mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
116 Commits
mathieu/fe
...
mathieu/sq
| Author | SHA1 | Date | |
|---|---|---|---|
| 8fcfac80fa | |||
| 9b3da4b2c8 | |||
| d86dc59bf2 | |||
| b7f8e8ef8d | |||
| 27f19ec6ba | |||
| 2aa99fe846 | |||
| df909363f5 | |||
| ad2accb574 | |||
| a07c621bcd | |||
| f51dae8da3 | |||
| b217c7ba41 | |||
| 0b2152ea75 | |||
| e0c71c5548 | |||
| a883df0d63 | |||
| 1c9e8b9cde | |||
| 27b3b9cdee | |||
| 8ad1270229 | |||
| 617a1c8b32 | |||
| 60cc2b16ae | |||
| 606c5f5059 | |||
| 5e036d17b6 | |||
| 04a9c2f2f7 | |||
| fb5bb39716 | |||
| 4f70a7f593 | |||
| 224e40225d | |||
| 24980de4e0 | |||
| 7f178b5f9e | |||
| 0aaa42528a | |||
| 565a62900f | |||
|
|
27016e6051 | ||
| 6ddfee0b4e | |||
|
|
47716f6e5d | ||
| 1520f88e9e | |||
| 9b90aaa57f | |||
| d21b65e4e8 | |||
| 45d1608950 | |||
| 06639d4d8f | |||
| 0abcebfc94 | |||
|
|
2b723da08b | ||
| 6566e04300 | |||
| 870e860517 | |||
| 396a95d5ce | |||
| 6f680b5795 | |||
| ab859d65a6 | |||
| fa049e8d06 | |||
| 2ce7479967 | |||
| b42f7cfc60 | |||
| c546e69739 | |||
|
|
3f1fe8c9bf | ||
| 5f143fe364 | |||
|
|
79f161436e | ||
|
|
5cba5d310d | ||
| 43ea9349f5 | |||
|
|
b3a8e9739d | ||
|
|
369ecdff13 | ||
| fc363bd49b | |||
|
|
962038ee3f | ||
|
|
3b85ff3bdf | ||
|
|
cde99ca271 | ||
|
|
f81fe9948a | ||
|
|
5a5b323382 | ||
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 | |||
| 52f9f533d7 | |||
| 0c3878ac3c | |||
|
|
d70beee51b | ||
| bc5b351d2b | |||
|
|
07981e8090 | ||
| 7e366f6338 | |||
| 7592679a35 | |||
| af16178f86 | |||
| 3ea7f6b7b6 | |||
|
|
009590c080 | ||
|
|
fe5d344cff | ||
|
|
86455ce573 | ||
| 2fccd81bcd | |||
| 1311714451 | |||
| b9d891d342 | |||
| 9eab952c63 | |||
|
|
6fb5cb21c2 | ||
|
|
a42ed12982 | ||
| 1aa52a99b6 | |||
|
|
2a97290f2e | ||
| 7963cc8a52 | |||
| d12424848d | |||
|
|
6e765875d5 | ||
|
|
e0f4acf28b | ||
|
|
12359ea4eb | ||
| 267b7401ea | |||
| aea9de393c | |||
| dc177af3ff | |||
| 5bd8233657 |
35
.github/workflows/db_migrations.yml
vendored
35
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/migrations/**"
|
||||
- "server/reflector/db/**"
|
||||
@@ -17,10 +19,43 @@ on:
|
||||
jobs:
|
||||
test-migrations:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: db-ubuntu-latest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
postgres:
|
||||
image: postgres:17
|
||||
env:
|
||||
POSTGRES_USER: reflector
|
||||
POSTGRES_PASSWORD: reflector
|
||||
POSTGRES_DB: reflector
|
||||
ports:
|
||||
- 5432:5432
|
||||
options: >-
|
||||
--health-cmd pg_isready -h 127.0.0.1 -p 5432
|
||||
--health-interval 10s
|
||||
--health-timeout 5s
|
||||
--health-retries 5
|
||||
|
||||
env:
|
||||
DATABASE_URL: postgresql://reflector:reflector@localhost:5432/reflector
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install PostgreSQL client
|
||||
run: sudo apt-get update && sudo apt-get install -y postgresql-client | cat
|
||||
|
||||
- name: Wait for Postgres
|
||||
run: |
|
||||
for i in {1..30}; do
|
||||
if pg_isready -h localhost -p 5432; then
|
||||
echo "Postgres is ready"
|
||||
break
|
||||
fi
|
||||
echo "Waiting for Postgres... ($i)" && sleep 1
|
||||
done
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v3
|
||||
with:
|
||||
|
||||
77
.github/workflows/deploy.yml
vendored
77
.github/workflows/deploy.yml
vendored
@@ -8,18 +8,30 @@ env:
|
||||
ECR_REPOSITORY: reflector
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
build:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- platform: linux/amd64
|
||||
runner: linux-amd64
|
||||
arch: amd64
|
||||
- platform: linux/arm64
|
||||
runner: linux-arm64
|
||||
arch: arm64
|
||||
|
||||
runs-on: ${{ matrix.runner }}
|
||||
|
||||
permissions:
|
||||
deployments: write
|
||||
contents: read
|
||||
|
||||
outputs:
|
||||
registry: ${{ steps.login-ecr.outputs.registry }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@0e613a0980cbf65ed5b322eb7a1e075d28913a83
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
@@ -27,21 +39,52 @@ jobs:
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
id: login-ecr
|
||||
uses: aws-actions/amazon-ecr-login@62f4f872db3836360b72999f4b87f1ff13310f3a
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: aws-actions/amazon-ecr-login@v2
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build and push
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
- name: Build and push ${{ matrix.arch }}
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: ${{ matrix.platform }}
|
||||
push: true
|
||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
|
||||
cache-from: type=gha,scope=${{ matrix.arch }}
|
||||
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
provenance: false
|
||||
|
||||
create-manifest:
|
||||
runs-on: ubuntu-latest
|
||||
needs: [build]
|
||||
|
||||
permissions:
|
||||
deployments: write
|
||||
contents: read
|
||||
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
uses: aws-actions/amazon-ecr-login@v2
|
||||
|
||||
- name: Create and push multi-arch manifest
|
||||
run: |
|
||||
# Get the registry URL (since we can't easily access job outputs in matrix)
|
||||
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
|
||||
|
||||
docker manifest create \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
|
||||
|
||||
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
|
||||
|
||||
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"
|
||||
|
||||
24
.github/workflows/pre-commit.yml
vendored
Normal file
24
.github/workflows/pre-commit.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: pre-commit
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/setup-python@v5
|
||||
- uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 10
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 22
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: "www/pnpm-lock.yaml"
|
||||
- name: Install dependencies
|
||||
run: cd www && pnpm install --frozen-lockfile
|
||||
- uses: pre-commit/action@v3.0.1
|
||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test Next Server
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "www/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "www/**"
|
||||
|
||||
jobs:
|
||||
test-next-server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./www
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
|
||||
- name: Setup Node.js cache
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
cache: 'pnpm'
|
||||
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install
|
||||
|
||||
- name: Run tests
|
||||
run: pnpm test
|
||||
49
.github/workflows/test_server.yml
vendored
49
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
||||
paths:
|
||||
- "server/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/**"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: pytest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
redis:
|
||||
image: redis:6
|
||||
@@ -19,29 +24,47 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v3
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
enable-cache: true
|
||||
working-directory: server
|
||||
|
||||
- name: Tests
|
||||
run: |
|
||||
cd server
|
||||
uv run -m pytest -v tests
|
||||
|
||||
docker:
|
||||
runs-on: ubuntu-latest
|
||||
docker-amd64:
|
||||
runs-on: linux-amd64
|
||||
concurrency:
|
||||
group: docker-amd64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
- name: Build and push
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Build AMD64
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
platforms: linux/amd64
|
||||
cache-from: type=gha,scope=amd64
|
||||
cache-to: type=gha,mode=max,scope=amd64
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
|
||||
docker-arm64:
|
||||
runs-on: linux-arm64
|
||||
concurrency:
|
||||
group: docker-arm64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Build ARM64
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/arm64
|
||||
cache-from: type=gha,scope=arm64
|
||||
cache-to: type=gha,mode=max,scope=arm64
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -13,3 +13,8 @@ restart-dev.sh
|
||||
data/
|
||||
www/REFACTOR.md
|
||||
www/reload-frontend
|
||||
server/test.sqlite
|
||||
CLAUDE.local.md
|
||||
www/.env.development
|
||||
www/.env.production
|
||||
.playwright-mcp
|
||||
|
||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
||||
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||
@@ -3,10 +3,10 @@
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: yarn-format
|
||||
name: run yarn format
|
||||
- id: format
|
||||
name: run format
|
||||
language: system
|
||||
entry: bash -c 'cd www && yarn format'
|
||||
entry: bash -c 'cd www && pnpm format'
|
||||
pass_filenames: false
|
||||
files: ^www/
|
||||
|
||||
@@ -23,8 +23,12 @@ repos:
|
||||
- id: ruff
|
||||
args:
|
||||
- --fix
|
||||
- --select
|
||||
- I,F401
|
||||
# Uses select rules from server/pyproject.toml
|
||||
files: ^server/
|
||||
- id: ruff-format
|
||||
files: ^server/
|
||||
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.28.0
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
180
CHANGELOG.md
180
CHANGELOG.md
@@ -1,5 +1,185 @@
|
||||
# Changelog
|
||||
|
||||
## [0.13.1](https://github.com/Monadical-SAS/reflector/compare/v0.13.0...v0.13.1) (2025-09-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* TypeError on not all arguments converted during string formatting in logger ([#667](https://github.com/Monadical-SAS/reflector/issues/667)) ([565a629](https://github.com/Monadical-SAS/reflector/commit/565a62900f5a02fc946b68f9269a42190ed70ab6))
|
||||
|
||||
## [0.13.0](https://github.com/Monadical-SAS/reflector/compare/v0.12.1...v0.13.0) (2025-09-19)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* room form edit with enter ([#662](https://github.com/Monadical-SAS/reflector/issues/662)) ([47716f6](https://github.com/Monadical-SAS/reflector/commit/47716f6e5ddee952609d2fa0ffabdfa865286796))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* invalid cleanup call ([#660](https://github.com/Monadical-SAS/reflector/issues/660)) ([0abcebf](https://github.com/Monadical-SAS/reflector/commit/0abcebfc9491f87f605f21faa3e53996fafedd9a))
|
||||
|
||||
## [0.12.1](https://github.com/Monadical-SAS/reflector/compare/v0.12.0...v0.12.1) (2025-09-17)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* production blocked because having existing meeting with room_id null ([#657](https://github.com/Monadical-SAS/reflector/issues/657)) ([870e860](https://github.com/Monadical-SAS/reflector/commit/870e8605171a27155a9cbee215eeccb9a8d6c0a2))
|
||||
|
||||
## [0.12.0](https://github.com/Monadical-SAS/reflector/compare/v0.11.0...v0.12.0) (2025-09-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* calendar integration ([#608](https://github.com/Monadical-SAS/reflector/issues/608)) ([6f680b5](https://github.com/Monadical-SAS/reflector/commit/6f680b57954c688882c4ed49f40f161c52a00a24))
|
||||
* self-hosted gpu api ([#636](https://github.com/Monadical-SAS/reflector/issues/636)) ([ab859d6](https://github.com/Monadical-SAS/reflector/commit/ab859d65a6bded904133a163a081a651b3938d42))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* ignore player hotkeys for text inputs ([#646](https://github.com/Monadical-SAS/reflector/issues/646)) ([fa049e8](https://github.com/Monadical-SAS/reflector/commit/fa049e8d068190ce7ea015fd9fcccb8543f54a3f))
|
||||
|
||||
## [0.11.0](https://github.com/Monadical-SAS/reflector/compare/v0.10.0...v0.11.0) (2025-09-16)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* remove profanity filter that was there for conference ([#652](https://github.com/Monadical-SAS/reflector/issues/652)) ([b42f7cf](https://github.com/Monadical-SAS/reflector/commit/b42f7cfc606783afcee792590efcc78b507468ab))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* zulip and consent handler on the file pipeline ([#645](https://github.com/Monadical-SAS/reflector/issues/645)) ([5f143fe](https://github.com/Monadical-SAS/reflector/commit/5f143fe3640875dcb56c26694254a93189281d17))
|
||||
* zulip stream and topic selection in share dialog ([#644](https://github.com/Monadical-SAS/reflector/issues/644)) ([c546e69](https://github.com/Monadical-SAS/reflector/commit/c546e69739e68bb74fbc877eb62609928e5b8de6))
|
||||
|
||||
## [0.10.0](https://github.com/Monadical-SAS/reflector/compare/v0.9.0...v0.10.0) (2025-09-11)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* replace nextjs-config with environment variables ([#632](https://github.com/Monadical-SAS/reflector/issues/632)) ([369ecdf](https://github.com/Monadical-SAS/reflector/commit/369ecdff13f3862d926a9c0b87df52c9d94c4dde))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* anonymous users transcript permissions ([#621](https://github.com/Monadical-SAS/reflector/issues/621)) ([f81fe99](https://github.com/Monadical-SAS/reflector/commit/f81fe9948a9237b3e0001b2d8ca84f54d76878f9))
|
||||
* auth post ([#624](https://github.com/Monadical-SAS/reflector/issues/624)) ([cde99ca](https://github.com/Monadical-SAS/reflector/commit/cde99ca2716f84ba26798f289047732f0448742e))
|
||||
* auth post ([#626](https://github.com/Monadical-SAS/reflector/issues/626)) ([3b85ff3](https://github.com/Monadical-SAS/reflector/commit/3b85ff3bdf4fb053b103070646811bc990c0e70a))
|
||||
* auth post ([#627](https://github.com/Monadical-SAS/reflector/issues/627)) ([962038e](https://github.com/Monadical-SAS/reflector/commit/962038ee3f2a555dc3c03856be0e4409456e0996))
|
||||
* missing follow_redirects=True on modal endpoint ([#630](https://github.com/Monadical-SAS/reflector/issues/630)) ([fc363bd](https://github.com/Monadical-SAS/reflector/commit/fc363bd49b17b075e64f9186e5e0185abc325ea7))
|
||||
* sync backend and frontend token refresh logic ([#614](https://github.com/Monadical-SAS/reflector/issues/614)) ([5a5b323](https://github.com/Monadical-SAS/reflector/commit/5a5b3233820df9536da75e87ce6184a983d4713a))
|
||||
|
||||
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||
|
||||
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||
|
||||
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||
|
||||
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||
|
||||
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||
|
||||
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* docker image not loading libgomp.so.1 for torch ([#560](https://github.com/Monadical-SAS/reflector/issues/560)) ([773fccd](https://github.com/Monadical-SAS/reflector/commit/773fccd93e887c3493abc2e4a4864dddce610177))
|
||||
* include shared rooms to search ([#558](https://github.com/Monadical-SAS/reflector/issues/558)) ([499eced](https://github.com/Monadical-SAS/reflector/commit/499eced3360b84fb3a90e1c8a3b554290d21adc2))
|
||||
|
||||
## [0.7.1](https://github.com/Monadical-SAS/reflector/compare/v0.7.0...v0.7.1) (2025-08-21)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* webvtt db null expectation mismatch ([#556](https://github.com/Monadical-SAS/reflector/issues/556)) ([e67ad1a](https://github.com/Monadical-SAS/reflector/commit/e67ad1a4a2054467bfeb1e0258fbac5868aaaf21))
|
||||
|
||||
## [0.7.0](https://github.com/Monadical-SAS/reflector/compare/v0.6.1...v0.7.0) (2025-08-21)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* delete recording with transcript ([#547](https://github.com/Monadical-SAS/reflector/issues/547)) ([99cc984](https://github.com/Monadical-SAS/reflector/commit/99cc9840b3f5de01e0adfbfae93234042d706d13))
|
||||
* pipeline improvement with file processing, parakeet, silero-vad ([#540](https://github.com/Monadical-SAS/reflector/issues/540)) ([bcc29c9](https://github.com/Monadical-SAS/reflector/commit/bcc29c9e0050ae215f89d460e9d645aaf6a5e486))
|
||||
* postgresql migration and removal of sqlite in pytest ([#546](https://github.com/Monadical-SAS/reflector/issues/546)) ([cd1990f](https://github.com/Monadical-SAS/reflector/commit/cd1990f8f0fe1503ef5069512f33777a73a93d7f))
|
||||
* search backend ([#537](https://github.com/Monadical-SAS/reflector/issues/537)) ([5f9b892](https://github.com/Monadical-SAS/reflector/commit/5f9b89260c9ef7f3c921319719467df22830453f))
|
||||
* search frontend ([#551](https://github.com/Monadical-SAS/reflector/issues/551)) ([3657242](https://github.com/Monadical-SAS/reflector/commit/365724271ca6e615e3425125a69ae2b46ce39285))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* evaluation cli event wrap ([#536](https://github.com/Monadical-SAS/reflector/issues/536)) ([941c3db](https://github.com/Monadical-SAS/reflector/commit/941c3db0bdacc7b61fea412f3746cc5a7cb67836))
|
||||
* use structlog not logging ([#550](https://github.com/Monadical-SAS/reflector/issues/550)) ([27e2f81](https://github.com/Monadical-SAS/reflector/commit/27e2f81fda5232e53edc729d3e99c5ef03adbfe9))
|
||||
|
||||
## [0.6.1](https://github.com/Monadical-SAS/reflector/compare/v0.6.0...v0.6.1) (2025-08-06)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* delayed waveform loading ([#538](https://github.com/Monadical-SAS/reflector/issues/538)) ([ef64146](https://github.com/Monadical-SAS/reflector/commit/ef64146325d03f64dd9a1fe40234fb3e7e957ae2))
|
||||
|
||||
## [0.6.0](https://github.com/Monadical-SAS/reflector/compare/v0.5.0...v0.6.0) (2025-08-05)
|
||||
|
||||
|
||||
### ⚠ BREAKING CHANGES
|
||||
|
||||
* Configuration keys have changed. Update your .env file:
|
||||
- TRANSCRIPT_MODAL_API_KEY → TRANSCRIPT_API_KEY
|
||||
- LLM_MODAL_API_KEY → (removed, use TRANSCRIPT_API_KEY)
|
||||
- Add DIARIZATION_API_KEY and TRANSLATE_API_KEY if using those services
|
||||
|
||||
### Features
|
||||
|
||||
* implement service-specific Modal API keys with auto processor pattern ([#528](https://github.com/Monadical-SAS/reflector/issues/528)) ([650befb](https://github.com/Monadical-SAS/reflector/commit/650befb291c47a1f49e94a01ab37d8fdfcd2b65d))
|
||||
* use llamaindex everywhere ([#525](https://github.com/Monadical-SAS/reflector/issues/525)) ([3141d17](https://github.com/Monadical-SAS/reflector/commit/3141d172bc4d3b3d533370c8e6e351ea762169bf))
|
||||
|
||||
|
||||
### Miscellaneous Chores
|
||||
|
||||
* **main:** release 0.6.0 ([ecdbf00](https://github.com/Monadical-SAS/reflector/commit/ecdbf003ea2476c3e95fd231adaeb852f2943df0))
|
||||
|
||||
## [0.5.0](https://github.com/Monadical-SAS/reflector/compare/v0.4.0...v0.5.0) (2025-07-31)
|
||||
|
||||
|
||||
|
||||
17
CLAUDE.md
17
CLAUDE.md
@@ -62,29 +62,28 @@ uv run python -m reflector.tools.process path/to/audio.wav
|
||||
**Setup:**
|
||||
```bash
|
||||
# Install dependencies
|
||||
yarn install
|
||||
pnpm install
|
||||
|
||||
# Copy configuration templates
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
```
|
||||
|
||||
**Development:**
|
||||
```bash
|
||||
# Start development server
|
||||
yarn dev
|
||||
pnpm dev
|
||||
|
||||
# Generate TypeScript API client from OpenAPI spec
|
||||
yarn openapi
|
||||
pnpm openapi
|
||||
|
||||
# Lint code
|
||||
yarn lint
|
||||
pnpm lint
|
||||
|
||||
# Format code
|
||||
yarn format
|
||||
pnpm format
|
||||
|
||||
# Build for production
|
||||
yarn build
|
||||
pnpm build
|
||||
```
|
||||
|
||||
### Docker Compose (Full Stack)
|
||||
@@ -144,7 +143,9 @@ All endpoints prefixed `/v1/`:
|
||||
**Backend** (`server/.env`):
|
||||
- `DATABASE_URL` - Database connection string
|
||||
- `REDIS_URL` - Redis broker for Celery
|
||||
- `MODAL_TOKEN_ID`, `MODAL_TOKEN_SECRET` - Modal.com GPU processing
|
||||
- `TRANSCRIPT_BACKEND=modal` + `TRANSCRIPT_MODAL_API_KEY` - Modal.com transcription
|
||||
- `DIARIZATION_BACKEND=modal` + `DIARIZATION_MODAL_API_KEY` - Modal.com diarization
|
||||
- `TRANSLATION_BACKEND=modal` + `TRANSLATION_MODAL_API_KEY` - Modal.com translation
|
||||
- `WHEREBY_API_KEY` - Video platform integration
|
||||
- `REFLECTOR_AUTH_BACKEND` - Authentication method (none, jwt)
|
||||
|
||||
|
||||
@@ -1,264 +0,0 @@
|
||||
# Daily.co Migration Implementation Status
|
||||
|
||||
## Completed Components
|
||||
|
||||
### 1. Platform Abstraction Layer (`server/reflector/video_platforms/`)
|
||||
- **base.py**: Abstract interface defining all platform operations
|
||||
- **whereby.py**: Whereby implementation wrapping existing functionality
|
||||
- **daily.py**: Daily.co client implementation (ready for testing when credentials available)
|
||||
- **mock.py**: Mock implementation for unit testing
|
||||
- **registry.py**: Platform registration and discovery
|
||||
- **factory.py**: Factory methods for creating platform clients
|
||||
|
||||
### 2. Database Updates
|
||||
- **Models**: Added `platform` field to Room and Meeting tables
|
||||
- **Migration**: Created migration `20250801180012_add_platform_support.py`
|
||||
- **Controllers**: Updated to handle platform field
|
||||
|
||||
### 3. Configuration
|
||||
- **Settings**: Added Daily.co configuration variables
|
||||
- **Feature Flags**:
|
||||
- `DAILY_MIGRATION_ENABLED`: Master switch for migration
|
||||
- `DAILY_MIGRATION_ROOM_IDS`: List of specific rooms to migrate
|
||||
- `DEFAULT_VIDEO_PLATFORM`: Default platform when migration enabled
|
||||
|
||||
### 4. Backend API Updates
|
||||
- **Room Creation**: Now assigns platform based on feature flags
|
||||
- **Meeting Creation**: Uses platform abstraction instead of direct Whereby calls
|
||||
- **Response Models**: Include platform field
|
||||
- **Webhook Handler**: Added Daily.co webhook endpoint at `/v1/daily_webhook`
|
||||
|
||||
### 5. Frontend Components (`www/app/[roomName]/components/`)
|
||||
- **RoomContainer.tsx**: Platform-agnostic container that routes to appropriate component
|
||||
- **WherebyRoom.tsx**: Extracted existing Whereby functionality with consent management
|
||||
- **DailyRoom.tsx**: Daily.co implementation using DailyIframe
|
||||
- **Dependencies**: Added `@daily-co/daily-js` and `@daily-co/daily-react`
|
||||
|
||||
## How It Works
|
||||
|
||||
1. **Platform Selection**:
|
||||
- If `DAILY_MIGRATION_ENABLED=false` → Always use Whereby
|
||||
- If enabled and room ID in `DAILY_MIGRATION_ROOM_IDS` → Use Daily
|
||||
- Otherwise → Use `DEFAULT_VIDEO_PLATFORM`
|
||||
|
||||
2. **Meeting Creation Flow**:
|
||||
```python
|
||||
platform = get_platform_for_room(room.id)
|
||||
client = create_platform_client(platform)
|
||||
meeting_data = await client.create_meeting(...)
|
||||
```
|
||||
|
||||
3. **Testing Without Credentials**:
|
||||
- Use `platform="mock"` in tests
|
||||
- Mock client simulates all operations
|
||||
- No external API calls needed
|
||||
|
||||
## Next Steps
|
||||
|
||||
### When Daily.co Credentials Available:
|
||||
|
||||
1. **Set Environment Variables**:
|
||||
```bash
|
||||
DAILY_API_KEY=your-key
|
||||
DAILY_WEBHOOK_SECRET=your-secret
|
||||
DAILY_SUBDOMAIN=your-subdomain
|
||||
AWS_DAILY_S3_BUCKET=your-bucket
|
||||
AWS_DAILY_ROLE_ARN=your-role
|
||||
```
|
||||
|
||||
2. **Run Database Migration**:
|
||||
```bash
|
||||
cd server
|
||||
uv run alembic upgrade head
|
||||
```
|
||||
|
||||
3. **Test Platform Creation**:
|
||||
```python
|
||||
from reflector.video_platforms.factory import create_platform_client
|
||||
client = create_platform_client("daily")
|
||||
# Test operations...
|
||||
```
|
||||
|
||||
### 6. Testing & Validation (`server/tests/`)
|
||||
- **test_video_platforms.py**: Comprehensive unit tests for all platform clients
|
||||
- **test_daily_webhook.py**: Integration tests for Daily.co webhook handling
|
||||
- **utils/video_platform_test_utils.py**: Testing utilities and helpers
|
||||
- **Mock Testing**: Full test coverage using mock platform client
|
||||
- **Webhook Testing**: HMAC signature validation and event processing tests
|
||||
|
||||
### All Core Implementation Complete ✅
|
||||
|
||||
The Daily.co migration implementation is now complete and ready for testing with actual credentials:
|
||||
|
||||
- ✅ Platform abstraction layer with factory pattern
|
||||
- ✅ Database schema migration
|
||||
- ✅ Feature flag system for gradual rollout
|
||||
- ✅ Backend API integration with webhook handling
|
||||
- ✅ Frontend platform-agnostic components
|
||||
- ✅ Comprehensive test suite with >95% coverage
|
||||
|
||||
## Daily.co Webhook Integration
|
||||
|
||||
### Webhook Configuration
|
||||
|
||||
Daily.co webhooks are configured via API (no dashboard interface). Use the Daily.co REST API to set up webhook endpoints:
|
||||
|
||||
```bash
|
||||
# Configure webhook endpoint
|
||||
curl -X POST https://api.daily.co/v1/webhook-endpoints \
|
||||
-H "Authorization: Bearer ${DAILY_API_KEY}" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"url": "https://yourdomain.com/v1/daily_webhook",
|
||||
"events": [
|
||||
"participant.joined",
|
||||
"participant.left",
|
||||
"recording.started",
|
||||
"recording.ready-to-download",
|
||||
"recording.error"
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
### Webhook Event Examples
|
||||
|
||||
**Participant Joined:**
|
||||
```json
|
||||
{
|
||||
"type": "participant.joined",
|
||||
"id": "evt_participant_joined_1640995200",
|
||||
"ts": 1640995200000,
|
||||
"data": {
|
||||
"room": {"name": "test-room-123-abc"},
|
||||
"participant": {
|
||||
"id": "participant-123",
|
||||
"user_name": "John Doe",
|
||||
"session_id": "session-456"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Recording Ready:**
|
||||
```json
|
||||
{
|
||||
"type": "recording.ready-to-download",
|
||||
"id": "evt_recording_ready_1640995200",
|
||||
"ts": 1640995200000,
|
||||
"data": {
|
||||
"room": {"name": "test-room-123-abc"},
|
||||
"recording": {
|
||||
"id": "recording-789",
|
||||
"status": "finished",
|
||||
"download_url": "https://bucket.s3.amazonaws.com/recording.mp4",
|
||||
"start_time": "2025-01-01T10:00:00Z",
|
||||
"duration": 1800
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Webhook Signature Verification
|
||||
|
||||
Daily.co uses HMAC-SHA256 for webhook verification:
|
||||
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
def verify_daily_webhook(body: bytes, signature: str, secret: str) -> bool:
|
||||
expected = hmac.new(secret.encode(), body, hashlib.sha256).hexdigest()
|
||||
return hmac.compare_digest(expected, signature)
|
||||
```
|
||||
|
||||
Signature is sent in the `X-Daily-Signature` header.
|
||||
|
||||
### Recording Processing Flow
|
||||
|
||||
1. **Daily.co Meeting Ends** → Recording processed
|
||||
2. **Webhook Fired** → `recording.ready-to-download` event
|
||||
3. **Webhook Handler** → Extracts download URL and recording ID
|
||||
4. **Background Task** → `process_recording_from_url.delay()` queued
|
||||
5. **Download & Process** → Audio downloaded, validated, transcribed
|
||||
6. **ML Pipeline** → Same processing as Whereby recordings
|
||||
|
||||
```python
|
||||
# New Celery task for Daily.co recordings
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def process_recording_from_url(recording_url: str, meeting_id: str, recording_id: str):
|
||||
# Downloads from Daily.co URL → Creates transcript → Triggers ML pipeline
|
||||
# Identical processing to S3-based recordings after download
|
||||
```
|
||||
|
||||
## Testing the Current Implementation
|
||||
|
||||
### Running the Test Suite
|
||||
|
||||
```bash
|
||||
# Run all video platform tests
|
||||
uv run pytest tests/test_video_platforms.py -v
|
||||
|
||||
# Run webhook integration tests
|
||||
uv run pytest tests/test_daily_webhook.py -v
|
||||
|
||||
# Run with coverage
|
||||
uv run pytest tests/test_video_platforms.py tests/test_daily_webhook.py --cov=reflector.video_platforms --cov=reflector.views.daily
|
||||
```
|
||||
|
||||
### Manual Testing with Mock Platform
|
||||
|
||||
```python
|
||||
from reflector.video_platforms.factory import create_platform_client
|
||||
|
||||
# Create mock client (no credentials needed)
|
||||
client = create_platform_client("mock")
|
||||
|
||||
# Test operations
|
||||
from reflector.db.rooms import Room
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
mock_room = Room(id="test-123", name="Test Room", recording_type="cloud")
|
||||
meeting = await client.create_meeting(
|
||||
room_name_prefix="test",
|
||||
end_date=datetime.utcnow() + timedelta(hours=1),
|
||||
room=mock_room
|
||||
)
|
||||
print(f"Created meeting: {meeting.room_url}")
|
||||
```
|
||||
|
||||
### Testing Daily.co Recording Processing
|
||||
|
||||
```python
|
||||
# Test webhook payload processing
|
||||
from reflector.views.daily import daily_webhook
|
||||
from reflector.worker.process import process_recording_from_url
|
||||
|
||||
# Simulate webhook event
|
||||
event_data = {
|
||||
"type": "recording.ready-to-download",
|
||||
"id": "evt_123",
|
||||
"ts": 1640995200000,
|
||||
"data": {
|
||||
"room": {"name": "test-room-123"},
|
||||
"recording": {
|
||||
"id": "rec-456",
|
||||
"download_url": "https://daily.co/recordings/test.mp4"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Test processing task (when credentials available)
|
||||
await process_recording_from_url(
|
||||
recording_url="https://daily.co/recordings/test.mp4",
|
||||
meeting_id="meeting-123",
|
||||
recording_id="rec-456"
|
||||
)
|
||||
```
|
||||
|
||||
## Architecture Benefits
|
||||
|
||||
1. **Testable**: Mock implementation allows testing without external dependencies
|
||||
2. **Extensible**: Easy to add new platforms (Zoom, Teams, etc.)
|
||||
3. **Gradual Migration**: Feature flags enable room-by-room migration
|
||||
4. **Rollback Ready**: Can disable Daily.co instantly via feature flag
|
||||
287
PLAN.md
287
PLAN.md
@@ -1,287 +0,0 @@
|
||||
# Daily.co Migration Plan - Feature Parity Approach
|
||||
|
||||
## Overview
|
||||
|
||||
This plan outlines a systematic migration from Whereby to Daily.co, focusing on **1:1 feature parity** without introducing new capabilities. The goal is to improve code quality, developer experience, and platform reliability while maintaining the exact same user experience and processing pipeline.
|
||||
|
||||
## Migration Principles
|
||||
|
||||
1. **No Breaking Changes**: Existing recordings and workflows must continue to work
|
||||
2. **Feature Parity First**: Match current functionality exactly before adding improvements
|
||||
3. **Gradual Rollout**: Use feature flags to control migration per room/user
|
||||
4. **Minimal Risk**: Keep changes isolated and reversible
|
||||
|
||||
## Phase 1: Foundation
|
||||
|
||||
### 1.1 Environment Setup
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [ ] Create Daily.co account and obtain API credentials (PENDING - User to provide)
|
||||
- [x] Add environment variables to `.env` files:
|
||||
```bash
|
||||
DAILY_API_KEY=your-api-key
|
||||
DAILY_WEBHOOK_SECRET=your-webhook-secret
|
||||
DAILY_SUBDOMAIN=your-subdomain
|
||||
AWS_DAILY_ROLE_ARN=arn:aws:iam::xxx:role/daily-recording
|
||||
```
|
||||
- [ ] Set up Daily.co webhook endpoint in dashboard (PENDING - Credentials needed)
|
||||
- [ ] Configure S3 bucket permissions for Daily.co (PENDING - Credentials needed)
|
||||
|
||||
### 1.2 Database Migration
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [x] Create Alembic migration:
|
||||
```python
|
||||
# server/migrations/versions/20250801180012_add_platform_support.py
|
||||
def upgrade():
|
||||
op.add_column('rooms', sa.Column('platform', sa.String(), server_default='whereby'))
|
||||
op.add_column('meetings', sa.Column('platform', sa.String(), server_default='whereby'))
|
||||
```
|
||||
- [ ] Run migration on development database (USER TO RUN: `uv run alembic upgrade head`)
|
||||
- [x] Update models to include platform field
|
||||
|
||||
### 1.3 Feature Flag System
|
||||
**Owner**: Full-stack Developer
|
||||
|
||||
- [x] Implement feature flag in backend settings:
|
||||
```python
|
||||
DAILY_MIGRATION_ENABLED = env.bool("DAILY_MIGRATION_ENABLED", False)
|
||||
DAILY_MIGRATION_ROOM_IDS = env.list("DAILY_MIGRATION_ROOM_IDS", [])
|
||||
```
|
||||
- [x] Add platform selection logic to room creation
|
||||
- [ ] Create admin UI to toggle platform per room (FUTURE - Not in Phase 1)
|
||||
|
||||
### 1.4 Daily.co API Client
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [x] Create `server/reflector/video_platforms/` with core functionality:
|
||||
- `create_meeting()` - Match Whereby's meeting creation
|
||||
- `get_room_sessions()` - Room status checking
|
||||
- `delete_room()` - Cleanup functionality
|
||||
- [x] Add comprehensive error handling
|
||||
- [ ] Write unit tests for API client (Phase 4)
|
||||
|
||||
## Phase 2: Backend Integration
|
||||
|
||||
### 2.1 Webhook Handler
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [x] Create `server/reflector/views/daily.py` webhook endpoint
|
||||
- [x] Implement HMAC signature verification
|
||||
- [x] Handle events:
|
||||
- `participant.joined`
|
||||
- `participant.left`
|
||||
- `recording.started`
|
||||
- `recording.ready-to-download`
|
||||
- [x] Map Daily.co events to existing database updates
|
||||
- [x] Register webhook router in main app
|
||||
- [ ] Add webhook tests with mocked events (Phase 4)
|
||||
|
||||
### 2.2 Room Management Updates
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [x] Update `server/reflector/views/rooms.py`:
|
||||
```python
|
||||
# Uses platform abstraction layer
|
||||
platform = get_platform_for_room(room.id)
|
||||
client = create_platform_client(platform)
|
||||
meeting_data = await client.create_meeting(...)
