleted", 0),
|
||||||
|
errors_count=len(result.get("errors", [])),
|
||||||
|
)
|
||||||
|
if result.get("errors"):
|
||||||
|
logger.warning(
|
||||||
|
"Errors encountered during cleanup:", errors=result["errors"][:10]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logger.info("Cleanup skipped or completed without results")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Clean up old transcripts and meetings"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--days",
|
||||||
|
type=int,
|
||||||
|
default=7,
|
||||||
|
help="Number of days to keep data (default: 7)",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if args.days < 1:
|
||||||
|
logger.error("Days must be at least 1")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
asyncio.run(cleanup_old_data(days=args.days))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -1,105 +1,220 @@
|
|||||||
|
"""
|
||||||
|
Process audio file with diarization support
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
import asyncio
|
import asyncio
|
||||||
|
import json
|
||||||
|
import shutil
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, List, Literal
|
||||||
|
|
||||||
import av
|
from reflector.db.transcripts import SourceKind, TranscriptTopic, transcripts_controller
|
||||||
|
|
||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
from reflector.processors import (
|
from reflector.pipelines.main_file_pipeline import (
|
||||||
AudioChunkerProcessor,
|
task_pipeline_file_process as task_pipeline_file_process,
|
||||||
AudioMergeProcessor,
|
)
|
||||||
AudioTranscriptAutoProcessor,
|
from reflector.pipelines.main_live_pipeline import pipeline_post as live_pipeline_post
|
||||||
Pipeline,
|
from reflector.pipelines.main_live_pipeline import (
|
||||||
PipelineEvent,
|
pipeline_process as live_pipeline_process,
|
||||||
TranscriptFinalSummaryProcessor,
|
|
||||||
TranscriptFinalTitleProcessor,
|
|
||||||
TranscriptLinerProcessor,
|
|
||||||
TranscriptTopicDetectorProcessor,
|
|
||||||
TranscriptTranslatorAutoProcessor,
|
|
||||||
)
|
)
|
||||||
from reflector.processors.base import BroadcastProcessor
|
|
||||||
|
|
||||||
|
|
||||||
async def process_audio_file(
|
def serialize_topics(topics: List[TranscriptTopic]) -> List[Dict[str, Any]]:
|
||||||
filename,
|
"""Convert TranscriptTopic objects to JSON-serializable dicts"""
|
||||||
event_callback,
|
serialized = []
|
||||||
only_transcript=False,
|
for topic in topics:
|
||||||
source_language="en",
|
topic_dict = topic.model_dump()
|
||||||
target_language="en",
|
serialized.append(topic_dict)
|
||||||
|
return serialized
|
||||||
|
|
||||||
|
|
||||||
|
def debug_print_speakers(serialized_topics: List[Dict[str, Any]]) -> None:
|
||||||
|
"""Print debug info about speakers found in topics"""
|
||||||
|
all_speakers = set()
|
||||||
|
for topic_dict in serialized_topics:
|
||||||
|
for word in topic_dict.get("words", []):
|
||||||
|
all_speakers.add(word.get("speaker", 0))
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Found {len(serialized_topics)} topics with speakers: {all_speakers}",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
TranscriptId = str
|
||||||
|
|
||||||
|
|
||||||
|
# common interface for every flow: it needs an Entry in db with specific ceremony (file path + status + actual file in file system)
|
||||||
|
# ideally we want to get rid of it at some point
|
||||||
|
async def prepare_entry(
|
||||||
|
source_path: str,
|
||||||
|
source_language: str,
|
||||||
|
target_language: str,
|
||||||
|
) -> TranscriptId:
|
||||||
|
file_path = Path(source_path)
|
||||||
|
|
||||||
|
transcript = await transcripts_controller.add(
|
||||||
|
file_path.name,
|
||||||
|
# note that the real file upload has SourceKind: LIVE for the reason of it's an error
|
||||||
|
source_kind=SourceKind.FILE,
|
||||||
|
source_language=source_language,
|
||||||
|
target_language=target_language,
|
||||||
|
user_id=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Created empty transcript {transcript.id} for file {file_path.name} because technically we need an empty transcript before we start transcript"
|
||||||
|
)
|
||||||
|
|
||||||
|
# pipelines expect files as upload.*
|
||||||
|
|
||||||
|
extension = file_path.suffix
|
||||||
|
upload_path = transcript.data_path / f"upload{extension}"
|
||||||
|
upload_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
shutil.copy2(source_path, upload_path)
|
||||||
|
logger.info(f"Copied {source_path} to {upload_path}")
|
||||||
|
|
||||||
|
# pipelines expect entity status "uploaded"
|
||||||
|
await transcripts_controller.update(transcript, {"status": "uploaded"})
|
||||||
|
|
||||||
|
return transcript.id
|
||||||
|
|
||||||
|
|
||||||
|
# same reason as prepare_entry
|
||||||
|
async def extract_result_from_entry(
|
||||||
|
transcript_id: TranscriptId, output_path: str
|
||||||
|
) -> None:
|
||||||
|
post_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||||
|
|
||||||
|
# assert post_final_transcript.status == "ended"
|
||||||
|
# File pipeline doesn't set status to "ended", only live pipeline does https://github.com/Monadical-SAS/reflector/issues/582
|
||||||
|
topics = post_final_transcript.topics
|
||||||
|
if not topics:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"No topics found for transcript {transcript_id} after processing"
|
||||||
|
)
|
||||||
|
|
||||||
|
serialized_topics = serialize_topics(topics)
|
||||||
|
|
||||||
|
if output_path:
|
||||||
|
# Write to JSON file
|
||||||
|
with open(output_path, "w") as f:
|
||||||
|
for topic_dict in serialized_topics:
|
||||||
|
json.dump(topic_dict, f)
|
||||||
|
f.write("\n")
|
||||||
|
print(f"Results written to {output_path}", file=sys.stderr)
|
||||||
|
else:
|
||||||
|
# Write to stdout as JSONL
|
||||||
|
for topic_dict in serialized_topics:
|
||||||
|
print(json.dumps(topic_dict))
|
||||||
|
|
||||||
|
debug_print_speakers(serialized_topics)
|
||||||
|
|
||||||
|
|
||||||
|
async def process_live_pipeline(
|
||||||
|
transcript_id: TranscriptId,
|
||||||
):
|
):
|
||||||
# build pipeline for audio processing
|
"""Process transcript_id with transcription and diarization"""
