mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-21 04:39:06 +00:00
Compare commits
55 Commits
mathieu/fe
...
v0.9.0
| Author | SHA1 | Date | |
|---|---|---|---|
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 | |||
| 52f9f533d7 | |||
| 0c3878ac3c | |||
|
|
d70beee51b | ||
| bc5b351d2b | |||
|
|
07981e8090 | ||
| 7e366f6338 | |||
| 7592679a35 | |||
| af16178f86 | |||
| 3ea7f6b7b6 | |||
|
|
009590c080 | ||
|
|
fe5d344cff | ||
|
|
86455ce573 | ||
| 2fccd81bcd | |||
| 1311714451 | |||
| b9d891d342 | |||
| 9eab952c63 | |||
|
|
6fb5cb21c2 | ||
|
|
a42ed12982 | ||
| 1aa52a99b6 | |||
|
|
2a97290f2e | ||
| 7963cc8a52 | |||
| d12424848d | |||
|
|
6e765875d5 | ||
|
|
e0f4acf28b | ||
|
|
12359ea4eb | ||
| 267b7401ea | |||
| aea9de393c | |||
| dc177af3ff | |||
| 5bd8233657 |
35
.github/workflows/db_migrations.yml
vendored
35
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
|||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
paths:
|
paths:
|
||||||
- "server/migrations/**"
|
- "server/migrations/**"
|
||||||
- "server/reflector/db/**"
|
- "server/reflector/db/**"
|
||||||
@@ -17,10 +19,43 @@ on:
|
|||||||
jobs:
|
jobs:
|
||||||
test-migrations:
|
test-migrations:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
concurrency:
|
||||||
|
group: db-ubuntu-latest-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
services:
|
||||||
|
postgres:
|
||||||
|
image: postgres:17
|
||||||
|
env:
|
||||||
|
POSTGRES_USER: reflector
|
||||||
|
POSTGRES_PASSWORD: reflector
|
||||||
|
POSTGRES_DB: reflector
|
||||||
|
ports:
|
||||||
|
- 5432:5432
|
||||||
|
options: >-
|
||||||
|
--health-cmd pg_isready -h 127.0.0.1 -p 5432
|
||||||
|
--health-interval 10s
|
||||||
|
--health-timeout 5s
|
||||||
|
--health-retries 5
|
||||||
|
|
||||||
|
env:
|
||||||
|
DATABASE_URL: postgresql://reflector:reflector@localhost:5432/reflector
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Install PostgreSQL client
|
||||||
|
run: sudo apt-get update && sudo apt-get install -y postgresql-client | cat
|
||||||
|
|
||||||
|
- name: Wait for Postgres
|
||||||
|
run: |
|
||||||
|
for i in {1..30}; do
|
||||||
|
if pg_isready -h localhost -p 5432; then
|
||||||
|
echo "Postgres is ready"
|
||||||
|
break
|
||||||
|
fi
|
||||||
|
echo "Waiting for Postgres... ($i)" && sleep 1
|
||||||
|
done
|
||||||
|
|
||||||
- name: Install uv
|
- name: Install uv
|
||||||
uses: astral-sh/setup-uv@v3
|
uses: astral-sh/setup-uv@v3
|
||||||
with:
|
with:
|
||||||
|
|||||||
77
.github/workflows/deploy.yml
vendored
77
.github/workflows/deploy.yml
vendored
@@ -8,18 +8,30 @@ env:
|
|||||||
ECR_REPOSITORY: reflector
|
ECR_REPOSITORY: reflector
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
deploy:
|
build:
|
||||||
runs-on: ubuntu-latest
|
strategy:
|
||||||
|
matrix:
|
||||||
|
include:
|
||||||
|
- platform: linux/amd64
|
||||||
|
runner: linux-amd64
|
||||||
|
arch: amd64
|
||||||
|
- platform: linux/arm64
|
||||||
|
runner: linux-arm64
|
||||||
|
arch: arm64
|
||||||
|
|
||||||
|
runs-on: ${{ matrix.runner }}
|
||||||
|
|
||||||
permissions:
|
permissions:
|
||||||
deployments: write
|
|
||||||
contents: read
|
contents: read
|
||||||
|
|
||||||
|
outputs:
|
||||||
|
registry: ${{ steps.login-ecr.outputs.registry }}
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Configure AWS credentials
|
- name: Configure AWS credentials
|
||||||
uses: aws-actions/configure-aws-credentials@0e613a0980cbf65ed5b322eb7a1e075d28913a83
|
uses: aws-actions/configure-aws-credentials@v4
|
||||||
with:
|
with:
|
||||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||||
@@ -27,21 +39,52 @@ jobs:
|
|||||||
|
|
||||||
- name: Login to Amazon ECR
|
- name: Login to Amazon ECR
|
||||||
id: login-ecr
|
id: login-ecr
|
||||||
uses: aws-actions/amazon-ecr-login@62f4f872db3836360b72999f4b87f1ff13310f3a
|
uses: aws-actions/amazon-ecr-login@v2
|
||||||
|
|
||||||
- name: Set up QEMU
|
|
||||||
uses: docker/setup-qemu-action@v2
|
|
||||||
|
|
||||||
- name: Set up Docker Buildx
|
- name: Set up Docker Buildx
|
||||||
uses: docker/setup-buildx-action@v2
|
uses: docker/setup-buildx-action@v3
|
||||||
|
|
||||||
- name: Build and push
|
- name: Build and push ${{ matrix.arch }}
|
||||||
id: docker_build
|
uses: docker/build-push-action@v5
|
||||||
uses: docker/build-push-action@v4
|
|
||||||
with:
|
with:
|
||||||
context: server
|
context: server
|
||||||
platforms: linux/amd64,linux/arm64
|
platforms: ${{ matrix.platform }}
|
||||||
push: true
|
push: true
|
||||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest
|
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
|
||||||
cache-from: type=gha
|
cache-from: type=gha,scope=${{ matrix.arch }}
|
||||||
cache-to: type=gha,mode=max
|
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
|
||||||
|
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||||
|
provenance: false
|
||||||
|
|
||||||
|
create-manifest:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
needs: [build]
|
||||||
|
|
||||||
|
permissions:
|
||||||
|
deployments: write
|
||||||
|
contents: read
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Configure AWS credentials