|
||||
```
|
||||
- [x] Ensure room URLs are stored correctly
|
||||
- [x] Update meeting status checks to support both platforms
|
||||
- [ ] Test room creation/deletion for both platforms (Phase 4)
|
||||
|
||||
## Phase 3: Frontend Migration
|
||||
|
||||
### 3.1 Daily.co React Setup
|
||||
**Owner**: Frontend Developer
|
||||
|
||||
- [x] Install Daily.co packages:
|
||||
```bash
|
||||
yarn add @daily-co/daily-react @daily-co/daily-js
|
||||
```
|
||||
- [x] Create platform-agnostic components structure
|
||||
- [x] Set up TypeScript interfaces for meeting data
|
||||
|
||||
### 3.2 Room Component Refactor
|
||||
**Owner**: Frontend Developer
|
||||
|
||||
- [x] Create platform-agnostic room component:
|
||||
```tsx
|
||||
// www/app/[roomName]/components/RoomContainer.tsx
|
||||
export default function RoomContainer({ params }) {
|
||||
const platform = meeting.response.platform || "whereby";
|
||||
if (platform === 'daily') {
|
||||
return <DailyRoom meeting={meeting.response} />
|
||||
}
|
||||
return <WherebyRoom meeting={meeting.response} />
|
||||
}
|
||||
```
|
||||
- [x] Implement `DailyRoom` component with:
|
||||
- Call initialization using DailyIframe
|
||||
- Recording consent flow
|
||||
- Leave meeting handling
|
||||
- [x] Extract `WherebyRoom` component maintaining existing functionality
|
||||
- [x] Simplified focus management (Daily.co handles this internally)
|
||||
|
||||
### 3.3 Consent Dialog Integration
|
||||
**Owner**: Frontend Developer
|
||||
|
||||
- [x] Adapt consent dialog for Daily.co (uses same API endpoints)
|
||||
- [x] Ensure recording status is properly tracked
|
||||
- [x] Maintain consistent consent UI across both platforms
|
||||
- [ ] Test consent flow with Daily.co recordings (Phase 4)
|
||||
|
||||
## Phase 4: Testing & Validation
|
||||
|
||||
### 4.1 Unit Testing ✅
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [x] Create comprehensive unit tests for all platform clients
|
||||
- [x] Test mock platform client with full coverage
|
||||
- [x] Test platform factory and registry functionality
|
||||
- [x] Test webhook signature verification for all platforms
|
||||
- [x] Test meeting lifecycle operations (create, delete, sessions)
|
||||
|
||||
### 4.2 Integration Testing ✅
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [x] Create webhook integration tests with mocked HTTP client
|
||||
- [x] Test Daily.co webhook event processing
|
||||
- [x] Test participant join/leave event handling
|
||||
- [x] Test recording start/ready event processing
|
||||
- [x] Test webhook signature validation with HMAC
|
||||
- [x] Test error handling for malformed events
|
||||
|
||||
### 4.3 Test Utilities ✅
|
||||
**Owner**: Backend Developer
|
||||
|
||||
- [x] Create video platform test helper utilities
|
||||
- [x] Create webhook event generators for testing
|
||||
- [x] Create platform-agnostic test scenarios
|
||||
- [x] Implement mock data factories for consistent testing
|
||||
|
||||
### 4.4 Ready for Live Testing
|
||||
**Owner**: QA + Development Team
|
||||
|
||||
- [ ] Test complete flow with actual Daily.co credentials:
|
||||
- Room creation
|
||||
- Join meeting
|
||||
- Recording consent
|
||||
- Recording to S3
|
||||
- Webhook processing
|
||||
- Transcript generation
|
||||
- [ ] Verify S3 paths are compatible
|
||||
- [ ] Check recording format (MP4) matches
|
||||
- [ ] Ensure processing pipeline works unchanged
|
||||
|
||||
## Phase 5: Gradual Rollout
|
||||
|
||||
### 5.1 Internal Testing
|
||||
**Owner**: Development Team
|
||||
|
||||
- [ ] Enable Daily.co for internal test rooms
|
||||
- [ ] Monitor logs and error rates
|
||||
- [ ] Fix any issues discovered
|
||||
- [ ] Verify recordings process correctly
|
||||
|
||||
### 5.2 Beta Rollout
|
||||
**Owner**: DevOps + Product
|
||||
|
||||
- [ ] Select beta users/rooms
|
||||
- [ ] Enable Daily.co via feature flag
|
||||
- [ ] Monitor metrics:
|
||||
- Error rates
|
||||
- Recording success
|
||||
- User feedback
|
||||
- [ ] Create rollback plan
|
||||
|
||||
### 5.3 Full Migration
|
||||
**Owner**: DevOps + Product
|
||||
|
||||
- [ ] Gradually increase Daily.co usage
|
||||
- [ ] Monitor all metrics
|
||||
- [ ] Plan Whereby sunset timeline
|
||||
- [ ] Update documentation
|
||||
|
||||
## Success Criteria
|
||||
|
||||
### Technical Metrics
|
||||
- [x] Comprehensive test coverage (>95% for platform abstraction)
|
||||
- [x] Mock testing confirms API integration patterns work
|
||||
- [x] Webhook processing tested with realistic event payloads
|
||||
- [x] Error handling validated for all failure scenarios
|
||||
- [ ] Live API error rate < 0.1% (pending credentials)
|
||||
- [ ] Live webhook delivery rate > 99.9% (pending credentials)
|
||||
- [ ] Recording success rate matches Whereby (pending credentials)
|
||||
|
||||
### User Experience
|
||||
- [x] Platform-agnostic components maintain existing UX
|
||||
- [x] Recording consent flow preserved across platforms
|
||||
- [x] Participant tracking architecture unchanged
|
||||
- [ ] Live call quality validation (pending credentials)
|
||||
- [ ] Live user acceptance testing (pending credentials)
|
||||
|
||||
### Code Quality ✅
|
||||
- [x] Removed 70+ lines of focus management code in WherebyRoom extraction
|
||||
- [x] Improved TypeScript coverage with platform interfaces
|
||||
- [x] Better error handling with platform abstraction
|
||||
- [x] Cleaner React component structure with platform routing
|
||||
|
||||
## Rollback Plan
|
||||
|
||||
If issues arise during migration:
|
||||
|
||||
1. **Immediate**: Disable Daily.co feature flag
|
||||
2. **Short-term**: Revert frontend components via git
|
||||
3. **Database**: Platform field defaults to 'whereby'
|
||||
4. **Full rollback**: Remove Daily.co code (isolated in separate files)
|
||||
|
||||
## Post-Migration Opportunities
|
||||
|
||||
Once feature parity is achieved and stable:
|
||||
|
||||
1. **Raw-tracks recording** for better diarization
|
||||
2. **Real-time transcription** via Daily.co API
|
||||
3. **Advanced analytics** and participant insights
|
||||
4. **Custom UI** improvements
|
||||
5. **Performance optimizations**
|
||||
|
||||
## Phase Dependencies
|
||||
|
||||
- ✅ Backend Integration requires Foundation to be complete
|
||||
- ✅ Frontend Migration can start after Backend API client is ready
|
||||
- ✅ Testing requires both Backend and Frontend to be complete
|
||||
- ⏳ Rollout begins after successful testing (pending Daily.co credentials)
|
||||
|
||||
## Risk Matrix
|
||||
|
||||
| Risk | Probability | Impact | Mitigation |
|
||||
|------|-------------|---------|------------|
|
||||
| API differences | Low | Medium | Abstraction layer |
|
||||
| Recording format issues | Low | High | Extensive testing |
|
||||
| User confusion | Low | Low | Gradual rollout |
|
||||
| Performance degradation | Low | Medium | Monitoring |
|
||||
|
||||
## Communication Plan
|
||||
|
||||
1. **Week 1**: Announce migration plan to team
|
||||
2. **Week 2**: Update on development progress
|
||||
3. **Beta Launch**: Email to beta users
|
||||
4. **Full Launch**: User notification (if UI changes)
|
||||
5. **Post-Launch**: Success metrics report
|
||||
|
||||
---
|
||||
|
||||
## Implementation Status: COMPLETE ✅
|
||||
|
||||
All development phases are complete and ready for live testing:
|
||||
|
||||
✅ **Phase 1**: Foundation (database, config, feature flags)
|
||||
✅ **Phase 2**: Backend Integration (API clients, webhooks)
|
||||
✅ **Phase 3**: Frontend Migration (platform components)
|
||||
✅ **Phase 4**: Testing & Validation (comprehensive test suite)
|
||||
|
||||
**Next Steps**: Obtain Daily.co credentials and run live integration testing before gradual rollout.
|
||||
|
||||
This implementation prioritizes stability and risk mitigation through a phased approach. The modular design allows for easy adjustments based on live testing findings.
|
||||
87
README.md
87
README.md
@@ -1,43 +1,60 @@
|
||||
<div align="center">
|
||||
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||
|
||||
# Reflector
|
||||
|
||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
||||
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
</div>
|
||||
|
||||
## Screenshots
|
||||
</div>
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
||||
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
||||
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
||||
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||
</a>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## What is Reflector?
|
||||
|
||||
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||
|
||||
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||
|
||||
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||
|
||||
## Background
|
||||
|
||||
The project architecture consists of three primary components:
|
||||
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||
|
||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
||||
It also uses authentik for authentication if activated.
|
||||
|
||||
## Contribution Guidelines
|
||||
|
||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
||||
|
||||
## Installation
|
||||
|
||||
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||
|
||||
### Frontend
|
||||
|
||||
Start with `cd www`.
|
||||
@@ -79,17 +98,16 @@ Start with `cd www`.
|
||||
**Installation**
|
||||
|
||||
```bash
|
||||
yarn install
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
pnpm install
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
Then, fill in the environment variables in `.env` and the configuration in `config.ts` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
Then, fill in the environment variables in `.env` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
|
||||
**Run in development mode**
|
||||
|
||||
```bash
|
||||
yarn dev
|
||||
pnpm dev
|
||||
```
|
||||
|
||||
Then (after completing server setup and starting it) open [http://localhost:3000](http://localhost:3000) to view it in the browser.
|
||||
@@ -99,7 +117,7 @@ Then (after completing server setup and starting it) open [http://localhost:3000
|
||||
To generate the TypeScript files from the openapi.json file, make sure the python server is running, then run:
|
||||
|
||||
```bash
|
||||
yarn openapi
|
||||
pnpm openapi
|
||||
```
|
||||
|
||||
### Backend
|
||||
@@ -149,3 +167,34 @@ You can manually process an audio file by calling the process tool:
|
||||
```bash
|
||||
uv run python -m reflector.tools.process path/to/audio.wav
|
||||
```
|
||||
|
||||
|
||||
## Feature Flags
|
||||
|
||||
Reflector uses environment variable-based feature flags to control application functionality. These flags allow you to enable or disable features without code changes.
|
||||
|
||||
### Available Feature Flags
|
||||
|
||||
| Feature Flag | Environment Variable |
|
||||
|-------------|---------------------|
|
||||
| `requireLogin` | `NEXT_PUBLIC_FEATURE_REQUIRE_LOGIN` |
|
||||
| `privacy` | `NEXT_PUBLIC_FEATURE_PRIVACY` |
|
||||
| `browse` | `NEXT_PUBLIC_FEATURE_BROWSE` |
|
||||
| `sendToZulip` | `NEXT_PUBLIC_FEATURE_SEND_TO_ZULIP` |
|
||||
| `rooms` | `NEXT_PUBLIC_FEATURE_ROOMS` |
|
||||
|
||||
### Setting Feature Flags
|
||||
|
||||
Feature flags are controlled via environment variables using the pattern `NEXT_PUBLIC_FEATURE_{FEATURE_NAME}` where `{FEATURE_NAME}` is the SCREAMING_SNAKE_CASE version of the feature name.
|
||||
|
||||
**Examples:**
|
||||
```bash
|
||||
# Enable user authentication requirement
|
||||
NEXT_PUBLIC_FEATURE_REQUIRE_LOGIN=true
|
||||
|
||||
# Disable browse functionality
|
||||
NEXT_PUBLIC_FEATURE_BROWSE=false
|
||||
|
||||
# Enable Zulip integration
|
||||
NEXT_PUBLIC_FEATURE_SEND_TO_ZULIP=true
|
||||
```
|
||||
|
||||
@@ -1,586 +0,0 @@
|
||||
# Whereby to Daily.co Migration Feasibility Analysis
|
||||
|
||||
## Executive Summary
|
||||
|
||||
After analysis of the current Whereby integration and Daily.co's capabilities, migrating to Daily.co is technically feasible. The migration can be done in phases:
|
||||
|
||||
1. **Phase 1**: Feature parity with current implementation (standard cloud recording)
|
||||
2. **Phase 2**: Enhanced capabilities with raw-tracks recording for improved diarization
|
||||
|
||||
### Current Implementation Analysis
|
||||
|
||||
Based on code review:
|
||||
- **Webhook handling**: The current webhook handler (`server/reflector/views/whereby.py`) only tracks `num_clients`, not individual participants
|
||||
- **Focus management**: The frontend has 70+ lines managing focus between Whereby embed and consent dialog
|
||||
- **Participant tracking**: No participant names or IDs are captured in the current implementation
|
||||
- **Recording type**: Cloud recording to S3 in MP4 format with mixed audio
|
||||
|
||||
### Migration Approach
|
||||
|
||||
**Phase 1**: 1:1 feature replacement maintaining current functionality:
|
||||
- Standard cloud recording (same as current Whereby implementation)
|
||||
- Same recording workflow: Video platform → S3 → Reflector processing
|
||||
- No changes to existing diarization or transcription pipeline
|
||||
|
||||
**Phase 2**: Enhanced capabilities (future implementation):
|
||||
- Raw-tracks recording for speaker-separated audio
|
||||
- Improved diarization with participant-to-audio mapping
|
||||
- Per-participant transcription accuracy
|
||||
|
||||
## Current Whereby Integration Analysis
|
||||
|
||||
### Backend Integration
|
||||
|
||||
#### Core API Module (`server/reflector/whereby.py`)
|
||||
- **Meeting Creation**: Creates rooms with S3 recording configuration
|
||||
- **Session Monitoring**: Tracks meeting status via room sessions API
|
||||
- **Logo Upload**: Handles branding for meetings
|
||||
- **Key Functions**:
|
||||
```python
|
||||
create_meeting(room_name, logo_s3_url) -> dict
|
||||
monitor_room_session(meeting_link) -> dict
|
||||
upload_logo(file_stream, content_type) -> str
|
||||
```
|
||||
|
||||
#### Webhook Handler (`server/reflector/views/whereby.py`)
|
||||
- **Endpoint**: `/v1/whereby_webhook`
|
||||
- **Security**: HMAC signature validation
|
||||
- **Events Handled**:
|
||||
- `room.participant.joined`
|
||||
- `room.participant.left`
|
||||
- **Pain Point**: Delay between actual join/leave and webhook delivery
|
||||
|
||||
#### Room Management (`server/reflector/views/rooms.py`)
|
||||
- Creates meetings via Whereby API
|
||||
- Stores meeting data in database
|
||||
- Manages recording lifecycle
|
||||
|
||||
### Frontend Integration
|
||||
|
||||
#### Main Room Component (`www/app/[roomName]/page.tsx`)
|
||||
- Uses `@whereby.com/browser-sdk` (v3.3.4)
|
||||
- Implements custom `<whereby-embed>` element
|
||||
- Handles recording consent
|
||||
- Focus management for accessibility
|
||||
|
||||
#### Configuration
|
||||
- Environment Variables:
|
||||
- `WHEREBY_API_URL`, `WHEREBY_API_KEY`, `WHEREBY_WEBHOOK_SECRET`
|
||||
- AWS S3 credentials for recordings
|
||||
- Recording workflow: Whereby → S3 → Reflector processing pipeline
|
||||
|
||||
## Daily.co Capabilities Analysis
|
||||
|
||||
### REST API Features
|
||||
|
||||
#### Room Management
|
||||
```
|
||||
POST /rooms - Create room with configuration
|
||||
GET /rooms/:name/presence - Real-time participant data
|
||||
POST /rooms/:name/recordings/start - Start recording
|
||||
```
|
||||
|
||||
#### Recording Options
|
||||
```json
|
||||
{
|
||||
"enable_recording": "raw-tracks" // Key feature for diarization
|
||||
}
|
||||
```
|
||||
|
||||
#### Webhook Events
|
||||
- `participant.joined` / `participant.left`
|
||||
- `waiting-participant.joined` / `waiting-participant.left`
|
||||
- `recording.started` / `recording.ready-to-download`
|
||||
- `recording.error`
|
||||
|
||||
### React SDK (@daily-co/daily-react)
|
||||
|
||||
#### Modern Hook-based Architecture
|
||||
```jsx
|
||||
// Participant tracking
|
||||
const participantIds = useParticipantIds({ filter: 'remote' });
|
||||
const [username, videoState] = useParticipantProperty(id, ['user_name', 'tracks.video.state']);
|
||||
|
||||
// Recording management
|
||||
const { isRecording, startRecording, stopRecording } = useRecording();
|
||||
|
||||
// Real-time participant data
|
||||
const participants = useParticipants();
|
||||
```
|
||||
|
||||
## Feature Comparison
|
||||
|
||||
| Feature | Whereby | Daily.co |
|
||||
|---------|---------|----------|
|
||||
| **Room Creation** | REST API | REST API |
|
||||
| **Recording Types** | Cloud (MP4) | Cloud (MP4), Local, Raw-tracks |
|
||||
| **S3 Integration** | Direct upload | Direct upload with IAM roles |
|
||||
| **Frontend Integration** | Custom element | React hooks or iframe |
|
||||
| **Webhooks** | HMAC verified | HMAC verified |
|
||||
| **Participant Data** | Via webhooks | Via webhooks + Presence API |
|
||||
| **Recording Trigger** | Automatic/manual | Automatic/manual |
|
||||
|
||||
## Migration Plan
|
||||
|
||||
### Phase 1: Backend API Client
|
||||
|
||||
#### 1.1 Create Daily.co API Client (`server/reflector/daily.py`)
|
||||
|
||||
```python
|
||||
from datetime import datetime
|
||||
import httpx
|
||||
from reflector.db.rooms import Room
|
||||
from reflector.settings import settings
|
||||
|
||||
class DailyClient:
|
||||
def __init__(self):
|
||||
self.base_url = "https://api.daily.co/v1"
|
||||
self.headers = {
|
||||
"Authorization": f"Bearer {settings.DAILY_API_KEY}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
self.timeout = 10
|
||||
|
||||
async def create_meeting(self, room_name_prefix: str, end_date: datetime, room: Room) -> dict:
|
||||
"""Create a Daily.co room matching current Whereby functionality."""
|
||||
data = {
|
||||
"name": f"{room_name_prefix}-{datetime.now().strftime('%Y%m%d%H%M%S')}",
|
||||
"privacy": "private" if room.is_locked else "public",
|
||||
"properties": {
|
||||
"enable_recording": "raw-tracks", #"cloud",
|
||||
"enable_chat": True,
|
||||
"enable_screenshare": True,
|
||||
"start_video_off": False,
|
||||
"start_audio_off": False,
|
||||
"exp": int(end_date.timestamp()),
|
||||
"enable_recording_ui": False, # We handle consent ourselves
|
||||
}
|
||||
}
|
||||
|
||||
# if room.recording_type == "cloud":
|
||||
data["properties"]["recording_bucket"] = {
|
||||
"bucket_name": settings.AWS_S3_BUCKET,
|
||||
"bucket_region": settings.AWS_REGION,
|
||||
"assume_role_arn": settings.AWS_DAILY_ROLE_ARN,
|
||||
"path": f"recordings/{data['name']}"
|
||||
}
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/rooms",
|
||||
headers=self.headers,
|
||||
json=data,
|
||||
timeout=self.timeout
|
||||
)
|
||||
response.raise_for_status()
|
||||
room_data = response.json()
|
||||
|
||||
# Return in Whereby-compatible format
|
||||
return {
|
||||
"roomUrl": room_data["url"],
|
||||
"hostRoomUrl": room_data["url"] + "?t=" + room_data["config"]["token"],
|
||||
"roomName": room_data["name"],
|
||||
"meetingId": room_data["id"]
|
||||
}
|
||||
|
||||
async def get_room_sessions(self, room_name: str) -> dict:
|
||||
"""Get room session data (similar to Whereby's insights)."""
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/rooms/{room_name}",
|
||||
headers=self.headers,
|
||||
timeout=self.timeout
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
```
|
||||
|
||||
#### 1.2 Update Webhook Handler (`server/reflector/views/daily.py`)
|
||||
|
||||
```python
|
||||
import hmac
|
||||
import json
|
||||
from datetime import datetime
|
||||
from hashlib import sha256
|
||||
from fastapi import APIRouter, HTTPException, Request
|
||||
from pydantic import BaseModel
|
||||
from reflector.db.meetings import meetings_controller
|
||||
from reflector.settings import settings
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
class DailyWebhookEvent(BaseModel):
|
||||
type: str
|
||||
id: str
|
||||
ts: int
|
||||
data: dict
|
||||
|
||||
def verify_daily_webhook(body: bytes, signature: str) -> bool:
|
||||
"""Verify Daily.co webhook signature."""
|
||||
expected = hmac.new(
|
||||
settings.DAILY_WEBHOOK_SECRET.encode(),
|
||||
body,
|
||||
sha256
|
||||
).hexdigest()
|
||||
return hmac.compare_digest(expected, signature)
|
||||
|
||||
@router.post("/daily")
|
||||
async def daily_webhook(event: DailyWebhookEvent, request: Request):
|
||||
# Verify webhook signature
|
||||
body = await request.body()
|
||||
signature = request.headers.get("X-Daily-Signature", "")
|
||||
|
||||
if not verify_daily_webhook(body, signature):
|
||||
raise HTTPException(status_code=401, detail="Invalid webhook signature")
|
||||
|
||||
# Handle participant events
|
||||
if event.type == "participant.joined":
|
||||
meeting = await meetings_controller.get_by_room_name(event.data["room_name"])
|
||||
if meeting:
|
||||
# Update participant info immediately
|
||||
await meetings_controller.add_participant(
|
||||
meeting.id,
|
||||
participant_id=event.data["participant"]["user_id"],
|
||||
name=event.data["participant"]["user_name"],
|
||||
joined_at=datetime.fromtimestamp(event.ts / 1000)
|
||||
)
|
||||
|
||||
elif event.type == "participant.left":
|
||||
meeting = await meetings_controller.get_by_room_name(event.data["room_name"])
|
||||
if meeting:
|
||||
await meetings_controller.remove_participant(
|
||||
meeting.id,
|
||||
participant_id=event.data["participant"]["user_id"],
|
||||
left_at=datetime.fromtimestamp(event.ts / 1000)
|
||||
)
|
||||
|
||||
elif event.type == "recording.ready-to-download":
|
||||
# Process cloud recording (same as Whereby)
|
||||
meeting = await meetings_controller.get_by_room_name(event.data["room_name"])
|
||||
if meeting:
|
||||
# Queue standard processing task
|
||||
from reflector.worker.tasks import process_recording
|
||||
process_recording.delay(
|
||||
meeting_id=meeting.id,
|
||||
recording_url=event.data["download_link"],
|
||||
recording_id=event.data["recording_id"]
|
||||
)
|
||||
|
||||
return {"status": "ok"}
|
||||
```
|
||||
|
||||
### Phase 2: Frontend Components
|
||||
|
||||
#### 2.1 Replace Whereby SDK with Daily React
|
||||
|
||||
First, update dependencies:
|
||||
```bash
|
||||
# Remove Whereby
|
||||
yarn remove @whereby.com/browser-sdk
|
||||
|
||||
# Add Daily.co
|
||||
yarn add @daily-co/daily-react @daily-co/daily-js
|
||||
```
|
||||
|
||||
#### 2.2 New Room Component (`www/app/[roomName]/page.tsx`)
|
||||
|
||||
```tsx
|
||||
"use client";
|
||||
|
||||
import { useCallback, useEffect, useRef, useState } from "react";
|
||||
import {
|
||||
DailyProvider,
|
||||
useDaily,
|
||||
useParticipantIds,
|
||||
useRecording,
|
||||
useDailyEvent,
|
||||
useLocalParticipant,
|
||||
} from "@daily-co/daily-react";
|
||||
import { Box, Button, Text, VStack, HStack, Spinner } from "@chakra-ui/react";
|
||||
import { toaster } from "../components/ui/toaster";
|
||||
import useRoomMeeting from "./useRoomMeeting";
|
||||
import { useRouter } from "next/navigation";
|
||||
import { notFound } from "next/navigation";
|
||||
import useSessionStatus from "../lib/useSessionStatus";
|
||||
import { useRecordingConsent } from "../recordingConsentContext";
|
||||
import DailyIframe from "@daily-co/daily-js";
|
||||
|
||||
// Daily.co Call Interface Component
|
||||
function CallInterface() {
|
||||
const daily = useDaily();
|
||||
const { isRecording, startRecording, stopRecording } = useRecording();
|
||||
const localParticipant = useLocalParticipant();
|
||||
const participantIds = useParticipantIds({ filter: "remote" });
|
||||
|
||||
// Real-time participant tracking
|
||||
useDailyEvent("participant-joined", useCallback((event) => {
|
||||
console.log(`${event.participant.user_name} joined the call`);
|
||||
// No need for webhooks - we have immediate access!
|
||||
}, []));
|
||||
|
||||
useDailyEvent("participant-left", useCallback((event) => {
|
||||
console.log(`${event.participant.user_name} left the call`);
|
||||
}, []));
|
||||
|
||||
return (
|
||||
<Box position="relative" width="100vw" height="100vh">
|
||||
{/* Daily.co automatically handles the video/audio UI */}
|
||||
<Box
|
||||
as="iframe"
|
||||
src={daily?.iframe()?.src}
|
||||
width="100%"
|
||||
height="100%"
|
||||
allow="camera; microphone; fullscreen; speaker; display-capture"
|
||||
style={{ border: "none" }}
|
||||
/>
|
||||
|
||||
{/* Recording status indicator */}
|
||||
{isRecording && (
|
||||
<Box
|
||||
position="absolute"
|
||||
top={4}
|
||||
right={4}
|
||||
bg="red.500"
|
||||
color="white"
|
||||
px={3}
|
||||
py={1}
|
||||
borderRadius="md"
|
||||
fontSize="sm"
|
||||
>
|
||||
Recording
|
||||
</Box>
|
||||
)}
|
||||
|
||||
{/* Participant count with real-time data */}
|
||||
<Box position="absolute" bottom={4} left={4} bg="gray.800" color="white" px={3} py={1} borderRadius="md">
|
||||
Participants: {participantIds.length + 1}
|
||||
</Box>
|
||||
</Box>
|
||||
);
|
||||
}
|
||||
|
||||
// Main Room Component with Daily.co Integration
|
||||
export default function Room({ params }: { params: { roomName: string } }) {
|
||||
const roomName = params.roomName;
|
||||
const meeting = useRoomMeeting(roomName);
|
||||
const router = useRouter();
|
||||
const { isLoading, isAuthenticated } = useSessionStatus();
|
||||
const [dailyUrl, setDailyUrl] = useState<string | null>(null);
|
||||
const [callFrame, setCallFrame] = useState<DailyIframe | null>(null);
|
||||
|
||||
// Initialize Daily.co call
|
||||
useEffect(() => {
|
||||
if (!meeting?.response?.room_url) return;
|
||||
|
||||
const frame = DailyIframe.createCallObject({
|
||||
showLeaveButton: true,
|
||||
showFullscreenButton: true,
|
||||
});
|
||||
|
||||
frame.on("left-meeting", () => {
|
||||
router.push("/browse");
|
||||
});
|
||||
|
||||
setCallFrame(frame);
|
||||
setDailyUrl(meeting.response.room_url);
|
||||
|
||||
return () => {
|
||||
frame.destroy();
|
||||
};
|
||||
}, [meeting?.response?.room_url, router]);
|
||||
|
||||
if (isLoading) {
|
||||
return (
|
||||
<Box display="flex" justifyContent="center" alignItems="center" height="100vh">
|
||||
<Spinner color="blue.500" size="xl" />
|
||||
</Box>
|
||||
);
|
||||
}
|
||||
|
||||
if (!dailyUrl || !callFrame) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<DailyProvider callObject={callFrame} url={dailyUrl}>
|
||||
<CallInterface />
|
||||
<ConsentDialog meetingId={meeting?.response?.id} />
|
||||
</DailyProvider>
|
||||
);
|
||||
}
|
||||
|
||||
### Phase 3: Testing & Validation
|
||||
|
||||
For Phase 1 (feature parity), the existing processing pipeline remains unchanged:
|
||||
|
||||
1. Daily.co records meeting to S3 (same as Whereby)
|
||||
2. Webhook notifies when recording is ready
|
||||
3. Existing pipeline downloads and processes the MP4 file
|
||||
4. Current diarization and transcription tools continue to work
|
||||
|
||||
Key validation points:
|
||||
- Recording format matches (MP4 with mixed audio)
|
||||
- S3 paths are compatible
|
||||
- Processing pipeline requires no changes
|
||||
- Transcript quality remains the same
|
||||
|
||||
## Future Enhancement: Raw-Tracks Recording (Phase 2)
|
||||
|
||||
### Raw-Tracks Processing for Enhanced Diarization
|
||||
|
||||
Daily.co's raw-tracks recording provides individual audio streams per participant, enabling:
|
||||
|
||||
```python
|
||||
@shared_task
|
||||
def process_daily_raw_tracks(meeting_id: str, recording_id: str, tracks: list):
|
||||
"""Process Daily.co raw-tracks with perfect speaker attribution."""
|
||||
|
||||
for track in tracks:
|
||||
participant_id = track["participant_id"]
|
||||
participant_name = track["participant_name"]
|
||||
track_url = track["download_url"]
|
||||
|
||||
# Download individual participant audio
|
||||
response = download_track(track_url)
|
||||
|
||||
# Process with known speaker identity
|
||||
transcript = transcribe_audio(
|
||||
audio_data=response.content,
|
||||
speaker_id=participant_id,
|
||||
speaker_name=participant_name
|
||||
)
|
||||
|
||||
# Store with accurate speaker mapping
|
||||
save_transcript_segment(
|
||||
meeting_id=meeting_id,
|
||||
speaker_id=participant_id,
|
||||
text=transcript.text,
|
||||
timestamps=transcript.timestamps
|
||||
)
|
||||
```
|
||||
|
||||
### Benefits of Raw-Tracks (Future)
|
||||
|
||||
1. **Deterministic Speaker Attribution**: Each audio track is already speaker-separated
|
||||
2. **Improved Transcription Accuracy**: Clean audio without cross-talk
|
||||
3. **Parallel Processing**: Process multiple speakers simultaneously
|
||||
4. **Better Metrics**: Accurate talk-time per participant
|
||||
|
||||
### Phase 4: Database & Configuration
|
||||
|
||||
#### 4.1 Environment Variable Updates
|
||||
|
||||
Update `.env` files:
|
||||
|
||||
```bash
|
||||
# Remove Whereby variables
|
||||
# WHEREBY_API_URL=https://api.whereby.dev/v1
|
||||
# WHEREBY_API_KEY=your-whereby-key
|
||||
# WHEREBY_WEBHOOK_SECRET=your-whereby-secret
|
||||
# AWS_WHEREBY_S3_BUCKET=whereby-recordings
|
||||
# AWS_WHEREBY_ACCESS_KEY_ID=whereby-key
|
||||
# AWS_WHEREBY_ACCESS_KEY_SECRET=whereby-secret
|
||||
|
||||
# Add Daily.co variables
|
||||
DAILY_API_KEY=your-daily-api-key
|
||||
DAILY_WEBHOOK_SECRET=your-daily-webhook-secret
|
||||
AWS_DAILY_S3_BUCKET=daily-recordings
|
||||
AWS_DAILY_ROLE_ARN=arn:aws:iam::123456789:role/daily-recording-role
|
||||
AWS_REGION=us-west-2
|
||||
```
|
||||
|
||||
#### 4.2 Database Migration
|
||||
|
||||
```sql
|
||||
-- Alembic migration to support Daily.co
|
||||
-- server/alembic/versions/xxx_migrate_to_daily.py
|
||||
|
||||
def upgrade():
|
||||
# Add platform field to support gradual migration
|
||||
op.add_column('rooms', sa.Column('platform', sa.String(), server_default='whereby'))
|
||||
op.add_column('meetings', sa.Column('platform', sa.String(), server_default='whereby'))
|
||||
|
||||
# No other schema changes needed for feature parity
|
||||
|
||||
def downgrade():
|
||||
op.drop_column('meetings', 'platform')
|
||||
op.drop_column('rooms', 'platform')
|
||||
```
|
||||
|
||||
#### 4.3 Settings Update (`server/reflector/settings.py`)
|
||||
|
||||
```python
|
||||
class Settings(BaseSettings):
|
||||
# Remove Whereby settings
|
||||
# WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
|
||||
# WHEREBY_API_KEY: str
|
||||
# WHEREBY_WEBHOOK_SECRET: str
|
||||
# AWS_WHEREBY_S3_BUCKET: str
|
||||
# AWS_WHEREBY_ACCESS_KEY_ID: str
|
||||
# AWS_WHEREBY_ACCESS_KEY_SECRET: str
|
||||
|
||||
# Add Daily.co settings
|
||||
DAILY_API_KEY: str
|
||||
DAILY_WEBHOOK_SECRET: str
|
||||
AWS_DAILY_S3_BUCKET: str
|
||||
AWS_DAILY_ROLE_ARN: str
|
||||
AWS_REGION: str = "us-west-2"
|
||||
|
||||
# Daily.co room URL pattern
|
||||
DAILY_ROOM_URL_PATTERN: str = "https://{subdomain}.daily.co/{room_name}"
|
||||
DAILY_SUBDOMAIN: str = "reflector" # Your Daily.co subdomain
|
||||
```
|
||||
|
||||
## Technical Differences
|
||||
|
||||
### Phase 1 Implementation
|
||||
1. **Frontend**: Replace `<whereby-embed>` custom element with Daily.co React components or iframe
|
||||
2. **Backend**: Create Daily.co API client matching Whereby's functionality
|
||||
3. **Webhooks**: Map Daily.co events to existing database operations
|
||||
4. **Recording**: Maintain same MP4 format and S3 storage
|
||||
|
||||
### Phase 2 Capabilities (Future)
|
||||
1. **Raw-tracks recording**: Individual audio streams per participant
|
||||
2. **Presence API**: Real-time participant data without webhook delays
|
||||
3. **Transcription API**: Built-in transcription services
|
||||
4. **Advanced recording options**: Multiple formats and layouts
|
||||
|
||||
## Risks and Mitigation
|
||||
|
||||
### Risk 1: API Differences
|
||||
- **Mitigation**: Create abstraction layer to minimize changes
|
||||
- Comprehensive testing of all endpoints
|
||||
|
||||
### Risk 2: Recording Format Changes
|
||||
- **Mitigation**: Build adapter for raw-tracks processing
|
||||
- Maintain backward compatibility during transition
|
||||
|
||||
### Risk 3: User Experience Changes
|
||||
- **Mitigation**: A/B testing with gradual rollout
|
||||
- Feature parity checklist before full migration
|
||||
|
||||
## Recommendation
|
||||
|
||||
Migration to Daily.co is technically feasible and can be implemented in phases:
|
||||
|
||||
### Phase 1: Feature Parity
|
||||
- Replace Whereby with Daily.co maintaining exact same functionality
|
||||
- Use standard cloud recording (MP4 to S3)
|
||||
- No changes to processing pipeline
|
||||
|
||||
### Phase 2: Enhanced Capabilities (Future)
|
||||
- Enable raw-tracks recording for improved diarization
|
||||
- Implement participant-level audio processing
|
||||
- Add real-time features using Presence API
|
||||
|
||||
## Next Steps
|
||||
|
||||
1. Set up Daily.co account and obtain API credentials
|
||||
2. Implement feature flag system for gradual migration
|
||||
3. Create Daily.co API client matching Whereby functionality
|
||||
4. Update frontend to support both platforms
|
||||
5. Test thoroughly before rollout
|
||||
|
||||
---
|
||||
|
||||
*Analysis based on current codebase review and API documentation comparison.*
|
||||
@@ -6,6 +6,7 @@ services:
|
||||
- 1250:1250
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -16,6 +17,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -26,6 +28,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -39,11 +42,12 @@ services:
|
||||
image: node:18
|
||||
ports:
|
||||
- "3000:3000"
|
||||
command: sh -c "yarn install && yarn dev"
|
||||
command: sh -c "corepack enable && pnpm install && pnpm dev"
|
||||
restart: unless-stopped
|
||||
working_dir: /app
|
||||
volumes:
|
||||
- ./www:/app/
|
||||
- /app/node_modules
|
||||
env_file:
|
||||
- ./www/.env.local
|
||||
|
||||
|
||||
33
gpu/modal_deployments/.gitignore
vendored
Normal file
33
gpu/modal_deployments/.gitignore
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
.env.*
|
||||
*.env
|
||||
*.secret
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Modal local state (if any)
|
||||
modal_mounts/
|
||||
.modal_cache/
|
||||
171
gpu/modal_deployments/README.md
Normal file
171
gpu/modal_deployments/README.md
Normal file
@@ -0,0 +1,171 @@
|
||||
# Reflector GPU implementation - Transcription and LLM
|
||||
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_diarizer.py` - Diarization API
|
||||
- `reflector_transcriber.py` - Transcription API (Whisper)
|
||||
- `reflector_transcriber_parakeet.py` - Transcription API (NVIDIA Parakeet)
|
||||
- `reflector_translator.py` - Translation API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
Create a modal secret, and name it `reflector-gpu`.
|
||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||
|
||||
The deployment is done using [Modal.com](https://modal.com) service.
|
||||
|
||||
```
|
||||
$ modal deploy reflector_transcriber.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||
|
||||
$ modal deploy reflector_transcriber_parakeet.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-parakeet-web.modal.run
|
||||
|
||||
$ modal deploy reflector_llm.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||
```
|
||||
|
||||
Then in your reflector api configuration `.env`, you can set these keys:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
||||
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
TRANSLATION_BACKEND=modal
|
||||
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
||||
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
```
|
||||
|
||||
## API
|
||||
|
||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||
|
||||
```
|
||||
Authorization: bearer <REFLECTOR_APIKEY>
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
`POST /llm`
|
||||
|
||||
**request**
|
||||
```
|
||||
{
|
||||
"prompt": "xxx"
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx completed"
|
||||
}
|
||||
```
|
||||
|
||||
### Transcription
|
||||
|
||||
#### Parakeet Transcriber (`reflector_transcriber_parakeet.py`)
|
||||
|
||||
NVIDIA Parakeet is a state-of-the-art ASR model optimized for real-time transcription with superior word-level timestamps.
|
||||
|
||||
**GPU Configuration:**
|
||||
- **A10G GPU** - Used for `/v1/audio/transcriptions` endpoint (small files, live transcription)
|
||||
- Higher concurrency (max_inputs=10)
|
||||
- Optimized for multiple small audio files
|
||||
- Supports batch processing for efficiency
|
||||
|
||||
- **L40S GPU** - Used for `/v1/audio/transcriptions-from-url` endpoint (large files)
|
||||
- Lower concurrency but more powerful processing
|
||||
- Optimized for single large audio files
|
||||
- VAD-based chunking for long-form audio
|
||||
|
||||
##### `/v1/audio/transcriptions` - Small file transcription
|
||||
|
||||
**request** (multipart/form-data)
|
||||
- `file` or `files[]` - audio file(s) to transcribe
|
||||
- `model` - model name (default: `nvidia/parakeet-tdt-0.6b-v2`)
|
||||
- `language` - language code (default: `en`)
|
||||
- `batch` - whether to use batch processing for multiple files (default: `true`)
|
||||
|
||||
**response**
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||
{"word": "world", "start": 0.5, "end": 1.0}
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
For multiple files with batch=true:
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{
|
||||
"filename": "audio1.mp3",
|
||||
"text": "transcribed text",
|
||||
"words": [...]
|
||||
},
|
||||
{
|
||||
"filename": "audio2.mp3",
|
||||
"text": "transcribed text",
|
||||
"words": [...]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
##### `/v1/audio/transcriptions-from-url` - Large file transcription
|
||||
|
||||
**request** (application/json)
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text from large file",
|
||||
"words": [
|
||||
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||
{"word": "world", "start": 0.5, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**Supported file types:** mp3, mp4, mpeg, mpga, m4a, wav, webm
|
||||
|
||||
#### Whisper Transcriber (`reflector_transcriber.py`)
|
||||
|
||||
`POST /transcribe`
|
||||
|
||||
**request** (multipart/form-data)
|
||||
|
||||
- `file` - audio file
|
||||
- `language` - language code (e.g. `en`)
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx",
|
||||
"words": [
|
||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
@@ -0,0 +1,253 @@
|
||||
"""
|
||||
Reflector GPU backend - diarizer
|
||||
===================================
|
||||
"""
|
||||
|
||||
import os
|
||||
import uuid
|
||||
from typing import Mapping, NewType
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||
MODEL_DIR = "/root/diarization_models"
|
||||
UPLOADS_PATH = "/uploads"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
DiarizerUniqFilename = NewType("DiarizerUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App(name="reflector-diarizer")
|
||||
|
||||
# Volume for temporary file uploads
|
||||
upload_volume = modal.Volume.from_name("diarizer-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[DiarizerUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
print(f"Checking audio file at: {audio_file_url}")
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
print(f"Downloading audio file from: {audio_file_url}")
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
|
||||
if response.status_code != 200:
|
||||
print(f"Download failed with status {response.status_code}: {response.text}")
|
||||
raise HTTPException(
|
||||
status_code=response.status_code,
|
||||
detail=f"Failed to download audio file: {response.status_code}",
|
||||
)
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = DiarizerUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
print(f"Writing file to: {file_path} (size: {len(response.content)} bytes)")
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
print(f"File saved as: {unique_filename}")
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
def download_pyannote_audio():
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
|
||||
|
||||
diarizer_image = (
|
||||
modal.Image.debian_slim(python_version="3.10.8")
|
||||
.pip_install(
|
||||
"pyannote.audio==3.1.0",
|
||||
"requests",
|
||||
"onnx",
|
||||
"torchaudio",
|
||||
"onnxruntime-gpu",
|
||||
"torch==2.0.0",
|
||||
"transformers==4.34.0",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"numpy",
|
||||
"huggingface_hub",
|
||||
"hf-transfer",
|
||||
)
|
||||
.run_function(
|
||||
download_pyannote_audio,
|
||||
secrets=[modal.Secret.from_name("hf_token")],
|
||||
)
|
||||
.run_function(migrate_cache_llm)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A100",
|
||||
timeout=60 * 30,
|
||||
image=diarizer_image,
|
||||
volumes={UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
secrets=[
|
||||
modal.Secret.from_name("hf_token"),
|
||||
],
|
||||
)
|
||||
@modal.concurrent(max_inputs=1)
|
||||
class Diarizer:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import torch
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
print(f"Using device: {self.device}")
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
|
||||
@modal.method()
|
||||
def diarize(self, filename: str, timestamp: float = 0.0):
|
||||
import torchaudio
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
print(f"Diarizing audio from: {file_path}")
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
diarization = self.diarization_pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:]),
|
||||
}
|
||||
)
|
||||
print("Diarization complete")
|
||||
return {"diarization": words}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
scaledown_window=60 * 3,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={UPLOADS_PATH: upload_volume},
|
||||
image=diarizer_image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
diarizerstub = Diarizer()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/diarize", dependencies=[Depends(apikey_auth)])
|
||||
def diarize(audio_file_url: str, timestamp: float = 0.0) -> DiarizationResponse:
|
||||
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
|
||||
try:
|
||||
func = diarizerstub.diarize.spawn(
|
||||
filename=unique_filename, timestamp=timestamp
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {unique_filename}: {e}")
|
||||
|
||||
return app
|
||||
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
@@ -0,0 +1,608 @@
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
MINUTES = 60 # seconds
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/models"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
|
||||
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
model_cache.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||
|
||||
model_cache.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
"fastapi==0.115.12",
|
||||
"requests",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
)
|
||||
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||
|
||||
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberWhisperLive:
|
||||
"""Live transcriber class for small audio segments (A10G).
|
||||
|
||||
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||
"""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
print(f"Model is on device: {self.device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe a single uploaded audio file by filename."""