|
||||||
processors = [
|
|
||||||
AudioChunkerProcessor(),
|
|
||||||
AudioMergeProcessor(),
|
|
||||||
AudioTranscriptAutoProcessor.as_threaded(),
|
|
||||||
TranscriptLinerProcessor(),
|
|
||||||
TranscriptTranslatorAutoProcessor.as_threaded(),
|
|
||||||
]
|
|
||||||
if not only_transcript:
|
|
||||||
processors += [
|
|
||||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
|
||||||
BroadcastProcessor(
|
|
||||||
processors=[
|
|
||||||
TranscriptFinalTitleProcessor.as_threaded(),
|
|
||||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
|
||||||
],
|
|
||||||
),
|
|
||||||
]
|
|
||||||
|
|
||||||
# transcription output
|
print(f"Processing transcript_id {transcript_id}...", file=sys.stderr)
|
||||||
pipeline = Pipeline(*processors)
|
await live_pipeline_process(transcript_id=transcript_id)
|
||||||
pipeline.set_pref("audio:source_language", source_language)
|
print(f"Processing complete for transcript {transcript_id}", file=sys.stderr)
|
||||||
pipeline.set_pref("audio:target_language", target_language)
|
|
||||||
pipeline.describe()
|
pre_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||||
pipeline.on(event_callback)
|
|
||||||
|
# assert documented behaviour: after process, the pipeline isn't ended. this is the reason of calling pipeline_post
|
||||||
|
assert pre_final_transcript.status != "ended"
|
||||||
|
|
||||||
|
# at this point, diarization is running but we have no access to it. run diarization in parallel - one will hopefully win after polling
|
||||||
|
result = live_pipeline_post(transcript_id=transcript_id)
|
||||||
|
|
||||||
|
# result.ready() blocks even without await; it mutates result also
|
||||||
|
while not result.ready():
|
||||||
|
print(f"Status: {result.state}")
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
|
||||||
|
async def process_file_pipeline(
|
||||||
|
transcript_id: TranscriptId,
|
||||||
|
):
|
||||||
|
"""Process audio/video file using the optimized file pipeline"""
|
||||||
|
|
||||||
|
# task_pipeline_file_process is a Celery task, need to use .delay() for async execution
|
||||||
|
result = task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||||
|
|
||||||
|
# Wait for the Celery task to complete
|
||||||
|
while not result.ready():
|
||||||
|
print(f"File pipeline status: {result.state}", file=sys.stderr)
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
logger.info("File pipeline processing complete")
|
||||||
|
|
||||||
|
|
||||||
|
async def process(
|
||||||
|
source_path: str,
|
||||||
|
source_language: str,
|
||||||
|
target_language: str,
|
||||||
|
pipeline: Literal["live", "file"],
|
||||||
|
output_path: str = None,
|
||||||
|
):
|
||||||
|
from reflector.db import get_database
|
||||||
|
|
||||||
|
database = get_database()
|
||||||
|
# db connect is a part of ceremony
|
||||||
|
await database.connect()
|
||||||
|
|
||||||
# start processing audio
|
|
||||||
logger.info(f"Opening {filename}")
|
|
||||||
container = av.open(filename)
|
|
||||||
try:
|
try:
|
||||||
logger.info("Start pushing audio into the pipeline")
|
transcript_id = await prepare_entry(
|
||||||
for frame in container.decode(audio=0):
|
source_path,
|
||||||
await pipeline.push(frame)
|
source_language,
|
||||||
finally:
|
target_language,
|
||||||
logger.info("Flushing the pipeline")
|
)
|
||||||
await pipeline.flush()
|
|
||||||
|
|
||||||
logger.info("All done !")
|
pipeline_handlers = {
|
||||||
|
"live": process_live_pipeline,
|
||||||
|
"file": process_file_pipeline,
|
||||||
|
}
|
||||||
|
|
||||||
|
handler = pipeline_handlers.get(pipeline)
|
||||||
|
if not handler:
|
||||||
|
raise ValueError(f"Unknown pipeline type: {pipeline}")
|
||||||
|
|
||||||
|
await handler(transcript_id)
|
||||||
|
|
||||||
|
await extract_result_from_entry(transcript_id, output_path)
|
||||||
|
finally:
|
||||||
|
await database.disconnect()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import argparse
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Process audio files with speaker diarization"
|
||||||
parser = argparse.ArgumentParser()
|
)
|
||||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
||||||
parser.add_argument("--only-transcript", "-t", action="store_true")
|
parser.add_argument(
|
||||||
parser.add_argument("--source-language", default="en")
|
"--pipeline",
|
||||||
parser.add_argument("--target-language", default="en")
|
required=True,
|
||||||
|
choices=["live", "file"],
|
||||||
|
help="Pipeline type to use for processing (live: streaming/incremental, file: batch/parallel)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--source-language", default="en", help="Source language code (default: en)"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--target-language", default="en", help="Target language code (default: en)"
|
||||||
|
)
|
||||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
output_fd = None
|
|
||||||
if args.output:
|
|
||||||
output_fd = open(args.output, "w")
|
|
||||||
|
|
||||||
async def event_callback(event: PipelineEvent):
|
|
||||||
processor = event.processor
|
|
||||||
# ignore some processor
|
|
||||||
if processor in ("AudioChunkerProcessor", "AudioMergeProcessor"):
|
|
||||||
return
|
|
||||||
logger.info(f"Event: {event}")
|
|
||||||
if output_fd:
|
|
||||||
output_fd.write(event.model_dump_json())
|
|
||||||
output_fd.write("\n")
|
|
||||||
|
|
||||||
asyncio.run(
|
asyncio.run(
|
||||||
process_audio_file(
|
process(
|
||||||
args.source,
|
args.source,
|
||||||
event_callback,
|
args.source_language,
|
||||||
only_transcript=args.only_transcript,
|
args.target_language,
|
||||||
source_language=args.source_language,
|
args.pipeline,
|
||||||
target_language=args.target_language,
|
args.output,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
if output_fd:
|
|
||||||
output_fd.close()
|
|
||||||
logger.info(f"Output written to {args.output}")
|
|
||||||
|
|||||||
@@ -1,315 +0,0 @@
|
|||||||
"""
|
|
||||||
@vibe-generated
|
|
||||||
Process audio file with diarization support
|
|
||||||
===========================================
|
|
||||||
|
|
||||||
Extended version of process.py that includes speaker diarization.