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start), 2),
|
||||
"end": round(float(w.end), 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=15 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class TranscriberWhisperFile:
|
||||
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLERATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield TimeSegment(
|
||||
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||
)
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
upload_volume.reload()
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
|
||||
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||
merged_batches: list[TimeSegment] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for segment in vad_segments(audio_array):
|
||||
seg_start, seg_end = segment.start, segment.end
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
|
||||
for segment in merged_batches:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
s_idx = int(start_time * SAMPLERATE)
|
||||
e_idx = int(end_time * SAMPLERATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = pad_audio(segment, SAMPLERATE)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: dict) -> str:
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
transcriber_live = TranscriberWhisperLive()
|
||||
transcriber_file = TranscriberWhisperFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(dict):
|
||||
pass
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_filenames: list[str] = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
if batch and len(upload_files) > 1:
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
language=language,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
os.remove(file_path)
|
||||
except Exception:
|
||||
pass
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
@@ -0,0 +1,658 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/cache"
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
app = modal.App("reflector-transcriber-parakeet")
|
||||
|
||||
# Volume for caching model weights
|
||||
model_cache = modal.Volume.from_name("parakeet-model-cache", create_if_missing=True)
|
||||
# Volume for temporary file uploads
|
||||
upload_volume = modal.Volume.from_name("parakeet-uploads", create_if_missing=True)
|
||||
|
||||
image = (
|
||||
modal.Image.from_registry(
|
||||
"nvidia/cuda:12.8.0-cudnn-devel-ubuntu22.04", add_python="3.12"
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"HF_HOME": "/cache",
|
||||
"DEBIAN_FRONTEND": "noninteractive",
|
||||
"CXX": "g++",
|
||||
"CC": "g++",
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"hf_transfer==0.1.9",
|
||||
"huggingface_hub[hf-xet]==0.31.2",
|
||||
"nemo_toolkit[asr]==2.3.0",
|
||||
"cuda-python==12.8.0",
|
||||
"fastapi==0.115.12",
|
||||
"numpy<2",
|
||||
"librosa==0.10.1",
|
||||
"requests",
|
||||
"silero-vad==5.1.0",
|
||||
"torch",
|
||||
)
|
||||
.entrypoint([]) # silence chatty logs by container on start
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[ParakeetUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = ParakeetUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5 seconds of silence if audio is less than 500ms.
|
||||
|
||||
This is a workaround for a Parakeet bug where very short audio (<500ms) causes:
|
||||
ValueError: `char_offsets`: [] and `processed_tokens`: [157, 834, 834, 841]
|
||||
have to be of the same length
|
||||
|
||||
See: https://github.com/NVIDIA/NeMo/issues/8451
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < 0.5:
|
||||
silence_samples = int(sample_rate * 0.5)
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=600,
|
||||
scaledown_window=300,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberParakeetLive:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import nemo.collections.asr as nemo_asr
|
||||
|
||||
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||
device = next(self.model.parameters()).device
|
||||
print(f"Model is on device: {device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
):
|
||||
import librosa
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
padded_audio = pad_audio(audio_array, sample_rate)
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||
|
||||
text = output.text.strip()
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
# XXX the space added here is to match the output of whisper
|
||||
# whisper add space to each words, while parakeet don't
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
):
|
||||
import librosa
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
audio_arrays = []
|
||||
|
||||
# Load all audio files with padding
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
padded_audio = pad_audio(audio_array, sample_rate)
|
||||
audio_arrays.append(padded_audio)
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
outputs = self.model.transcribe(audio_arrays, timestamps=True)
|
||||
|
||||
# Process results for each file
|
||||
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||
text = output.text.strip()
|
||||
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
# L40S class for file transcription (bigger files)
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=900,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
)
|
||||
class TranscriberParakeetFile:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import nemo.collections.asr as nemo_asr
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||
|
||||
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||
device = next(self.model.parameters()).device
|
||||
print(f"Model is on device: {device}")
|
||||
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
print("Silero VAD initialized")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
timestamp_offset: float = 0.0,
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def load_and_convert_audio(file_path):
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
return audio_array
|
||||
|
||||
def vad_segment_generator(
|
||||
audio_array,
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments using VAD with start/end sample indices"""
|
||||
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||
window_size = VAD_CONFIG["window_size"]
|
||||
start = None
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
|
||||
speech_dict = vad_iterator(chunk)
|
||||
if not speech_dict:
|
||||
continue
|
||||
|
||||
if "start" in speech_dict:
|
||||
start = speech_dict["start"]
|
||||
continue
|
||||
|
||||
if "end" in speech_dict and start is not None:
|
||||
end = speech_dict["end"]
|
||||
start_time = start / float(SAMPLERATE)
|
||||
end_time = end / float(SAMPLERATE)
|
||||
|
||||
yield TimeSegment(start_time, end_time)
|
||||
start = None
|
||||
|
||||
vad_iterator.reset_states()
|
||||
|
||||
def batch_speech_segments(
|
||||
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""
|
||||
Input segments:
|
||||
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||
|
||||
↓ (max_duration=10)
|
||||
|
||||
Output batches:
|
||||
[0-8] [10-19] [20-22]
|
||||
|
||||
Note: silences are kept for better transcription, previous implementation was
|
||||
passing segments separatly, but the output was less accurate.
|
||||
"""
|
||||
batch_start_time = None
|
||||
batch_end_time = None
|
||||
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
total_duration = end_time - batch_start_time
|
||||
|
||||
if total_duration <= max_duration:
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
return
|
||||
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
|
||||
def batch_segment_to_audio_segment(
|
||||
segments: Generator[TimeSegment, None, None],
|
||||
audio_array,
|
||||
) -> Generator[AudioSegment, None, None]:
|
||||
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||
|
||||
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||
segments, which are corrected by enforce_word_timing_constraints.
|
||||
"""
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
start_sample = int(start_time * SAMPLERATE)
|
||||
end_sample = int(end_time * SAMPLERATE)
|
||||
audio_segment = audio_array[start_sample:end_sample]
|
||||
|
||||
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||
|
||||
yield AudioSegment(start_time, end_time, padded_segment)
|
||||
|
||||
def transcribe_batch(model, audio_segments: list) -> list:
|
||||
with NoStdStreams():
|
||||
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||
return outputs
|
||||
|
||||
def enforce_word_timing_constraints(
|
||||
words: list[WordTiming],
|
||||
) -> list[WordTiming]:
|
||||
"""Enforce that word end times don't exceed the start time of the next word.
|
||||
|
||||
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||
transcription accuracy, word timings from different segments may overlap.
|
||||
This function ensures there are no overlaps by adjusting end times.
|
||||
"""
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
|
||||
enforced_words = []
|
||||
for i, word in enumerate(words):
|
||||
enforced_word = word.copy()
|
||||
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if enforced_word["end"] > next_start:
|
||||
enforced_word["end"] = next_start
|
||||
|
||||
enforced_words.append(enforced_word)
|
||||
|
||||
return enforced_words
|
||||
|
||||
def emit_results(
|
||||
results: list,
|
||||
segments_info: list[AudioSegment],
|
||||
) -> Generator[TranscriptResult, None, None]:
|
||||
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||
start_time, end_time = segment.start, segment.end
|
||||
text = output.text.strip()
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(
|
||||
word_info["start"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
yield TranscriptResult(text, words)
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array = load_and_convert_audio(file_path)
|
||||
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||
|
||||
all_text_parts: list[str] = []
|
||||
all_words: list[WordTiming] = []
|
||||
|
||||
raw_segments = vad_segment_generator(audio_array)
|
||||
speech_segments = batch_speech_segments(
|
||||
raw_segments,
|
||||
VAD_CONFIG["batch_max_duration"],
|
||||
)
|
||||
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||
|
||||
for batch in audio_segments:
|
||||
audio_segment = batch.audio
|
||||
results = transcribe_batch(self.model, [audio_segment])
|
||||
|
||||
for result in emit_results(
|
||||
results,
|
||||
[batch],
|
||||
):
|
||||
if not result.text:
|
||||
continue
|
||||
all_text_parts.append(result.text)
|
||||
all_words.extend(result.words)
|
||||
|
||||
all_words = enforce_word_timing_constraints(all_words)
|
||||
|
||||
combined_text = " ".join(all_text_parts)
|
||||
return {"text": combined_text, "words": all_words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
transcriber_live = TranscriberParakeetLive()
|
||||
transcriber_file = TranscriberParakeetFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
# Parakeet only supports English
|
||||
if language != "en":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||
)
|
||||
# Handle both single file and multiple files
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
# Upload files to volume
|
||||
uploaded_filenames = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
assert audio_suffix in SUPPORTED_FILE_EXTENSIONS
|
||||
|
||||
# Generate unique filename
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
print(f"Writing file to: {file_path}")
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
# Use A10G live transcriber for per-file transcription
|
||||
if batch and len(upload_files) > 1:
|
||||
# Use batch transcription
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
# Per-file transcription
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
except Exception as e:
|
||||
print(f"Error deleting {filename}: {e}")
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en", description="Language code (only 'en' supported)"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
# Parakeet only supports English
|
||||
if language != "en":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||
)
|
||||
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {unique_filename}: {e}")
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
2
gpu/self_hosted/.env.example
Normal file
2
gpu/self_hosted/.env.example
Normal file
@@ -0,0 +1,2 @@
|
||||
REFLECTOR_GPU_APIKEY=
|
||||
HF_TOKEN=
|
||||
38
gpu/self_hosted/.gitignore
vendored
Normal file
38
gpu/self_hosted/.gitignore
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
cache/
|
||||
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
*.env
|
||||
*.secret
|
||||
HF_TOKEN
|
||||
REFLECTOR_GPU_APIKEY
|
||||
|
||||
# Virtual env / uv
|
||||
.venv/
|
||||
venv/
|
||||
ENV/
|
||||
uv/
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
46
gpu/self_hosted/Dockerfile
Normal file
46
gpu/self_hosted/Dockerfile
Normal file
@@ -0,0 +1,46 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
WORKDIR /tmp
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
ffmpeg \
|
||||
curl \
|
||||
ca-certificates \
|
||||
gnupg \
|
||||
wget \
|
||||
&& apt-get clean
|
||||
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
|
||||
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
|
||||
RUN dpkg -i /cuda-keyring.deb \
|
||||
&& rm /cuda-keyring.deb \
|
||||
&& apt-get update \
|
||||
&& apt-get install -y --no-install-recommends \
|
||||
cuda-cudart-12-6 \
|
||||
libcublas-12-6 \
|
||||
libcudnn9-cuda-12 \
|
||||
libcudnn9-dev-cuda-12 \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
||||
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
||||
ENV PATH="/root/.local/bin/:$PATH"
|
||||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
|
||||
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
|
||||
|
||||
COPY ./app /app/app
|
||||
COPY ./main.py /app/
|
||||
COPY ./runserver.sh /app/
|
||||
|
||||
EXPOSE 8000
|
||||
|
||||
CMD ["sh", "/app/runserver.sh"]
|
||||
|
||||
|
||||
73
gpu/self_hosted/README.md
Normal file
73
gpu/self_hosted/README.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Self-hosted Model API
|
||||
|
||||
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
|
||||
|
||||
Environment variables
|
||||
|
||||
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
|
||||
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
|
||||
|
||||
Requirements
|
||||
|
||||
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
|
||||
- Python 3.12+
|
||||
- NVIDIA GPU optional. If available, it will be used automatically
|
||||
|
||||
Local run
|
||||
Set env vars in self_hosted/.env file
|
||||
uv sync
|
||||
|
||||
uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
Authentication
|
||||
|
||||
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
|
||||
|
||||
Endpoints
|
||||
|
||||
- POST /v1/audio/transcriptions
|
||||
|
||||
- multipart/form-data
|
||||
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
|
||||
- response: single { text, words, filename } or { results: [ ... ] }
|
||||
|
||||
- POST /v1/audio/transcriptions-from-url
|
||||
|
||||
- application/json
|
||||
- body: { audio_file_url, language, timestamp_offset }
|
||||
- response: { text, words }
|
||||
|
||||
- POST /translate
|
||||
|
||||
- text: query parameter
|
||||
- body (application/json): { source_language, target_language }
|
||||
- response: { text: { <src>: original, <tgt>: translated } }
|
||||
|
||||
- POST /diarize
|
||||
- query parameters: audio_file_url, timestamp (optional)
|
||||
- requires HF_TOKEN to be set (for pyannote)
|
||||
- response: { diarization: [ { start, end, speaker } ] }
|
||||
|
||||
OpenAPI docs
|
||||
|
||||
- Visit /docs when the server is running
|
||||
|
||||
Docker
|
||||
|
||||
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
|
||||
|
||||
Conformance tests
|
||||
|
||||
# From this directory
|
||||
|
||||
TRANSCRIPT_URL=http://localhost:8000 \
|
||||
TRANSCRIPT_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
|
||||
|
||||
TRANSLATION_URL=http://localhost:8000 \
|
||||
TRANSLATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
|
||||
|
||||
DIARIZATION_URL=http://localhost:8000 \
|
||||
DIARIZATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py
|
||||
19
gpu/self_hosted/app/auth.py
Normal file
19
gpu/self_hosted/app/auth.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
from fastapi import Depends, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
|
||||
if not required_key:
|
||||
return
|
||||
if apikey == required_key:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
12
gpu/self_hosted/app/config.py
Normal file
12
gpu/self_hosted/app/config.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from pathlib import Path
|
||||
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLE_RATE = 16000
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
# App-level paths
|
||||
UPLOADS_PATH = Path("/tmp/whisper-uploads")
|
||||
30
gpu/self_hosted/app/factory.py
Normal file
30
gpu/self_hosted/app/factory.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
from fastapi import FastAPI
|
||||
|
||||
from .routers.diarization import router as diarization_router
|
||||
from .routers.transcription import router as transcription_router
|
||||
from .routers.translation import router as translation_router
|
||||
from .services.transcriber import WhisperService
|
||||
from .services.diarizer import PyannoteDiarizationService
|
||||
from .utils import ensure_dirs
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
ensure_dirs()
|
||||
whisper_service = WhisperService()
|
||||
whisper_service.load()
|
||||
app.state.whisper = whisper_service
|
||||
diarization_service = PyannoteDiarizationService()
|
||||
diarization_service.load()
|
||||
app.state.diarizer = diarization_service
|
||||
yield
|
||||
|
||||
|
||||
def create_app() -> FastAPI:
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.include_router(transcription_router)
|
||||
app.include_router(translation_router)
|
||||
app.include_router(diarization_router)
|
||||
return app
|
||||
30
gpu/self_hosted/app/routers/diarization.py
Normal file
30
gpu/self_hosted/app/routers/diarization.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from typing import List
|
||||
|
||||
from fastapi import APIRouter, Depends, Request
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.diarizer import PyannoteDiarizationService
|
||||
from ..utils import download_audio_file
|
||||
|
||||
router = APIRouter(tags=["diarization"])
|
||||
|
||||
|
||||
class DiarizationSegment(BaseModel):
|
||||
start: float
|
||||
end: float
|
||||
speaker: int
|
||||
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
diarization: List[DiarizationSegment]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
|
||||
)
|
||||
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
diarizer: PyannoteDiarizationService = request.app.state.diarizer
|
||||
return diarizer.diarize_file(file_path, timestamp=timestamp)
|
||||
109
gpu/self_hosted/app/routers/transcription.py
Normal file
109
gpu/self_hosted/app/routers/transcription.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import uuid
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
|
||||
from pydantic import BaseModel
|
||||
from pathlib import Path
|
||||
from ..auth import apikey_auth
|
||||
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
from ..services.transcriber import MODEL_NAME
|
||||
from ..utils import cleanup_uploaded_files, download_audio_file
|
||||
|
||||
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
|
||||
|
||||
|
||||
class WordTiming(BaseModel):
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class TranscriptResult(BaseModel):
|
||||
text: str
|
||||
words: list[WordTiming]
|
||||
filename: Optional[str] = None
|
||||
|
||||
|
||||
class TranscriptBatchResponse(BaseModel):
|
||||
results: list[TranscriptResult]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=Union[TranscriptResult, TranscriptBatchResponse],
|
||||
)
|
||||
def transcribe(
|
||||
request: Request,
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_paths: list[Path] = []
|
||||
with cleanup_uploaded_files(uploaded_paths):
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1].lower()
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = UPLOADS_PATH / unique_filename
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_paths.append(file_path)
|
||||
|
||||
if batch and len(upload_files) > 1:
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions-from-url",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranscriptResult,
|
||||
)
|
||||
def transcribe_from_url(
|
||||
request: Request,
|
||||
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
result = service.transcribe_vad_url_segment(
|
||||
file_path=file_path, timestamp_offset=timestamp_offset, language=language
|
||||
)
|
||||
return result
|
||||
28
gpu/self_hosted/app/routers/translation.py
Normal file
28
gpu/self_hosted/app/routers/translation.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from typing import Dict
|
||||
|
||||
from fastapi import APIRouter, Body, Depends
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.translator import TextTranslatorService
|
||||
|
||||
router = APIRouter(tags=["translation"])
|
||||
|
||||
translator = TextTranslatorService()
|
||||
|
||||
|
||||
class TranslationResponse(BaseModel):
|
||||
text: Dict[str, str]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/translate",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranslationResponse,
|
||||
)
|
||||
def translate(
|
||||
text: str,
|
||||
source_language: str = Body("en"),
|
||||
target_language: str = Body("fr"),
|
||||
):
|
||||
return translator.translate(text, source_language, target_language)
|
||||
42
gpu/self_hosted/app/services/diarizer.py
Normal file
42
gpu/self_hosted/app/services/diarizer.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
import threading
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
|
||||
class PyannoteDiarizationService:
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._device = "cpu"
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self._pipeline = Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.1",
|
||||
use_auth_token=os.environ.get("HF_TOKEN"),
|
||||
)
|
||||
self._pipeline.to(torch.device(self._device))
|
||||
|
||||
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load()
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
with self._lock:
|
||||
diarization = self._pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:])
|
||||
if speaker and speaker[-2:].isdigit()
|
||||
else 0,
|
||||
}
|
||||
)
|
||||
return {"diarization": words}
|
||||
208
gpu/self_hosted/app/services/transcriber.py
Normal file
208
gpu/self_hosted/app/services/transcriber.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import threading
|
||||
from typing import Generator
|
||||
|
||||
import faster_whisper
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch
|
||||
from fastapi import HTTPException
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from ..config import SAMPLE_RATE, VAD_CONFIG
|
||||
|
||||
# Whisper configuration (service-local defaults)
|
||||
MODEL_NAME = "large-v2"
|
||||
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
|
||||
MODEL_COMPUTE_TYPE = None
|
||||
MODEL_NUM_WORKERS = 1
|
||||
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
|
||||
from ..utils import NoStdStreams
|
||||
|
||||
|
||||
class WhisperService:
|
||||
def __init__(self):
|
||||
self.model = None
|
||||
self.device = "cpu"
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
compute_type = MODEL_COMPUTE_TYPE or (
|
||||
"float16" if self.device == "cuda" else "int8"
|
||||
)
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=compute_type,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
)
|
||||
|
||||
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
enforced: list[dict] = []
|
||||
for i, word in enumerate(words):
|
||||
current = dict(word)
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if current["end"] > next_start:
|
||||
current["end"] = next_start
|
||||
enforced.append(current)
|
||||
return enforced
|
||||
|
||||
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
|
||||
input_for_model: str | "object" = file_path
|
||||
try:
|
||||
audio_array, _sample_rate = librosa.load(
|
||||
file_path, sr=SAMPLE_RATE, mono=True
|
||||
)
|
||||
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
|
||||
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
input_for_model,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
words = self.enforce_word_timing_constraints(words)
|
||||
return {"text": text, "words": words}
|
||||
|
||||
def transcribe_vad_url_segment(
|
||||
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
) -> dict:
|
||||
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
|
||||
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
|
||||
cmd = [
|
||||
ffmpeg_bin,
|
||||
"-nostdin",
|
||||
"-threads",
|
||||
"1",
|
||||
"-i",
|
||||
input_path,
|
||||
"-f",
|
||||
"f32le",
|
||||
"-acodec",
|
||||
"pcm_f32le",
|
||||
"-ac",
|
||||
"1",
|
||||
"-ar",
|
||||
str(sample_rate),
|
||||
"pipe:1",
|
||||
]
|
||||
try:
|
||||
proc = subprocess.run(
|
||||
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
|
||||
audio = np.frombuffer(proc.stdout, dtype=np.float32)
|
||||
return audio
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLE_RATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[tuple[float, float], None, None]:
|
||||
vad_model = load_silero_vad(onnx=False)
|
||||
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
|
||||
|
||||
merged_batches: list[tuple[float, float]] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for seg_start, seg_end in vad_segments(audio_array):
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
for start_time, end_time in merged_batches:
|
||||
s_idx = int(start_time * SAMPLE_RATE)
|
||||
e_idx = int(end_time * SAMPLE_RATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = self.pad_audio(segment, SAMPLE_RATE)
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
all_words = self.enforce_word_timing_constraints(all_words)
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
44
gpu/self_hosted/app/services/translator.py
Normal file
44
gpu/self_hosted/app/services/translator.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import threading
|
||||
|
||||
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
||||
|
||||
|
||||
class TextTranslatorService:
|
||||
"""Simple text-to-text translator using HuggingFace MarianMT models.
|
||||
|
||||
This mirrors the modal translator API shape but uses text translation only.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self, source_language: str = "en", target_language: str = "fr"):
|
||||
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
|
||||
model_name = self._resolve_model_name(source_language, target_language)
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
model = MarianMTModel.from_pretrained(model_name)
|
||||
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
||||
|
||||
def _resolve_model_name(self, src: str, tgt: str) -> str:
|
||||
# Minimal mapping; extend as needed
|
||||
pair = (src.lower(), tgt.lower())
|
||||
mapping = {
|
||||
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
|
||||
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
|
||||
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
|
||||
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
|
||||
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
|
||||
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
|
||||
}
|
||||
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
|
||||
|
||||
def translate(self, text: str, source_language: str, target_language: str) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load(source_language, target_language)
|
||||
with self._lock:
|
||||
results = self._pipeline(
|
||||
text, src_lang=source_language, tgt_lang=target_language
|
||||
)
|
||||
translated = results[0]["translation_text"] if results else ""
|
||||
return {"text": {source_language: text, target_language: translated}}
|
||||
107
gpu/self_hosted/app/utils.py
Normal file
107
gpu/self_hosted/app/utils.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from typing import Mapping
|
||||
from urllib.parse import urlparse
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
|
||||
|
||||
def ensure_dirs():
|
||||
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path: Path = UPLOADS_PATH / unique_filename
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
return file_path, audio_suffix
|
||||
|
||||
|
||||
@contextmanager
|
||||
def download_audio_file(audio_file_url: str):
|
||||
"""Download an audio file to UPLOADS_PATH and remove it after use.
|
||||
|
||||
Yields (file_path: Path, audio_suffix: str).
|
||||
"""
|
||||
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
|
||||
try:
|
||||
yield file_path, audio_suffix
|
||||
finally:
|
||||
try:
|
||||
file_path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", file_path, e)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def cleanup_uploaded_files(file_paths: list[Path]):
|
||||
"""Ensure provided file paths are removed after use.
|
||||
|
||||
The provided list can be populated inside the context; all present entries
|
||||
at exit will be deleted.
|
||||
"""
|
||||
try:
|
||||
yield file_paths
|
||||
finally:
|
||||
for path in list(file_paths):
|
||||
try:
|
||||
path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", path, e)
|
||||
10
gpu/self_hosted/compose.yml
Normal file
10
gpu/self_hosted/compose.yml
Normal file
@@ -0,0 +1,10 @@
|
||||
services:
|
||||
reflector_gpu:
|
||||
build:
|
||||
context: .
|
||||
ports:
|
||||
- "8000:8000"
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./cache:/root/.cache
|
||||
3
gpu/self_hosted/main.py
Normal file
3
gpu/self_hosted/main.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from app.factory import create_app
|
||||
|
||||
app = create_app()
|
||||
19
gpu/self_hosted/pyproject.toml
Normal file
19
gpu/self_hosted/pyproject.toml
Normal file
@@ -0,0 +1,19 @@
|
||||
[project]
|
||||
name = "reflector-gpu"
|
||||
version = "0.1.0"
|
||||
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"fastapi[standard]>=0.116.1",
|
||||
"uvicorn[standard]>=0.30.0",
|
||||
"torch>=2.3.0",
|
||||
"faster-whisper>=1.1.0",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
"transformers>=4.35.0",
|
||||
"sentencepiece",
|
||||
"pyannote.audio==3.1.0",
|
||||
"torchaudio>=2.3.0",
|
||||
]
|
||||
17
gpu/self_hosted/runserver.sh
Normal file
17
gpu/self_hosted/runserver.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/bin/sh
|
||||
set -e
|
||||
|
||||
export PATH="/root/.local/bin:$PATH"
|
||||
cd /app
|
||||
|
||||
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
|
||||
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
|
||||
echo "[startup] Installing Python dependencies with uv..."
|
||||
uv sync --compile-bytecode --locked
|
||||
else
|
||||
echo "[startup] Using existing virtual environment at /app/.venv"
|
||||
fi
|
||||
|
||||
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
|
||||
3013
gpu/self_hosted/uv.lock
generated
Normal file
3013
gpu/self_hosted/uv.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
3
server/.gitignore
vendored
3
server/.gitignore
vendored
@@ -176,7 +176,8 @@ artefacts/
|
||||
audio_*.wav
|
||||
|
||||
# ignore local database
|
||||
reflector.sqlite3
|
||||
*.sqlite3
|
||||
*.db
|
||||
data/
|
||||
|
||||
dump.rdb
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
# builder install base dependencies
|
||||
WORKDIR /tmp
|
||||
@@ -13,8 +14,8 @@ ENV PATH="/root/.local/bin/:$PATH"
|
||||
# install application dependencies
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
RUN touch README.md && env uv sync --compile-bytecode --locked
|
||||
COPY pyproject.toml uv.lock README.md /app/
|
||||
RUN uv sync --compile-bytecode --locked
|
||||
|
||||
# pre-download nltk packages
|
||||
RUN uv run python -c "import nltk; nltk.download('punkt_tab'); nltk.download('averaged_perceptron_tagger_eng')"
|
||||
@@ -26,4 +27,15 @@ COPY migrations /app/migrations
|
||||
COPY reflector /app/reflector
|
||||
WORKDIR /app
|
||||
|
||||
# Create symlink for libgomp if it doesn't exist (for ARM64 compatibility)
|
||||
RUN if [ "$(uname -m)" = "aarch64" ] && [ ! -f /usr/lib/libgomp.so.1 ]; then \
|
||||
LIBGOMP_PATH=$(find /app/.venv/lib -path "*/torch.libs/libgomp*.so.*" 2>/dev/null | head -n1); \
|
||||
if [ -n "$LIBGOMP_PATH" ]; then \
|
||||
ln -sf "$LIBGOMP_PATH" /usr/lib/libgomp.so.1; \
|
||||
fi \
|
||||
fi
|
||||
|
||||
# Pre-check just to make sure the image will not fail
|
||||
RUN uv run python -c "import silero_vad.model"
|
||||
|
||||
CMD ["./runserver.sh"]
|
||||
|
||||
@@ -40,3 +40,5 @@ uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeli
|
||||
```bash
|
||||
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
|
||||
```
|
||||
|
||||
.
|
||||
|
||||
118
server/asyncio_loop_analysis.md
Normal file
118
server/asyncio_loop_analysis.md
Normal file
@@ -0,0 +1,118 @@
|
||||
# AsyncIO Event Loop Analysis for test_attendee_parsing_bug.py
|
||||
|
||||
## Problem Summary
|
||||
The test passes but encounters an error during teardown where asyncpg tries to use a different/closed event loop, resulting in:
|
||||
- `RuntimeError: Task got Future attached to a different loop`
|
||||
- `RuntimeError: Event loop is closed`
|
||||
|
||||
## Root Cause Analysis
|
||||
|
||||
### 1. Multiple Event Loop Creation Points
|
||||
|
||||
The test environment creates event loops at different scopes:
|
||||
|
||||
1. **Session-scoped loop** (conftest.py:27-34):
|
||||
- Created once per test session
|
||||
- Used by session-scoped fixtures
|
||||
- Closed after all tests complete
|
||||
|
||||
2. **Function-scoped loop** (pytest-asyncio default):
|
||||
- Created for each async test function
|
||||
- This is the loop that runs the actual test
|
||||
- Closed immediately after test completes
|
||||
|
||||
3. **AsyncPG internal loop**:
|
||||
- AsyncPG connections store a reference to the loop they were created with
|
||||
- Used for connection lifecycle management
|
||||
|
||||
### 2. Event Loop Lifecycle Mismatch
|
||||
|
||||
The issue occurs because:
|
||||
|
||||
1. **Session fixture creates database connection** on session-scoped loop
|
||||
2. **Test runs** on function-scoped loop (different from session loop)
|
||||
3. **During teardown**, the session fixture tries to rollback/close using the original session loop
|
||||
4. **AsyncPG connection** still references the function-scoped loop which is now closed
|
||||
5. **Conflict**: SQLAlchemy tries to use session loop, but asyncpg Future is attached to the closed function loop
|
||||
|
||||
### 3. Configuration Issues
|
||||
|
||||
Current pytest configuration:
|
||||
- `asyncio_mode = "auto"` in pyproject.toml
|
||||
- `asyncio_default_fixture_loop_scope=session` (shown in test output)
|
||||
- `asyncio_default_test_loop_scope=function` (shown in test output)
|
||||
|
||||
This mismatch between fixture loop scope (session) and test loop scope (function) causes the problem.
|
||||
|
||||
## Solutions
|
||||
|
||||
### Option 1: Align Loop Scopes (Recommended)
|
||||
Change pytest-asyncio configuration to use consistent loop scopes:
|
||||
|
||||
```python
|
||||
# pyproject.toml
|
||||
[tool.pytest.ini_options]
|
||||
asyncio_mode = "auto"
|
||||
asyncio_default_fixture_loop_scope = "function" # Change from session to function
|
||||
```
|
||||
|
||||
### Option 2: Use Function-Scoped Database Fixture
|
||||
Change the `session` fixture scope from session to function:
|
||||
|
||||
```python
|
||||
@pytest_asyncio.fixture # Remove scope="session"
|
||||
async def session(setup_database):
|
||||
# ... existing code ...
|
||||
```
|
||||
|
||||
### Option 3: Explicit Loop Management
|
||||
Ensure all async operations use the same loop:
|
||||
|
||||
```python
|
||||
@pytest_asyncio.fixture
|
||||
async def session(setup_database, event_loop):
|
||||
# Force using the current event loop
|
||||
engine = create_async_engine(
|
||||
settings.DATABASE_URL,
|
||||
echo=False,
|
||||
poolclass=NullPool,
|
||||
connect_args={"loop": event_loop} # Pass explicit loop
|
||||
)
|
||||
# ... rest of fixture ...
|
||||
```
|
||||
|
||||
### Option 4: Upgrade pytest-asyncio
|
||||
The current version (1.1.0) has known issues with loop management. Consider upgrading to the latest version which has better loop scope handling.
|
||||
|
||||
## Immediate Workaround
|
||||
|
||||
For the test to run cleanly without the teardown error, you can:
|
||||
|
||||
1. Add explicit cleanup in the test:
|
||||
```python
|
||||
@pytest.mark.asyncio
|
||||
async def test_attendee_parsing_bug(session):
|
||||
# ... existing test code ...
|
||||
|
||||
# Explicit cleanup before fixture teardown
|
||||
await session.commit() # or await session.close()
|
||||
```
|
||||
|
||||
2. Or suppress the teardown error (not recommended for production):
|
||||
```python
|
||||
@pytest.fixture
|
||||
async def session(setup_database):
|
||||
# ... existing setup ...
|
||||
try:
|
||||
yield session
|
||||
await session.rollback()
|
||||
except RuntimeError as e:
|
||||
if "Event loop is closed" not in str(e):
|
||||
raise
|
||||
finally:
|
||||
await session.close()
|
||||
```
|
||||
|
||||
## Recommendation
|
||||
|
||||
The cleanest solution is to align the loop scopes by setting both fixture and test loop scopes to "function" scope. This ensures each test gets its own clean event loop and avoids cross-contamination between tests.
|
||||
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
||||
# Data Retention and Cleanup
|
||||
|
||||
## Overview
|
||||
|
||||
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||
|
||||
### What Gets Deleted
|
||||
|
||||
When data reaches the retention period, the following items are automatically removed:
|
||||
|
||||
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||
- Database records
|
||||
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||
- Storage files (cloud storage if configured)
|
||||
|
||||
## Automatic Cleanup
|
||||
|
||||
### Celery Beat Schedule
|
||||
|
||||
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||
|
||||
```python
|
||||
# Automatically scheduled when PUBLIC_MODE=true
|
||||
"cleanup_old_public_data": {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||
}
|
||||
```
|
||||
|
||||
### Running the Worker
|
||||
|
||||
Ensure both Celery worker and beat scheduler are running:
|
||||
|
||||
```bash
|
||||
# Start Celery worker
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
|
||||
# Start Celery beat scheduler (in another terminal)
|
||||
uv run celery -A reflector.worker.app beat
|
||||
```
|
||||
|
||||
## Manual Cleanup
|
||||
|
||||
For testing or manual intervention, use the cleanup tool:
|
||||
|
||||
```bash
|
||||
# Delete data older than 7 days (default)
|
||||
uv run python -m reflector.tools.cleanup_old_data
|
||||
|
||||
# Delete data older than 30 days
|
||||
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||
```
|
||||
|
||||
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||
|
||||
## Important Notes
|
||||
|
||||
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||
|
||||
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||
|
||||
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||
|
||||
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||
|
||||
## Testing
|
||||
|
||||
Run the cleanup tests:
|
||||
|
||||
```bash
|
||||
uv run pytest tests/test_cleanup.py -v
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
Check Celery logs for cleanup task execution:
|
||||
|
||||
```bash
|
||||
# Look for cleanup task logs
|
||||
grep "cleanup_old_public_data" celery.log
|
||||
grep "Starting cleanup of old public data" celery.log
|
||||
```
|
||||
|
||||
Task statistics are logged after each run:
|
||||
- Number of transcripts deleted
|
||||
- Number of meetings deleted
|
||||
- Number of orphaned recordings deleted
|
||||
- Any errors encountered
|
||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
||||
## Reflector GPU Transcription API (Specification)
|
||||
|
||||
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||
|
||||
### Base URL and Authentication
|
||||
|
||||
- Example base URLs (Modal web endpoints):
|
||||
|
||||
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||
|
||||
- All endpoints are served under `/v1` and require a Bearer token:
|
||||
|
||||
```
|
||||
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||
|
||||
### Supported file types
|
||||
|
||||
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||
|
||||
### Models and languages
|
||||
|
||||
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||
- Language support: only `en`. Other languages return HTTP 400.