|
|
||||||
This tool processes audio files locally without requiring the full server infrastructure.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
import tempfile
|
|
||||||
import uuid
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import av
|
|
||||||
|
|
||||||
from reflector.logger import logger
|
|
||||||
from reflector.processors import (
|
|
||||||
AudioChunkerProcessor,
|
|
||||||
AudioFileWriterProcessor,
|
|
||||||
AudioMergeProcessor,
|
|
||||||
AudioTranscriptAutoProcessor,
|
|
||||||
Pipeline,
|
|
||||||
PipelineEvent,
|
|
||||||
TranscriptFinalSummaryProcessor,
|
|
||||||
TranscriptFinalTitleProcessor,
|
|
||||||
TranscriptLinerProcessor,
|
|
||||||
TranscriptTopicDetectorProcessor,
|
|
||||||
TranscriptTranslatorAutoProcessor,
|
|
||||||
)
|
|
||||||
from reflector.processors.base import BroadcastProcessor, Processor
|
|
||||||
from reflector.processors.types import (
|
|
||||||
AudioDiarizationInput,
|
|
||||||
TitleSummary,
|
|
||||||
TitleSummaryWithId,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class TopicCollectorProcessor(Processor):
|
|
||||||
"""Collect topics for diarization"""
|
|
||||||
|
|
||||||
INPUT_TYPE = TitleSummary
|
|
||||||
OUTPUT_TYPE = TitleSummary
|
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
self.topics: List[TitleSummaryWithId] = []
|
|
||||||
self._topic_id = 0
|
|
||||||
|
|
||||||
async def _push(self, data: TitleSummary):
|
|
||||||
# Convert to TitleSummaryWithId and collect
|
|
||||||
self._topic_id += 1
|
|
||||||
topic_with_id = TitleSummaryWithId(
|
|
||||||
id=str(self._topic_id),
|
|
||||||
title=data.title,
|
|
||||||
summary=data.summary,
|
|
||||||
timestamp=data.timestamp,
|
|
||||||
duration=data.duration,
|
|
||||||
transcript=data.transcript,
|
|
||||||
)
|
|
||||||
self.topics.append(topic_with_id)
|
|
||||||
|
|
||||||
# Pass through the original topic
|
|
||||||
await self.emit(data)
|
|
||||||
|
|
||||||
def get_topics(self) -> List[TitleSummaryWithId]:
|
|
||||||
return self.topics
|
|
||||||
|
|
||||||
|
|
||||||
async def process_audio_file_with_diarization(
|
|
||||||
filename,
|
|
||||||
event_callback,
|
|
||||||
only_transcript=False,
|
|
||||||
source_language="en",
|
|
||||||
target_language="en",
|
|
||||||
enable_diarization=True,
|
|
||||||
diarization_backend="modal",
|
|
||||||
):
|
|
||||||
# Create temp file for audio if diarization is enabled
|
|
||||||
audio_temp_path = None
|
|
||||||
if enable_diarization:
|
|
||||||
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
|
||||||
audio_temp_path = audio_temp_file.name
|
|
||||||
audio_temp_file.close()
|
|
||||||
|
|
||||||
# Create processor for collecting topics
|
|
||||||
topic_collector = TopicCollectorProcessor()
|
|
||||||
|
|
||||||
# Build pipeline for audio processing
|
|
||||||
processors = []
|
|
||||||
|
|
||||||
# Add audio file writer at the beginning if diarization is enabled
|
|
||||||
if enable_diarization:
|
|
||||||
processors.append(AudioFileWriterProcessor(audio_temp_path))
|
|
||||||
|
|
||||||
# Add the rest of the processors
|
|
||||||
processors += [
|
|
||||||
AudioChunkerProcessor(),
|
|
||||||
AudioMergeProcessor(),
|
|
||||||
AudioTranscriptAutoProcessor.as_threaded(),
|
|
||||||
]
|
|
||||||
|
|
||||||
processors += [
|
|
||||||
TranscriptLinerProcessor(),
|
|
||||||
TranscriptTranslatorAutoProcessor.as_threaded(),
|
|
||||||
]
|
|
||||||
|
|
||||||
if not only_transcript:
|
|
||||||
processors += [
|
|
||||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
|
||||||
# Collect topics for diarization
|
|
||||||
topic_collector,
|
|
||||||
BroadcastProcessor(
|
|
||||||
processors=[
|
|
||||||
TranscriptFinalTitleProcessor.as_threaded(),
|
|
||||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
|
||||||
],
|
|
||||||
),
|
|
||||||
]
|
|
||||||
|
|
||||||
# Create main pipeline
|
|
||||||
pipeline = Pipeline(*processors)
|
|
||||||
pipeline.set_pref("audio:source_language", source_language)
|
|
||||||
pipeline.set_pref("audio:target_language", target_language)
|
|
||||||
pipeline.describe()
|
|
||||||
pipeline.on(event_callback)
|
|
||||||
|
|
||||||
# Start processing audio
|
|
||||||
logger.info(f"Opening {filename}")
|
|
||||||
container = av.open(filename)
|
|
||||||
try:
|
|
||||||
logger.info("Start pushing audio into the pipeline")
|
|
||||||
for frame in container.decode(audio=0):
|
|
||||||
await pipeline.push(frame)
|
|
||||||
finally:
|
|
||||||
logger.info("Flushing the pipeline")
|
|
||||||
await pipeline.flush()
|
|
||||||
|
|
||||||
# Run diarization if enabled and we have topics
|
|
||||||
if enable_diarization and not only_transcript and audio_temp_path:
|
|
||||||
topics = topic_collector.get_topics()
|
|
||||||
|
|
||||||
if topics:
|
|
||||||
logger.info(f"Starting diarization with {len(topics)} topics")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from reflector.processors import AudioDiarizationAutoProcessor
|
|
||||||
|
|
||||||
diarization_processor = AudioDiarizationAutoProcessor(
|
|
||||||
name=diarization_backend
|
|
||||||
)
|
|
||||||
|
|
||||||
diarization_processor.set_pipeline(pipeline)
|
|
||||||
|
|
||||||
# For Modal backend, we need to upload the file to S3 first
|
|
||||||
if diarization_backend == "modal":
|
|
||||||
from datetime import datetime, timezone
|
|
||||||
|
|
||||||
from reflector.storage import get_transcripts_storage
|
|
||||||
from reflector.utils.s3_temp_file import S3TemporaryFile
|
|
||||||
|
|
||||||
storage = get_transcripts_storage()
|
|
||||||
|
|
||||||
# Generate a unique filename in evaluation folder
|
|
||||||
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")
|
|
||||||
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
|
|
||||||
|
|
||||||
# Use context manager for automatic cleanup
|
|
||||||
async with S3TemporaryFile(storage, audio_filename) as s3_file:
|
|
||||||
# Read and upload the audio file
|
|
||||||
with open(audio_temp_path, "rb") as f:
|
|
||||||
audio_data = f.read()
|
|
||||||
|
|
||||||
audio_url = await s3_file.upload(audio_data)
|
|
||||||
logger.info(f"Uploaded audio to S3: {audio_filename}")
|
|
||||||
|
|
||||||
# Create diarization input with S3 URL
|
|
||||||
diarization_input = AudioDiarizationInput(
|
|
||||||
audio_url=audio_url, topics=topics
|
|
||||||
)
|
|
||||||
|
|
||||||
# Run diarization
|
|
||||||
await diarization_processor.push(diarization_input)
|
|
||||||
await diarization_processor.flush()
|
|
||||||
|
|
||||||
logger.info("Diarization complete")
|
|
||||||