|
||||
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||
- Language support: multilingual (per Whisper model capabilities).
|
||||
|
||||
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||
|
||||
### Endpoints
|
||||
|
||||
#### POST /v1/audio/transcriptions
|
||||
|
||||
Transcribe one or more uploaded audio files.
|
||||
|
||||
Request: multipart/form-data
|
||||
|
||||
- `file` (File) — optional. Single file to transcribe.
|
||||
- `files` (File[]) — optional. One or more files to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`.
|
||||
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||
- Whisper: model-dependent; typically multilingual
|
||||
- `batch` (boolean) — optional, defaults to `false`.
|
||||
|
||||
Notes:
|
||||
|
||||
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||
- Response shape for multiple files is the same regardless of `batch`.
|
||||
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||
|
||||
Responses
|
||||
|
||||
Single file response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
Multiple files response:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- Word objects always include keys: `word`, `start`, `end`.
|
||||
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||
|
||||
Example curl (single file):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "file=@/path/to/audio.mp3" \
|
||||
-F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
Example curl (multiple files, batch):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||
-F "batch=true" -F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
#### POST /v1/audio/transcriptions-from-url
|
||||
|
||||
Transcribe a single remote audio file by URL.
|
||||
|
||||
Request: application/json
|
||||
|
||||
Body parameters:
|
||||
|
||||
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||
|
||||
Example curl:
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0
|
||||
}' \
|
||||
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||
```
|
||||
|
||||
### Error handling
|
||||
|
||||
- 400 Bad Request
|
||||
- Parakeet: `language` other than `en`
|
||||
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||
- Unsupported file extension
|
||||
- 401 Unauthorized
|
||||
- Missing or invalid Bearer token
|
||||
- 404 Not Found
|
||||
- `audio_file_url` does not exist
|
||||
|
||||
### Implementation details
|
||||
|
||||
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||
|
||||
### Server configuration (Reflector API)
|
||||
|
||||
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
### Conformance tests
|
||||
|
||||
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||
|
||||
```
|
||||
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
|
||||
```
|
||||
212
server/docs/webhook.md
Normal file
212
server/docs/webhook.md
Normal file
@@ -0,0 +1,212 @@
|
||||
# Reflector Webhook Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||
|
||||
## Configuration
|
||||
|
||||
Webhooks are configured at the room level with two fields:
|
||||
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||
|
||||
## Events
|
||||
|
||||
### `transcript.completed`
|
||||
|
||||
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, and topic detection.
|
||||
|
||||
### `test`
|
||||
|
||||
A test event that can be triggered manually to verify webhook configuration.
|
||||
|
||||
## Webhook Request Format
|
||||
|
||||
### Headers
|
||||
|
||||
All webhook requests include the following headers:
|
||||
|
||||
| Header | Description | Example |
|
||||
|--------|-------------|---------|
|
||||
| `Content-Type` | Always `application/json` | `application/json` |
|
||||
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||
|
||||
### Signature Verification
|
||||
|
||||
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||
|
||||
The signature format is: `t={timestamp},v1={signature}`
|
||||
|
||||
To verify the signature:
|
||||
1. Extract the timestamp and signature from the header
|
||||
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||
4. Compare the computed signature with the received signature
|
||||
|
||||
Example verification (Python):
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||
# Parse header: "t=1735306800,v1=abc123..."
|
||||
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||
timestamp = parts["t"]
|
||||
received_signature = parts["v1"]
|
||||
|
||||
# Create signed payload
|
||||
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||
|
||||
# Compute expected signature
|
||||
expected_signature = hmac.new(
|
||||
secret.encode("utf-8"),
|
||||
signed_payload.encode("utf-8"),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
# Compare signatures
|
||||
return hmac.compare_digest(expected_signature, received_signature)
|
||||
```
|
||||
|
||||
## Event Payloads
|
||||
|
||||
### `transcript.completed` Event
|
||||
|
||||
This event includes a convenient URL for accessing the transcript:
|
||||
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "transcript.completed",
|
||||
"event_id": "transcript.completed-abc-123-def-456",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"transcript": {
|
||||
"id": "abc-123-def-456",
|
||||
"room_id": "room-789",
|
||||
"created_at": "2025-08-27T12:00:00Z",
|
||||
"duration": 1800.5,
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||
"topics": [
|
||||
{
|
||||
"title": "Introduction and Agenda",
|
||||
"summary": "Meeting kickoff with agenda review",
|
||||
"timestamp": 0.0,
|
||||
"duration": 120.0,
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||
},
|
||||
{
|
||||
"title": "Mobile App Features Discussion",
|
||||
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||
"timestamp": 120.0,
|
||||
"duration": 600.0,
|
||||
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||
}
|
||||
],
|
||||
"participants": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
],
|
||||
"source_language": "en",
|
||||
"target_language": "en",
|
||||
"status": "completed",
|
||||
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||
},
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `test` Event
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "test",
|
||||
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"message": "This is a test webhook from Reflector",
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Retry Policy
|
||||
|
||||
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||
|
||||
### Retry Mechanism
|
||||
|
||||
Reflector implements an exponential backoff strategy for webhook retries:
|
||||
|
||||
- **Initial retry delay**: 60 seconds after the first failure
|
||||
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||
- **Maximum retry attempts**: 30 attempts total
|
||||
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||
|
||||
### How Retries Work
|
||||
|
||||
When a webhook fails, Reflector will:
|
||||
1. Wait 60 seconds, then retry (attempt #1)
|
||||
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||
|
||||
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||
|
||||
### Retry Behavior by HTTP Status Code
|
||||
|
||||
| Status Code | Behavior |
|
||||
|-------------|----------|
|
||||
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||
|
||||
**Important Notes:**
|
||||
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||
|
||||
## Testing Webhooks
|
||||
|
||||
You can test your webhook configuration before processing transcripts:
|
||||
|
||||
```http
|
||||
POST /v1/rooms/{room_id}/webhook/test
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"status_code": 200,
|
||||
"message": "Webhook test successful",
|
||||
"response_preview": "OK"
|
||||
}
|
||||
```
|
||||
|
||||
Or in case of failure:
|
||||
```json
|
||||
{
|
||||
"success": false,
|
||||
"error": "Webhook request timed out (10 seconds)"
|
||||
}
|
||||
```
|
||||
@@ -24,7 +24,6 @@ AUTH_JWT_AUDIENCE=
|
||||
## Using serverless modal.com (require reflector-gpu-modal deployed)
|
||||
#TRANSCRIPT_BACKEND=modal
|
||||
#TRANSCRIPT_URL=https://xxxxx--reflector-transcriber-web.modal.run
|
||||
#TRANSLATE_URL=https://xxxxx--reflector-translator-web.modal.run
|
||||
#TRANSCRIPT_MODAL_API_KEY=xxxxx
|
||||
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
@@ -32,11 +31,13 @@ TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=
|
||||
|
||||
## =======================================================
|
||||
## Transcription backend
|
||||
## Translation backend
|
||||
##
|
||||
## Only available in modal atm
|
||||
## =======================================================
|
||||
TRANSLATION_BACKEND=modal
|
||||
TRANSLATE_URL=https://monadical-sas--reflector-translator-web.modal.run
|
||||
#TRANSLATION_MODAL_API_KEY=xxxxx
|
||||
|
||||
## =======================================================
|
||||
## LLM backend
|
||||
@@ -59,7 +60,9 @@ LLM_API_KEY=sk-
|
||||
## To allow diarization, you need to expose expose the files to be dowloded by the pipeline
|
||||
## =======================================================
|
||||
DIARIZATION_ENABLED=false
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
|
||||
#DIARIZATION_MODAL_API_KEY=xxxxx
|
||||
|
||||
|
||||
## =======================================================
|
||||
|
||||
@@ -1,82 +0,0 @@
|
||||
# Reflector GPU implementation - Transcription and LLM
|
||||
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_diarizer.py` - Diarization API
|
||||
- `reflector_transcriber.py` - Transcription API
|
||||
- `reflector_translator.py` - Translation API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
Create a modal secret, and name it `reflector-gpu`.
|
||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||
|
||||
The deployment is done using [Modal.com](https://modal.com) service.
|
||||
|
||||
```
|
||||
$ modal deploy reflector_transcriber.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||
|
||||
$ modal deploy reflector_llm.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||
```
|
||||
|
||||
Then in your reflector api configuration `.env`, you can set theses keys:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
LLM_BACKEND=modal
|
||||
LLM_URL=https://xxxx--reflector-llm-web.modal.run
|
||||
LLM_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
```
|
||||
|
||||
## API
|
||||
|
||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||
|
||||
```
|
||||
Authorization: bearer <REFLECTOR_APIKEY>
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
`POST /llm`
|
||||
|
||||
**request**
|
||||
```
|
||||
{
|
||||
"prompt": "xxx"
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx completed"
|
||||
}
|
||||
```
|
||||
|
||||
### Transcription
|
||||
|
||||
`POST /transcribe`
|
||||
|
||||
**request** (multipart/form-data)
|
||||
|
||||
- `file` - audio file
|
||||
- `language` - language code (e.g. `en`)
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx",
|
||||
"words": [
|
||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
@@ -1,187 +0,0 @@
|
||||
"""
|
||||
Reflector GPU backend - diarizer
|
||||
===================================
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import modal.gpu
|
||||
from modal import App, Image, Secret, asgi_app, enter, method
|
||||
from pydantic import BaseModel
|
||||
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||
MODEL_DIR = "/root/diarization_models"
|
||||
app = App(name="reflector-diarizer")
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
def download_pyannote_audio():
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
|
||||
|
||||
diarizer_image = (
|
||||
Image.debian_slim(python_version="3.10.8")
|
||||
.pip_install(
|
||||
"pyannote.audio==3.1.0",
|
||||
"requests",
|
||||
"onnx",
|
||||
"torchaudio",
|
||||
"onnxruntime-gpu",
|
||||
"torch==2.0.0",
|
||||
"transformers==4.34.0",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"numpy",
|
||||
"huggingface_hub",
|
||||
"hf-transfer",
|
||||
)
|
||||
.run_function(
|
||||
download_pyannote_audio, secrets=[Secret.from_name("my-huggingface-secret")]
|
||||
)
|
||||
.run_function(migrate_cache_llm)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu=modal.gpu.A100(size="40GB"),
|
||||
timeout=60 * 30,
|
||||
scaledown_window=60,
|
||||
allow_concurrent_inputs=1,
|
||||
image=diarizer_image,
|
||||
)
|
||||
class Diarizer:
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME, cache_dir=MODEL_DIR
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
|
||||
@method()
|
||||
def diarize(self, audio_data: str, audio_suffix: str, timestamp: float):
|
||||
import tempfile
|
||||
|
||||
import torchaudio
|
||||
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
print("Diarizing audio")
|
||||
waveform, sample_rate = torchaudio.load(fp.name)
|
||||
diarization = self.diarization_pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(
|
||||
yield_label=True
|
||||
):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:]),
|
||||
}
|
||||
)
|
||||
print("Diarization complete")
|
||||
return {"diarization": words}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
scaledown_window=60 * 3,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
image=diarizer_image,
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
import requests
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
diarizerstub = Diarizer()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
def validate_audio_file(audio_file_url: str):
|
||||
# Check if the audio file exists
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(
|
||||
status_code=response.status_code,
|
||||
detail="The audio file does not exist.",
|
||||
)
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth), Depends(validate_audio_file)]
|
||||
)
|
||||
def diarize(
|
||||
audio_file_url: str, timestamp: float = 0.0
|
||||
) -> HTTPException | DiarizationResponse:
|
||||
# Currently the uploaded files are in mp3 format
|
||||
audio_suffix = "mp3"
|
||||
|
||||
print("Downloading audio file")
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
print("Audio file downloaded successfully")
|
||||
|
||||
func = diarizerstub.diarize.spawn(
|
||||
audio_data=response.content, audio_suffix=audio_suffix, timestamp=timestamp
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -1,161 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
import threading
|
||||
|
||||
import modal
|
||||
from pydantic import BaseModel
|
||||
|
||||
MODELS_DIR = "/models"
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
|
||||
MINUTES = 60 # seconds
|
||||
|
||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
volume.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
||||
|
||||
volume.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
class Transcriber:
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=MODELS_DIR,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
language: str,
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments)
|
||||
words = [
|
||||
{"word": word.word, "start": word.start, "end": word.end}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriber = Transcriber()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile,
|
||||
model: str = "whisper-1",
|
||||
language: Annotated[str, Body(...)] = "en",
|
||||
) -> TranscriptResponse:
|
||||
audio_data = file.file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_file_types
|
||||
|
||||
func = transcriber.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
583
server/migration.md
Normal file
583
server/migration.md
Normal file
@@ -0,0 +1,583 @@
|
||||
# Celery to TaskIQ Migration Guide
|
||||
|
||||
## Executive Summary
|
||||
|
||||
This document outlines the migration path from Celery to TaskIQ for the Reflector project. TaskIQ is a modern, async-first distributed task queue that provides similar functionality to Celery while being designed specifically for async Python applications.
|
||||
|
||||
## Current Celery Usage Analysis
|
||||
|
||||
### Key Patterns in Use
|
||||
1. **Task Decorators**: `@shared_task`, `@asynctask`, `@with_session` decorators
|
||||
2. **Task Invocation**: `.delay()`, `.si()` for signatures
|
||||
3. **Workflow Patterns**: `chain()`, `group()`, `chord()` for complex pipelines
|
||||
4. **Scheduled Tasks**: Celery Beat with crontab and periodic schedules
|
||||
5. **Session Management**: Custom `@with_session` and `@with_session_and_transcript` decorators
|
||||
6. **Retry Logic**: Auto-retry with exponential backoff
|
||||
7. **Redis Backend**: Using Redis for broker and result backend
|
||||
|
||||
### Critical Files to Migrate
|
||||
- `reflector/worker/app.py` - Celery app configuration and beat schedule
|
||||
- `reflector/worker/session_decorator.py` - Session management decorators
|
||||
- `reflector/pipelines/main_file_pipeline.py` - File processing pipeline
|
||||
- `reflector/pipelines/main_live_pipeline.py` - Live streaming pipeline (10 tasks)
|
||||
- `reflector/worker/process.py` - Background processing tasks
|
||||
- `reflector/worker/ics_sync.py` - Calendar sync tasks
|
||||
- `reflector/worker/cleanup.py` - Cleanup tasks
|
||||
- `reflector/worker/webhook.py` - Webhook notifications
|
||||
|
||||
## TaskIQ Architecture Mapping
|
||||
|
||||
### 1. Installation
|
||||
|
||||
```bash
|
||||
# Remove Celery dependencies
|
||||
uv remove celery flower
|
||||
|
||||
# Install TaskIQ with Redis support
|
||||
uv add taskiq taskiq-redis taskiq-pipelines
|
||||
```
|
||||
|
||||
### 2. Broker Configuration
|
||||
|
||||
#### Current (Celery)
|
||||
```python
|
||||
# reflector/worker/app.py
|
||||
from celery import Celery
|
||||
|
||||
app = Celery(
|
||||
"reflector",
|
||||
broker=settings.CELERY_BROKER_URL,
|
||||
backend=settings.CELERY_RESULT_BACKEND,
|
||||
include=[...],
|
||||
)
|
||||
```
|
||||
|
||||
#### New (TaskIQ)
|
||||
```python
|
||||
# reflector/worker/broker.py
|
||||
from taskiq_redis import RedisAsyncResultBackend, RedisStreamBroker
|
||||
from taskiq import PipelineMiddleware, SimpleRetryMiddleware
|
||||
|
||||
result_backend = RedisAsyncResultBackend(
|
||||
redis_url=settings.REDIS_URL,
|
||||
result_ex_time=86400, # 24 hours
|
||||
)
|
||||
|
||||
broker = RedisStreamBroker(
|
||||
url=settings.REDIS_URL,
|
||||
max_connection_pool_size=10,
|
||||
).with_result_backend(result_backend).with_middlewares(
|
||||
PipelineMiddleware(), # For chain/group/chord support
|
||||
SimpleRetryMiddleware(default_retry_count=3),
|
||||
)
|
||||
|
||||
# For testing environment
|
||||
if os.environ.get("ENVIRONMENT") == "pytest":
|
||||
from taskiq import InMemoryBroker
|
||||
broker = InMemoryBroker(await_inplace=True)
|
||||
```
|
||||
|
||||
### 3. Task Definition Migration
|
||||
|
||||
#### Current (Celery)
|
||||
```python
|
||||
@shared_task
|
||||
@asynctask
|
||||
@with_session
|
||||
async def task_pipeline_file_process(session: AsyncSession, transcript_id: str):
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process()
|
||||
```
|
||||
|
||||
#### New (TaskIQ)
|
||||
```python
|
||||
from taskiq import TaskiqDepends
|
||||
from reflector.worker.broker import broker
|
||||
from reflector.worker.dependencies import get_db_session
|
||||
|
||||
@broker.task
|
||||
async def task_pipeline_file_process(transcript_id: str):
|
||||
# Use get_session for proper test mocking
|
||||
async for session in get_session():
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process()
|
||||
```
|
||||
|
||||
### 4. Session Management
|
||||
|
||||
#### Current Session Decorators (Keep Using These!)
|
||||
```python
|
||||
# reflector/worker/session_decorator.py
|
||||
def with_session(func):
|
||||
@functools.wraps(func)
|
||||
async def wrapper(*args, **kwargs):
|
||||
async with get_session_context() as session:
|
||||
return await func(session, *args, **kwargs)
|
||||
return wrapper
|
||||
```
|
||||
|
||||
#### Session Management Strategy
|
||||
|
||||
**⚠️ CRITICAL**: The key insight is to maintain consistent session management patterns:
|
||||
|
||||
1. **For Worker Tasks**: Continue using `@with_session` decorator pattern
|
||||
2. **For FastAPI endpoints**: Use `get_session` dependency injection
|
||||
3. **Never use `get_session_factory()` directly** in application code
|
||||
|
||||
```python
|
||||
# APPROACH 1: Simple migration keeping decorator pattern
|
||||
from reflector.worker.session_decorator import with_session
|
||||
|
||||
@taskiq_broker.task
|
||||
@with_session
|
||||
async def task_pipeline_file_process(session, *, transcript_id: str):
|
||||
# Session is provided by decorator, just like Celery version
|
||||
transcript = await transcripts_controller.get_by_id(session, transcript_id)
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process()
|
||||
|
||||
# APPROACH 2: For test compatibility without decorator
|
||||
from reflector.db import get_session
|
||||
|
||||
@taskiq_broker.task
|
||||
async def task_pipeline_file_process(transcript_id: str):
|
||||
# Use get_session which is mocked in tests
|
||||
async for session in get_session():
|
||||
transcript = await transcripts_controller.get_by_id(session, transcript_id)
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process()
|
||||
|
||||
# APPROACH 3: Future - TaskIQ dependency injection (after full migration)
|
||||
from taskiq import TaskiqDepends
|
||||
|
||||
async def get_session_context():
|
||||
"""Context manager version of get_session for consistency"""
|
||||
async for session in get_session():
|
||||
yield session
|
||||
|
||||
@taskiq_broker.task
|
||||
async def task_pipeline_file_process(
|
||||
transcript_id: str,
|
||||
session: AsyncSession = TaskiqDepends(get_session_context)
|
||||
):
|
||||
transcript = await transcripts_controller.get_by_id(session, transcript_id)
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process()
|
||||
```
|
||||
|
||||
**Key Points:**
|
||||
- `@with_session` decorator works with TaskIQ tasks (remove `@asynctask`, keep `@with_session`)
|
||||
- For testing: `get_session()` from `reflector.db` is properly mocked
|
||||
- Never call `get_session_factory()` directly - always use the abstractions
|
||||
|
||||
### 5. Task Invocation
|
||||
|
||||
#### Current (Celery)
|
||||
```python
|
||||
# Simple async execution
|
||||
task_pipeline_file_process.delay(transcript_id=transcript.id)
|
||||
|
||||
# With signature for chaining
|
||||
task_cleanup_consent.si(transcript_id=transcript_id)
|
||||
```
|
||||
|
||||
#### New (TaskIQ)
|
||||
```python
|
||||
# Simple async execution
|
||||
await task_pipeline_file_process.kiq(transcript_id=transcript.id)
|
||||
|
||||
# With kicker for advanced configuration
|
||||
await task_cleanup_consent.kicker().with_labels(
|
||||
priority="high"
|
||||
).kiq(transcript_id=transcript_id)
|
||||
```
|
||||
|
||||
### 6. Workflow Patterns (Chain, Group, Chord)
|
||||
|
||||
#### Current (Celery)
|
||||
```python
|
||||
from celery import chain, group, chord
|
||||
|
||||
# Chain example
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
|
||||
# Chord example (parallel + callback)
|
||||
chain = chord(
|
||||
group(chain_mp3_and_diarize, chain_title_preview),
|
||||
chain_final_summaries,
|
||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||
```
|
||||
|
||||
#### New (TaskIQ with Pipelines)
|
||||
```python
|
||||
from taskiq_pipelines import Pipeline
|
||||
from taskiq import gather
|
||||
|
||||
# Chain example using Pipeline
|
||||
post_pipeline = (
|
||||
Pipeline(broker, task_cleanup_consent)
|
||||
.call_next(task_pipeline_post_to_zulip, transcript_id=transcript_id)
|
||||
.call_next(task_send_webhook_if_needed, transcript_id=transcript_id)
|
||||
)
|
||||
await post_pipeline.kiq(transcript_id=transcript_id)
|
||||
|
||||
# Parallel execution with gather
|
||||
results = await gather([
|
||||
chain_mp3_and_diarize.kiq(transcript_id),
|
||||
chain_title_preview.kiq(transcript_id),
|
||||
])
|
||||
|
||||
# Then execute callback
|
||||
await chain_final_summaries.kiq(transcript_id, results)
|
||||
await task_pipeline_post_to_zulip.kiq(transcript_id)
|
||||
```
|
||||
|
||||
### 7. Scheduled Tasks (Celery Beat → TaskIQ Scheduler)
|
||||
|
||||
#### Current (Celery Beat)
|
||||
```python
|
||||
# reflector/worker/app.py
|
||||
app.conf.beat_schedule = {
|
||||
"process_messages": {
|
||||
"task": "reflector.worker.process.process_messages",
|
||||
"schedule": float(settings.SQS_POLLING_TIMEOUT_SECONDS),
|
||||
},
|
||||
"reprocess_failed_recordings": {
|
||||
"task": "reflector.worker.process.reprocess_failed_recordings",
|
||||
"schedule": crontab(hour=5, minute=0),
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
#### New (TaskIQ Scheduler)
|
||||
```python
|
||||
# reflector/worker/scheduler.py
|
||||
from taskiq import TaskiqScheduler
|
||||
from taskiq_redis import ListRedisScheduleSource
|
||||
|
||||
schedule_source = ListRedisScheduleSource(settings.REDIS_URL)
|
||||
|
||||
# Define scheduled tasks with decorators
|
||||
@broker.task(
|
||||
schedule=[
|
||||
{
|
||||
"cron": f"*/{int(settings.SQS_POLLING_TIMEOUT_SECONDS)} * * * * *"
|
||||
}
|
||||
]
|
||||
)
|
||||
async def process_messages():
|
||||
# Task implementation
|
||||
pass
|
||||
|
||||
@broker.task(
|
||||
schedule=[{"cron": "0 5 * * *"}] # Daily at 5 AM
|
||||
)
|
||||
async def reprocess_failed_recordings():
|
||||
# Task implementation
|
||||
pass
|
||||
|
||||
# Initialize scheduler
|
||||
scheduler = TaskiqScheduler(broker, sources=[schedule_source])
|
||||
|
||||
# Run scheduler (separate process)
|
||||
# taskiq scheduler reflector.worker.scheduler:scheduler
|
||||
```
|
||||
|
||||
### 8. Retry Configuration
|
||||
|
||||
#### Current (Celery)
|
||||
```python
|
||||
@shared_task(
|
||||
bind=True,
|
||||
max_retries=30,
|
||||
default_retry_delay=60,
|
||||
retry_backoff=True,
|
||||
retry_backoff_max=3600,
|
||||
)
|
||||
async def task_send_webhook_if_needed(self, ...):
|
||||
try:
|
||||
# Task logic
|
||||
except Exception as exc:
|
||||
raise self.retry(exc=exc)
|
||||
```
|
||||
|
||||
#### New (TaskIQ)
|
||||
```python
|
||||
from taskiq.middlewares import SimpleRetryMiddleware
|
||||
|
||||
# Global middleware configuration (1:1 with Celery defaults)
|
||||
broker = broker.with_middlewares(
|
||||
SimpleRetryMiddleware(default_retry_count=3),
|
||||
)
|
||||
|
||||
# For specific tasks with custom retry logic:
|
||||
@broker.task(retry_on_error=True, max_retries=30)
|
||||
async def task_send_webhook_if_needed(...):
|
||||
# Task logic - exceptions auto-retry
|
||||
pass
|
||||
```
|
||||
|
||||
## Testing Migration
|
||||
|
||||
### Current Pytest Setup (Celery)
|
||||
```python
|
||||
# tests/conftest.py
|
||||
@pytest.fixture(scope="session")
|
||||
def celery_config():
|
||||
return {
|
||||
"broker_url": "memory://",
|
||||
"result_backend": "cache+memory://",
|
||||
}
|
||||
|
||||
@pytest.mark.usefixtures("celery_session_app")
|
||||
@pytest.mark.usefixtures("celery_session_worker")
|
||||
async def test_task():
|
||||
pass
|
||||
```
|
||||
|
||||
### New Pytest Setup (TaskIQ)
|
||||
```python
|
||||
# tests/conftest.py
|
||||
import pytest
|
||||
from taskiq import InMemoryBroker
|
||||
from reflector.worker.broker import broker
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
async def setup_taskiq_broker():
|
||||
"""Replace broker with InMemoryBroker for testing"""
|
||||
original_broker = broker
|
||||
test_broker = InMemoryBroker(await_inplace=True)
|
||||
|
||||
# Copy task registrations
|
||||
for task_name, task in original_broker._tasks.items():
|
||||
test_broker.register_task(task.original_function, task_name=task_name)
|
||||
|
||||
yield test_broker
|
||||
await test_broker.shutdown()
|
||||
|
||||
@pytest.fixture
|
||||
async def taskiq_with_db_session(db_session):
|
||||
"""Setup TaskIQ with database session"""
|
||||
from reflector.worker.broker import broker
|
||||
broker.add_dependency_context({
|
||||
AsyncSession: db_session
|
||||
})
|
||||
yield
|
||||
broker.custom_dependency_context = {}
|
||||
|
||||
# Test example
|
||||
@pytest.mark.anyio
|
||||
async def test_task(taskiq_with_db_session):
|
||||
result = await task_pipeline_file_process("transcript-id")
|
||||
assert result is not None
|
||||
```
|
||||
|
||||
## Migration Steps
|
||||
|
||||
### Phase 1: Setup (Week 1)
|
||||
1. **Install TaskIQ packages**
|
||||
```bash
|
||||
uv add taskiq taskiq-redis taskiq-pipelines
|
||||
```
|
||||
|
||||
2. **Create new broker configuration**
|
||||
- Create `reflector/worker/broker.py` with TaskIQ broker setup
|
||||
- Create `reflector/worker/dependencies.py` for dependency injection
|
||||
|
||||
3. **Update settings**
|
||||
- Keep existing Redis configuration
|
||||
- Add TaskIQ-specific settings if needed
|
||||
|
||||
### Phase 2: Parallel Running (Week 2-3)
|
||||
1. **Migrate simple tasks first**
|
||||
- Start with `cleanup.py` (1 task)
|
||||
- Move to `webhook.py` (1 task)
|
||||
- Test thoroughly in isolation
|
||||
|
||||
2. **Setup dual-mode operation**
|
||||
- Keep Celery tasks running
|
||||
- Add TaskIQ versions alongside
|
||||
- Use feature flags to switch between them
|
||||
|
||||
### Phase 3: Complex Tasks (Week 3-4)
|
||||
1. **Migrate pipeline tasks**
|
||||
- Convert `main_file_pipeline.py`
|
||||
- Convert `main_live_pipeline.py` (most complex with 10 tasks)
|
||||
- Ensure chain/group/chord patterns work
|
||||
|
||||
2. **Migrate scheduled tasks**
|
||||
- Setup TaskIQ scheduler
|
||||
- Convert beat schedule to TaskIQ schedules
|
||||
- Test cron patterns
|
||||
|
||||
### Phase 4: Testing & Validation (Week 4-5)
|
||||
1. **Update test suite**
|
||||
- Replace Celery fixtures with TaskIQ fixtures
|
||||
- Update all test files
|
||||
- Ensure coverage remains the same
|
||||
|
||||
2. **Performance testing**
|
||||
- Compare task execution times
|
||||
- Monitor Redis memory usage
|
||||
- Test under load
|
||||
|
||||
### Phase 5: Cutover (Week 5-6)
|
||||
1. **Final migration**
|
||||
- Remove Celery dependencies
|
||||
- Update deployment scripts
|
||||
- Update documentation
|
||||
|
||||
2. **Monitoring**
|
||||
- Setup TaskIQ monitoring (if available)
|
||||
- Create health checks
|
||||
- Document operational procedures
|
||||
|
||||
## Key Differences to Note
|
||||
|
||||
### Advantages of TaskIQ
|
||||
1. **Native async support** - No need for `@asynctask` wrapper
|
||||
2. **Dependency injection** - Cleaner than decorators for session management
|
||||
3. **Type hints** - Better IDE support and autocompletion
|
||||
4. **Modern Python** - Designed for Python 3.7+
|
||||
5. **Simpler testing** - InMemoryBroker makes testing easier
|
||||
|
||||
### Potential Challenges
|
||||
1. **Less mature ecosystem** - Fewer third-party integrations
|
||||
2. **Documentation** - Less comprehensive than Celery
|
||||
3. **Monitoring tools** - No Flower equivalent (may need custom solution)
|
||||
4. **Community support** - Smaller community than Celery
|
||||
|
||||
## Command Line Changes
|
||||
|
||||
### Current (Celery)
|
||||
```bash
|
||||
# Start worker
|
||||
celery -A reflector.worker.app worker --loglevel=info
|
||||
|
||||
# Start beat scheduler
|
||||
celery -A reflector.worker.app beat
|
||||
```
|
||||
|
||||
### New (TaskIQ)
|
||||
```bash
|
||||
# Start worker
|
||||
taskiq worker reflector.worker.broker:broker
|
||||
|
||||
# Start scheduler
|
||||
taskiq scheduler reflector.worker.scheduler:scheduler
|
||||
|
||||
# With custom settings
|
||||
taskiq worker reflector.worker.broker:broker --workers 4 --log-level INFO
|
||||
```
|
||||
|
||||
## Rollback Plan
|
||||
|
||||
If issues arise during migration:
|
||||
|
||||
1. **Keep Celery code in version control** - Tag the last Celery version
|
||||
2. **Maintain dual broker setup** - Can switch back via environment variable
|
||||
3. **Database compatibility** - No schema changes required
|
||||
4. **Redis compatibility** - Both use Redis, easy to switch back
|
||||
|
||||
## Success Criteria
|
||||
|
||||
1. ✅ All tasks migrated and functioning
|
||||
2. ✅ Test coverage maintained at current levels
|
||||
3. ✅ Performance equal or better than Celery
|
||||
4. ✅ Scheduled tasks running reliably
|
||||
5. ✅ Error handling and retries working correctly
|
||||
6. ✅ WebSocket notifications still functioning
|
||||
7. ✅ Pipeline processing maintaining same behavior
|
||||
|
||||
## Monitoring & Operations
|
||||
|
||||
### Health Checks
|
||||
```python
|
||||
# reflector/worker/healthcheck.py
|
||||
@broker.task
|
||||
async def healthcheck_ping():
|
||||
"""TaskIQ health check task"""
|
||||
return {"status": "healthy", "timestamp": datetime.now()}
|
||||
```
|
||||
|
||||
### Metrics Collection
|
||||
- Task execution times
|
||||
- Success/failure rates
|
||||
- Queue depths
|
||||
- Worker utilization
|
||||
|
||||
## Key Implementation Points - MUST READ
|
||||
|
||||
### Critical Changes Required
|
||||
|
||||
1. **Session Management in Tasks**
|
||||
- ✅ **VERIFIED**: Tasks MUST use `get_session()` from `reflector.db` for test compatibility
|
||||
- ❌ Do NOT use `get_session_factory()` directly in tasks - it bypasses test mocks
|
||||
- ✅ The test database session IS properly shared when using `get_session()`
|
||||
|
||||
2. **Task Invocation Changes**
|
||||
- Replace `.delay()` with `await .kiq()`
|
||||
- All task invocations become async/await
|
||||
- No need to commit sessions before task invocation (controllers handle this)
|
||||
|
||||
3. **Broker Configuration**
|
||||
- TaskIQ broker must be initialized in `worker/app.py`
|
||||
- Use `InMemoryBroker(await_inplace=True)` for testing
|
||||
- Use `RedisStreamBroker` for production
|
||||
|
||||
4. **Test Setup Requirements**
|
||||
- Set `os.environ["ENVIRONMENT"] = "pytest"` at top of test files
|
||||
- Add TaskIQ broker fixture to test functions
|
||||
- Keep Celery fixtures for now (dual-mode operation)
|
||||
|
||||
5. **Import Pattern Changes**
|
||||
```python
|
||||
# Each file needs both imports during migration
|
||||
from reflector.pipelines.main_file_pipeline import (
|
||||
task_pipeline_file_process, # Celery version
|
||||
task_pipeline_file_process_taskiq, # TaskIQ version
|
||||
)
|
||||
```
|
||||
|
||||
6. **Decorator Changes**
|
||||
- Remove `@asynctask` - TaskIQ is async-native
|
||||
- **Keep `@with_session`** - it works with TaskIQ tasks!
|
||||
- Remove `@shared_task` from TaskIQ version
|
||||
- Keep `@shared_task` on Celery version for backward compatibility
|
||||
|
||||
## Verified POC Results
|
||||
|
||||
✅ **Database transactions work correctly** across test and TaskIQ tasks
|
||||
✅ **Tasks execute immediately** in tests with `InMemoryBroker(await_inplace=True)`
|
||||
✅ **Session mocking works** when using `get_session()` properly
|
||||
✅ **"OK" output confirmed** - TaskIQ task executes and accesses test data
|
||||
|
||||
## Conclusion
|
||||
|
||||
The migration from Celery to TaskIQ is feasible and offers several advantages for an async-first codebase like Reflector. The key challenges will be:
|
||||
|
||||
1. Migrating complex pipeline patterns (chain/chord)
|
||||
2. Ensuring scheduled task reliability
|
||||
3. **SOLVED**: Maintaining session management patterns - use `get_session()`
|
||||
4. Updating the test suite
|
||||
|
||||
The phased approach allows for gradual migration with minimal risk. The ability to run both systems in parallel provides a safety net during the transition period.
|
||||
|
||||
## Appendix: Quick Reference
|
||||
|
||||
| Celery | TaskIQ |
|
||||
|--------|--------|
|
||||
| `@shared_task` | `@broker.task` |
|
||||
| `.delay()` | `.kiq()` |
|
||||
| `.apply_async()` | `.kicker().kiq()` |
|
||||
| `chain()` | `Pipeline()` |
|
||||
| `group()` | `gather()` |
|
||||
| `chord()` | `gather() + callback` |
|
||||
| `@task.retry()` | `retry_on_error=True` |
|
||||
| Celery Beat | TaskIQ Scheduler |
|
||||
| `celery worker` | `taskiq worker` |
|
||||
| Flower | Custom monitoring needed |
|
||||
@@ -1 +1,3 @@
|
||||
Generic single-database configuration.
|
||||
Generic single-database configuration.
|
||||
|
||||
Both data migrations and schema migrations must be in migrations.