# File will be automatically cleaned up when exiting the context
|
|
||||||
else:
|
|
||||||
# For local backend, use local file path
|
|
||||||
audio_url = audio_temp_path
|
|
||||||
|
|
||||||
# Create diarization input
|
|
||||||
diarization_input = AudioDiarizationInput(
|
|
||||||
audio_url=audio_url, topics=topics
|
|
||||||
)
|
|
||||||
|
|
||||||
# Run diarization
|
|
||||||
await diarization_processor.push(diarization_input)
|
|
||||||
await diarization_processor.flush()
|
|
||||||
|
|
||||||
logger.info("Diarization complete")
|
|
||||||
|
|
||||||
except ImportError as e:
|
|
||||||
logger.error(f"Failed to import diarization dependencies: {e}")
|
|
||||||
logger.error(
|
|
||||||
"Install with: uv pip install pyannote.audio torch torchaudio"
|
|
||||||
)
|
|
||||||
logger.error(
|
|
||||||
"And set HF_TOKEN environment variable for pyannote models"
|
|
||||||
)
|
|
||||||
raise SystemExit(1)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Diarization failed: {e}")
|
|
||||||
raise SystemExit(1)
|
|
||||||
else:
|
|
||||||
logger.warning("Skipping diarization: no topics available")
|
|
||||||
|
|
||||||
# Clean up temp file
|
|
||||||
if audio_temp_path:
|
|
||||||
try:
|
|
||||||
Path(audio_temp_path).unlink()
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
|
|
||||||
|
|
||||||
logger.info("All done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import argparse
|
|
||||||
import os
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Process audio files with optional speaker diarization"
|
|
||||||
)
|
|
||||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--only-transcript",
|
|
||||||
"-t",
|
|
||||||
action="store_true",
|
|
||||||
help="Only generate transcript without topics/summaries",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--source-language", default="en", help="Source language code (default: en)"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--target-language", default="en", help="Target language code (default: en)"
|
|
||||||
)
|
|
||||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--enable-diarization",
|
|
||||||
"-d",
|
|
||||||
action="store_true",
|
|
||||||
help="Enable speaker diarization",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--diarization-backend",
|
|
||||||
default="modal",
|
|
||||||
choices=["modal"],
|
|
||||||
help="Diarization backend to use (default: modal)",
|
|
||||||
)
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Set REDIS_HOST to localhost if not provided
|
|
||||||
if "REDIS_HOST" not in os.environ:
|
|
||||||
os.environ["REDIS_HOST"] = "localhost"
|
|
||||||
logger.info("REDIS_HOST not set, defaulting to localhost")
|
|
||||||
|
|
||||||
output_fd = None
|
|
||||||
if args.output:
|
|
||||||
output_fd = open(args.output, "w")
|
|
||||||
|
|
||||||
async def event_callback(event: PipelineEvent):
|
|
||||||
processor = event.processor
|
|
||||||
data = event.data
|
|
||||||
|
|
||||||
# Ignore internal processors
|
|
||||||
if processor in (
|
|
||||||
"AudioChunkerProcessor",
|
|
||||||
"AudioMergeProcessor",
|
|
||||||
"AudioFileWriterProcessor",
|
|
||||||
"TopicCollectorProcessor",
|
|
||||||
"BroadcastProcessor",
|
|
||||||
):
|
|
||||||
return
|
|
||||||
|
|
||||||
# If diarization is enabled, skip the original topic events from the pipeline
|
|
||||||
# The diarization processor will emit the same topics but with speaker info
|
|
||||||
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
|
|
||||||
return
|
|
||||||
|
|
||||||
# Log all events
|
|
||||||
logger.info(f"Event: {processor} - {type(data).__name__}")
|
|
||||||
|
|
||||||
# Write to output
|
|
||||||
if output_fd:
|
|
||||||
output_fd.write(event.model_dump_json())
|
|
||||||
output_fd.write("\n")
|
|
||||||
output_fd.flush()
|
|
||||||
|
|
||||||
asyncio.run(
|
|
||||||
process_audio_file_with_diarization(
|
|
||||||
args.source,
|
|
||||||
event_callback,
|
|
||||||
only_transcript=args.only_transcript,
|
|
||||||
source_language=args.source_language,
|
|
||||||
target_language=args.target_language,
|
|
||||||
enable_diarization=args.enable_diarization,
|
|
||||||
diarization_backend=args.diarization_backend,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
if output_fd:
|
|
||||||
output_fd.close()
|
|
||||||
logger.info(f"Output written to {args.output}")
|
|
||||||
@@ -53,7 +53,7 @@ async def run_single_processor(args):
|
|||||||
async def event_callback(event: PipelineEvent):
|
async def event_callback(event: PipelineEvent):
|
||||||
processor = event.processor
|
processor = event.processor
|
||||||
# ignore some processor
|
# ignore some processor
|
||||||
if processor in ("AudioChunkerProcessor", "AudioMergeProcessor"):
|
if processor in ("AudioChunkerAutoProcessor", "AudioMergeProcessor"):
|
||||||
return
|
return
|
||||||
print(f"Event: {event}")
|
print(f"Event: {event}")
|
||||||
if output_fd:
|
if output_fd:
|
||||||
|
|||||||
@@ -1,96 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
@vibe-generated
|
|
||||||
Test script for the diarization CLI tool
|
|
||||||
=========================================
|
|
||||||
|
|
||||||
This script helps test the diarization functionality with sample audio files.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
import sys
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from reflector.logger import logger
|
|
||||||
|
|
||||||
|
|
||||||
async def test_diarization(audio_file: str):
|
|
||||||
"""Test the diarization functionality"""
|
|
||||||
|
|
||||||
# Import the processing function
|
|
||||||
from process_with_diarization import process_audio_file_with_diarization
|
|
||||||
|
|
||||||
# Collect events
|
|
||||||
events = []
|
|
||||||
|
|
||||||
async def event_callback(event):
|
|
||||||
events.append({"processor": event.processor, "data": event.data})
|
|
||||||
logger.info(f"Event from {event.processor}")
|
|
||||||
|
|
||||||
# Process the audio file
|
|
||||||
logger.info(f"Processing audio file: {audio_file}")
|
|
||||||
|
|
||||||
try:
|
|
||||||
await process_audio_file_with_diarization(
|
|
||||||
audio_file,
|
|
||||||
event_callback,
|
|
||||||
only_transcript=False,
|
|
||||||
source_language="en",
|
|
||||||
target_language="en",
|
|
||||||
enable_diarization=True,
|
|
||||||
diarization_backend="modal",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Analyze results
|
|
||||||
logger.info(f"Processing complete. Received {len(events)} events")
|
|
||||||
|
|
||||||
# Look for diarization results
|
|
||||||
diarized_topics = []
|
|
||||||
for event in events:
|
|
||||||
if "TitleSummary" in event["processor"]:
|
|
||||||
# Check if words have speaker information
|
|
||||||
if hasattr(event["data"], "transcript") and event["data"].transcript:
|
|
||||||
words = event["data"].transcript.words
|
|
||||||
if words and hasattr(words[0], "speaker"):
|
|
||||||
speakers = set(
|
|
||||||
w.speaker for w in words if hasattr(w, "speaker")
|
|
||||||
)
|
|
||||||
logger.info(
|
|
||||||
f"Found {len(speakers)} speakers in topic: {event['data'].title}"
|
|
||||||
)
|
|
||||||
diarized_topics.append(event["data"])
|
|
||||||
|
|
||||||
if diarized_topics:
|
|
||||||
logger.info(f"Successfully diarized {len(diarized_topics)} topics")
|
|
||||||
|
|
||||||
# Print sample output
|
|
||||||
sample_topic = diarized_topics[0]
|
|
||||||
logger.info("Sample diarized output:")
|
|
||||||
for i, word in enumerate(sample_topic.transcript.words[:10]):
|
|
||||||
logger.info(f" Word {i}: '{word.text}' - Speaker {word.speaker}")
|
|
||||||
else:
|
|
||||||
logger.warning("No diarization results found in output")
|
|
||||||
|
|
||||||
return events
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error during processing: {e}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
if len(sys.argv) < 2:
|
|
||||||
print("Usage: python test_diarization.py <audio_file>")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
audio_file = sys.argv[1]
|
|
||||||
if not Path(audio_file).exists():
|
|
||||||
print(f"Error: Audio file '{audio_file}' not found")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# Run the test
|
|
||||||
asyncio.run(test_diarization(audio_file))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
23
server/reflector/utils/string.py
Normal file
23
server/reflector/utils/string.py
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
from typing import Annotated
|
||||||
|
|
||||||
|
from pydantic import Field, TypeAdapter, constr
|
||||||
|
|
||||||
|
NonEmptyStringBase = constr(min_length=1, strip_whitespace=False)
|
||||||
|
NonEmptyString = Annotated[
|
||||||
|
NonEmptyStringBase,
|
||||||
|
Field(description="A non-empty string", min_length=1),
|
||||||
|
]
|
||||||
|
non_empty_string_adapter = TypeAdapter(NonEmptyString)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_non_empty_string(s: str, error: str | None = None) -> NonEmptyString:
|
||||||
|
try:
|
||||||
|
return non_empty_string_adapter.validate_python(s)
|
||||||
|
except Exception as e:
|
||||||
|
raise ValueError(f"{e}: {error}" if error else e) from e
|
||||||
|
|
||||||
|
|
||||||
|
def try_parse_non_empty_string(s: str) -> NonEmptyString | None:
|
||||||
|
if not s:
|
||||||
|
return None
|
||||||
|
return parse_non_empty_string(s)
|
||||||
@@ -10,6 +10,7 @@ from reflector.db.meetings import (
|
|||||||
meeting_consent_controller,
|
meeting_consent_controller,
|
||||||
meetings_controller,
|
meetings_controller,
|
||||||
)
|
)
|
||||||
|
from reflector.db.rooms import rooms_controller
|
||||||
|
|
||||||
router = APIRouter()
|
router = APIRouter()
|
||||||
|
|
||||||
@@ -41,3 +42,34 @@ async def meeting_audio_consent(
|
|||||||
updated_consent = await meeting_consent_controller.upsert(consent)
|
updated_consent = await meeting_consent_controller.upsert(consent)
|
||||||
|
|
||||||
return {"status": "success", "consent_id": updated_consent.id}
|
return {"status": "success", "consent_id": updated_consent.id}
|
||||||
|
|
||||||
|
|
||||||
|
@router.patch("/meetings/{meeting_id}/deactivate")
|
||||||
|
async def meeting_deactivate(
|
||||||
|
meeting_id: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
if not user_id:
|
||||||
|
raise HTTPException(status_code=401, detail="Authentication required")
|
||||||
|
|
||||||
|
meeting = await meetings_controller.get_by_id(meeting_id)
|
||||||
|
if not meeting:
|
||||||
|
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||||
|
|
||||||
|
if not meeting.is_active:
|
||||||
|
return {"status": "success", "meeting_id": meeting_id}
|
||||||
|
|
||||||
|
# Only room owner or meeting creator can deactivate
|
||||||
|
room = await rooms_controller.get_by_id(meeting.room_id)
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
if user_id != room.user_id and user_id != meeting.user_id:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=403, detail="Only the room owner can deactivate meetings"
|
||||||
|
)
|
||||||
|
|
||||||
|
await meetings_controller.update_meeting(meeting_id, is_active=False)
|
||||||
|
|
||||||
|
return {"status": "success", "meeting_id": meeting_id}
|
||||||
|
|||||||
@@ -1,33 +1,27 @@
|
|||||||
import logging
|
import logging
|
||||||
import sqlite3
|
|
||||||
from datetime import datetime, timedelta, timezone
|
from datetime import datetime, timedelta, timezone
|
||||||
from typing import Annotated, Literal, Optional
|
from enum import Enum
|
||||||
|
from typing import Annotated, Any, Literal, Optional
|
||||||
|
|
||||||
import asyncpg.exceptions
|
|
||||||
from fastapi import APIRouter, Depends, HTTPException
|
from fastapi import APIRouter, Depends, HTTPException
|
||||||
from fastapi_pagination import Page
|
from fastapi_pagination import Page
|
||||||
from fastapi_pagination.ext.databases import apaginate
|
from fastapi_pagination.ext.databases import apaginate
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
from redis.exceptions import LockError
|
||||||
|
|
||||||
import reflector.auth as auth
|
import reflector.auth as auth
|
||||||
from reflector.db import get_database
|
from reflector.db import get_database
|
||||||
|
from reflector.db.calendar_events import calendar_events_controller
|
||||||
from reflector.db.meetings import meetings_controller
|
from reflector.db.meetings import meetings_controller
|
||||||
from reflector.db.rooms import rooms_controller
|
from reflector.db.rooms import rooms_controller
|
||||||
|
from reflector.redis_cache import RedisAsyncLock
|
||||||
|
from reflector.services.ics_sync import ics_sync_service
|
||||||
from reflector.settings import settings
|
from reflector.settings import settings
|
||||||
from reflector.whereby import create_meeting, upload_logo
|
from reflector.whereby import create_meeting, upload_logo
|
||||||
|
from reflector.worker.webhook import test_webhook
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
router = APIRouter()
|
|
||||||
|
|
||||||
|
|
||||||
def parse_datetime_with_timezone(iso_string: str) -> datetime:
|
|
||||||
"""Parse ISO datetime string and ensure timezone awareness (defaults to UTC if naive)."""