|
||||
@@ -3,7 +3,7 @@ from logging.config import fileConfig
|
||||
from alembic import context
|
||||
from sqlalchemy import engine_from_config, pool
|
||||
|
||||
from reflector.db import metadata
|
||||
from reflector.db.base import metadata
|
||||
from reflector.settings import settings
|
||||
|
||||
# this is the Alembic Config object, which provides
|
||||
|
||||
@@ -0,0 +1,36 @@
|
||||
"""Add webhook fields to rooms
|
||||
|
||||
Revision ID: 0194f65cd6d3
|
||||
Revises: 5a8907fd1d78
|
||||
Create Date: 2025-08-27 09:03:19.610995
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0194f65cd6d3"
|
||||
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("webhook_secret")
|
||||
batch_op.drop_column("webhook_url")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,68 @@
|
||||
"""add_long_summary_to_search_vector
|
||||
|
||||
Revision ID: 0ab2d7ffaa16
|
||||
Revises: b1c33bd09963
|
||||
Create Date: 2025-08-15 13:27:52.680211
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ab2d7ffaa16"
|
||||
down_revision: Union[str, None] = "b1c33bd09963"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Drop the existing search vector column and index
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
|
||||
# Recreate the search vector column with long_summary included
|
||||
op.execute(
|
||||
"""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')
|
||||
) STORED
|
||||
"""
|
||||
)
|
||||
|
||||
# Recreate the GIN index for the search vector
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Drop the updated search vector column and index
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
|
||||
# Recreate the original search vector column without long_summary
|
||||
op.execute(
|
||||
"""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||
) STORED
|
||||
"""
|
||||
)
|
||||
|
||||
# Recreate the GIN index for the search vector
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
@@ -0,0 +1,25 @@
|
||||
"""add_webvtt_field_to_transcript
|
||||
|
||||
Revision ID: 0bc0f3ff0111
|
||||
Revises: b7df9609542c
|
||||
Create Date: 2025-08-05 19:36:41.740957
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
revision: str = "0bc0f3ff0111"
|
||||
down_revision: Union[str, None] = "b7df9609542c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column("transcript", sa.Column("webvtt", sa.Text(), nullable=True))
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("transcript", "webvtt")
|
||||
@@ -0,0 +1,36 @@
|
||||
"""remove user_id from meeting table
|
||||
|
||||
Revision ID: 0ce521cda2ee
|
||||
Revises: 6dec9fb5b46c
|
||||
Create Date: 2025-09-10 12:40:55.688899
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ce521cda2ee"
|
||||
down_revision: Union[str, None] = "6dec9fb5b46c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_column("user_id")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("user_id", sa.VARCHAR(), autoincrement=False, nullable=True)
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,48 @@
|
||||
"""add_full_text_search
|
||||
|
||||
Revision ID: 116b2f287eab
|
||||
Revises: 0bc0f3ff0111
|
||||
Create Date: 2025-08-07 11:27:38.473517
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
revision: str = "116b2f287eab"
|
||||
down_revision: Union[str, None] = "0bc0f3ff0111"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
if conn.dialect.name != "postgresql":
|
||||
return
|
||||
|
||||
op.execute(
|
||||
"""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||
) STORED
|
||||
"""
|
||||
)
|
||||
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
if conn.dialect.name != "postgresql":
|
||||
return
|
||||
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
@@ -0,0 +1,34 @@
|
||||
"""clean up orphaned room_id references in meeting table
|
||||
|
||||
Revision ID: 2ae3db106d4e
|
||||
Revises: def1b5867d4c
|
||||
Create Date: 2025-09-11 10:35:15.759967
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "2ae3db106d4e"
|
||||
down_revision: Union[str, None] = "def1b5867d4c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Set room_id to NULL for meetings that reference non-existent rooms
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE meeting
|
||||
SET room_id = NULL
|
||||
WHERE room_id IS NOT NULL
|
||||
AND room_id NOT IN (SELECT id FROM room WHERE id IS NOT NULL)
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Cannot restore orphaned references - no operation needed
|
||||
pass
|
||||
@@ -28,7 +28,7 @@ def upgrade() -> None:
|
||||
transcript = table("transcript", column("id", sa.String), column("topics", sa.JSON))
|
||||
|
||||
# Select all rows from the transcript table
|
||||
results = bind.execute(select([transcript.c.id, transcript.c.topics]))
|
||||
results = bind.execute(select(transcript.c.id, transcript.c.topics))
|
||||
|
||||
for row in results:
|
||||
transcript_id = row["id"]
|
||||
@@ -58,7 +58,7 @@ def downgrade() -> None:
|
||||
transcript = table("transcript", column("id", sa.String), column("topics", sa.JSON))
|
||||
|
||||
# Select all rows from the transcript table
|
||||
results = bind.execute(select([transcript.c.id, transcript.c.topics]))
|
||||
results = bind.execute(select(transcript.c.id, transcript.c.topics))
|
||||
|
||||
for row in results:
|
||||
transcript_id = row["id"]
|
||||
|
||||
@@ -36,9 +36,7 @@ def upgrade() -> None:
|
||||
|
||||
# select only the one with duration = 0
|
||||
results = bind.execute(
|
||||
select([transcript.c.id, transcript.c.duration]).where(
|
||||
transcript.c.duration == 0
|
||||
)
|
||||
select(transcript.c.id, transcript.c.duration).where(transcript.c.duration == 0)
|
||||
)
|
||||
|
||||
data_dir = Path(settings.DATA_DIR)
|
||||
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add cascade delete to meeting consent foreign key
|
||||
|
||||
Revision ID: 5a8907fd1d78
|
||||
Revises: 0ab2d7ffaa16
|
||||
Create Date: 2025-08-26 17:26:50.945491
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "5a8907fd1d78"
|
||||
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,53 @@
|
||||
"""remove_one_active_meeting_per_room_constraint
|
||||
|
||||
Revision ID: 6025e9b2bef2
|
||||
Revises: 2ae3db106d4e
|
||||
Create Date: 2025-08-18 18:45:44.418392
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6025e9b2bef2"
|
||||
down_revision: Union[str, None] = "2ae3db106d4e"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove the unique constraint that prevents multiple active meetings per room
|
||||
# This is needed to support calendar integration with overlapping meetings
|
||||
# Check if index exists before trying to drop it
|
||||
from alembic import context
|
||||
|
||||
if context.get_context().dialect.name == "postgresql":
|
||||
conn = op.get_bind()
|
||||
result = conn.execute(
|
||||
sa.text(
|
||||
"SELECT 1 FROM pg_indexes WHERE indexname = 'idx_one_active_meeting_per_room'"
|
||||
)
|
||||
)
|
||||
if result.fetchone():
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
else:
|
||||
# For SQLite, just try to drop it
|
||||
try:
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Restore the unique constraint
|
||||
op.create_index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"meeting",
|
||||
["room_id"],
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sqlite_where=sa.text("is_active = 1"),
|
||||
)
|
||||
@@ -0,0 +1,28 @@
|
||||
"""webhook url and secret null by default
|
||||
|
||||
|
||||
Revision ID: 61882a919591
|
||||
Revises: 0194f65cd6d3
|
||||
Create Date: 2025-08-29 11:46:36.738091
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "61882a919591"
|
||||
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
@@ -32,7 +32,7 @@ def upgrade() -> None:
|
||||
sa.Column("user_id", sa.String(), nullable=True),
|
||||
sa.Column("room_id", sa.String(), nullable=True),
|
||||
sa.Column(
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
||||
sa.Column(
|
||||
@@ -53,12 +53,15 @@ def upgrade() -> None:
|
||||
sa.Column("user_id", sa.String(), nullable=False),
|
||||
sa.Column("created_at", sa.DateTime(), nullable=False),
|
||||
sa.Column(
|
||||
"zulip_auto_post", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"zulip_auto_post",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("zulip_stream", sa.String(), nullable=True),
|
||||
sa.Column("zulip_topic", sa.String(), nullable=True),
|
||||
sa.Column(
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
||||
sa.Column(
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
"""make meeting room_id required and add foreign key
|
||||
|
||||
Revision ID: 6dec9fb5b46c
|
||||
Revises: 61882a919591
|
||||
Create Date: 2025-09-10 10:47:06.006819
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6dec9fb5b46c"
|
||||
down_revision: Union[str, None] = "61882a919591"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.create_foreign_key(
|
||||
None, "room", ["room_id"], ["id"], ondelete="CASCADE"
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("meeting_room_id_fkey", type_="foreignkey")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -20,11 +20,14 @@ depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
sourcekind_enum = sa.Enum("room", "live", "file", name="sourcekind")
|
||||
sourcekind_enum.create(op.get_bind())
|
||||
|
||||
op.add_column(
|
||||
"transcript",
|
||||
sa.Column(
|
||||
"source_kind",
|
||||
sa.Enum("ROOM", "LIVE", "FILE", name="sourcekind"),
|
||||
sourcekind_enum,
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
@@ -43,6 +46,8 @@ def upgrade() -> None:
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.drop_column("transcript", "source_kind")
|
||||
sourcekind_enum = sa.Enum(name="sourcekind")
|
||||
sourcekind_enum.drop(op.get_bind())
|
||||
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
"""dailyco platform
|
||||
|
||||
Revision ID: 7e47155afd51
|
||||
Revises: b7df9609542c
|
||||
Create Date: 2025-08-04 11:14:19.663115
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "7e47155afd51"
|
||||
down_revision: Union[str, None] = "b7df9609542c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("platform", sa.String(), server_default="whereby", nullable=False)
|
||||
)
|
||||
batch_op.drop_index(
|
||||
batch_op.f("idx_one_active_meeting_per_room"),
|
||||
sqlite_where=sa.text("is_active = 1"),
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("platform", sa.String(), server_default="whereby", nullable=False)
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("platform")
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
batch_op.f("idx_one_active_meeting_per_room"),
|
||||
["room_id"],
|
||||
unique=1,
|
||||
sqlite_where=sa.text("is_active = 1"),
|
||||
)
|
||||
batch_op.drop_column("platform")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,106 @@
|
||||
"""populate_webvtt_from_topics
|
||||
|
||||
Revision ID: 8120ebc75366
|
||||
Revises: 116b2f287eab
|
||||
Create Date: 2025-08-11 19:11:01.316947
|
||||
|
||||
"""
|
||||
|
||||
import json
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
from sqlalchemy import text
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "8120ebc75366"
|
||||
down_revision: Union[str, None] = "116b2f287eab"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def topics_to_webvtt(topics):
|
||||
"""Convert topics list to WebVTT format string."""
|
||||
if not topics:
|
||||
return None
|
||||
|
||||
lines = ["WEBVTT", ""]
|
||||
|
||||
for topic in topics:
|
||||
start_time = format_timestamp(topic.get("start"))
|
||||
end_time = format_timestamp(topic.get("end"))
|
||||
text = topic.get("text", "").strip()
|
||||
|
||||
if start_time and end_time and text:
|
||||
lines.append(f"{start_time} --> {end_time}")
|
||||
lines.append(text)
|
||||
lines.append("")
|
||||
|
||||
return "\n".join(lines).strip()
|
||||
|
||||
|
||||
def format_timestamp(seconds):
|
||||
"""Format seconds to WebVTT timestamp format (HH:MM:SS.mmm)."""
|
||||
if seconds is None:
|
||||
return None
|
||||
|
||||
hours = int(seconds // 3600)
|
||||
minutes = int((seconds % 3600) // 60)
|
||||
secs = seconds % 60
|
||||
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:06.3f}"
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Populate WebVTT field for all transcripts with topics."""
|
||||
|
||||
# Get connection
|
||||
connection = op.get_bind()
|
||||
|
||||
# Query all transcripts with topics
|
||||
result = connection.execute(
|
||||
text("SELECT id, topics FROM transcript WHERE topics IS NOT NULL")
|
||||
)
|
||||
|
||||
rows = result.fetchall()
|
||||
print(f"Found {len(rows)} transcripts with topics")
|
||||
|
||||
updated_count = 0
|
||||
error_count = 0
|
||||
|
||||
for row in rows:
|
||||
transcript_id = row[0]
|
||||
topics_data = row[1]
|
||||
|
||||
if not topics_data:
|
||||
continue
|
||||
|
||||
try:
|
||||
# Parse JSON if it's a string
|
||||
if isinstance(topics_data, str):
|
||||
topics_data = json.loads(topics_data)
|
||||
|
||||
# Convert topics to WebVTT format
|
||||
webvtt_content = topics_to_webvtt(topics_data)
|
||||
|
||||
if webvtt_content:
|
||||
# Update the webvtt field
|
||||
connection.execute(
|
||||
text("UPDATE transcript SET webvtt = :webvtt WHERE id = :id"),
|
||||
{"webvtt": webvtt_content, "id": transcript_id},
|
||||
)
|
||||
updated_count += 1
|
||||
print(f"✓ Updated transcript {transcript_id}")
|
||||
|
||||
except Exception as e:
|
||||
error_count += 1
|
||||
print(f"✗ Error updating transcript {transcript_id}: {e}")
|
||||
|
||||
print(f"\nMigration complete!")
|
||||
print(f" Updated: {updated_count}")
|
||||
print(f" Errors: {error_count}")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Clear WebVTT field for all transcripts."""
|
||||
op.execute(text("UPDATE transcript SET webvtt = NULL"))
|
||||
@@ -28,7 +28,7 @@ def upgrade() -> None:
|
||||
transcript = table("transcript", column("id", sa.String), column("topics", sa.JSON))
|
||||
|
||||
# Select all rows from the transcript table
|
||||
results = bind.execute(select([transcript.c.id, transcript.c.topics]))
|
||||
results = bind.execute(select(transcript.c.id, transcript.c.topics))
|
||||
|
||||
for row in results:
|
||||
transcript_id = row["id"]
|
||||
@@ -58,7 +58,7 @@ def downgrade() -> None:
|
||||
transcript = table("transcript", column("id", sa.String), column("topics", sa.JSON))
|
||||
|
||||
# Select all rows from the transcript table
|
||||
results = bind.execute(select([transcript.c.id, transcript.c.topics]))
|
||||
results = bind.execute(select(transcript.c.id, transcript.c.topics))
|
||||
|
||||
for row in results:
|
||||
transcript_id = row["id"]
|
||||
|
||||
@@ -22,7 +22,7 @@ def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.execute(
|
||||
"UPDATE transcript SET events = "
|
||||
'REPLACE(events, \'"event": "SUMMARY"\', \'"event": "LONG_SUMMARY"\');'
|
||||
'REPLACE(events::text, \'"event": "SUMMARY"\', \'"event": "LONG_SUMMARY"\')::json;'
|
||||
)
|
||||
op.alter_column("transcript", "summary", new_column_name="long_summary")
|
||||
op.add_column("transcript", sa.Column("title", sa.String(), nullable=True))
|
||||
@@ -34,7 +34,7 @@ def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.execute(
|
||||
"UPDATE transcript SET events = "
|
||||
'REPLACE(events, \'"event": "LONG_SUMMARY"\', \'"event": "SUMMARY"\');'
|
||||
'REPLACE(events::text, \'"event": "LONG_SUMMARY"\', \'"event": "SUMMARY"\')::json;'
|
||||
)
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.alter_column("long_summary", nullable=True, new_column_name="summary")
|
||||
|
||||
121
server/migrations/versions/9f5c78d352d6_datetime_timezone.py
Normal file
121
server/migrations/versions/9f5c78d352d6_datetime_timezone.py
Normal file
@@ -0,0 +1,121 @@
|
||||
"""datetime timezone
|
||||
|
||||
Revision ID: 9f5c78d352d6
|
||||
Revises: 8120ebc75366
|
||||
Create Date: 2025-08-13 19:18:27.113593
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "9f5c78d352d6"
|
||||
down_revision: Union[str, None] = "8120ebc75366"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"start_date",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=True,
|
||||
)
|
||||
batch_op.alter_column(
|
||||
"end_date",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"consent_timestamp",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"recorded_at",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"recorded_at",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"consent_timestamp",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"end_date",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=True,
|
||||
)
|
||||
batch_op.alter_column(
|
||||
"start_date",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -25,7 +25,7 @@ def upgrade() -> None:
|
||||
sa.Column(
|
||||
"is_shared",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("0"),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -23,7 +23,10 @@ def upgrade() -> None:
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"is_active", sa.Boolean(), server_default=sa.text("1"), nullable=False
|
||||
"is_active",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("true"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
"""add_search_optimization_indexes
|
||||
|
||||
Revision ID: b1c33bd09963
|
||||
Revises: 9f5c78d352d6
|
||||
Create Date: 2025-08-14 17:26:02.117408
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "b1c33bd09963"
|
||||
down_revision: Union[str, None] = "9f5c78d352d6"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add indexes for actual search filtering patterns used in frontend
|
||||
# Based on /browse page filters: room_id and source_kind
|
||||
|
||||
# Index for room_id + created_at (for room-specific searches with date ordering)
|
||||
op.create_index(
|
||||
"idx_transcript_room_id_created_at",
|
||||
"transcript",
|
||||
["room_id", "created_at"],
|
||||
if_not_exists=True,
|
||||
)
|
||||
|
||||
# Index for source_kind alone (actively used filter in frontend)
|
||||
op.create_index(
|
||||
"idx_transcript_source_kind", "transcript", ["source_kind"], if_not_exists=True
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove the indexes in reverse order
|
||||
op.drop_index("idx_transcript_source_kind", "transcript", if_exists=True)
|
||||
op.drop_index("idx_transcript_room_id_created_at", "transcript", if_exists=True)
|
||||
@@ -23,7 +23,7 @@ def upgrade() -> None:
|
||||
op.add_column(
|
||||
"transcript",
|
||||
sa.Column(
|
||||
"reviewed", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"reviewed", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
)
|
||||
# ### end Alembic commands ###
|
||||
|
||||
@@ -0,0 +1,34 @@
|
||||
"""add_grace_period_fields_to_meeting
|
||||
|
||||
Revision ID: d4a1c446458c
|
||||
Revises: 6025e9b2bef2
|
||||
Create Date: 2025-08-18 18:50:37.768052
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d4a1c446458c"
|
||||
down_revision: Union[str, None] = "6025e9b2bef2"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add fields to track when participants left for grace period logic
|
||||
op.add_column(
|
||||
"meeting", sa.Column("last_participant_left_at", sa.DateTime(timezone=True))
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column("grace_period_minutes", sa.Integer, server_default=sa.text("15")),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
@@ -27,7 +27,8 @@ def upgrade() -> None:
|
||||
|
||||
# Populate room_id for existing ROOM-type transcripts
|
||||
# This joins through recording -> meeting -> room to get the room_id
|
||||
op.execute("""
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE transcript AS t
|
||||
SET room_id = r.id
|
||||
FROM recording rec
|
||||
@@ -36,11 +37,13 @@ def upgrade() -> None:
|
||||
WHERE t.recording_id = rec.id
|
||||
AND t.source_kind = 'room'
|
||||
AND t.room_id IS NULL
|
||||
""")
|
||||
"""
|
||||
)
|
||||
|
||||
# Fix missing meeting_id for ROOM-type transcripts
|
||||
# The meeting_id field exists but was never populated
|
||||
op.execute("""
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE transcript AS t
|
||||
SET meeting_id = rec.meeting_id
|
||||
FROM recording rec
|
||||
@@ -48,7 +51,8 @@ def upgrade() -> None:
|
||||
AND t.source_kind = 'room'
|
||||
AND t.meeting_id IS NULL
|
||||
AND rec.meeting_id IS NOT NULL
|
||||
""")
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
|
||||
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""add calendar
|
||||
|
||||
Revision ID: d8e204bbf615
|
||||
Revises: d4a1c446458c
|
||||
Create Date: 2025-09-10 19:56:22.295756
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d8e204bbf615"
|
||||
down_revision: Union[str, None] = "d4a1c446458c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table(
|
||||
"calendar_event",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("room_id", sa.String(), nullable=False),
|
||||
sa.Column("ics_uid", sa.Text(), nullable=False),
|
||||
sa.Column("title", sa.Text(), nullable=True),
|
||||
sa.Column("description", sa.Text(), nullable=True),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", postgresql.JSONB(astext_type=sa.Text()), nullable=True),
|
||||
sa.Column("location", sa.Text(), nullable=True),
|
||||
sa.Column("ics_raw_data", sa.Text(), nullable=True),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column(
|
||||
"is_deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["room_id"],
|
||||
["room.id"],
|
||||
name="fk_calendar_event_room_id",
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
)
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_deleted",
|
||||
["is_deleted"],
|
||||
unique=False,
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_room_start", ["room_id", "start_time"], unique=False
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("calendar_event_id", sa.String(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"calendar_metadata",
|
||||
postgresql.JSONB(astext_type=sa.Text()),
|
||||
nullable=True,
|
||||
)
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_meeting_calendar_event", ["calendar_event_id"], unique=False
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
"fk_meeting_calendar_event_id",
|
||||
"calendar_event",
|
||||
["calendar_event_id"],
|
||||
["id"],
|
||||
ondelete="SET NULL",
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("ics_url", sa.Text(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_fetch_interval", sa.Integer(), server_default="300", nullable=True
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_enabled",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column("ics_last_sync", sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
batch_op.add_column(sa.Column("ics_last_etag", sa.Text(), nullable=True))
|
||||
batch_op.create_index("idx_room_ics_enabled", ["ics_enabled"], unique=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_room_ics_enabled")
|
||||
batch_op.drop_column("ics_last_etag")
|
||||
batch_op.drop_column("ics_last_sync")
|
||||
batch_op.drop_column("ics_enabled")
|
||||
batch_op.drop_column("ics_fetch_interval")
|
||||
batch_op.drop_column("ics_url")
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("fk_meeting_calendar_event_id", type_="foreignkey")
|
||||
batch_op.drop_index("idx_meeting_calendar_event")
|
||||
batch_op.drop_column("calendar_metadata")
|
||||
batch_op.drop_column("calendar_event_id")
|
||||
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_calendar_event_room_start")
|
||||
batch_op.drop_index(
|
||||
"idx_calendar_event_deleted", postgresql_where=sa.text("NOT is_deleted")
|
||||
)
|
||||
|
||||
op.drop_table("calendar_event")
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,43 @@
|
||||
"""remove_grace_period_fields
|
||||
|
||||
Revision ID: dc035ff72fd5
|
||||
Revises: d8e204bbf615
|
||||
Create Date: 2025-09-11 10:36:45.197588
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "dc035ff72fd5"
|
||||
down_revision: Union[str, None] = "d8e204bbf615"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove grace period columns from meeting table
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Add back grace period columns to meeting table
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"last_participant_left_at", sa.DateTime(timezone=True), nullable=True
|
||||
),
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"grace_period_minutes",
|
||||
sa.Integer(),
|
||||
server_default=sa.text("15"),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
@@ -0,0 +1,34 @@
|
||||
"""make meeting room_id nullable but keep foreign key
|
||||
|
||||
Revision ID: def1b5867d4c
|
||||
Revises: 0ce521cda2ee
|
||||
Create Date: 2025-09-11 09:42:18.697264
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "def1b5867d4c"
|
||||
down_revision: Union[str, None] = "0ce521cda2ee"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -12,7 +12,6 @@ dependencies = [
|
||||
"requests>=2.31.0",
|
||||
"aiortc>=1.5.0",
|
||||
"sortedcontainers>=2.4.0",
|
||||
"loguru>=0.7.0",
|
||||
"pydantic-settings>=2.0.2",
|
||||
"structlog>=23.1.0",
|
||||
"uvicorn[standard]>=0.23.1",
|
||||
@@ -20,26 +19,27 @@ dependencies = [
|
||||
"sentry-sdk[fastapi]>=1.29.2",
|
||||
"httpx>=0.24.1",
|
||||
"fastapi-pagination>=0.12.6",
|
||||
"databases[aiosqlite, asyncpg]>=0.7.0",
|
||||
"sqlalchemy<1.5",
|
||||
"sqlalchemy>=2.0.0",
|
||||
"asyncpg>=0.29.0",
|
||||
"alembic>=1.11.3",
|
||||
"nltk>=3.8.1",
|
||||
"prometheus-fastapi-instrumentator>=6.1.0",
|
||||
"sentencepiece>=0.1.99",
|
||||
"protobuf>=4.24.3",
|
||||
"profanityfilter>=2.0.6",
|
||||
"celery>=5.3.4",
|
||||
"redis>=5.0.1",
|
||||
"python-jose[cryptography]>=3.3.0",
|
||||
"python-multipart>=0.0.6",
|
||||
"faster-whisper>=0.10.0",
|
||||
"transformers>=4.36.2",
|
||||
"black==24.1.1",
|
||||
"jsonschema>=4.23.0",
|
||||
"openai>=1.59.7",
|
||||
"psycopg2-binary>=2.9.10",
|
||||
"llama-index>=0.12.52",
|
||||
"llama-index-llms-openai-like>=0.4.0",
|
||||
"pytest-env>=1.1.5",
|
||||
"webvtt-py>=0.5.0",
|
||||
"icalendar>=6.0.0",
|
||||
"taskiq>=0.11.18",
|
||||
"taskiq-redis>=1.1.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
@@ -47,6 +47,7 @@ dev = [
|
||||
"black>=24.1.1",
|
||||
"stamina>=23.1.0",
|
||||
"pyinstrument>=4.6.1",
|
||||
"pytest-async-sqlalchemy>=0.2.0",
|
||||
]
|
||||
tests = [
|
||||
"pytest-cov>=4.1.0",
|
||||
@@ -55,7 +56,9 @@ tests = [
|
||||
"pytest>=7.4.0",
|
||||
"httpx-ws>=0.4.1",
|
||||
"pytest-httpx>=0.23.1",
|
||||
"pytest-celery>=0.0.0",
|
||||
"pytest-recording>=0.13.4",
|
||||
"pytest-docker>=3.2.3",
|
||||
"asgi-lifespan>=2.1.0",
|
||||
]
|
||||
aws = ["aioboto3>=11.2.0"]
|
||||
evaluation = [
|
||||
@@ -64,6 +67,15 @@ evaluation = [
|
||||
"tqdm>=4.66.0",
|
||||
"pydantic>=2.1.1",
|
||||
]
|
||||
local = [
|
||||
"pyannote-audio>=3.3.2",
|
||||
"faster-whisper>=0.10.0",
|
||||
]
|
||||
silero-vad = [
|
||||
"silero-vad>=5.1.2",
|
||||
"torch>=2.8.0",
|
||||
"torchaudio>=2.8.0",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
default-groups = [
|
||||
@@ -71,6 +83,21 @@ default-groups = [
|
||||
"tests",
|
||||
"aws",
|
||||
"evaluation",
|
||||
"local",
|
||||
"silero-vad"
|
||||
]
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
explicit = true
|
||||
|
||||
[tool.uv.sources]
|
||||
torch = [
|
||||
{ index = "pytorch-cpu" },
|
||||
]
|
||||
torchaudio = [
|
||||
{ index = "pytorch-cpu" },
|
||||
]
|
||||
|
||||
[build-system]
|
||||
@@ -83,10 +110,31 @@ packages = ["reflector"]
|
||||
[tool.coverage.run]
|
||||
source = ["reflector"]
|
||||
|
||||
[tool.pytest_env]
|
||||
ENVIRONMENT = "pytest"
|
||||
DATABASE_URL = "postgresql+asyncpg://test_user:test_password@localhost:15432/reflector_test"
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
||||
testpaths = ["tests"]
|
||||
asyncio_mode = "auto"
|
||||
asyncio_debug = true
|
||||
asyncio_default_fixture_loop_scope = "session"
|
||||
asyncio_default_test_loop_scope = "session"
|
||||
markers = [
|
||||
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
|
||||
]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
"I", # isort - import sorting
|
||||
"F401", # unused imports
|
||||
"PLC0415", # import-outside-top-level - detect inline imports
|
||||
]
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
||||
"gpu/modal_deployments/**.py" = ["PLC0415"]
|
||||
"reflector/tools/**.py" = ["PLC0415"]
|
||||
"migrations/versions/**.py" = ["PLC0415"]
|
||||
"tests/**.py" = ["PLC0415"]
|
||||
|
||||
@@ -12,7 +12,6 @@ from reflector.events import subscribers_shutdown, subscribers_startup
|
||||
from reflector.logger import logger
|
||||
from reflector.metrics import metrics_init
|
||||
from reflector.settings import settings
|
||||
from reflector.views.daily import router as daily_router
|
||||
from reflector.views.meetings import router as meetings_router
|
||||
from reflector.views.rooms import router as rooms_router
|
||||
from reflector.views.rtc_offer import router as rtc_offer_router
|
||||
@@ -87,11 +86,10 @@ app.include_router(transcripts_process_router, prefix="/v1")
|
||||
app.include_router(user_router, prefix="/v1")
|
||||
app.include_router(zulip_router, prefix="/v1")
|
||||
app.include_router(whereby_router, prefix="/v1")
|
||||
app.include_router(daily_router, prefix="/v1")
|
||||
add_pagination(app)
|
||||
|
||||
# prepare celery
|
||||
from reflector.worker import app as celery_app # noqa
|
||||
# prepare taskiq
|
||||
from reflector.worker import app as taskiq_app # noqa
|
||||
|
||||
|
||||
# simpler openapi id
|
||||
|
||||
@@ -67,7 +67,8 @@ def current_user(
|
||||
try:
|
||||
payload = jwtauth.verify_token(token)
|
||||
sub = payload["sub"]
|
||||
return UserInfo(sub=sub)
|
||||
email = payload["email"]
|
||||
return UserInfo(sub=sub, email=email)
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
|
||||
@@ -1,29 +1,82 @@
|
||||
import databases
|
||||
import sqlalchemy
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from sqlalchemy.ext.asyncio import (
|
||||
AsyncEngine,
|
||||
AsyncSession,
|
||||
async_sessionmaker,
|
||||
create_async_engine,
|
||||
)
|
||||
|
||||
from reflector.db.base import Base as Base
|
||||
from reflector.db.base import metadata as metadata
|
||||
from reflector.events import subscribers_shutdown, subscribers_startup
|
||||
from reflector.settings import settings
|
||||
|
||||
database = databases.Database(settings.DATABASE_URL)
|
||||
metadata = sqlalchemy.MetaData()
|
||||
_engine: AsyncEngine | None = None
|
||||
_session_factory: async_sessionmaker[AsyncSession] | None = None
|
||||
|
||||
# import models
|
||||
|
||||
def get_engine() -> AsyncEngine:
|
||||
global _engine
|
||||
if _engine is None:
|
||||
_engine = create_async_engine(
|
||||
settings.DATABASE_URL,
|
||||
echo=False,
|
||||
pool_pre_ping=True,
|
||||
)
|
||||
return _engine
|
||||
|
||||
|
||||
def get_session_factory() -> async_sessionmaker[AsyncSession]:
|
||||
global _session_factory
|
||||
if _session_factory is None:
|
||||
_session_factory = async_sessionmaker(
|
||||
get_engine(),
|
||||
class_=AsyncSession,
|
||||
expire_on_commit=False,
|
||||
)
|
||||
return _session_factory
|
||||
|
||||
|
||||
async def _get_session() -> AsyncGenerator[AsyncSession, None]:
|
||||
# necessary implementation to ease mocking on pytest
|
||||
async with get_session_factory()() as session:
|
||||
yield session
|
||||
|
||||
|
||||
async def get_session() -> AsyncGenerator[AsyncSession, None]:
|
||||
"""
|
||||
Get a database session, fastapi dependency injection style
|
||||
"""
|
||||
async for session in _get_session():
|
||||
yield session
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def get_session_context():
|
||||
"""
|
||||
Get a database session as an async context manager
|
||||
"""
|
||||
async for session in _get_session():
|
||||
yield session
|
||||
|
||||
|
||||
import reflector.db.calendar_events # noqa
|
||||
import reflector.db.meetings # noqa
|
||||
import reflector.db.recordings # noqa
|
||||
import reflector.db.rooms # noqa
|
||||
import reflector.db.transcripts # noqa
|
||||
|
||||
kwargs = {}
|
||||
if "sqlite" in settings.DATABASE_URL:
|
||||
kwargs["connect_args"] = {"check_same_thread": False}
|
||||
engine = sqlalchemy.create_engine(settings.DATABASE_URL, **kwargs)
|
||||
|
||||
|
||||
@subscribers_startup.append
|
||||
async def database_connect(_):
|
||||
await database.connect()
|
||||
get_engine()
|
||||
|
||||
|
||||
@subscribers_shutdown.append
|
||||
async def database_disconnect(_):
|
||||
await database.disconnect()
|
||||
global _engine
|
||||
if _engine:
|
||||
await _engine.dispose()
|
||||
_engine = None
|
||||
|
||||
237
server/reflector/db/base.py
Normal file
237
server/reflector/db/base.py
Normal file
@@ -0,0 +1,237 @@
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects.postgresql import JSONB, TSVECTOR
|
||||
from sqlalchemy.ext.asyncio import AsyncAttrs
|
||||
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column
|
||||
|
||||
|
||||
class Base(AsyncAttrs, DeclarativeBase):
|
||||
pass
|
||||
|
||||
|
||||
class TranscriptModel(Base):
|
||||
__tablename__ = "transcript"
|
||||
|
||||
id: Mapped[str] = mapped_column(sa.String, primary_key=True)
|
||||
name: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
status: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
locked: Mapped[Optional[bool]] = mapped_column(sa.Boolean)
|
||||
duration: Mapped[Optional[float]] = mapped_column(sa.Float)
|
||||
created_at: Mapped[Optional[datetime]] = mapped_column(sa.DateTime(timezone=True))
|
||||
title: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
short_summary: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
long_summary: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
topics: Mapped[Optional[list]] = mapped_column(sa.JSON)
|
||||
events: Mapped[Optional[list]] = mapped_column(sa.JSON)
|
||||
participants: Mapped[Optional[list]] = mapped_column(sa.JSON)
|
||||
source_language: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
target_language: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
reviewed: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("false")
|
||||
)
|
||||
audio_location: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="local"
|
||||
)
|
||||
user_id: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
share_mode: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="private"
|
||||
)
|
||||
meeting_id: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
recording_id: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
zulip_message_id: Mapped[Optional[int]] = mapped_column(sa.Integer)
|
||||
source_kind: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False
|
||||
) # Enum will be handled separately
|
||||
audio_deleted: Mapped[Optional[bool]] = mapped_column(sa.Boolean)
|
||||
room_id: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
webvtt: Mapped[Optional[str]] = mapped_column(sa.Text)
|
||||
|
||||
__table_args__ = (
|
||||
sa.Index("idx_transcript_recording_id", "recording_id"),
|
||||
sa.Index("idx_transcript_user_id", "user_id"),
|
||||
sa.Index("idx_transcript_created_at", "created_at"),
|
||||
sa.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
||||
sa.Index("idx_transcript_room_id", "room_id"),
|
||||
sa.Index("idx_transcript_source_kind", "source_kind"),
|
||||
sa.Index("idx_transcript_room_id_created_at", "room_id", "created_at"),
|
||||
)
|
||||
|
||||
|
||||
TranscriptModel.search_vector_en = sa.Column(
|
||||
"search_vector_en",
|
||||
TSVECTOR,
|
||||
sa.Computed(
|
||||
"setweight(to_tsvector('english', coalesce(title, '')), 'A') || "
|
||||
"setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') || "
|
||||
"setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')",
|
||||
persisted=True,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class RoomModel(Base):
|
||||
__tablename__ = "room"
|
||||
|
||||
id: Mapped[str] = mapped_column(sa.String, primary_key=True)
|
||||
name: Mapped[str] = mapped_column(sa.String, nullable=False, unique=True)
|
||||
user_id: Mapped[str] = mapped_column(sa.String, nullable=False)
|
||||
created_at: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
zulip_auto_post: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("false")
|
||||
)
|
||||
zulip_stream: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
zulip_topic: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
is_locked: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("false")
|
||||
)
|
||||
room_mode: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="normal"
|
||||
)
|
||||
recording_type: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="cloud"
|
||||
)
|
||||
recording_trigger: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="automatic-2nd-participant"
|
||||
)
|
||||
is_shared: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("false")
|
||||
)
|
||||
webhook_url: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
webhook_secret: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
ics_url: Mapped[Optional[str]] = mapped_column(sa.Text)
|
||||
ics_fetch_interval: Mapped[Optional[int]] = mapped_column(
|
||||
sa.Integer, server_default=sa.text("300")
|
||||
)
|
||||
ics_enabled: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("false")
|
||||
)
|
||||
ics_last_sync: Mapped[Optional[datetime]] = mapped_column(
|
||||
sa.DateTime(timezone=True)
|
||||
)
|
||||
ics_last_etag: Mapped[Optional[str]] = mapped_column(sa.Text)
|
||||
|
||||
__table_args__ = (
|
||||
sa.Index("idx_room_is_shared", "is_shared"),
|
||||
sa.Index("idx_room_ics_enabled", "ics_enabled"),
|
||||
)
|
||||
|
||||
|
||||
class MeetingModel(Base):
|
||||
__tablename__ = "meeting"
|
||||
|
||||
id: Mapped[str] = mapped_column(sa.String, primary_key=True)
|
||||
room_name: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
room_url: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
host_room_url: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
start_date: Mapped[Optional[datetime]] = mapped_column(sa.DateTime(timezone=True))
|
||||
end_date: Mapped[Optional[datetime]] = mapped_column(sa.DateTime(timezone=True))
|
||||
room_id: Mapped[Optional[str]] = mapped_column(
|
||||
sa.String, sa.ForeignKey("room.id", ondelete="CASCADE")
|
||||
)
|
||||
is_locked: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("false")
|
||||
)
|
||||
room_mode: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="normal"
|
||||
)
|
||||
recording_type: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="cloud"
|
||||
)
|
||||
recording_trigger: Mapped[str] = mapped_column(
|
||||
sa.String, nullable=False, server_default="automatic-2nd-participant"
|
||||
)
|
||||
num_clients: Mapped[int] = mapped_column(
|
||||
sa.Integer, nullable=False, server_default=sa.text("0")
|
||||
)
|
||||
is_active: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("true")
|
||||
)
|
||||
calendar_event_id: Mapped[Optional[str]] = mapped_column(
|
||||
sa.String,
|
||||
sa.ForeignKey(
|
||||
"calendar_event.id",
|
||||
ondelete="SET NULL",
|
||||
name="fk_meeting_calendar_event_id",
|
||||
),
|
||||
)
|
||||
calendar_metadata: Mapped[Optional[dict]] = mapped_column(JSONB)
|
||||
|
||||
__table_args__ = (
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index("idx_meeting_calendar_event", "calendar_event_id"),
|
||||
)
|
||||
|
||||
|
||||
class MeetingConsentModel(Base):
|
||||
__tablename__ = "meeting_consent"
|
||||
|
||||
id: Mapped[str] = mapped_column(sa.String, primary_key=True)
|
||||
meeting_id: Mapped[str] = mapped_column(
|
||||
sa.String, sa.ForeignKey("meeting.id", ondelete="CASCADE"), nullable=False
|
||||
)
|
||||
user_id: Mapped[Optional[str]] = mapped_column(sa.String)
|
||||
consent_given: Mapped[bool] = mapped_column(sa.Boolean, nullable=False)
|
||||
consent_timestamp: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
|
||||
|
||||
class RecordingModel(Base):
|
||||
__tablename__ = "recording"
|
||||
|
||||
id: Mapped[str] = mapped_column(sa.String, primary_key=True)
|
||||
meeting_id: Mapped[str] = mapped_column(
|
||||
sa.String, sa.ForeignKey("meeting.id", ondelete="CASCADE"), nullable=False
|
||||
)
|
||||
url: Mapped[str] = mapped_column(sa.String, nullable=False)
|
||||
object_key: Mapped[str] = mapped_column(sa.String, nullable=False)
|
||||
duration: Mapped[Optional[float]] = mapped_column(sa.Float)
|
||||
created_at: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
|
||||
__table_args__ = (sa.Index("idx_recording_meeting_id", "meeting_id"),)
|
||||
|
||||
|
||||
class CalendarEventModel(Base):
|
||||
__tablename__ = "calendar_event"
|
||||
|
||||
id: Mapped[str] = mapped_column(sa.String, primary_key=True)
|
||||
room_id: Mapped[str] = mapped_column(
|
||||
sa.String, sa.ForeignKey("room.id", ondelete="CASCADE"), nullable=False
|
||||
)
|
||||
ics_uid: Mapped[str] = mapped_column(sa.Text, nullable=False)
|
||||
title: Mapped[Optional[str]] = mapped_column(sa.Text)
|
||||
description: Mapped[Optional[str]] = mapped_column(sa.Text)
|
||||
start_time: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
end_time: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
attendees: Mapped[Optional[dict]] = mapped_column(JSONB)
|
||||
location: Mapped[Optional[str]] = mapped_column(sa.Text)
|
||||
ics_raw_data: Mapped[Optional[str]] = mapped_column(sa.Text)
|
||||
last_synced: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
is_deleted: Mapped[bool] = mapped_column(
|
||||
sa.Boolean, nullable=False, server_default=sa.text("false")
|
||||
)
|
||||
created_at: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
updated_at: Mapped[datetime] = mapped_column(
|
||||
sa.DateTime(timezone=True), nullable=False
|
||||
)
|
||||
|
||||
__table_args__ = (
|
||||
sa.Index("idx_calendar_event_room_start", "room_id", "start_time"),
|
||||
)
|
||||
|
||||
|
||||
metadata = Base.metadata
|
||||
189
server/reflector/db/calendar_events.py
Normal file
189
server/reflector/db/calendar_events.py
Normal file
@@ -0,0 +1,189 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from sqlalchemy import delete, select, update
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from reflector.db.base import CalendarEventModel
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
|
||||
class CalendarEvent(BaseModel):
|
||||
model_config = ConfigDict(from_attributes=True)
|
||||
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
room_id: str
|
||||
ics_uid: str
|
||||
title: str | None = None
|
||||
description: str | None = None
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
attendees: list[dict[str, Any]] | None = None
|
||||
location: str | None = None
|
||||
ics_raw_data: str | None = None
|
||||
last_synced: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
is_deleted: bool = False
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class CalendarEventController:
|
||||
async def get_upcoming_events(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
room_id: str,
|
||||
current_time: datetime,
|
||||
buffer_minutes: int = 15,
|
||||
) -> list[CalendarEvent]:
|
||||
buffer_time = current_time + timedelta(minutes=buffer_minutes)
|
||||
|
||||
query = (
|
||||
select(CalendarEventModel)
|
||||
.where(
|
||||
sa.and_(
|
||||
CalendarEventModel.room_id == room_id,
|
||||
CalendarEventModel.start_time <= buffer_time,
|
||||
CalendarEventModel.end_time > current_time,
|
||||
)
|
||||
)
|
||||
.order_by(CalendarEventModel.start_time)
|
||||
)
|
||||
|
||||
result = await session.execute(query)
|
||||
return [CalendarEvent.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def get_by_id(
|
||||
self, session: AsyncSession, event_id: str
|
||||
) -> CalendarEvent | None:
|
||||
query = select(CalendarEventModel).where(CalendarEventModel.id == event_id)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return CalendarEvent.model_validate(row)
|
||||
|
||||
async def get_by_ics_uid(
|
||||
self, session: AsyncSession, room_id: str, ics_uid: str
|
||||
) -> CalendarEvent | None:
|
||||
query = select(CalendarEventModel).where(
|
||||
sa.and_(
|
||||
CalendarEventModel.room_id == room_id,
|
||||
CalendarEventModel.ics_uid == ics_uid,
|
||||
)
|
||||
)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return CalendarEvent.model_validate(row)
|
||||
|
||||
async def upsert(
|
||||
self, session: AsyncSession, event: CalendarEvent
|
||||
) -> CalendarEvent:
|
||||
existing = await self.get_by_ics_uid(session, event.room_id, event.ics_uid)
|
||||
|
||||
if existing:
|
||||
event.updated_at = datetime.now(timezone.utc)
|
||||
query = (
|
||||
update(CalendarEventModel)
|
||||
.where(CalendarEventModel.id == existing.id)
|
||||
.values(**event.model_dump(exclude={"id"}))
|
||||
)
|
||||
await session.execute(query)
|
||||
await session.commit()
|
||||
return event
|
||||
else:
|
||||
new_event = CalendarEventModel(**event.model_dump())
|
||||
session.add(new_event)
|
||||
await session.commit()
|
||||
return event
|
||||
|
||||
async def delete_old_events(
|
||||
self, session: AsyncSession, room_id: str, cutoff_date: datetime
|
||||
) -> int:
|
||||
query = delete(CalendarEventModel).where(
|
||||
sa.and_(
|
||||
CalendarEventModel.room_id == room_id,
|
||||
CalendarEventModel.end_time < cutoff_date,
|
||||
)
|
||||
)
|
||||
result = await session.execute(query)
|
||||
await session.commit()
|
||||
return result.rowcount
|
||||
|
||||
async def delete_events_not_in_list(
|
||||
self, session: AsyncSession, room_id: str, keep_ics_uids: list[str]
|
||||
) -> int:
|
||||
if not keep_ics_uids:
|
||||
query = delete(CalendarEventModel).where(
|
||||
CalendarEventModel.room_id == room_id
|
||||
)
|
||||
else:
|
||||
query = delete(CalendarEventModel).where(
|
||||
sa.and_(
|
||||
CalendarEventModel.room_id == room_id,
|
||||
CalendarEventModel.ics_uid.notin_(keep_ics_uids),
|
||||
)
|
||||
)
|
||||
|
||||
result = await session.execute(query)
|
||||
await session.commit()
|
||||
return result.rowcount
|
||||
|
||||
async def get_by_room(
|
||||
self, session: AsyncSession, room_id: str, include_deleted: bool = True
|
||||
) -> list[CalendarEvent]:
|
||||
query = select(CalendarEventModel).where(CalendarEventModel.room_id == room_id)
|
||||
if not include_deleted:
|
||||
query = query.where(CalendarEventModel.is_deleted == False)
|
||||
result = await session.execute(query)
|
||||
return [CalendarEvent.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def get_upcoming(
|
||||
self, session: AsyncSession, room_id: str, minutes_ahead: int = 120
|
||||
) -> list[CalendarEvent]:
|
||||
now = datetime.now(timezone.utc)
|
||||
buffer_time = now + timedelta(minutes=minutes_ahead)
|
||||
|
||||
query = (
|
||||
select(CalendarEventModel)
|
||||
.where(
|
||||
sa.and_(
|
||||
CalendarEventModel.room_id == room_id,
|
||||
CalendarEventModel.start_time <= buffer_time,
|
||||
CalendarEventModel.end_time > now,
|
||||
CalendarEventModel.is_deleted == False,
|
||||
)
|
||||
)
|
||||
.order_by(CalendarEventModel.start_time)
|
||||
)
|
||||
|
||||
result = await session.execute(query)
|
||||
return [CalendarEvent.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def soft_delete_missing(
|
||||
self, session: AsyncSession, room_id: str, current_ics_uids: list[str]
|
||||
) -> int:
|
||||
query = (
|
||||
update(CalendarEventModel)
|
||||
.where(
|
||||
sa.and_(
|
||||
CalendarEventModel.room_id == room_id,
|
||||
(
|
||||
CalendarEventModel.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True
|
||||
),
|
||||
CalendarEventModel.end_time > datetime.now(timezone.utc),
|
||||
)
|
||||
)
|
||||
.values(is_deleted=True)
|
||||
)
|
||||
result = await session.execute(query)
|
||||
await session.commit()
|
||||
return result.rowcount
|
||||
|
||||
|
||||
calendar_events_controller = CalendarEventController()
|
||||
@@ -1,67 +1,19 @@
|
||||
from datetime import datetime
|
||||
from typing import Literal
|
||||
from typing import Any, Literal
|
||||
|
||||
import sqlalchemy as sa
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from sqlalchemy import select, update
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db.base import MeetingConsentModel, MeetingModel
|
||||
from reflector.db.rooms import Room
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
meetings = sa.Table(
|
||||
"meeting",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("room_name", sa.String),
|
||||
sa.Column("room_url", sa.String),
|
||||
sa.Column("host_room_url", sa.String),
|
||||
sa.Column("start_date", sa.DateTime),
|
||||
sa.Column("end_date", sa.DateTime),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("room_id", sa.String),
|
||||
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
|
||||
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
|
||||
sa.Column(
|
||||
"recording_trigger",
|
||||
sa.String,
|
||||
nullable=False,
|
||||
server_default="automatic-2nd-participant",
|
||||
),
|
||||
sa.Column(
|
||||
"num_clients",
|
||||
sa.Integer,
|
||||
nullable=False,
|
||||
server_default=sa.text("0"),
|
||||
),
|
||||
sa.Column(
|
||||
"is_active",
|
||||
sa.Boolean,
|
||||
nullable=False,
|
||||
server_default=sa.true(),
|
||||
),
|
||||
sa.Column(
|
||||
"platform",
|
||||
sa.String,
|
||||
nullable=False,
|
||||
server_default="whereby",
|
||||
),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
)
|
||||
|
||||
meeting_consent = sa.Table(
|
||||
"meeting_consent",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||
sa.Column("consent_timestamp", sa.DateTime, nullable=False),
|
||||
)
|
||||
|
||||
|
||||
class MeetingConsent(BaseModel):
|
||||
model_config = ConfigDict(from_attributes=True)
|
||||
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
meeting_id: str
|
||||
user_id: str | None = None
|
||||
@@ -70,14 +22,15 @@ class MeetingConsent(BaseModel):
|
||||
|
||||
|
||||
class Meeting(BaseModel):
|
||||
model_config = ConfigDict(from_attributes=True)
|
||||
|
||||
id: str
|
||||
room_name: str
|
||||
room_url: str
|
||||
host_room_url: str
|
||||
start_date: datetime
|
||||
end_date: datetime
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_id: str | None
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
@@ -85,24 +38,25 @@ class Meeting(BaseModel):
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
num_clients: int = 0
|
||||
platform: Literal["whereby", "daily"] = "whereby"
|
||||
is_active: bool = True
|
||||
calendar_event_id: str | None = None
|
||||
calendar_metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class MeetingController:
|
||||
async def create(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
id: str,
|
||||
room_name: str,
|
||||
room_url: str,
|
||||
host_room_url: str,
|
||||
start_date: datetime,
|
||||
end_date: datetime,
|
||||
user_id: str,
|
||||
room: Room,
|
||||
calendar_event_id: str | None = None,
|
||||
calendar_metadata: dict[str, Any] | None = None,
|
||||
):
|
||||
"""
|
||||
Create a new meeting
|
||||
"""
|
||||
meeting = Meeting(
|
||||
id=id,
|
||||
room_name=room_name,
|
||||
@@ -110,149 +64,206 @@ class MeetingController:
|
||||
host_room_url=host_room_url,
|
||||
start_date=start_date,
|
||||
end_date=end_date,
|
||||
user_id=user_id,
|
||||
room_id=room.id,
|
||||
is_locked=room.is_locked,
|
||||
room_mode=room.room_mode,
|
||||
recording_type=room.recording_type,
|
||||
recording_trigger=room.recording_trigger,
|
||||
platform=room.platform,
|
||||
calendar_event_id=calendar_event_id,
|
||||
calendar_metadata=calendar_metadata,
|
||||
)
|
||||
query = meetings.insert().values(**meeting.model_dump())
|
||||
await database.execute(query)
|
||||
new_meeting = MeetingModel(**meeting.model_dump())
|
||||
session.add(new_meeting)
|
||||
await session.commit()
|
||||
return meeting
|
||||
|
||||
async def get_all_active(self) -> list[Meeting]:
|
||||
"""
|
||||
Get active meetings.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.is_active)
|
||||
return await database.fetch_all(query)
|
||||
async def get_all_active(self, session: AsyncSession) -> list[Meeting]:
|
||||
query = select(MeetingModel).where(MeetingModel.is_active)
|
||||
result = await session.execute(query)
|
||||
return [Meeting.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def get_by_room_name(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
room_name: str,
|
||||
) -> Meeting:
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by room name.
|
||||
For backward compatibility, returns the most recent meeting.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.room_name == room_name)
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = (
|
||||
select(MeetingModel)
|
||||
.where(MeetingModel.room_name == room_name)
|
||||
.order_by(MeetingModel.end_date.desc())
|
||||
)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Meeting.model_validate(row)
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting:
|
||||
async def get_active(
|
||||
self, session: AsyncSession, room: Room, current_time: datetime
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get latest active meeting for a room.
|
||||
For backward compatibility, returns the most recent active meeting.
|
||||
"""
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
select(MeetingModel)
|
||||
.where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
MeetingModel.room_id == room.id,
|
||||
MeetingModel.end_date > current_time,
|
||||
MeetingModel.is_active,
|
||||
)
|
||||
)
|
||||
.order_by(end_date.desc())
|
||||
.order_by(MeetingModel.end_date.desc())
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Meeting.model_validate(row)
|
||||
|
||||
return Meeting(**result)
|
||||
async def get_all_active_for_room(
|
||||
self, session: AsyncSession, room: Room, current_time: datetime
|
||||
) -> list[Meeting]:
|
||||
query = (
|
||||
select(MeetingModel)
|
||||
.where(
|
||||
sa.and_(
|
||||
MeetingModel.room_id == room.id,
|
||||
MeetingModel.end_date > current_time,
|
||||
MeetingModel.is_active,
|
||||
)
|
||||
)
|
||||
.order_by(MeetingModel.end_date.desc())
|
||||
)
|
||||
result = await session.execute(query)
|
||||
return [Meeting.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
|
||||
async def get_active_by_calendar_event(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
room: Room,
|
||||
calendar_event_id: str,
|
||||
current_time: datetime,
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by id
|
||||
Get active meeting for a specific calendar event.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = select(MeetingModel).where(
|
||||
sa.and_(
|
||||
MeetingModel.room_id == room.id,
|
||||
MeetingModel.calendar_event_id == calendar_event_id,
|
||||
MeetingModel.end_date > current_time,
|
||||
MeetingModel.is_active,
|
||||
)
|
||||
)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
return Meeting.model_validate(row)
|
||||
|
||||
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Meeting:
|
||||
"""
|
||||
Get a meeting by ID for HTTP request.
|
||||
async def get_by_id(
|
||||
self, session: AsyncSession, meeting_id: str, **kwargs
|
||||
) -> Meeting | None:
|
||||
query = select(MeetingModel).where(MeetingModel.id == meeting_id)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Meeting.model_validate(row)
|
||||
|
||||
If not found, it will raise a 404 error.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
async def get_by_calendar_event(
|
||||
self, session: AsyncSession, calendar_event_id: str
|
||||
) -> Meeting | None:
|
||||
query = select(MeetingModel).where(
|
||||
MeetingModel.calendar_event_id == calendar_event_id
|
||||
)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Meeting.model_validate(row)
|
||||
|
||||
meeting = Meeting(**result)
|
||||
if result["user_id"] != user_id:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
|
||||
async def update_meeting(self, meeting_id: str, **kwargs):
|
||||
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
||||
await database.execute(query)
|
||||
async def update_meeting(self, session: AsyncSession, meeting_id: str, **kwargs):
|
||||
query = (
|
||||
update(MeetingModel).where(MeetingModel.id == meeting_id).values(**kwargs)
|
||||
)
|
||||
await session.execute(query)
|
||||
await session.commit()
|
||||
|
||||
|
||||
class MeetingConsentController:
|
||||
async def get_by_meeting_id(self, meeting_id: str) -> list[MeetingConsent]:
|
||||
query = meeting_consent.select().where(
|
||||
meeting_consent.c.meeting_id == meeting_id
|
||||
async def get_by_meeting_id(
|
||||
self, session: AsyncSession, meeting_id: str
|
||||
) -> list[MeetingConsent]:
|
||||
query = select(MeetingConsentModel).where(
|
||||
MeetingConsentModel.meeting_id == meeting_id
|
||||
)
|
||||
results = await database.fetch_all(query)
|
||||
return [MeetingConsent(**result) for result in results]
|
||||
result = await session.execute(query)
|
||||
return [MeetingConsent.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def get_by_meeting_and_user(
|
||||
self, meeting_id: str, user_id: str
|
||||
self, session: AsyncSession, meeting_id: str, user_id: str
|
||||
) -> MeetingConsent | None:
|
||||
"""Get existing consent for a specific user and meeting"""
|
||||
query = meeting_consent.select().where(
|
||||
meeting_consent.c.meeting_id == meeting_id,
|
||||
meeting_consent.c.user_id == user_id,
|
||||
query = select(MeetingConsentModel).where(
|
||||
sa.and_(
|
||||
MeetingConsentModel.meeting_id == meeting_id,
|
||||
MeetingConsentModel.user_id == user_id,
|
||||
)
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
if result is None:
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if row is None:
|
||||
return None
|
||||
return MeetingConsent(**result) if result else None
|
||||
return MeetingConsent.model_validate(row)
|
||||
|
||||
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
|
||||
"""Create new consent or update existing one for authenticated users"""
|
||||
async def upsert(
|
||||
self, session: AsyncSession, consent: MeetingConsent
|
||||
) -> MeetingConsent:
|
||||
if consent.user_id:
|
||||
# For authenticated users, check if consent already exists
|
||||
# not transactional but we're ok with that; the consents ain't deleted anyways
|
||||
existing = await self.get_by_meeting_and_user(
|
||||
consent.meeting_id, consent.user_id
|
||||
session, consent.meeting_id, consent.user_id
|
||||
)
|
||||
if existing:
|
||||
query = (
|
||||
meeting_consent.update()
|
||||
.where(meeting_consent.c.id == existing.id)
|
||||
update(MeetingConsentModel)
|
||||
.where(MeetingConsentModel.id == existing.id)
|
||||
.values(
|
||||
consent_given=consent.consent_given,
|
||||
consent_timestamp=consent.consent_timestamp,
|
||||
)
|
||||
)
|
||||
await database.execute(query)
|
||||
await session.execute(query)
|
||||
await session.commit()
|
||||
|
||||
existing.consent_given = consent.consent_given
|
||||
existing.consent_timestamp = consent.consent_timestamp
|
||||
return existing
|
||||
existing.consent_given = consent.consent_given
|
||||
existing.consent_timestamp = consent.consent_timestamp
|
||||
return existing
|
||||
|
||||
query = meeting_consent.insert().values(**consent.model_dump())
|
||||
await database.execute(query)
|
||||
new_consent = MeetingConsentModel(**consent.model_dump())
|
||||
session.add(new_consent)
|
||||
await session.commit()
|
||||
return consent
|
||||
|
||||
async def has_any_denial(self, meeting_id: str) -> bool:
|
||||
async def has_any_denial(self, session: AsyncSession, meeting_id: str) -> bool:
|
||||
"""Check if any participant denied consent for this meeting"""
|
||||
query = meeting_consent.select().where(
|
||||
meeting_consent.c.meeting_id == meeting_id,
|
||||
meeting_consent.c.consent_given.is_(False),
|
||||
query = select(MeetingConsentModel).where(
|
||||
sa.and_(
|
||||
MeetingConsentModel.meeting_id == meeting_id,
|
||||
MeetingConsentModel.consent_given.is_(False),
|
||||
)
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
return result is not None
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
return row is not None
|
||||
|
||||
|
||||
meetings_controller = MeetingController()
|
||||
|
||||
@@ -1,57 +1,79 @@
|
||||
from datetime import datetime
|
||||
from typing import Literal
|
||||
from datetime import datetime, timezone
|
||||
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from sqlalchemy import delete, select
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db.base import RecordingModel
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
recordings = sa.Table(
|
||||
"recording",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("bucket_name", sa.String, nullable=False),
|
||||
sa.Column("object_key", sa.String, nullable=False),
|
||||
sa.Column("recorded_at", sa.DateTime, nullable=False),
|
||||
sa.Column(
|
||||
"status",
|
||||
sa.String,
|
||||
nullable=False,
|
||||
server_default="pending",
|
||||
),
|
||||
sa.Column("meeting_id", sa.String),
|
||||
sa.Index("idx_recording_meeting_id", "meeting_id"),
|
||||
)
|
||||
|
||||
|
||||
class Recording(BaseModel):
|
||||
model_config = ConfigDict(from_attributes=True)
|
||||
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
bucket_name: str
|
||||
meeting_id: str
|
||||
url: str
|
||||
object_key: str
|
||||
recorded_at: datetime
|
||||
status: Literal["pending", "processing", "completed", "failed"] = "pending"
|
||||
meeting_id: str | None = None
|
||||
duration: float | None = None
|
||||
created_at: datetime
|
||||
|
||||
|
||||
class RecordingController:
|
||||
async def create(self, recording: Recording):
|
||||
query = recordings.insert().values(**recording.model_dump())
|
||||
await database.execute(query)
|
||||
async def create(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
meeting_id: str,
|
||||
url: str,
|
||||
object_key: str,
|
||||
duration: float | None = None,
|
||||
created_at: datetime | None = None,
|
||||
):
|
||||
if created_at is None:
|
||||
created_at = datetime.now(timezone.utc)
|
||||
|
||||
recording = Recording(
|
||||
meeting_id=meeting_id,
|
||||
url=url,
|
||||
object_key=object_key,
|
||||
duration=duration,
|
||||
created_at=created_at,
|
||||
)
|
||||
new_recording = RecordingModel(**recording.model_dump())
|
||||
session.add(new_recording)
|
||||
await session.commit()
|
||||
return recording
|
||||
|
||||
async def get_by_id(self, id: str) -> Recording:
|
||||
query = recordings.select().where(recordings.c.id == id)
|
||||
result = await database.fetch_one(query)
|
||||
return Recording(**result) if result else None
|
||||
async def get_by_id(
|
||||
self, session: AsyncSession, recording_id: str
|
||||
) -> Recording | None:
|
||||
"""
|
||||
Get a recording by id
|
||||
"""
|
||||
query = select(RecordingModel).where(RecordingModel.id == recording_id)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Recording.model_validate(row)
|
||||
|
||||
async def get_by_object_key(self, bucket_name: str, object_key: str) -> Recording:
|
||||
query = recordings.select().where(
|
||||
recordings.c.bucket_name == bucket_name,
|
||||
recordings.c.object_key == object_key,
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
return Recording(**result) if result else None
|
||||
async def get_by_meeting_id(
|
||||
self, session: AsyncSession, meeting_id: str
|
||||
) -> list[Recording]:
|
||||
"""
|
||||
Get all recordings for a meeting
|
||||
"""
|
||||
query = select(RecordingModel).where(RecordingModel.meeting_id == meeting_id)
|
||||
result = await session.execute(query)
|
||||
return [Recording.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def remove_by_id(self, session: AsyncSession, recording_id: str) -> None:
|
||||
"""
|
||||
Remove a recording by id
|
||||
"""
|
||||
query = delete(RecordingModel).where(RecordingModel.id == recording_id)
|
||||
await session.execute(query)
|
||||
await session.commit()
|
||||
|
||||
|
||||
recordings_controller = RecordingController()
|
||||
|
||||
@@ -1,57 +1,25 @@
|
||||
from datetime import datetime
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import IntegrityError
|
||||
from typing import Literal
|
||||
|
||||
import sqlalchemy
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.sql import false, or_
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from sqlalchemy import delete, select, update
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlalchemy.sql import or_
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db.base import RoomModel
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
rooms = sqlalchemy.Table(
|
||||
"room",
|
||||
metadata,
|
||||
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
||||
sqlalchemy.Column("name", sqlalchemy.String, nullable=False, unique=True),
|
||||
sqlalchemy.Column("user_id", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime, nullable=False),
|
||||
sqlalchemy.Column(
|
||||
"zulip_auto_post", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("zulip_stream", sqlalchemy.String),
|
||||
sqlalchemy.Column("zulip_topic", sqlalchemy.String),
|
||||
sqlalchemy.Column(
|
||||
"is_locked", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"room_mode", sqlalchemy.String, nullable=False, server_default="normal"
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"recording_type", sqlalchemy.String, nullable=False, server_default="cloud"
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"recording_trigger",
|
||||
sqlalchemy.String,
|
||||
nullable=False,
|
||||
server_default="automatic-2nd-participant",
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"platform", sqlalchemy.String, nullable=False, server_default="whereby"
|
||||
),
|
||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||
)
|
||||
|
||||
|
||||
class Room(BaseModel):
|
||||
model_config = ConfigDict(from_attributes=True)
|
||||
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
name: str
|
||||
user_id: str
|
||||
created_at: datetime = Field(default_factory=datetime.utcnow)
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
zulip_auto_post: bool = False
|
||||
zulip_stream: str = ""
|
||||
zulip_topic: str = ""
|
||||
@@ -62,12 +30,19 @@ class Room(BaseModel):
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
is_shared: bool = False
|
||||
platform: Literal["whereby", "daily"] = "whereby"
|
||||
webhook_url: str | None = None
|
||||
webhook_secret: str | None = None
|
||||
ics_url: str | None = None
|
||||
ics_fetch_interval: int = 300
|
||||
ics_enabled: bool = False
|
||||
ics_last_sync: datetime | None = None
|
||||
ics_last_etag: str | None = None
|
||||
|
||||
|
||||
class RoomController:
|
||||
async def get_all(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
user_id: str | None = None,
|
||||
order_by: str | None = None,
|
||||
return_query: bool = False,
|
||||
@@ -81,14 +56,14 @@ class RoomController:
|
||||
Parameters:
|
||||
- `order_by`: field to order by, e.g. "-created_at"
|
||||
"""
|
||||
query = rooms.select()
|
||||
query = select(RoomModel)
|
||||
if user_id is not None:
|
||||
query = query.where(or_(rooms.c.user_id == user_id, rooms.c.is_shared))
|
||||
query = query.where(or_(RoomModel.user_id == user_id, RoomModel.is_shared))
|
||||
else:
|
||||
query = query.where(rooms.c.is_shared)
|
||||
query = query.where(RoomModel.is_shared)
|
||||
|
||||
if order_by is not None:
|
||||
field = getattr(rooms.c, order_by[1:])
|
||||
field = getattr(RoomModel, order_by[1:])
|
||||
if order_by.startswith("-"):
|
||||
field = field.desc()
|
||||
query = query.order_by(field)
|
||||
@@ -96,11 +71,12 @@ class RoomController:
|
||||
if return_query:
|
||||
return query
|
||||
|
||||
results = await database.fetch_all(query)
|
||||
return results
|
||||
result = await session.execute(query)
|
||||
return [Room.model_validate(row) for row in result.scalars().all()]
|
||||
|
||||
async def add(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
name: str,
|
||||
user_id: str,
|
||||
zulip_auto_post: bool,
|
||||
@@ -111,11 +87,18 @@ class RoomController:
|
||||
recording_type: str,
|
||||
recording_trigger: str,
|
||||
is_shared: bool,
|
||||
platform: str = "whereby",
|
||||
webhook_url: str = "",
|
||||
webhook_secret: str = "",
|
||||
ics_url: str | None = None,
|
||||
ics_fetch_interval: int = 300,
|
||||
ics_enabled: bool = False,
|
||||
):
|
||||
"""
|
||||
Add a new room
|
||||
"""
|
||||
if webhook_url and not webhook_secret:
|
||||
webhook_secret = secrets.token_urlsafe(32)
|
||||
|
||||
room = Room(
|
||||
name=name,
|
||||
user_id=user_id,
|
||||
@@ -127,22 +110,33 @@ class RoomController:
|
||||
recording_type=recording_type,
|
||||
recording_trigger=recording_trigger,
|
||||
is_shared=is_shared,
|
||||
platform=platform,
|
||||
webhook_url=webhook_url,
|
||||
webhook_secret=webhook_secret,
|
||||
ics_url=ics_url,
|
||||
ics_fetch_interval=ics_fetch_interval,
|
||||
ics_enabled=ics_enabled,
|
||||
)
|
||||
query = rooms.insert().values(**room.model_dump())
|
||||
new_room = RoomModel(**room.model_dump())
|
||||
session.add(new_room)
|
||||
try:
|
||||
await database.execute(query)
|
||||
await session.flush()
|
||||
except IntegrityError:
|
||||
raise HTTPException(status_code=400, detail="Room name is not unique")
|
||||
return room
|
||||
|
||||
async def update(self, room: Room, values: dict, mutate=True):
|
||||
async def update(
|
||||
self, session: AsyncSession, room: Room, values: dict, mutate=True
|
||||
):
|
||||
"""
|
||||
Update a room fields with key/values in values
|
||||
"""
|
||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||
|
||||
query = update(RoomModel).where(RoomModel.id == room.id).values(**values)
|
||||
try:
|
||||
await database.execute(query)
|
||||
await session.execute(query)
|
||||
await session.flush()
|
||||
except IntegrityError:
|
||||
raise HTTPException(status_code=400, detail="Room name is not unique")
|
||||
|
||||
@@ -150,60 +144,79 @@ class RoomController:
|
||||
for key, value in values.items():
|
||||
setattr(room, key, value)
|
||||
|
||||
async def get_by_id(self, room_id: str, **kwargs) -> Room | None:
|
||||
async def get_by_id(
|
||||
self, session: AsyncSession, room_id: str, **kwargs
|
||||
) -> Room | None:
|
||||
"""
|
||||
Get a room by id
|
||||
"""
|
||||
query = rooms.select().where(rooms.c.id == room_id)
|
||||
query = select(RoomModel).where(RoomModel.id == room_id)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = query.where(RoomModel.user_id == kwargs["user_id"])
|
||||
result = await session.execute(query)
|
||||
row = result.scalars().first()
|
||||
if not row:
|
||||
return None
|
||||
return Room(**result)
|
||||
return Room.model_validate(row)
|
||||
|
||||
async def get_by_name(self, room_name: str, **kwargs) -> Room | None:
|
||||
async def get_by_name(
|
||||
self, session: AsyncSession, room_name: str, **kwargs
|
||||
) -> Room | None:
|
||||
"""
|
||||
Get a room by name
|
||||
"""
|
||||
query = rooms.select().where(rooms.c.name == room_name)
|
||||
query = select(RoomModel).where(RoomModel.name == room_name)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = query.where(RoomModel.user_id == kwargs["user_id"])
|
||||
result = await session.execute(query)
|
||||
row = result.scalars().first()
|
||||
if not row:
|
||||
return None
|
||||
return Room(**result)
|
||||
return Room.model_validate(row)
|
||||
|
||||
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Room:
|
||||
async def get_by_id_for_http(
|
||||
self, session: AsyncSession, meeting_id: str, user_id: str | None
|
||||
) -> Room:
|
||||
"""
|
||||
Get a room by ID for HTTP request.
|
||||
|
||||
If not found, it will raise a 404 error.
|
||||
"""
|
||||
query = rooms.select().where(rooms.c.id == meeting_id)
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = select(RoomModel).where(RoomModel.id == meeting_id)
|
||||
result = await session.execute(query)
|
||||
row = result.scalars().first()
|
||||
if not row:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
room = Room(**result)
|
||||
room = Room.model_validate(row)
|
||||
|
||||
return room
|
||||
|
||||
async def get_ics_enabled(self, session: AsyncSession) -> list[Room]:
|
||||
query = select(RoomModel).where(
|
||||
RoomModel.ics_enabled == True, RoomModel.ics_url != None
|
||||
)
|
||||
result = await session.execute(query)
|
||||
results = result.scalars().all()
|
||||
return [Room(**row.__dict__) for row in results]
|
||||
|
||||
async def remove_by_id(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
room_id: str,
|
||||
user_id: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Remove a room by id
|
||||
"""
|
||||
room = await self.get_by_id(room_id, user_id=user_id)
|
||||
room = await self.get_by_id(session, room_id, user_id=user_id)
|
||||
if not room:
|
||||
return
|
||||
if user_id is not None and room.user_id != user_id:
|
||||
return
|
||||
query = rooms.delete().where(rooms.c.id == room_id)
|
||||
await database.execute(query)
|
||||
query = delete(RoomModel).where(RoomModel.id == room_id)
|
||||
await session.execute(query)
|
||||
await session.flush()
|
||||
|
||||
|
||||
rooms_controller = RoomController()
|
||||
|
||||
464
server/reflector/db/search.py
Normal file
464
server/reflector/db/search.py
Normal file
@@ -0,0 +1,464 @@
|
||||
"""Search functionality for transcripts and other entities."""
|
||||
|
||||
import itertools
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from io import StringIO
|
||||
from typing import Annotated, Any, Dict, Iterator
|
||||
|
||||
import sqlalchemy
|
||||
import webvtt
|
||||
from fastapi import HTTPException
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
NonNegativeFloat,
|
||||
NonNegativeInt,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
constr,
|
||||
field_serializer,
|
||||
)
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from reflector.db.base import RoomModel, TranscriptModel
|
||||
from reflector.db.transcripts import SourceKind, TranscriptStatus
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||
|
||||
DEFAULT_SEARCH_LIMIT = 20
|
||||
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||
DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||
|
||||
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||
SearchOffsetBase = Annotated[int, Field(ge=0)]
|
||||
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||
|
||||
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||
search_query_adapter = TypeAdapter(SearchQuery)
|
||||
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||
SearchOffset = Annotated[
|
||||
SearchOffsetBase, Field(description="Number of results to skip")
|
||||
]
|
||||
SearchTotal = Annotated[
|
||||
SearchTotalBase, Field(description="Total number of search results")
|
||||
]
|
||||
|
||||
WEBVTT_SPEC_HEADER = "WEBVTT"
|
||||
|
||||
WebVTTContent = Annotated[
|
||||
str,
|
||||
Field(min_length=len(WEBVTT_SPEC_HEADER), description="WebVTT content"),
|
||||
]
|
||||
|
||||
|
||||
class WebVTTProcessor:
|
||||
"""Stateless processor for WebVTT content operations."""
|
||||
|
||||
@staticmethod
|
||||
def parse(raw_content: str) -> WebVTTContent:
|
||||
"""Parse WebVTT content and return it as a string."""
|
||||
if not raw_content.startswith(WEBVTT_SPEC_HEADER):
|
||||
raise ValueError(f"Invalid WebVTT content, no header {WEBVTT_SPEC_HEADER}")
|
||||
return raw_content
|
||||
|
||||
@staticmethod
|
||||
def extract_text(webvtt_content: WebVTTContent) -> str:
|
||||
"""Extract plain text from WebVTT content using webvtt library."""
|
||||
try:
|
||||
buffer = StringIO(webvtt_content)
|
||||
vtt = webvtt.read_buffer(buffer)
|
||||
return " ".join(caption.text for caption in vtt if caption.text)
|
||||
except webvtt.errors.MalformedFileError as e:
|
||||
logger.warning(f"Malformed WebVTT content: {e}")
|
||||
return ""
|
||||
except (UnicodeDecodeError, ValueError) as e:
|
||||
logger.warning(f"Failed to decode WebVTT content: {e}")
|
||||
return ""
|
||||
except AttributeError as e:
|
||||
logger.error(
|
||||
f"WebVTT parsing error - unexpected format: {e}", exc_info=True
|
||||
)
|
||||
return ""
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error parsing WebVTT: {e}", exc_info=True)
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def generate_snippets(
|
||||
webvtt_content: WebVTTContent,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from WebVTT content."""
|
||||
return SnippetGenerator.generate(
|
||||
WebVTTProcessor.extract_text(webvtt_content),
|
||||
query,
|
||||
max_snippets=max_snippets,
|
||||
)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class SnippetCandidate:
|
||||
"""Represents a candidate snippet with its position."""
|
||||
|
||||
_text: str
|
||||
start: NonNegativeInt
|
||||
_original_text_length: int
|
||||
|
||||
@property
|
||||
def end(self) -> NonNegativeInt:
|
||||
"""Calculate end position from start and raw text length."""
|
||||
return self.start + len(self._text)
|
||||
|
||||
def text(self) -> str:
|
||||
"""Get display text with ellipses added if needed."""
|
||||
result = self._text.strip()
|
||||
if self.start > 0:
|
||||
result = "..." + result
|
||||
if self.end < self._original_text_length:
|
||||
result = result + "..."
|
||||
return result
|
||||
|
||||
|
||||
class SearchParameters(BaseModel):
|
||||
"""Validated search parameters for full-text search."""
|
||||
|
||||
query_text: SearchQuery | None = None
|
||||
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||
offset: SearchOffset = 0
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
source_kind: SourceKind | None = None
|
||||
|
||||
|
||||
class SearchResultDB(BaseModel):
|
||||
"""Intermediate model for validating raw database results."""
|
||||
|
||||
id: str = Field(..., min_length=1)
|
||||
created_at: datetime
|
||||
status: str = Field(..., min_length=1)
|
||||
duration: float | None = Field(None, ge=0)
|
||||
user_id: str | None = None
|
||||
title: str | None = None
|
||||
source_kind: SourceKind
|
||||
room_id: str | None = None
|
||||
rank: float = Field(..., ge=0, le=1)
|
||||
|
||||
|
||||
class SearchResult(BaseModel):
|
||||
"""Public search result model with computed fields."""
|
||||
|
||||
id: str = Field(..., min_length=1)
|
||||
title: str | None = None
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_name: str | None = None
|
||||
source_kind: SourceKind
|
||||
created_at: datetime
|
||||
status: TranscriptStatus = Field(..., min_length=1)
|
||||
rank: float = Field(..., ge=0, le=1)
|
||||
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
|
||||
search_snippets: list[str] = Field(
|
||||
description="Text snippets around search matches"
|
||||
)
|
||||
total_match_count: NonNegativeInt = Field(
|
||||
default=0, description="Total number of matches found in the transcript"
|
||||
)
|
||||
|
||||
@field_serializer("created_at", when_used="json")
|
||||
def serialize_datetime(self, dt: datetime) -> str:
|
||||
if dt.tzinfo is None:
|
||||
return dt.isoformat() + "Z"
|
||||
return dt.isoformat()
|
||||
|
||||
|
||||
class SnippetGenerator:
|
||||
"""Stateless generator for text snippets and match operations."""
|
||||
|
||||
@staticmethod
|
||||
def find_all_matches(text: str, query: str) -> Iterator[int]:
|
||||
"""Generate all match positions for a query in text."""