|
|
||||||
dt = datetime.fromisoformat(iso_string)
|
|
||||||
if dt.tzinfo is None:
|
|
||||||
dt = dt.replace(tzinfo=timezone.utc)
|
|
||||||
return dt
|
|
||||||
|
|
||||||
|
|
||||||
class Room(BaseModel):
|
class Room(BaseModel):
|
||||||
id: str
|
id: str
|
||||||
@@ -42,16 +36,38 @@ class Room(BaseModel):
|
|||||||
recording_type: str
|
recording_type: str
|
||||||
recording_trigger: str
|
recording_trigger: str
|
||||||
is_shared: bool
|
is_shared: bool
|
||||||
|
ics_url: Optional[str] = None
|
||||||
|
ics_fetch_interval: int = 300
|
||||||
|
ics_enabled: bool = False
|
||||||
|
ics_last_sync: Optional[datetime] = None
|
||||||
|
ics_last_etag: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class RoomDetails(Room):
|
||||||
|
webhook_url: str | None
|
||||||
|
webhook_secret: str | None
|
||||||
|
|
||||||
|
|
||||||
class Meeting(BaseModel):
|
class Meeting(BaseModel):
|
||||||
id: str
|
id: str
|
||||||
room_name: str
|
room_name: str
|
||||||
room_url: str
|
room_url: str
|
||||||
|
# TODO it's not always present, | None
|
||||||
host_room_url: str
|
host_room_url: str
|
||||||
start_date: datetime
|
start_date: datetime
|
||||||
end_date: datetime
|
end_date: datetime
|
||||||
|
user_id: str | None = None
|
||||||
|
room_id: str | None = None
|
||||||
|
is_locked: bool = False
|
||||||
|
room_mode: Literal["normal", "group"] = "normal"
|
||||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||||
|
recording_trigger: Literal[
|
||||||
|
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||||
|
] = "automatic-2nd-participant"
|
||||||
|
num_clients: int = 0
|
||||||
|
is_active: bool = True
|
||||||
|
calendar_event_id: str | None = None
|
||||||
|
calendar_metadata: dict[str, Any] | None = None
|
||||||
|
|
||||||
|
|
||||||
class CreateRoom(BaseModel):
|
class CreateRoom(BaseModel):
|
||||||
@@ -64,28 +80,103 @@ class CreateRoom(BaseModel):
|
|||||||
recording_type: str
|
recording_type: str
|
||||||
recording_trigger: str
|
recording_trigger: str
|
||||||
is_shared: bool
|
is_shared: bool
|
||||||
|
webhook_url: str
|
||||||
|
webhook_secret: str
|
||||||
|
ics_url: Optional[str] = None
|
||||||
|
ics_fetch_interval: int = 300
|
||||||
|
ics_enabled: bool = False
|
||||||
|
|
||||||
|
|
||||||
class UpdateRoom(BaseModel):
|
class UpdateRoom(BaseModel):
|
||||||
name: str
|
name: Optional[str] = None
|
||||||
zulip_auto_post: bool
|
zulip_auto_post: Optional[bool] = None
|
||||||
zulip_stream: str
|
zulip_stream: Optional[str] = None
|
||||||
zulip_topic: str
|
zulip_topic: Optional[str] = None
|
||||||
is_locked: bool
|
is_locked: Optional[bool] = None
|
||||||
room_mode: str
|
room_mode: Optional[str] = None
|
||||||
recording_type: str
|
recording_type: Optional[str] = None
|
||||||
recording_trigger: str
|
recording_trigger: Optional[str] = None
|
||||||
is_shared: bool
|
is_shared: Optional[bool] = None
|
||||||
|
webhook_url: Optional[str] = None
|
||||||
|
webhook_secret: Optional[str] = None
|
||||||
|
ics_url: Optional[str] = None
|
||||||
|
ics_fetch_interval: Optional[int] = None
|
||||||
|
ics_enabled: Optional[bool] = None
|
||||||
|
|
||||||
|
|
||||||
|
class CreateRoomMeeting(BaseModel):
|
||||||
|
allow_duplicated: Optional[bool] = False
|
||||||
|
|
||||||
|
|
||||||
class DeletionStatus(BaseModel):
|
class DeletionStatus(BaseModel):
|
||||||
status: str
|
status: str
|
||||||
|
|
||||||
|
|
||||||
@router.get("/rooms", response_model=Page[Room])
|
class WebhookTestResult(BaseModel):
|
||||||
|
success: bool
|
||||||
|
message: str = ""
|
||||||
|
error: str = ""
|
||||||
|
status_code: int | None = None
|
||||||
|
response_preview: str | None = None
|
||||||
|
|
||||||
|
|
||||||
|
class ICSStatus(BaseModel):
|
||||||
|
status: Literal["enabled", "disabled"]
|
||||||
|
last_sync: Optional[datetime] = None
|
||||||
|
next_sync: Optional[datetime] = None
|
||||||
|
last_etag: Optional[str] = None
|
||||||
|
events_count: int = 0
|
||||||
|
|
||||||
|
|
||||||
|
class SyncStatus(str, Enum):
|
||||||
|
success = "success"
|
||||||
|
unchanged = "unchanged"
|
||||||
|
error = "error"
|
||||||
|
skipped = "skipped"
|
||||||
|
|
||||||
|
|
||||||
|
class ICSSyncResult(BaseModel):
|
||||||
|
status: SyncStatus
|
||||||
|
hash: Optional[str] = None
|
||||||
|
events_found: int = 0
|
||||||
|
total_events: int = 0
|
||||||
|
events_created: int = 0
|
||||||
|
events_updated: int = 0
|
||||||
|
events_deleted: int = 0
|
||||||
|
error: Optional[str] = None
|
||||||
|
reason: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class CalendarEventResponse(BaseModel):
|
||||||
|
id: str
|
||||||
|
room_id: str
|
||||||
|
ics_uid: str
|
||||||
|
title: Optional[str] = None
|
||||||
|
description: Optional[str] = None
|
||||||
|
start_time: datetime
|
||||||
|
end_time: datetime
|
||||||
|
attendees: Optional[list[dict]] = None
|
||||||
|
location: Optional[str] = None
|
||||||
|
last_synced: datetime
|
||||||
|
created_at: datetime
|
||||||
|
updated_at: datetime
|
||||||
|
|
||||||
|
|
||||||
|
router = APIRouter()
|
||||||
|
|
||||||
|
|
||||||
|
def parse_datetime_with_timezone(iso_string: str) -> datetime:
|
||||||
|
"""Parse ISO datetime string and ensure timezone awareness (defaults to UTC if naive)."""