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in find_all_matches")
|
||||
return
|
||||
if not query:
|
||||
logger.warning("Empty query for search text in find_all_matches")
|
||||
return
|
||||
|
||||
text_lower = text.lower()
|
||||
query_lower = query.lower()
|
||||
start = 0
|
||||
prev_start = start
|
||||
while (pos := text_lower.find(query_lower, start)) != -1:
|
||||
yield pos
|
||||
start = pos + len(query_lower)
|
||||
if start <= prev_start:
|
||||
raise ValueError("panic! find_all_matches is not incremental")
|
||||
prev_start = start
|
||||
|
||||
@staticmethod
|
||||
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||
"""Count total number of matches for a query in text."""
|
||||
ZERO = NonNegativeInt(0)
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in count_matches")
|
||||
return ZERO
|
||||
assert query is not None
|
||||
return NonNegativeInt(
|
||||
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_snippet(
|
||||
text: str, match_pos: int, max_length: int = DEFAULT_SNIPPET_MAX_LENGTH
|
||||
) -> SnippetCandidate:
|
||||
"""Create a snippet from a match position."""
|
||||
snippet_start = NonNegativeInt(max(0, match_pos - SNIPPET_CONTEXT_LENGTH))
|
||||
snippet_end = min(len(text), match_pos + max_length - SNIPPET_CONTEXT_LENGTH)
|
||||
|
||||
snippet_text = text[snippet_start:snippet_end]
|
||||
|
||||
return SnippetCandidate(
|
||||
_text=snippet_text, start=snippet_start, _original_text_length=len(text)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def filter_non_overlapping(
|
||||
candidates: Iterator[SnippetCandidate],
|
||||
) -> Iterator[str]:
|
||||
"""Filter out overlapping snippets and return only display text."""
|
||||
last_end = 0
|
||||
for candidate in candidates:
|
||||
display_text = candidate.text()
|
||||
# it means that next overlapping snippets simply don't get included
|
||||
# it's fine as simplistic logic and users probably won't care much because they already have their search results just fin
|
||||
if candidate.start >= last_end and display_text:
|
||||
yield display_text
|
||||
last_end = candidate.end
|
||||
|
||||
@staticmethod
|
||||
def generate(
|
||||
text: str,
|
||||
query: SearchQuery,
|
||||
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from text."""
|
||||
assert query is not None
|
||||
if not text:
|
||||
logger.warning("Empty text for generate_snippets")
|
||||
return []
|
||||
|
||||
candidates = (
|
||||
SnippetGenerator.create_snippet(text, pos, max_length)
|
||||
for pos in SnippetGenerator.find_all_matches(text, query)
|
||||
)
|
||||
filtered = SnippetGenerator.filter_non_overlapping(candidates)
|
||||
snippets = list(itertools.islice(filtered, max_snippets))
|
||||
|
||||
# Fallback to first word search if no full matches
|
||||
# it's another assumption: proper snippet logic generation is quite complicated and tied to db logic, so simplification is used here
|
||||
if not snippets and " " in query:
|
||||
first_word = query.split()[0]
|
||||
return SnippetGenerator.generate(text, first_word, max_length, max_snippets)
|
||||
|
||||
return snippets
|
||||
|
||||
@staticmethod
|
||||
def from_summary(
|
||||
summary: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from summary text."""
|
||||
return SnippetGenerator.generate(summary, query, max_snippets=max_snippets)
|
||||
|
||||
@staticmethod
|
||||
def combine_sources(
|
||||
summary: NonEmptyString | None,
|
||||
webvtt: WebVTTContent | None,
|
||||
query: SearchQuery,
|
||||
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> tuple[list[str], NonNegativeInt]:
|
||||
"""Combine snippets from multiple sources and return total match count.
|
||||
|
||||
Returns (snippets, total_match_count) tuple.
|
||||
|
||||
snippets can be empty for real in case of e.g. title match
|
||||
"""
|
||||
|
||||
assert (
|
||||
summary is not None or webvtt is not None
|
||||
), "At least one source must be present"
|
||||
|
||||
webvtt_matches = 0
|
||||
summary_matches = 0
|
||||
|
||||
if webvtt:
|
||||
webvtt_text = WebVTTProcessor.extract_text(webvtt)
|
||||
webvtt_matches = SnippetGenerator.count_matches(webvtt_text, query)
|
||||
|
||||
if summary:
|
||||
summary_matches = SnippetGenerator.count_matches(summary, query)
|
||||
|
||||
total_matches = NonNegativeInt(webvtt_matches + summary_matches)
|
||||
|
||||
summary_snippets = (
|
||||
SnippetGenerator.from_summary(summary, query) if summary else []
|
||||
)
|
||||
|
||||
if len(summary_snippets) >= max_total:
|
||||
return summary_snippets[:max_total], total_matches
|
||||
|
||||
remaining = max_total - len(summary_snippets)
|
||||
webvtt_snippets = (
|
||||
WebVTTProcessor.generate_snippets(webvtt, query, remaining)
|
||||
if webvtt
|
||||
else []
|
||||
)
|
||||
|
||||
return summary_snippets + webvtt_snippets, total_matches
|
||||
|
||||
|
||||
class SearchController:
|
||||
"""Controller for search operations across different entities."""
|
||||
|
||||
@classmethod
|
||||
async def search_transcripts(
|
||||
cls, session: AsyncSession, params: SearchParameters
|
||||
) -> tuple[list[SearchResult], int]:
|
||||
"""
|
||||
Full-text search for transcripts using PostgreSQL tsvector.
|
||||
Returns (results, total_count).
|
||||
"""
|
||||
|
||||
base_columns = [
|
||||
TranscriptModel.id,
|
||||
TranscriptModel.title,
|
||||
TranscriptModel.created_at,
|
||||
TranscriptModel.duration,
|
||||
TranscriptModel.status,
|
||||
TranscriptModel.user_id,
|
||||
TranscriptModel.room_id,
|
||||
TranscriptModel.source_kind,
|
||||
TranscriptModel.webvtt,
|
||||
TranscriptModel.long_summary,
|
||||
sqlalchemy.case(
|
||||
(
|
||||
TranscriptModel.room_id.isnot(None) & RoomModel.id.is_(None),
|
||||
"Deleted Room",
|
||||
),
|
||||
else_=RoomModel.name,
|
||||
).label("room_name"),
|
||||
]
|
||||
search_query = None
|
||||
if params.query_text is not None:
|
||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||
"english", params.query_text
|
||||
)
|
||||
rank_column = sqlalchemy.func.ts_rank(
|
||||
TranscriptModel.search_vector_en,
|
||||
search_query,
|
||||
32, # normalization flag: rank/(rank+1) for 0-1 range
|
||||
).label("rank")
|
||||
else:
|
||||
rank_column = sqlalchemy.cast(1.0, sqlalchemy.Float).label("rank")
|
||||
|
||||
columns = base_columns + [rank_column]
|
||||
base_query = (
|
||||
sqlalchemy.select(*columns)
|
||||
.select_from(TranscriptModel)
|
||||
.outerjoin(RoomModel, TranscriptModel.room_id == RoomModel.id)
|
||||
)
|
||||
|
||||
if params.query_text is not None:
|
||||
# because already initialized based on params.query_text presence above
|
||||
assert search_query is not None
|
||||
base_query = base_query.where(
|
||||
TranscriptModel.search_vector_en.op("@@")(search_query)
|
||||
)
|
||||
|
||||
if params.user_id:
|
||||
base_query = base_query.where(
|
||||
sqlalchemy.or_(
|
||||
TranscriptModel.user_id == params.user_id, RoomModel.is_shared
|
||||
)
|
||||
)
|
||||
else:
|
||||
base_query = base_query.where(RoomModel.is_shared)
|
||||
if params.room_id:
|
||||
base_query = base_query.where(TranscriptModel.room_id == params.room_id)
|
||||
if params.source_kind:
|
||||
base_query = base_query.where(
|
||||
TranscriptModel.source_kind == params.source_kind
|
||||
)
|
||||
|
||||
if params.query_text is not None:
|
||||
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||
else:
|
||||
order_by = sqlalchemy.desc(TranscriptModel.created_at)
|
||||
|
||||
query = base_query.order_by(order_by).limit(params.limit).offset(params.offset)
|
||||
|
||||
result = await session.execute(query)
|
||||
rs = result.mappings().all()
|
||||
|
||||
count_query = sqlalchemy.select(sqlalchemy.func.count()).select_from(
|
||||
base_query.alias("search_results")
|
||||
)
|
||||
count_result = await session.execute(count_query)
|
||||
total = count_result.scalar()
|
||||
|
||||
def _process_result(r: dict) -> SearchResult:
|
||||
r_dict: Dict[str, Any] = dict(r)
|
||||
|
||||
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||
webvtt: WebVTTContent | None
|
||||
if webvtt_raw:
|
||||
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||
else:
|
||||
webvtt = None
|
||||
|
||||
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||
room_name: str | None = r_dict.pop("room_name", None)
|
||||
db_result = SearchResultDB.model_validate(r_dict)
|
||||
|
||||
at_least_one_source = webvtt is not None or long_summary is not None
|
||||
has_query = params.query_text is not None
|
||||
snippets, total_match_count = (
|
||||
SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
)
|
||||
if has_query and at_least_one_source
|
||||
else ([], 0)
|
||||
)
|
||||
|
||||
return SearchResult(
|
||||
**db_result.model_dump(),
|
||||
room_name=room_name,
|
||||
search_snippets=snippets,
|
||||
total_match_count=total_match_count,
|
||||
)
|
||||
|
||||
try:
|
||||
results = [_process_result(r) for r in rs]
|
||||
except ValidationError as e:
|
||||
logger.error(f"Invalid search result data: {e}", exc_info=True)
|
||||
raise HTTPException(
|
||||
status_code=500, detail="Internal search result data consistency error"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing search results: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
return results, total
|
||||
|
||||
|
||||
search_controller = SearchController()
|
||||
webvtt_processor = WebVTTProcessor()
|
||||
snippet_generator = SnippetGenerator()
|
||||
@@ -2,22 +2,24 @@ import enum
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
from contextlib import asynccontextmanager
|
||||
from datetime import datetime, timezone
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
|
||||
import sqlalchemy
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_serializer
|
||||
from sqlalchemy import Enum
|
||||
from sqlalchemy.sql import false, or_
|
||||
from sqlalchemy import delete, insert, select, update
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlalchemy.sql import or_
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db.base import RoomModel, TranscriptModel
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.logger import logger
|
||||
from reflector.processors.types import Word as ProcessorWord
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.storage import get_recordings_storage, get_transcripts_storage
|
||||
from reflector.utils import generate_uuid4
|
||||
from reflector.utils.webvtt import topics_to_webvtt
|
||||
|
||||
|
||||
class SourceKind(enum.StrEnum):
|
||||
@@ -26,69 +28,20 @@ class SourceKind(enum.StrEnum):
|
||||
FILE = enum.auto()
|
||||
|
||||
|
||||
transcripts = sqlalchemy.Table(
|
||||
"transcript",
|
||||
metadata,
|
||||
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
||||
sqlalchemy.Column("name", sqlalchemy.String),
|
||||
sqlalchemy.Column("status", sqlalchemy.String),
|
||||
sqlalchemy.Column("locked", sqlalchemy.Boolean),
|
||||
sqlalchemy.Column("duration", sqlalchemy.Float),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime),
|
||||
sqlalchemy.Column("title", sqlalchemy.String),
|
||||
sqlalchemy.Column("short_summary", sqlalchemy.String),
|
||||
sqlalchemy.Column("long_summary", sqlalchemy.String),
|
||||
sqlalchemy.Column("topics", sqlalchemy.JSON),
|
||||
sqlalchemy.Column("events", sqlalchemy.JSON),
|
||||
sqlalchemy.Column("participants", sqlalchemy.JSON),
|
||||
sqlalchemy.Column("source_language", sqlalchemy.String),
|
||||
sqlalchemy.Column("target_language", sqlalchemy.String),
|
||||
sqlalchemy.Column(
|
||||
"reviewed", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"audio_location",
|
||||
sqlalchemy.String,
|
||||
nullable=False,
|
||||
server_default="local",
|
||||
),
|
||||
# with user attached, optional
|
||||
sqlalchemy.Column("user_id", sqlalchemy.String),
|
||||
sqlalchemy.Column(
|
||||
"share_mode",
|
||||
sqlalchemy.String,
|
||||
nullable=False,
|
||||
server_default="private",
|
||||
),
|
||||
sqlalchemy.Column(
|
||||
"meeting_id",
|
||||
sqlalchemy.String,
|
||||
),
|
||||
sqlalchemy.Column("recording_id", sqlalchemy.String),
|
||||
sqlalchemy.Column("zulip_message_id", sqlalchemy.Integer),
|
||||
sqlalchemy.Column(
|
||||
"source_kind",
|
||||
Enum(SourceKind, values_callable=lambda obj: [e.value for e in obj]),
|
||||
nullable=False,
|
||||
),
|
||||
# indicative field: whether associated audio is deleted
|
||||
# the main "audio deleted" is the presence of the audio itself / consents not-given
|
||||
# same field could've been in recording/meeting, and it's maybe even ok to dupe it at need
|
||||
sqlalchemy.Column("audio_deleted", sqlalchemy.Boolean),
|
||||
sqlalchemy.Column("room_id", sqlalchemy.String),
|
||||
sqlalchemy.Index("idx_transcript_recording_id", "recording_id"),
|
||||
sqlalchemy.Index("idx_transcript_user_id", "user_id"),
|
||||
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
||||
sqlalchemy.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
||||
sqlalchemy.Index("idx_transcript_room_id", "room_id"),
|
||||
)
|
||||
|
||||
|
||||
def generate_transcript_name() -> str:
|
||||
now = datetime.now(timezone.utc)
|
||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
|
||||
TranscriptStatus = Literal[
|
||||
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||
]
|
||||
|
||||
|
||||
class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class AudioWaveform(BaseModel):
|
||||
data: list[float]
|
||||
|
||||
@@ -147,14 +100,20 @@ class TranscriptParticipant(BaseModel):
|
||||
|
||||
|
||||
class Transcript(BaseModel):
|
||||
"""Full transcript model with all fields."""
|
||||
|
||||
model_config = ConfigDict(from_attributes=True)
|
||||
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
user_id: str | None = None
|
||||
name: str = Field(default_factory=generate_transcript_name)
|
||||
status: str = "idle"
|
||||
locked: bool = False
|
||||
status: TranscriptStatus = "idle"
|
||||
duration: float = 0
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
title: str | None = None
|
||||
source_kind: SourceKind
|
||||
room_id: str | None = None
|
||||
locked: bool = False
|
||||
short_summary: str | None = None
|
||||
long_summary: str | None = None
|
||||
topics: list[TranscriptTopic] = []
|
||||
@@ -168,9 +127,8 @@ class Transcript(BaseModel):
|
||||
meeting_id: str | None = None
|
||||
recording_id: str | None = None
|
||||
zulip_message_id: int | None = None
|
||||
source_kind: SourceKind
|
||||
audio_deleted: bool | None = None
|
||||
room_id: str | None = None
|
||||
webvtt: str | None = None
|
||||
|
||||
@field_serializer("created_at", when_used="json")
|
||||
def serialize_datetime(self, dt: datetime) -> str:
|
||||
@@ -271,10 +229,12 @@ class Transcript(BaseModel):
|
||||
# we need to create an url to be used for diarization
|
||||
# we can't use the audio_mp3_filename because it's not accessible
|
||||
# from the diarization processor
|
||||
from datetime import timedelta
|
||||
|
||||
from reflector.app import app
|
||||
from reflector.views.transcripts import create_access_token
|
||||
# TODO don't import app in db
|
||||
from reflector.app import app # noqa: PLC0415
|
||||
|
||||
# TODO a util + don''t import views in db
|
||||
from reflector.views.transcripts import create_access_token # noqa: PLC0415
|
||||
|
||||
path = app.url_path_for(
|
||||
"transcript_get_audio_mp3",
|
||||
@@ -312,6 +272,7 @@ class Transcript(BaseModel):
|
||||
class TranscriptController:
|
||||
async def get_all(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
user_id: str | None = None,
|
||||
order_by: str | None = None,
|
||||
filter_empty: bool | None = False,
|
||||
@@ -335,104 +296,115 @@ class TranscriptController:
|
||||
- `room_id`: filter transcripts by room ID
|
||||
- `search_term`: filter transcripts by search term
|
||||
"""
|
||||
from reflector.db.rooms import rooms
|
||||
|
||||
query = transcripts.select().join(
|
||||
rooms, transcripts.c.room_id == rooms.c.id, isouter=True
|
||||
query = select(TranscriptModel).join(
|
||||
RoomModel, TranscriptModel.room_id == RoomModel.id, isouter=True
|
||||
)
|
||||
|
||||
if user_id:
|
||||
query = query.where(
|
||||
or_(transcripts.c.user_id == user_id, rooms.c.is_shared)
|
||||
or_(TranscriptModel.user_id == user_id, RoomModel.is_shared)
|
||||
)
|
||||
else:
|
||||
query = query.where(rooms.c.is_shared)
|
||||
query = query.where(RoomModel.is_shared)
|
||||
|
||||
if source_kind:
|
||||
query = query.where(transcripts.c.source_kind == source_kind)
|
||||
query = query.where(TranscriptModel.source_kind == source_kind)
|
||||
|
||||
if room_id:
|
||||
query = query.where(transcripts.c.room_id == room_id)
|
||||
query = query.where(TranscriptModel.room_id == room_id)
|
||||
|
||||
if search_term:
|
||||
query = query.where(transcripts.c.title.ilike(f"%{search_term}%"))
|
||||
query = query.where(TranscriptModel.title.ilike(f"%{search_term}%"))
|
||||
|
||||
# Exclude heavy JSON columns from list queries
|
||||
# Get all ORM column attributes except excluded ones
|
||||
transcript_columns = [
|
||||
col for col in transcripts.c if col.name not in exclude_columns
|
||||
getattr(TranscriptModel, col.name)
|
||||
for col in TranscriptModel.__table__.c
|
||||
if col.name not in exclude_columns
|
||||
]
|
||||
|
||||
query = query.with_only_columns(
|
||||
transcript_columns
|
||||
+ [
|
||||
rooms.c.name.label("room_name"),
|
||||
]
|
||||
*transcript_columns,
|
||||
RoomModel.name.label("room_name"),
|
||||
)
|
||||
|
||||
if order_by is not None:
|
||||
field = getattr(transcripts.c, order_by[1:])
|
||||
field = getattr(TranscriptModel, order_by[1:])
|
||||
if order_by.startswith("-"):
|
||||
field = field.desc()
|
||||
query = query.order_by(field)
|
||||
|
||||
if filter_empty:
|
||||
query = query.filter(transcripts.c.status != "idle")
|
||||
query = query.filter(TranscriptModel.status != "idle")
|
||||
|
||||
if filter_recording:
|
||||
query = query.filter(transcripts.c.status != "recording")
|
||||
query = query.filter(TranscriptModel.status != "recording")
|
||||
|
||||
# print(query.compile(compile_kwargs={"literal_binds": True}))
|
||||
|
||||
if return_query:
|
||||
return query
|
||||
|
||||
results = await database.fetch_all(query)
|
||||
return results
|
||||
result = await session.execute(query)
|
||||
return [dict(row) for row in result.mappings().all()]
|
||||
|
||||
async def get_by_id(self, transcript_id: str, **kwargs) -> Transcript | None:
|
||||
async def get_by_id(
|
||||
self, session: AsyncSession, transcript_id: str, **kwargs
|
||||
) -> Transcript | None:
|
||||
"""
|
||||
Get a transcript by id
|
||||
"""
|
||||
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
||||
query = select(TranscriptModel).where(TranscriptModel.id == transcript_id)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = query.where(TranscriptModel.user_id == kwargs["user_id"])
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Transcript(**result)
|
||||
return Transcript.model_validate(row)
|
||||
|
||||
async def get_by_recording_id(
|
||||
self, recording_id: str, **kwargs
|
||||
self, session: AsyncSession, recording_id: str, **kwargs
|
||||
) -> Transcript | None:
|
||||
"""
|
||||
Get a transcript by recording_id
|
||||
"""
|
||||
query = transcripts.select().where(transcripts.c.recording_id == recording_id)
|
||||
query = select(TranscriptModel).where(
|
||||
TranscriptModel.recording_id == recording_id
|
||||
)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = query.where(TranscriptModel.user_id == kwargs["user_id"])
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
return None
|
||||
return Transcript(**result)
|
||||
return Transcript.model_validate(row)
|
||||
|
||||
async def get_by_room_id(self, room_id: str, **kwargs) -> list[Transcript]:
|
||||
async def get_by_room_id(
|
||||
self, session: AsyncSession, room_id: str, **kwargs
|
||||
) -> list[Transcript]:
|
||||
"""
|
||||
Get transcripts by room_id (direct access without joins)
|
||||
"""
|
||||
query = transcripts.select().where(transcripts.c.room_id == room_id)
|
||||
query = select(TranscriptModel).where(TranscriptModel.room_id == room_id)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
||||
query = query.where(TranscriptModel.user_id == kwargs["user_id"])
|
||||
if "order_by" in kwargs:
|
||||
order_by = kwargs["order_by"]
|
||||
field = getattr(transcripts.c, order_by[1:])
|
||||
field = getattr(TranscriptModel, order_by[1:])
|
||||
if order_by.startswith("-"):
|
||||
field = field.desc()
|
||||
query = query.order_by(field)
|
||||
results = await database.fetch_all(query)
|
||||
return [Transcript(**result) for result in results]
|
||||
results = await session.execute(query)
|
||||
return [
|
||||
Transcript.model_validate(dict(row)) for row in results.mappings().all()
|
||||
]
|
||||
|
||||
async def get_by_id_for_http(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript_id: str,
|
||||
user_id: str | None,
|
||||
) -> Transcript:
|
||||
@@ -445,13 +417,14 @@ class TranscriptController:
|
||||
This method checks the share mode of the transcript and the user_id
|
||||
to determine if the user can access the transcript.
|
||||
"""
|
||||
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
||||
result = await database.fetch_one(query)
|
||||
if not result:
|
||||
query = select(TranscriptModel).where(TranscriptModel.id == transcript_id)
|
||||
result = await session.execute(query)
|
||||
row = result.scalar_one_or_none()
|
||||
if not row:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
|
||||
# if the transcript is anonymous, share mode is not checked
|
||||
transcript = Transcript(**result)
|
||||
transcript = Transcript.model_validate(row)
|
||||
if transcript.user_id is None:
|
||||
return transcript
|
||||
|
||||
@@ -474,6 +447,7 @@ class TranscriptController:
|
||||
|
||||
async def add(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
name: str,
|
||||
source_kind: SourceKind,
|
||||
source_language: str = "en",
|
||||
@@ -498,75 +472,144 @@ class TranscriptController:
|
||||
meeting_id=meeting_id,
|
||||
room_id=room_id,
|
||||
)
|
||||
query = transcripts.insert().values(**transcript.model_dump())
|
||||
await database.execute(query)
|
||||
query = insert(TranscriptModel).values(**transcript.model_dump())
|
||||
await session.execute(query)
|
||||
await session.commit()
|
||||
return transcript
|
||||
|
||||
async def update(self, transcript: Transcript, values: dict, mutate=True):
|
||||
# TODO investigate why mutate= is used. it's used in one place currently, maybe because of ORM field updates.
|
||||
# using mutate=True is discouraged
|
||||
async def update(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript: Transcript,
|
||||
values: dict,
|
||||
commit=True,
|
||||
mutate=False,
|
||||
) -> Transcript:
|
||||
"""
|
||||
Update a transcript fields with key/values in values
|
||||
Update a transcript fields with key/values in values.
|
||||
Returns a copy of the transcript with updated values.
|
||||
"""
|
||||
values = TranscriptController._handle_topics_update(values)
|
||||
|
||||
query = (
|
||||
transcripts.update()
|
||||
.where(transcripts.c.id == transcript.id)
|
||||
update(TranscriptModel)
|
||||
.where(TranscriptModel.id == transcript.id)
|
||||
.values(**values)
|
||||
)
|
||||
await database.execute(query)
|
||||
await session.execute(query)
|
||||
if commit:
|
||||
await session.commit()
|
||||
if mutate:
|
||||
for key, value in values.items():
|
||||
setattr(transcript, key, value)
|
||||
|
||||
updated_transcript = transcript.model_copy(update=values)
|
||||
return updated_transcript
|
||||
|
||||
@staticmethod
|
||||
def _handle_topics_update(values: dict) -> dict:
|
||||
"""Auto-update WebVTT when topics are updated."""
|
||||
|
||||
if values.get("webvtt") is not None:
|
||||
logger.warn("trying to update read-only webvtt column")
|
||||
pass
|
||||
|
||||
topics_data = values.get("topics")
|
||||
if topics_data is None:
|
||||
return values
|
||||
|
||||
return {
|
||||
**values,
|
||||
"webvtt": topics_to_webvtt(
|
||||
[TranscriptTopic(**topic_dict) for topic_dict in topics_data]
|
||||
),
|
||||
}
|
||||
|
||||
async def remove_by_id(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript_id: str,
|
||||
user_id: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Remove a transcript by id
|
||||
"""
|
||||
transcript = await self.get_by_id(transcript_id)
|
||||
transcript = await self.get_by_id(session, transcript_id)
|
||||
if not transcript:
|
||||
return
|
||||
if user_id is not None and transcript.user_id != user_id:
|
||||
return
|
||||
if transcript.audio_location == "storage" and not transcript.audio_deleted:
|
||||
try:
|
||||
await get_transcripts_storage().delete_file(
|
||||
transcript.storage_audio_path
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete transcript audio from storage",
|
||||
exc_info=e,
|
||||
transcript_id=transcript.id,
|
||||
)
|
||||
transcript.unlink()
|
||||
query = transcripts.delete().where(transcripts.c.id == transcript_id)
|
||||
await database.execute(query)
|
||||
if transcript.recording_id:
|
||||
try:
|
||||
recording = await recordings_controller.get_by_id(
|
||||
session, transcript.recording_id
|
||||
)
|
||||
if recording:
|
||||
try:
|
||||
await get_recordings_storage().delete_file(recording.object_key)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete recording object from S3",
|
||||
exc_info=e,
|
||||
recording_id=transcript.recording_id,
|
||||
)
|
||||
await recordings_controller.remove_by_id(
|
||||
session, transcript.recording_id
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete recording row",
|
||||
exc_info=e,
|
||||
recording_id=transcript.recording_id,
|
||||
)
|
||||
query = delete(TranscriptModel).where(TranscriptModel.id == transcript_id)
|
||||
await session.execute(query)
|
||||
await session.commit()
|
||||
|
||||
async def remove_by_recording_id(self, recording_id: str):
|
||||
async def remove_by_recording_id(self, session: AsyncSession, recording_id: str):
|
||||
"""
|
||||
Remove a transcript by recording_id
|
||||
"""
|
||||
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
|
||||
await database.execute(query)
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
"""
|
||||
A context manager for database transaction
|
||||
"""
|
||||
async with database.transaction(isolation="serializable"):
|
||||
yield
|
||||
query = delete(TranscriptModel).where(
|
||||
TranscriptModel.recording_id == recording_id
|
||||
)
|
||||
await session.execute(query)
|
||||
await session.commit()
|
||||
|
||||
async def append_event(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript: Transcript,
|
||||
event: str,
|
||||
data: Any,
|
||||
commit=True,
|
||||
) -> TranscriptEvent:
|
||||
"""
|
||||
Append an event to a transcript
|
||||
"""
|
||||
resp = transcript.add_event(event=event, data=data)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"events": transcript.events_dump()},
|
||||
mutate=False,
|
||||
session, transcript, {"events": transcript.events_dump()}, commit=commit
|
||||
)
|
||||
return resp
|
||||
|
||||
async def upsert_topic(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript: Transcript,
|
||||
topic: TranscriptTopic,
|
||||
) -> TranscriptEvent:
|
||||
@@ -574,13 +617,9 @@ class TranscriptController:
|
||||
Upsert topics to a transcript
|
||||
"""
|
||||
transcript.upsert_topic(topic)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"topics": transcript.topics_dump()},
|
||||
mutate=False,
|
||||
)
|
||||
await self.update(session, transcript, {"topics": transcript.topics_dump()})
|
||||
|
||||
async def move_mp3_to_storage(self, transcript: Transcript):
|
||||
async def move_mp3_to_storage(self, session: AsyncSession, transcript: Transcript):
|
||||
"""
|
||||
Move mp3 file to storage
|
||||
"""
|
||||
@@ -603,12 +642,17 @@ class TranscriptController:
|
||||
)
|
||||
|
||||
# indicate on the transcript that the audio is now on storage
|
||||
await self.update(transcript, {"audio_location": "storage"})
|
||||
# mutates transcript argument
|
||||
await self.update(
|
||||
session, transcript, {"audio_location": "storage"}, mutate=True
|
||||
)
|
||||
|
||||
# unlink the local file
|
||||
transcript.audio_mp3_filename.unlink(missing_ok=True)
|
||||
|
||||
async def download_mp3_from_storage(self, transcript: Transcript):
|
||||
async def download_mp3_from_storage(
|
||||
self, session: AsyncSession, transcript: Transcript
|
||||
):
|
||||
"""
|
||||
Download audio from storage
|
||||
"""
|
||||
@@ -620,6 +664,7 @@ class TranscriptController:
|
||||
|
||||
async def upsert_participant(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript: Transcript,
|
||||
participant: TranscriptParticipant,
|
||||
) -> TranscriptParticipant:
|
||||
@@ -628,14 +673,13 @@ class TranscriptController:
|
||||
"""
|
||||
result = transcript.upsert_participant(participant)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"participants": transcript.participants_dump()},
|
||||
mutate=False,
|
||||
session, transcript, {"participants": transcript.participants_dump()}
|
||||
)
|
||||
return result
|
||||
|
||||
async def delete_participant(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript: Transcript,
|
||||
participant_id: str,
|
||||
):
|
||||
@@ -644,10 +688,37 @@ class TranscriptController:
|
||||
"""
|
||||
transcript.delete_participant(participant_id)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"participants": transcript.participants_dump()},
|
||||
mutate=False,
|
||||
session, transcript, {"participants": transcript.participants_dump()}
|
||||
)
|
||||
|
||||
async def set_status(
|
||||
self, session: AsyncSession, transcript_id: str, status: TranscriptStatus
|
||||
) -> TranscriptEvent | None:
|
||||
"""
|
||||
Update the status of a transcript
|
||||
|
||||
Will add an event STATUS + update the status field of transcript
|
||||
"""
|
||||
transcript = await self.get_by_id(session, transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
if transcript.status == status:
|
||||
return
|
||||
resp = await self.append_event(
|
||||
session,
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
commit=False,
|
||||
)
|
||||
await self.update(
|
||||
session,
|
||||
transcript,
|
||||
{"status": status},
|
||||
commit=False,
|
||||
)
|
||||
await session.commit()
|
||||
return resp
|
||||
|
||||
|
||||
transcripts_controller = TranscriptController()
|
||||
|
||||
445
server/reflector/pipelines/main_file_pipeline.py
Normal file
445
server/reflector/pipelines/main_file_pipeline.py
Normal file
@@ -0,0 +1,445 @@
|
||||
"""
|
||||
File-based processing pipeline
|
||||
==============================
|
||||
|
||||
Optimized pipeline for processing complete audio/video files.
|
||||
Uses parallel processing for transcription, diarization, and waveform generation.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
import structlog
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
Transcript,
|
||||
TranscriptStatus,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
task_cleanup_consent_taskiq,
|
||||
task_pipeline_post_to_zulip_taskiq,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.file_diarization import FileDiarizationInput
|
||||
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerInput,
|
||||
TranscriptDiarizationAssemblerProcessor,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
DiarizationSegment,
|
||||
TitleSummary,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.worker.app import taskiq_broker
|
||||
from reflector.worker.session_decorator import catch_exception, with_session
|
||||
from reflector.worker.webhook import send_transcript_webhook_taskiq
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
"""Empty pipeline for processors that need a pipeline reference"""
|
||||
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineMainFile(PipelineMainBase):
|
||||
"""
|
||||
Optimized file processing pipeline.
|
||||
Processes complete audio/video files with parallel execution.
|
||||
"""
|
||||
|
||||
logger: structlog.BoundLogger = None
|
||||
empty_pipeline = None
|
||||
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
|
||||
def _handle_gather_exceptions(self, results: list, operation: str) -> None:
|
||||
"""Handle exceptions from asyncio.gather with return_exceptions=True"""
|
||||
for i, result in enumerate(results):
|
||||
if not isinstance(result, Exception):
|
||||
continue
|
||||
self.logger.error(
|
||||
f"Error in {operation} (task {i}): {result}",
|
||||
transcript_id=self.transcript_id,
|
||||
exc_info=result,
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
transcript_id: str,
|
||||
status: TranscriptStatus,
|
||||
):
|
||||
return await transcripts_controller.set_status(session, transcript_id, status)
|
||||
|
||||
async def process(self, session: AsyncSession, file_path: Path):
|
||||
"""Main entry point for file processing"""
|
||||
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(session, self.transcript_id)
|
||||
|
||||
# Clear transcript as we're going to regenerate everything
|
||||
await transcripts_controller.update(
|
||||
session,
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
},
|
||||
)
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
# Upload for processing
|
||||
audio_url = await self.upload_audio(audio_path, transcript)
|
||||
|
||||
# Run parallel processing
|
||||
await self.run_parallel_processing(
|
||||
session,
|
||||
audio_path,
|
||||
audio_url,
|
||||
transcript.source_language,
|
||||
transcript.target_language,
|
||||
)
|
||||
|
||||
self.logger.info("File pipeline complete")
|
||||
|
||||
await transcripts_controller.set_status(session, transcript.id, "ended")
|
||||
|
||||
async def extract_and_write_audio(
|
||||
self, file_path: Path, transcript: Transcript
|
||||
) -> Path:
|
||||
"""Extract audio from video if needed and write to transcript location as MP3"""
|
||||
self.logger.info(f"Processing audio file: {file_path}")
|
||||
|
||||
# Check if it's already audio-only
|
||||
container = av.open(str(file_path))
|
||||
has_video = len(container.streams.video) > 0
|
||||
container.close()
|
||||
|
||||
# Use AudioFileWriterProcessor to write MP3 to transcript location
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=transcript.audio_mp3_filename,
|
||||
on_duration=self.on_duration,
|
||||
)
|
||||
|
||||
# Process audio frames and write to transcript location
|
||||
input_container = av.open(str(file_path))
|
||||
for frame in input_container.decode(audio=0):
|
||||
await mp3_writer.push(frame)
|
||||
|
||||
await mp3_writer.flush()
|
||||
input_container.close()
|
||||
|
||||
if has_video:
|
||||
self.logger.info(
|
||||
f"Extracted audio from video and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
else:
|
||||
self.logger.info(
|
||||
f"Converted audio file and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
|
||||
return transcript.audio_mp3_filename
|
||||
|
||||
async def upload_audio(self, audio_path: Path, transcript: Transcript) -> str:
|
||||
"""Upload audio to storage for processing"""
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
if not storage:
|
||||
raise Exception(
|
||||
"Storage backend required for file processing. Configure TRANSCRIPT_STORAGE_* settings."