|
||||||
|
dt = datetime.fromisoformat(iso_string)
|
||||||
|
if dt.tzinfo is None:
|
||||||
|
dt = dt.replace(tzinfo=timezone.utc)
|
||||||
|
return dt
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/rooms", response_model=Page[RoomDetails])
|
||||||
async def rooms_list(
|
async def rooms_list(
|
||||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
) -> list[Room]:
|
) -> list[RoomDetails]:
|
||||||
if not user and not settings.PUBLIC_MODE:
|
if not user and not settings.PUBLIC_MODE:
|
||||||
raise HTTPException(status_code=401, detail="Not authenticated")
|
raise HTTPException(status_code=401, detail="Not authenticated")
|
||||||
|
|
||||||
@@ -99,6 +190,42 @@ async def rooms_list(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/rooms/{room_id}", response_model=RoomDetails)
|
||||||
|
async def rooms_get(
|
||||||
|
room_id: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_id_for_http(room_id, user_id=user_id)
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
return room
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/rooms/name/{room_name}", response_model=RoomDetails)
|
||||||
|
async def rooms_get_by_name(
|
||||||
|
room_name: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
# Convert to RoomDetails format (add webhook fields if user is owner)
|
||||||
|
room_dict = room.__dict__.copy()
|
||||||
|
if user_id == room.user_id:
|
||||||
|
# User is owner, include webhook details if available
|
||||||
|
room_dict["webhook_url"] = getattr(room, "webhook_url", None)
|
||||||
|
room_dict["webhook_secret"] = getattr(room, "webhook_secret", None)
|
||||||
|
else:
|
||||||
|
# Non-owner, hide webhook details
|
||||||
|
room_dict["webhook_url"] = None
|
||||||
|
room_dict["webhook_secret"] = None
|
||||||
|
|
||||||
|
return RoomDetails(**room_dict)
|
||||||
|
|
||||||
|
|
||||||
@router.post("/rooms", response_model=Room)
|
@router.post("/rooms", response_model=Room)
|
||||||
async def rooms_create(
|
async def rooms_create(
|
||||||
room: CreateRoom,
|
room: CreateRoom,
|
||||||
@@ -117,10 +244,15 @@ async def rooms_create(
|
|||||||
recording_type=room.recording_type,
|
recording_type=room.recording_type,
|
||||||
recording_trigger=room.recording_trigger,
|
recording_trigger=room.recording_trigger,
|
||||||
is_shared=room.is_shared,
|
is_shared=room.is_shared,
|
||||||
|
webhook_url=room.webhook_url,
|
||||||
|
webhook_secret=room.webhook_secret,
|
||||||
|
ics_url=room.ics_url,
|
||||||
|
ics_fetch_interval=room.ics_fetch_interval,
|
||||||
|
ics_enabled=room.ics_enabled,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@router.patch("/rooms/{room_id}", response_model=Room)
|
@router.patch("/rooms/{room_id}", response_model=RoomDetails)
|
||||||
async def rooms_update(
|
async def rooms_update(
|
||||||
room_id: str,
|
room_id: str,
|
||||||
info: UpdateRoom,
|
info: UpdateRoom,
|
||||||
@@ -151,6 +283,7 @@ async def rooms_delete(
|
|||||||
@router.post("/rooms/{room_name}/meeting", response_model=Meeting)
|
@router.post("/rooms/{room_name}/meeting", response_model=Meeting)
|
||||||
async def rooms_create_meeting(
|
async def rooms_create_meeting(
|
||||||
room_name: str,
|
room_name: str,
|
||||||
|
info: CreateRoomMeeting,
|
||||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
):
|
):
|
||||||
user_id = user["sub"] if user else None
|
user_id = user["sub"] if user else None
|
||||||
@@ -158,54 +291,266 @@ async def rooms_create_meeting(
|
|||||||
if not room:
|
if not room:
|
||||||
raise HTTPException(status_code=404, detail="Room not found")
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
current_time = datetime.now(timezone.utc)
|
try:
|
||||||
meeting = await meetings_controller.get_active(room=room, current_time=current_time)
|
async with RedisAsyncLock(
|
||||||
|
f"create_meeting:{room_name}",
|
||||||
|
timeout=30,
|
||||||
|
extend_interval=10,
|
||||||
|
blocking_timeout=5.0,
|
||||||
|
) as lock:
|
||||||
|
current_time = datetime.now(timezone.utc)
|
||||||
|
|
||||||
if meeting is None:
|
meeting = None
|
||||||
end_date = current_time + timedelta(hours=8)
|
if not info.allow_duplicated:
|
||||||
|
meeting = await meetings_controller.get_active(
|
||||||
|
room=room, current_time=current_time
|
||||||
|
)
|
||||||
|
|
||||||
whereby_meeting = await create_meeting("", end_date=end_date, room=room)
|
|
||||||
await upload_logo(whereby_meeting["roomName"], "./images/logo.png")
|
|
||||||
|
|
||||||
# Now try to save to database
|
|
||||||
try:
|
|
||||||
meeting = await meetings_controller.create(
|
|
||||||
id=whereby_meeting["meetingId"],
|
|
||||||
room_name=whereby_meeting["roomName"],
|
|
||||||
room_url=whereby_meeting["roomUrl"],
|
|
||||||
host_room_url=whereby_meeting["hostRoomUrl"],
|
|
||||||
start_date=parse_datetime_with_timezone(whereby_meeting["startDate"]),
|
|
||||||
end_date=parse_datetime_with_timezone(whereby_meeting["endDate"]),
|
|
||||||
user_id=user_id,
|
|
||||||
room=room,
|
|
||||||
)
|
|
||||||
except (asyncpg.exceptions.UniqueViolationError, sqlite3.IntegrityError):
|
|
||||||
# Another request already created a meeting for this room
|
|
||||||
# Log this race condition occurrence
|
|
||||||
logger.info(
|
|
||||||
"Race condition detected for room %s - fetching existing meeting",
|
|
||||||
room.name,
|
|
||||||
)
|
|
||||||
logger.warning(
|
|
||||||
"Whereby meeting %s was created but not used (resource leak) for room %s",
|
|
||||||
whereby_meeting["meetingId"],
|
|
||||||
room.name,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Fetch the meeting that was created by the other request
|
|
||||||
meeting = await meetings_controller.get_active(
|
|
||||||
room=room, current_time=current_time
|
|
||||||
)
|
|
||||||
if meeting is None:
|
if meeting is None:
|
||||||
# Edge case: meeting was created but expired/deleted between checks
|
end_date = current_time + timedelta(hours=8)
|
||||||
logger.error(
|
|
||||||
"Meeting disappeared after race condition for room %s", room.name
|
whereby_meeting = await create_meeting("", end_date=end_date, room=room)
|
||||||
)
|
|
||||||
raise HTTPException(
|
await upload_logo(whereby_meeting["roomName"], "./images/logo.png")
|
||||||
status_code=503, detail="Unable to join meeting - please try again"
|
|
||||||
|
meeting = await meetings_controller.create(
|
||||||
|
id=whereby_meeting["meetingId"],
|
||||||
|
room_name=whereby_meeting["roomName"],
|
||||||
|
room_url=whereby_meeting["roomUrl"],
|
||||||
|
host_room_url=whereby_meeting["hostRoomUrl"],
|
||||||
|
start_date=parse_datetime_with_timezone(
|
||||||
|
whereby_meeting["startDate"]
|
||||||
|
),
|
||||||
|
end_date=parse_datetime_with_timezone(whereby_meeting["endDate"]),
|
||||||
|
room=room,
|
||||||
)
|
)
|
||||||
|
except LockError:
|
||||||
|
logger.warning("Failed to acquire lock for room %s within timeout", room_name)
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=503, detail="Meeting creation in progress, please try again"
|
||||||
|
)
|
||||||
|
|
||||||
if user_id != room.user_id:
|
if user_id != room.user_id:
|
||||||
meeting.host_room_url = ""
|
meeting.host_room_url = ""
|
||||||
|
|
||||||
return meeting
|
return meeting
|
||||||
|
|
||||||
|
|
||||||
|
@router.post("/rooms/{room_id}/webhook/test", response_model=WebhookTestResult)
|
||||||
|
async def rooms_test_webhook(
|
||||||
|
room_id: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
"""Test webhook configuration by sending a sample payload."""