|
||||
)
|
||||
|
||||
self.logger.info("Uploading audio to storage")
|
||||
|
||||
with open(audio_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
storage_path = f"file_pipeline/{transcript.id}/audio.mp3"
|
||||
await storage.put_file(storage_path, audio_data)
|
||||
|
||||
audio_url = await storage.get_file_url(storage_path)
|
||||
|
||||
self.logger.info(f"Audio uploaded to {audio_url}")
|
||||
return audio_url
|
||||
|
||||
async def run_parallel_processing(
|
||||
self,
|
||||
session,
|
||||
audio_path: Path,
|
||||
audio_url: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
):
|
||||
"""Coordinate parallel processing of transcription, diarization, and waveform"""
|
||||
self.logger.info(
|
||||
"Starting parallel processing", transcript_id=self.transcript_id
|
||||
)
|
||||
|
||||
# Phase 1: Parallel processing of independent tasks
|
||||
transcription_task = self.transcribe_file(audio_url, source_language)
|
||||
diarization_task = self.diarize_file(audio_url)
|
||||
waveform_task = self.generate_waveform(session, audio_path)
|
||||
|
||||
results = await asyncio.gather(
|
||||
transcription_task, diarization_task, waveform_task, return_exceptions=True
|
||||
)
|
||||
|
||||
transcript_result = results[0]
|
||||
diarization_result = results[1]
|
||||
|
||||
# Handle errors - raise any exception that occurred
|
||||
self._handle_gather_exceptions(results, "parallel processing")
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
raise result
|
||||
|
||||
# Phase 2: Assemble transcript with diarization
|
||||
self.logger.info(
|
||||
"Assembling transcript with diarization", transcript_id=self.transcript_id
|
||||
)
|
||||
processor = TranscriptDiarizationAssemblerProcessor()
|
||||
input_data = TranscriptDiarizationAssemblerInput(
|
||||
transcript=transcript_result, diarization=diarization_result or []
|
||||
)
|
||||
|
||||
# Store result for retrieval
|
||||
diarized_transcript: Transcript | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal diarized_transcript
|
||||
diarized_transcript = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not diarized_transcript:
|
||||
raise ValueError("No diarized transcript captured")
|
||||
|
||||
# Phase 3: Generate topics from diarized transcript
|
||||
self.logger.info("Generating topics", transcript_id=self.transcript_id)
|
||||
topics = await self.detect_topics(diarized_transcript, target_language)
|
||||
|
||||
# Phase 4: Generate title and summaries in parallel
|
||||
self.logger.info(
|
||||
"Generating title and summaries", transcript_id=self.transcript_id
|
||||
)
|
||||
results = await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(session, topics),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
self._handle_gather_exceptions(results, "title and summary generation")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
"""Transcribe complete file"""
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
# Store result for retrieval
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
|
||||
async def diarize_file(self, audio_url: str) -> list[DiarizationSegment] | None:
|
||||
"""Get diarization for file"""
|
||||
if not settings.DIARIZATION_BACKEND:
|
||||
self.logger.info("Diarization disabled")
|
||||
return None
|
||||
|
||||
processor = FileDiarizationAutoProcessor()
|
||||
input_data = FileDiarizationInput(audio_url=audio_url)
|
||||
|
||||
# Store result for retrieval
|
||||
result = None
|
||||
|
||||
async def capture_result(diarization_output):
|
||||
nonlocal result
|
||||
result = diarization_output.diarization
|
||||
|
||||
try:
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
return result
|
||||
except Exception as e:
|
||||
self.logger.error(f"Diarization failed: {e}")
|
||||
return None
|
||||
|
||||
async def generate_waveform(self, session: AsyncSession, audio_path: Path):
|
||||
"""Generate and save waveform"""
|
||||
transcript = await transcripts_controller.get_by_id(session, self.transcript_id)
|
||||
|
||||
processor = AudioWaveformProcessor(
|
||||
audio_path=audio_path,
|
||||
waveform_path=transcript.audio_waveform_filename,
|
||||
on_waveform=self.on_waveform,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
"""Detect topics from complete transcript"""
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
"""Generate title from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def generate_summaries(self, session, topics: list[TitleSummary]):
|
||||
"""Generate long and short summaries from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(session, self.transcript_id)
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@taskiq_broker.task
|
||||
@with_session
|
||||
async def task_send_webhook_if_needed(session, *, transcript_id: str):
|
||||
transcript = await transcripts_controller.get_by_id(session, transcript_id)
|
||||
if not transcript:
|
||||
return
|
||||
|
||||
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||
room = await rooms_controller.get_by_id(session, transcript.room_id)
|
||||
if room and room.webhook_url:
|
||||
logger.info(
|
||||
"Dispatching webhook",
|
||||
transcript_id=transcript_id,
|
||||
room_id=room.id,
|
||||
webhook_url=room.webhook_url,
|
||||
)
|
||||
await send_transcript_webhook_taskiq.kiq(
|
||||
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||
)
|
||||
|
||||
|
||||
@taskiq_broker.task
|
||||
@catch_exception
|
||||
@with_session
|
||||
async def task_pipeline_file_process(session: AsyncSession, *, transcript_id: str):
|
||||
transcript = await transcripts_controller.get_by_id(session, transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
try:
|
||||
await pipeline.set_status(session, transcript_id, "processing")
|
||||
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
await pipeline.process(session, audio_file)
|
||||
|
||||
except Exception:
|
||||
logger.error("Error while processing the file", exc_info=True)
|
||||
try:
|
||||
await pipeline.set_status(session, transcript_id, "error")
|
||||
except:
|
||||
logger.error(
|
||||
"Error setting status in task_pipeline_file_process during exception, ignoring it"
|
||||
)
|
||||
raise
|
||||
|
||||
await task_cleanup_consent_taskiq.kiq(transcript_id=transcript_id)
|
||||
await task_pipeline_post_to_zulip_taskiq.kiq(transcript_id=transcript_id)
|
||||
await task_send_webhook_if_needed.kiq(transcript_id=transcript_id)
|
||||
@@ -12,14 +12,16 @@ It is directly linked to our data model.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import functools
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Generic
|
||||
|
||||
import av
|
||||
import boto3
|
||||
from celery import chord, current_task, group, shared_task
|
||||
from pydantic import BaseModel
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from structlog import BoundLogger as Logger
|
||||
|
||||
from reflector.db import get_session_context
|
||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
@@ -29,16 +31,18 @@ from reflector.db.transcripts import (
|
||||
TranscriptFinalLongSummary,
|
||||
TranscriptFinalShortSummary,
|
||||
TranscriptFinalTitle,
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
TranscriptTopic,
|
||||
TranscriptWaveform,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.runner import PipelineRunner
|
||||
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioChunkerAutoProcessor,
|
||||
AudioDiarizationAutoProcessor,
|
||||
AudioDownscaleProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
@@ -47,7 +51,7 @@ from reflector.processors import (
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptLinerProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
TranscriptTranslatorProcessor,
|
||||
TranscriptTranslatorAutoProcessor,
|
||||
)
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.types import AudioDiarizationInput
|
||||
@@ -57,6 +61,8 @@ from reflector.processors.types import (
|
||||
from reflector.processors.types import Transcript as TranscriptProcessorType
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.worker.app import taskiq_broker
|
||||
from reflector.worker.session_decorator import with_session_and_transcript
|
||||
from reflector.ws_manager import WebsocketManager, get_ws_manager
|
||||
from reflector.zulip import (
|
||||
get_zulip_message,
|
||||
@@ -65,30 +71,6 @@ from reflector.zulip import (
|
||||
)
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
from reflector.db import database
|
||||
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def broadcast_to_sockets(func):
|
||||
"""
|
||||
Decorator to broadcast transcript event to websockets
|
||||
@@ -107,64 +89,36 @@ def broadcast_to_sockets(func):
|
||||
return wrapper
|
||||
|
||||
|
||||
def get_transcript(func):
|
||||
"""
|
||||
Decorator to fetch the transcript from the database from the first argument
|
||||
"""
|
||||
|
||||
@functools.wraps(func)
|
||||
async def wrapper(**kwargs):
|
||||
transcript_id = kwargs.pop("transcript_id")
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id=transcript_id)
|
||||
if not transcript:
|
||||
raise Exception("Transcript {transcript_id} not found")
|
||||
|
||||
# Enhanced logger with Celery task context
|
||||
tlogger = logger.bind(transcript_id=transcript.id)
|
||||
if current_task:
|
||||
tlogger = tlogger.bind(
|
||||
task_id=current_task.request.id,
|
||||
task_name=current_task.name,
|
||||
worker_hostname=current_task.request.hostname,
|
||||
task_retries=current_task.request.retries,
|
||||
transcript_id=transcript_id,
|
||||
)
|
||||
|
||||
try:
|
||||
result = await func(transcript=transcript, logger=tlogger, **kwargs)
|
||||
return result
|
||||
except Exception as exc:
|
||||
tlogger.error("Pipeline error", function_name=func.__name__, exc_info=exc)
|
||||
raise
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class PipelineMainBase(PipelineRunner):
|
||||
transcript_id: str
|
||||
ws_room_id: str | None = None
|
||||
ws_manager: WebsocketManager | None = None
|
||||
|
||||
def prepare(self):
|
||||
# prepare websocket
|
||||
class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]):
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__()
|
||||
self._lock = asyncio.Lock()
|
||||
self.transcript_id = transcript_id
|
||||
self.ws_room_id = f"ts:{self.transcript_id}"
|
||||
self.ws_manager = get_ws_manager()
|
||||
self._ws_manager = None
|
||||
|
||||
async def get_transcript(self) -> Transcript:
|
||||
@property
|
||||
def ws_manager(self) -> WebsocketManager:
|
||||
if self._ws_manager is None:
|
||||
self._ws_manager = get_ws_manager()
|
||||
return self._ws_manager
|
||||
|
||||
async def get_transcript(self, session: AsyncSession) -> Transcript:
|
||||
# fetch the transcript
|
||||
result = await transcripts_controller.get_by_id(
|
||||
transcript_id=self.transcript_id
|
||||
)
|
||||
result = await transcripts_controller.get_by_id(session, self.transcript_id)
|
||||
if not result:
|
||||
raise Exception("Transcript not found")
|
||||
return result
|
||||
|
||||
def get_transcript_topics(self, transcript: Transcript) -> list[TranscriptTopic]:
|
||||
@staticmethod
|
||||
def wrap_transcript_topics(
|
||||
topics: list[TranscriptTopic],
|
||||
) -> list[TitleSummaryWithIdProcessorType]:
|
||||
# transformation to a pipe-supported format
|
||||
return [
|
||||
TitleSummaryWithIdProcessorType(
|
||||
id=topic.id,
|
||||
@@ -174,28 +128,35 @@ class PipelineMainBase(PipelineRunner):
|
||||
duration=topic.duration,
|
||||
transcript=TranscriptProcessorType(words=topic.words),
|
||||
)
|
||||
for topic in transcript.topics
|
||||
for topic in topics
|
||||
]
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async def lock_transaction(self):
|
||||
# This lock is to prevent multiple processor starting adding
|
||||
# into event array at the same time
|
||||
async with self._lock:
|
||||
async with transcripts_controller.transaction():
|
||||
yield
|
||||
yield
|
||||
|
||||
@asynccontextmanager
|
||||
async def locked_session(self):
|
||||
async with self.lock_transaction():
|
||||
async with get_session_context() as session:
|
||||
yield session
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_status(self, status):
|
||||
# if it's the first part, update the status of the transcript
|
||||
# but do not set the ended status yet.
|
||||
if isinstance(self, PipelineMainLive):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"started": "recording",
|
||||
"push": "recording",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
}
|
||||
elif isinstance(self, PipelineMainFinalSummaries):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"push": "processing",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
@@ -211,28 +172,18 @@ class PipelineMainBase(PipelineRunner):
|
||||
return
|
||||
|
||||
# when the status of the pipeline changes, update the transcript
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
if status == transcript.status:
|
||||
return
|
||||
resp = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"status": status,
|
||||
},
|
||||
)
|
||||
return resp
|
||||
async with self._lock:
|
||||
async with get_session_context() as session:
|
||||
return await transcripts_controller.set_status(
|
||||
session, self.transcript_id, status
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_transcript(self, data):
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
async with self.locked_session() as session:
|
||||
transcript = await self.get_transcript(session)
|
||||
return await transcripts_controller.append_event(
|
||||
session,
|
||||
transcript=transcript,
|
||||
event="TRANSCRIPT",
|
||||
data=TranscriptText(text=data.text, translation=data.translation),
|
||||
@@ -249,10 +200,11 @@ class PipelineMainBase(PipelineRunner):
|
||||
)
|
||||
if isinstance(data, TitleSummaryWithIdProcessorType):
|
||||
topic.id = data.id
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
await transcripts_controller.upsert_topic(transcript, topic)
|
||||
async with self.locked_session() as session:
|
||||
transcript = await self.get_transcript(session)
|
||||
await transcripts_controller.upsert_topic(session, transcript, topic)
|
||||
return await transcripts_controller.append_event(
|
||||
session,
|
||||
transcript=transcript,
|
||||
event="TOPIC",
|
||||
data=topic,
|
||||
@@ -261,16 +213,18 @@ class PipelineMainBase(PipelineRunner):
|
||||
@broadcast_to_sockets
|
||||
async def on_title(self, data):
|
||||
final_title = TranscriptFinalTitle(title=data.title)
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
async with self.locked_session() as session:
|
||||
transcript = await self.get_transcript(session)
|
||||
if not transcript.title:
|
||||
await transcripts_controller.update(
|
||||
session,
|
||||
transcript,
|
||||
{
|
||||
"title": final_title.title,
|
||||
},
|
||||
)
|
||||
return await transcripts_controller.append_event(
|
||||
session,
|
||||
transcript=transcript,
|
||||
event="FINAL_TITLE",
|
||||
data=final_title,
|
||||
@@ -279,15 +233,17 @@ class PipelineMainBase(PipelineRunner):
|
||||
@broadcast_to_sockets
|
||||
async def on_long_summary(self, data):
|
||||
final_long_summary = TranscriptFinalLongSummary(long_summary=data.long_summary)
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
async with self.locked_session() as session:
|
||||
transcript = await self.get_transcript(session)
|
||||
await transcripts_controller.update(
|
||||
session,
|
||||
transcript,
|
||||
{
|
||||
"long_summary": final_long_summary.long_summary,
|
||||
},
|
||||
)
|
||||
return await transcripts_controller.append_event(
|
||||
session,
|
||||
transcript=transcript,
|
||||
event="FINAL_LONG_SUMMARY",
|
||||
data=final_long_summary,
|
||||
@@ -298,15 +254,17 @@ class PipelineMainBase(PipelineRunner):
|
||||
final_short_summary = TranscriptFinalShortSummary(
|
||||
short_summary=data.short_summary
|
||||
)
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
async with self.locked_session() as session:
|
||||
transcript = await self.get_transcript(session)
|
||||
await transcripts_controller.update(
|
||||
session,
|
||||
transcript,
|
||||
{
|
||||
"short_summary": final_short_summary.short_summary,
|
||||
},
|
||||
)
|
||||
return await transcripts_controller.append_event(
|
||||
session,
|
||||
transcript=transcript,
|
||||
event="FINAL_SHORT_SUMMARY",
|
||||
data=final_short_summary,
|
||||
@@ -314,29 +272,30 @@ class PipelineMainBase(PipelineRunner):
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_duration(self, data):
|
||||
async with self.transaction():
|
||||
async with self.locked_session() as session:
|
||||
duration = TranscriptDuration(duration=data)
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
transcript = await self.get_transcript(session)
|
||||
await transcripts_controller.update(
|
||||
session,
|
||||
transcript,
|
||||
{
|
||||
"duration": duration.duration,
|
||||
},
|
||||
)
|
||||
return await transcripts_controller.append_event(
|
||||
transcript=transcript, event="DURATION", data=duration
|
||||
session, transcript=transcript, event="DURATION", data=duration
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_waveform(self, data):
|
||||
async with self.transaction():
|
||||
async with self.locked_session() as session:
|
||||
waveform = TranscriptWaveform(waveform=data)
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
transcript = await self.get_transcript(session)
|
||||
|
||||
return await transcripts_controller.append_event(
|
||||
transcript=transcript, event="WAVEFORM", data=waveform
|
||||
session, transcript=transcript, event="WAVEFORM", data=waveform
|
||||
)
|
||||
|
||||
|
||||
@@ -349,19 +308,20 @@ class PipelineMainLive(PipelineMainBase):
|
||||
async def create(self) -> Pipeline:
|
||||
# create a context for the whole rtc transaction
|
||||
# add a customised logger to the context
|
||||
self.prepare()
|
||||
transcript = await self.get_transcript()
|
||||
async with get_session_context() as session:
|
||||
transcript = await self.get_transcript(session)
|
||||
|
||||
processors = [
|
||||
AudioFileWriterProcessor(
|
||||
path=transcript.audio_wav_filename,
|
||||
on_duration=self.on_duration,
|
||||
),
|
||||
AudioChunkerProcessor(),
|
||||
AudioDownscaleProcessor(),
|
||||
AudioChunkerAutoProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
TranscriptTranslatorProcessor.as_threaded(callback=self.on_transcript),
|
||||
TranscriptTranslatorAutoProcessor.as_threaded(callback=self.on_transcript),
|
||||
TranscriptTopicDetectorProcessor.as_threaded(callback=self.on_topic),
|
||||
]
|
||||
pipeline = Pipeline(*processors)
|
||||
@@ -370,6 +330,7 @@ class PipelineMainLive(PipelineMainBase):
|
||||
pipeline.set_pref("audio:target_language", transcript.target_language)
|
||||
pipeline.logger.bind(transcript_id=transcript.id)
|
||||
pipeline.logger.info("Pipeline main live created")
|
||||
pipeline.describe()
|
||||
|
||||
return pipeline
|
||||
|
||||
@@ -380,7 +341,7 @@ class PipelineMainLive(PipelineMainBase):
|
||||
pipeline_post(transcript_id=self.transcript_id)
|
||||
|
||||
|
||||
class PipelineMainDiarization(PipelineMainBase):
|
||||
class PipelineMainDiarization(PipelineMainBase[AudioDiarizationInput]):
|
||||
"""
|
||||
Diarize the audio and update topics
|
||||
"""
|
||||
@@ -388,7 +349,6 @@ class PipelineMainDiarization(PipelineMainBase):
|
||||
async def create(self) -> Pipeline:
|
||||
# create a context for the whole rtc transaction
|
||||
# add a customised logger to the context
|
||||
self.prepare()
|
||||
pipeline = Pipeline(
|
||||
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
||||
)
|
||||
@@ -397,18 +357,18 @@ class PipelineMainDiarization(PipelineMainBase):
|
||||
# now let's start the pipeline by pushing information to the
|
||||
# first processor diarization processor
|
||||
# XXX translation is lost when converting our data model to the processor model
|
||||
transcript = await self.get_transcript()
|
||||
async with get_session_context() as session:
|
||||
transcript = await self.get_transcript(session)
|
||||
|
||||
# diarization works only if the file is uploaded to an external storage
|
||||
if transcript.audio_location == "local":
|
||||
pipeline.logger.info("Audio is local, skipping diarization")
|
||||
return
|
||||
|
||||
topics = self.get_transcript_topics(transcript)
|
||||
audio_url = await transcript.get_audio_url()
|
||||
audio_diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url,
|
||||
topics=topics,
|
||||
topics=self.wrap_transcript_topics(transcript.topics),
|
||||
)
|
||||
|
||||
# as tempting to use pipeline.push, prefer to use the runner
|
||||
@@ -421,7 +381,7 @@ class PipelineMainDiarization(PipelineMainBase):
|
||||
return pipeline
|
||||
|
||||
|
||||
class PipelineMainFromTopics(PipelineMainBase):
|
||||
class PipelineMainFromTopics(PipelineMainBase[TitleSummaryWithIdProcessorType]):
|
||||
"""
|
||||
Pseudo class for generating a pipeline from topics
|
||||
"""
|
||||
@@ -430,10 +390,9 @@ class PipelineMainFromTopics(PipelineMainBase):
|
||||
raise NotImplementedError
|
||||
|
||||
async def create(self) -> Pipeline:
|
||||
self.prepare()
|
||||
|
||||
# get transcript
|
||||
self._transcript = transcript = await self.get_transcript()
|
||||
async with get_session_context() as session:
|
||||
self._transcript = transcript = await self.get_transcript(session)
|
||||
|
||||
# create pipeline
|
||||
processors = self.get_processors()
|
||||
@@ -443,7 +402,7 @@ class PipelineMainFromTopics(PipelineMainBase):
|
||||
pipeline.logger.info(f"{self.__class__.__name__} pipeline created")
|
||||
|
||||
# push topics
|
||||
topics = self.get_transcript_topics(transcript)
|
||||
topics = PipelineMainBase.wrap_transcript_topics(transcript.topics)
|
||||
for topic in topics:
|
||||
await self.push(topic)
|
||||
|
||||
@@ -493,8 +452,7 @@ class PipelineMainWaveform(PipelineMainFromTopics):
|
||||
]
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_remove_upload(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_remove_upload(session, transcript: Transcript, logger: Logger):
|
||||
# for future changes: note that there's also a consent process happens, beforehand and users may not consent with keeping files. currently, we delete regardless, so it's no need for that
|
||||
logger.info("Starting remove upload")
|
||||
uploads = transcript.data_path.glob("upload.*")
|
||||
@@ -503,16 +461,14 @@ async def pipeline_remove_upload(transcript: Transcript, logger: Logger):
|
||||
logger.info("Remove upload done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_waveform(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_waveform(session, transcript: Transcript, logger: Logger):
|
||||
logger.info("Starting waveform")
|
||||
runner = PipelineMainWaveform(transcript_id=transcript.id)
|
||||
await runner.run()
|
||||
logger.info("Waveform done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_convert_to_mp3(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_convert_to_mp3(session, transcript: Transcript, logger: Logger):
|
||||
logger.info("Starting convert to mp3")
|
||||
|
||||
# If the audio wav is not available, just skip
|
||||
@@ -524,8 +480,6 @@ async def pipeline_convert_to_mp3(transcript: Transcript, logger: Logger):
|
||||
# Convert to mp3
|
||||
mp3_filename = transcript.audio_mp3_filename
|
||||
|
||||
import av
|
||||
|
||||
with av.open(wav_filename.as_posix()) as in_container:
|
||||
in_stream = in_container.streams.audio[0]
|
||||
with av.open(mp3_filename.as_posix(), "w") as out_container:
|
||||
@@ -540,8 +494,7 @@ async def pipeline_convert_to_mp3(transcript: Transcript, logger: Logger):
|
||||
logger.info("Convert to mp3 done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_upload_mp3(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_upload_mp3(session, transcript: Transcript, logger: Logger):
|
||||
if not settings.TRANSCRIPT_STORAGE_BACKEND:
|
||||
logger.info("No storage backend configured, skipping mp3 upload")
|
||||
return
|
||||
@@ -559,52 +512,52 @@ async def pipeline_upload_mp3(transcript: Transcript, logger: Logger):
|
||||
return
|
||||
|
||||
# Upload to external storage and delete the file
|
||||
await transcripts_controller.move_mp3_to_storage(transcript)
|
||||
await transcripts_controller.move_mp3_to_storage(session, transcript)
|
||||
|
||||
logger.info("Upload mp3 done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_diarization(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_diarization(session, transcript: Transcript, logger: Logger):
|
||||
logger.info("Starting diarization")
|
||||
runner = PipelineMainDiarization(transcript_id=transcript.id)
|
||||
await runner.run()
|
||||
logger.info("Diarization done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_title(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_title(session, transcript: Transcript, logger: Logger):
|
||||
logger.info("Starting title")
|
||||
runner = PipelineMainTitle(transcript_id=transcript.id)
|
||||
await runner.run()
|
||||
logger.info("Title done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_summaries(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_summaries(session, transcript: Transcript, logger: Logger):
|
||||
logger.info("Starting summaries")
|
||||
runner = PipelineMainFinalSummaries(transcript_id=transcript.id)
|
||||
await runner.run()
|
||||
logger.info("Summaries done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
async def cleanup_consent(session, transcript: Transcript, logger: Logger):
|
||||
logger.info("Starting consent cleanup")
|
||||
|
||||
consent_denied = False
|
||||
recording = None
|
||||
try:
|
||||
if transcript.recording_id:
|
||||
recording = await recordings_controller.get_by_id(transcript.recording_id)
|
||||
recording = await recordings_controller.get_by_id(
|
||||
session, transcript.recording_id
|
||||
)
|
||||
if recording and recording.meeting_id:
|
||||
meeting = await meetings_controller.get_by_id(recording.meeting_id)
|
||||
meeting = await meetings_controller.get_by_id(
|
||||
session, recording.meeting_id
|
||||
)
|
||||
if meeting:
|
||||
consent_denied = await meeting_consent_controller.has_any_denial(
|
||||
meeting.id
|
||||
session, meeting.id
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get fetch consent: {e}")
|
||||
logger.error(f"Failed to get fetch consent: {e}", exc_info=e)
|
||||
consent_denied = True
|
||||
|
||||
if not consent_denied:
|
||||
@@ -627,10 +580,10 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
f"Deleted original Whereby recording: {recording.bucket_name}/{recording.object_key}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete Whereby recording: {e}")
|
||||
logger.error(f"Failed to delete Whereby recording: {e}", exc_info=e)
|
||||
|
||||
# non-transactional, files marked for deletion not actually deleted is possible
|
||||
await transcripts_controller.update(transcript, {"audio_deleted": True})
|
||||
await transcripts_controller.update(session, transcript, {"audio_deleted": True})
|
||||
# 2. Delete processed audio from transcript storage S3 bucket
|
||||
if transcript.audio_location == "storage":
|
||||
storage = get_transcripts_storage()
|
||||
@@ -640,7 +593,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
f"Deleted processed audio from storage: {transcript.storage_audio_path}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete processed audio: {e}")
|
||||
logger.error(f"Failed to delete processed audio: {e}", exc_info=e)
|
||||
|
||||
# 3. Delete local audio files
|
||||
try:
|
||||
@@ -649,20 +602,19 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
if hasattr(transcript, "audio_wav_filename") and transcript.audio_wav_filename:
|
||||
transcript.audio_wav_filename.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete local audio files: {e}")
|
||||
logger.error(f"Failed to delete local audio files: {e}", exc_info=e)
|
||||
|
||||
logger.info("Consent cleanup done")
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_post_to_zulip(transcript: Transcript, logger: Logger):
|
||||
async def pipeline_post_to_zulip(session, transcript: Transcript, logger: Logger):
|
||||
logger.info("Starting post to zulip")
|
||||
|
||||
if not transcript.recording_id:
|
||||
logger.info("Transcript has no recording")
|
||||
return
|
||||
|
||||
recording = await recordings_controller.get_by_id(transcript.recording_id)
|
||||
recording = await recordings_controller.get_by_id(session, transcript.recording_id)
|
||||
if not recording:
|
||||
logger.info("Recording not found")
|
||||
return
|
||||
@@ -671,12 +623,12 @@ async def pipeline_post_to_zulip(transcript: Transcript, logger: Logger):
|
||||
logger.info("Recording has no meeting")
|
||||
return
|
||||
|
||||
meeting = await meetings_controller.get_by_id(recording.meeting_id)
|
||||
meeting = await meetings_controller.get_by_id(session, recording.meeting_id)
|
||||
if not meeting:
|
||||
logger.info("No meeting found for this recording")
|
||||
return
|
||||
|
||||
room = await rooms_controller.get_by_id(meeting.room_id)
|
||||
room = await rooms_controller.get_by_id(session, meeting.room_id)
|
||||
if not room:
|
||||
logger.error(f"Missing room for a meeting {meeting.id}")
|
||||
return
|
||||
@@ -702,7 +654,7 @@ async def pipeline_post_to_zulip(transcript: Transcript, logger: Logger):
|
||||
room.zulip_stream, room.zulip_topic, message
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript, {"zulip_message_id": response["id"]}
|
||||
session, transcript, {"zulip_message_id": response["id"]}
|
||||
)
|
||||
|
||||
logger.info("Posted to zulip")
|
||||
@@ -713,94 +665,120 @@ async def pipeline_post_to_zulip(transcript: Transcript, logger: Logger):
|
||||
# ===================================================================
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_remove_upload(*, transcript_id: str):
|
||||
await pipeline_remove_upload(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_remove_upload(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
await pipeline_remove_upload(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_waveform(*, transcript_id: str):
|
||||
await pipeline_waveform(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_waveform(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
await pipeline_waveform(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_convert_to_mp3(*, transcript_id: str):
|
||||
await pipeline_convert_to_mp3(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_convert_to_mp3(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
await pipeline_convert_to_mp3(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_upload_mp3(*, transcript_id: str):
|
||||
await pipeline_upload_mp3(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_upload_mp3(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
await pipeline_upload_mp3(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_diarization(*, transcript_id: str):
|
||||
await pipeline_diarization(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_diarization(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
await pipeline_diarization(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_title(*, transcript_id: str):
|
||||
await pipeline_title(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_title(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
await pipeline_title(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_final_summaries(*, transcript_id: str):
|
||||
await pipeline_summaries(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_final_summaries(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
await pipeline_summaries(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_cleanup_consent(*, transcript_id: str):
|
||||
await cleanup_consent(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_cleanup_consent(session, *, transcript: Transcript, logger: Logger):
|
||||
await cleanup_consent(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_post_to_zulip(*, transcript_id: str):
|
||||
await pipeline_post_to_zulip(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_post_to_zulip(
|
||||
session, *, transcript: Transcript, logger: Logger
|
||||
):
|
||||
await pipeline_post_to_zulip(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
def pipeline_post(*, transcript_id: str):
|
||||
"""
|
||||
Run the post pipeline
|
||||
"""
|
||||
chain_mp3_and_diarize = (
|
||||
task_pipeline_waveform.si(transcript_id=transcript_id)
|
||||
| task_pipeline_convert_to_mp3.si(transcript_id=transcript_id)
|
||||
| task_pipeline_upload_mp3.si(transcript_id=transcript_id)
|
||||
| task_pipeline_remove_upload.si(transcript_id=transcript_id)
|
||||
| task_pipeline_diarization.si(transcript_id=transcript_id)
|
||||
| task_cleanup_consent.si(transcript_id=transcript_id)
|
||||
)
|
||||
chain_title_preview = task_pipeline_title.si(transcript_id=transcript_id)
|
||||
chain_final_summaries = task_pipeline_final_summaries.si(
|
||||
transcript_id=transcript_id
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_cleanup_consent_taskiq(
|
||||
session, *, transcript: Transcript, logger: Logger
|
||||
):
|
||||
await cleanup_consent(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_post_to_zulip_taskiq(
|
||||
session, *, transcript: Transcript, logger: Logger
|
||||
):
|
||||
await pipeline_post_to_zulip(session, transcript=transcript, logger=logger)
|
||||
|
||||
|
||||
async def pipeline_post(*, transcript_id: str):
|
||||
await task_pipeline_post_sequential.kiq(transcript_id=transcript_id)
|
||||
|
||||
|
||||
@taskiq_broker.task
|
||||
async def task_pipeline_post_sequential(*, transcript_id: str):
|
||||
await task_pipeline_waveform.kiq(transcript_id=transcript_id)
|
||||
await task_pipeline_convert_to_mp3.kiq(transcript_id=transcript_id)
|
||||
await task_pipeline_upload_mp3.kiq(transcript_id=transcript_id)
|
||||
await task_pipeline_remove_upload.kiq(transcript_id=transcript_id)
|
||||
await task_pipeline_diarization.kiq(transcript_id=transcript_id)
|
||||
await task_cleanup_consent.kiq(transcript_id=transcript_id)
|
||||
|
||||
await asyncio.gather(
|
||||
task_pipeline_title.kiq(transcript_id=transcript_id),
|
||||
task_pipeline_final_summaries.kiq(transcript_id=transcript_id),
|
||||
)
|
||||
|
||||
chain = chord(
|
||||
group(chain_mp3_and_diarize, chain_title_preview),
|
||||
chain_final_summaries,
|
||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||
|
||||
chain.delay()
|
||||
await task_pipeline_post_to_zulip.kiq(transcript_id=transcript_id)
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_process(transcript: Transcript, logger: Logger):
|
||||
import av
|
||||
|
||||
async def pipeline_process(session, transcript: Transcript, logger: Logger):
|
||||
try:
|
||||
if transcript.audio_location == "storage":
|
||||
await transcripts_controller.download_mp3_from_storage(transcript)
|
||||
transcript.audio_waveform_filename.unlink(missing_ok=True)
|
||||
await transcripts_controller.update(
|
||||
session,
|
||||
transcript,
|
||||
{
|
||||
"topics": [],
|
||||
@@ -838,6 +816,7 @@ async def pipeline_process(transcript: Transcript, logger: Logger):
|
||||
except Exception as exc:
|
||||
logger.error("Pipeline error", exc_info=exc)
|
||||
await transcripts_controller.update(
|
||||
session,
|
||||
transcript,
|
||||
{
|
||||
"status": "error",
|
||||
@@ -848,7 +827,9 @@ async def pipeline_process(transcript: Transcript, logger: Logger):
|
||||
logger.info("Pipeline ended")
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_process(*, transcript_id: str):
|
||||
return await pipeline_process(transcript_id=transcript_id)
|
||||
@taskiq_broker.task
|
||||
@with_session_and_transcript
|
||||
async def task_pipeline_process(
|
||||
session, *, transcript: Transcript, logger: Logger, transcript_id: str
|
||||
):
|
||||
return await pipeline_process(session, transcript=transcript, logger=logger)
|
||||
|
||||
@@ -16,21 +16,16 @@ During its lifecycle, it will emit the following status:
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from typing import Generic, TypeVar
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.processors import Pipeline
|
||||
|
||||
PipelineMessage = TypeVar("PipelineMessage")
|
||||
|
||||
class PipelineRunner(BaseModel):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
status: str = "idle"
|
||||
pipeline: Pipeline | None = None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
class PipelineRunner(Generic[PipelineMessage]):
|
||||
def __init__(self):
|
||||
self._task = None
|
||||
self._q_cmd = asyncio.Queue(maxsize=4096)
|
||||
self._ev_done = asyncio.Event()
|
||||
@@ -39,6 +34,8 @@ class PipelineRunner(BaseModel):
|
||||
runner=id(self),
|
||||
runner_cls=self.__class__.__name__,
|
||||
)
|
||||
self.status = "idle"
|
||||
self.pipeline: Pipeline | None = None
|
||||
|
||||
async def create(self) -> Pipeline:
|
||||
"""
|
||||
@@ -67,7 +64,7 @@ class PipelineRunner(BaseModel):
|
||||
coro = self.run()
|
||||
asyncio.run(coro)
|
||||
|
||||
async def push(self, data):
|
||||
async def push(self, data: PipelineMessage):
|
||||
"""
|
||||
Push data to the pipeline
|
||||
"""
|
||||
@@ -92,7 +89,11 @@ class PipelineRunner(BaseModel):
|
||||
pass
|
||||
|
||||
async def _add_cmd(
|
||||
self, cmd: str, data, max_retries: int = 3, retry_time_limit: int = 3
|
||||
self,
|
||||
cmd: str,
|
||||
data: PipelineMessage,
|
||||
max_retries: int = 3,
|
||||
retry_time_limit: int = 3,
|
||||
):
|
||||
"""
|
||||
Enqueue a command to be executed in the runner.
|
||||
@@ -143,7 +144,10 @@ class PipelineRunner(BaseModel):
|
||||
cmd, data = await self._q_cmd.get()
|
||||
func = getattr(self, f"cmd_{cmd.lower()}")
|
||||
if func:
|
||||
await func(data)
|
||||
if cmd.upper() == "FLUSH":
|
||||
await func()
|
||||
else:
|
||||
await func(data)
|
||||
else:
|
||||
raise Exception(f"Unknown command {cmd}")
|
||||
except Exception:
|
||||
@@ -152,13 +156,13 @@ class PipelineRunner(BaseModel):
|
||||
self._ev_done.set()
|
||||
raise
|
||||
|
||||
async def cmd_push(self, data):
|
||||
async def cmd_push(self, data: PipelineMessage):
|
||||
if self._is_first_push:
|
||||
await self._set_status("push")
|
||||
self._is_first_push = False
|
||||
await self.pipeline.push(data)
|
||||
|
||||
async def cmd_flush(self, data):
|
||||
async def cmd_flush(self):
|
||||
await self._set_status("flush")
|
||||
await self.pipeline.flush()
|
||||
await self._set_status("ended")
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||
@@ -11,11 +13,19 @@ from .base import ( # noqa: F401
|
||||
Processor,
|
||||
ThreadedProcessor,
|
||||
)
|
||||
from .file_diarization import FileDiarizationProcessor # noqa: F401
|
||||
from .file_diarization_auto import FileDiarizationAutoProcessor # noqa: F401
|
||||
from .file_transcript import FileTranscriptProcessor # noqa: F401
|
||||
from .file_transcript_auto import FileTranscriptAutoProcessor # noqa: F401
|
||||
from .transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerProcessor, # noqa: F401
|
||||
)
|
||||
from .transcript_final_summary import TranscriptFinalSummaryProcessor # noqa: F401
|
||||
from .transcript_final_title import TranscriptFinalTitleProcessor # noqa: F401
|
||||
from .transcript_liner import TranscriptLinerProcessor # noqa: F401
|
||||
from .transcript_topic_detector import TranscriptTopicDetectorProcessor # noqa: F401
|
||||
from .transcript_translator import TranscriptTranslatorProcessor # noqa: F401
|
||||
from .transcript_translator_auto import TranscriptTranslatorAutoProcessor # noqa: F401
|
||||
from .types import ( # noqa: F401
|
||||
AudioFile,
|
||||
FinalLongSummary,
|
||||
|
||||
@@ -1,28 +1,78 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from prometheus_client import Counter, Histogram
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
class AudioChunkerProcessor(Processor):
|
||||
"""
|
||||
Assemble audio frames into chunks
|
||||
Base class for assembling audio frames into chunks
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = list[av.AudioFrame]
|
||||
|
||||
def __init__(self, max_frames=256):
|
||||
super().__init__()
|
||||
m_chunk = Histogram(
|
||||
"audio_chunker",
|
||||
"Time spent in AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_call = Counter(
|
||||
"audio_chunker_call",
|
||||
"Number of calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_success = Counter(
|
||||
"audio_chunker_success",
|
||||
"Number of successful calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_failure = Counter(
|
||||
"audio_chunker_failure",
|
||||
"Number of failed calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
name = self.__class__.__name__
|
||||
self.m_chunk = self.m_chunk.labels(name)
|
||||
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.frames: list[av.AudioFrame] = []
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
await self.flush()
|
||||
"""Process incoming audio frame"""
|
||||
# Validate audio format on first frame
|
||||
if len(self.frames) == 0:
|
||||
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||
raise ValueError(
|
||||
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||
f"with {len(data.layout.channels)} channel(s). "
|
||||
f"Use AudioDownscaleProcessor before this processor."
|
||||
)
|
||||
|
||||
try:
|
||||
self.m_chunk_call.inc()
|
||||
with self.m_chunk.time():
|
||||
result = await self._chunk(data)
|
||||
self.m_chunk_success.inc()
|
||||
if result:
|
||||
await self.emit(result)
|
||||
except Exception:
|
||||
self.m_chunk_failure.inc()
|
||||
raise
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""
|
||||
Process audio frame and return chunk when ready.
|
||||
Subclasses should implement their chunking logic here.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
"""Flush any remaining frames when processing ends"""
|
||||
raise NotImplementedError
|
||||
|
||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.AUDIO_CHUNKER_BACKEND
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "AUDIO_CHUNKER_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||
"""
|
||||
|
||||
def __init__(self, max_frames=256, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
return frames_to_emit
|
||||
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user