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
|
||||||
|
room = await rooms_controller.get_by_id(room_id)
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
if user_id and room.user_id != user_id:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=403, detail="Not authorized to test this room's webhook"
|
||||||
|
)
|
||||||
|
|
||||||
|
result = await test_webhook(room_id)
|
||||||
|
return WebhookTestResult(**result)
|
||||||
|
|
||||||
|
|
||||||
|
@router.post("/rooms/{room_name}/ics/sync", response_model=ICSSyncResult)
|
||||||
|
async def rooms_sync_ics(
|
||||||
|
room_name: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
if user_id != room.user_id:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=403, detail="Only room owner can trigger ICS sync"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not room.ics_enabled or not room.ics_url:
|
||||||
|
raise HTTPException(status_code=400, detail="ICS not configured for this room")
|
||||||
|
|
||||||
|
result = await ics_sync_service.sync_room_calendar(room)
|
||||||
|
|
||||||
|
if result["status"] == "error":
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=500, detail=result.get("error", "Unknown error")
|
||||||
|
)
|
||||||
|
|
||||||
|
return ICSSyncResult(**result)
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/rooms/{room_name}/ics/status", response_model=ICSStatus)
|
||||||
|
async def rooms_ics_status(
|
||||||
|
room_name: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
if user_id != room.user_id:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=403, detail="Only room owner can view ICS status"
|
||||||
|
)
|
||||||
|
|
||||||
|
next_sync = None
|
||||||
|
if room.ics_enabled and room.ics_last_sync:
|
||||||
|
next_sync = room.ics_last_sync + timedelta(seconds=room.ics_fetch_interval)
|
||||||
|
|
||||||
|
events = await calendar_events_controller.get_by_room(
|
||||||
|
room.id, include_deleted=False
|
||||||
|
)
|
||||||
|
|
||||||
|
return ICSStatus(
|
||||||
|
status="enabled" if room.ics_enabled else "disabled",
|
||||||
|
last_sync=room.ics_last_sync,
|
||||||
|
next_sync=next_sync,
|
||||||
|
last_etag=room.ics_last_etag,
|
||||||
|
events_count=len(events),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/rooms/{room_name}/meetings", response_model=list[CalendarEventResponse])
|
||||||
|
async def rooms_list_meetings(
|
||||||
|
room_name: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
events = await calendar_events_controller.get_by_room(
|
||||||
|
room.id, include_deleted=False
|
||||||
|
)
|
||||||
|
|
||||||
|
if user_id != room.user_id:
|
||||||
|
for event in events:
|
||||||
|
event.description = None
|
||||||
|
event.attendees = None
|
||||||
|
|
||||||
|
return events
|
||||||
|
|
||||||
|
|
||||||
|
@router.get(
|
||||||
|
"/rooms/{room_name}/meetings/upcoming", response_model=list[CalendarEventResponse]
|
||||||
|
)
|
||||||
|
async def rooms_list_upcoming_meetings(
|
||||||
|
room_name: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
minutes_ahead: int = 120,
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
events = await calendar_events_controller.get_upcoming(
|
||||||
|
room.id, minutes_ahead=minutes_ahead
|
||||||
|
)
|
||||||
|
|
||||||
|
if user_id != room.user_id:
|
||||||
|
for event in events:
|
||||||
|
event.description = None
|
||||||
|
event.attendees = None
|
||||||
|
|
||||||
|
return events
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/rooms/{room_name}/meetings/active", response_model=list[Meeting])
|
||||||
|
async def rooms_list_active_meetings(
|
||||||
|
room_name: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
current_time = datetime.now(timezone.utc)
|
||||||
|
meetings = await meetings_controller.get_all_active_for_room(
|
||||||
|
room=room, current_time=current_time
|
||||||
|
)
|
||||||
|
|
||||||
|
# Hide host URLs from non-owners
|
||||||
|
if user_id != room.user_id:
|
||||||
|
for meeting in meetings:
|
||||||
|
meeting.host_room_url = ""
|
||||||
|
|
||||||
|
return meetings
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/rooms/{room_name}/meetings/{meeting_id}", response_model=Meeting)
|
||||||
|
async def rooms_get_meeting(
|
||||||
|
room_name: str,
|
||||||
|
meeting_id: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
"""Get a single meeting by ID within a specific room."""
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
meeting = await meetings_controller.get_by_id(meeting_id)
|
||||||
|
if not meeting:
|
||||||
|
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||||
|
|
||||||
|
if meeting.room_id != room.id:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=403, detail="Meeting does not belong to this room"
|
||||||
|
)
|
||||||
|
|
||||||
|
if user_id != room.user_id and not room.is_shared:
|
||||||
|
meeting.host_room_url = ""
|
||||||
|
|
||||||
|
return meeting
|
||||||
|
|
||||||
|
|
||||||
|
@router.post("/rooms/{room_name}/meetings/{meeting_id}/join", response_model=Meeting)
|
||||||
|
async def rooms_join_meeting(
|
||||||
|
room_name: str,
|
||||||
|
meeting_id: str,
|
||||||
|
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||||
|
):
|
||||||
|
user_id = user["sub"] if user else None
|
||||||
|
room = await rooms_controller.get_by_name(room_name)
|
||||||
|
|
||||||
|
if not room:
|
||||||
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
|
meeting = await meetings_controller.get_by_id(meeting_id)
|
||||||
|
|
||||||
|
if not meeting:
|
||||||
|
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||||
|
|
||||||
|
if meeting.room_id != room.id:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=403, detail="Meeting does not belong to this room"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not meeting.is_active:
|
||||||
|
raise HTTPException(status_code=400, detail="Meeting is not active")
|
||||||
|
|
||||||
|
current_time = datetime.now(timezone.utc)
|
||||||
|
if meeting.end_date <= current_time:
|
||||||
|
raise HTTPException(status_code=400, detail="Meeting has ended")
|
||||||
|
|
||||||
|
# Hide host URL from non-owners
|
||||||
|
if user_id != room.user_id:
|
||||||
|
meeting.host_room_url = ""
|
||||||
|
|
||||||
|
return meeting
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user