|
||||||
|
uses: aws-actions/configure-aws-credentials@v4
|
||||||
|
with:
|
||||||
|
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||||
|
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||||
|
aws-region: ${{ env.AWS_REGION }}
|
||||||
|
|
||||||
|
- name: Login to Amazon ECR
|
||||||
|
uses: aws-actions/amazon-ecr-login@v2
|
||||||
|
|
||||||
|
- name: Create and push multi-arch manifest
|
||||||
|
run: |
|
||||||
|
# Get the registry URL (since we can't easily access job outputs in matrix)
|
||||||
|
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
|
||||||
|
|
||||||
|
docker manifest create \
|
||||||
|
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
|
||||||
|
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
|
||||||
|
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
|
||||||
|
|
||||||
|
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
|
||||||
|
|
||||||
|
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"
|
||||||
|
|||||||
24
.github/workflows/pre-commit.yml
vendored
Normal file
24
.github/workflows/pre-commit.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
name: pre-commit
|
||||||
|
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
push:
|
||||||
|
branches: [main]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
pre-commit:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v5
|
||||||
|
- uses: actions/setup-python@v5
|
||||||
|
- uses: pnpm/action-setup@v4
|
||||||
|
with:
|
||||||
|
version: 10
|
||||||
|
- uses: actions/setup-node@v4
|
||||||
|
with:
|
||||||
|
node-version: 22
|
||||||
|
cache: "pnpm"
|
||||||
|
cache-dependency-path: "www/pnpm-lock.yaml"
|
||||||
|
- name: Install dependencies
|
||||||
|
run: cd www && pnpm install --frozen-lockfile
|
||||||
|
- uses: pre-commit/action@v3.0.1
|
||||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
name: Test Next Server
|
||||||
|
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- "www/**"
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
paths:
|
||||||
|
- "www/**"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
test-next-server:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
working-directory: ./www
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Setup Node.js
|
||||||
|
uses: actions/setup-node@v4
|
||||||
|
with:
|
||||||
|
node-version: '20'
|
||||||
|
|
||||||
|
- name: Install pnpm
|
||||||
|
uses: pnpm/action-setup@v4
|
||||||
|
with:
|
||||||
|
version: 8
|
||||||
|
|
||||||
|
- name: Setup Node.js cache
|
||||||
|
uses: actions/setup-node@v4
|
||||||
|
with:
|
||||||
|
node-version: '20'
|
||||||
|
cache: 'pnpm'
|
||||||
|
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
run: pnpm install
|
||||||
|
|
||||||
|
- name: Run tests
|
||||||
|
run: pnpm test
|
||||||
49
.github/workflows/test_server.yml
vendored
49
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
|||||||
paths:
|
paths:
|
||||||
- "server/**"
|
- "server/**"
|
||||||
push:
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
paths:
|
paths:
|
||||||
- "server/**"
|
- "server/**"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
pytest:
|
pytest:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
concurrency:
|
||||||
|
group: pytest-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
services:
|
services:
|
||||||
redis:
|
redis:
|
||||||
image: redis:6
|
image: redis:6
|
||||||
@@ -19,29 +24,47 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- name: Install uv
|
- name: Install uv
|
||||||
uses: astral-sh/setup-uv@v3
|
uses: astral-sh/setup-uv@v6
|
||||||
with:
|
with:
|
||||||
enable-cache: true
|
enable-cache: true
|
||||||
working-directory: server
|
working-directory: server
|
||||||
|
|
||||||
- name: Tests
|
- name: Tests
|
||||||
run: |
|
run: |
|
||||||
cd server
|
cd server
|
||||||
uv run -m pytest -v tests
|
uv run -m pytest -v tests
|
||||||
|
|
||||||
docker:
|
docker-amd64:
|
||||||
runs-on: ubuntu-latest
|
runs-on: linux-amd64
|
||||||
|
concurrency:
|
||||||
|
group: docker-amd64-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- name: Set up QEMU
|
|
||||||
uses: docker/setup-qemu-action@v2
|
|
||||||
- name: Set up Docker Buildx
|
- name: Set up Docker Buildx
|
||||||
uses: docker/setup-buildx-action@v2
|
uses: docker/setup-buildx-action@v3
|
||||||
- name: Build and push
|
- name: Build AMD64
|
||||||
id: docker_build
|
uses: docker/build-push-action@v6
|
||||||
uses: docker/build-push-action@v4
|
|
||||||
with:
|
with:
|
||||||
context: server
|
context: server
|
||||||
platforms: linux/amd64,linux/arm64
|
platforms: linux/amd64
|
||||||
cache-from: type=gha
|
cache-from: type=gha,scope=amd64
|
||||||
cache-to: type=gha,mode=max
|
cache-to: type=gha,mode=max,scope=amd64
|
||||||
|
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||||
|
|
||||||
|
docker-arm64:
|
||||||
|
runs-on: linux-arm64
|
||||||
|
concurrency:
|
||||||
|
group: docker-arm64-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v3
|
||||||
|
- name: Build ARM64
|
||||||
|
uses: docker/build-push-action@v6
|
||||||
|
with:
|
||||||
|
context: server
|
||||||
|
platforms: linux/arm64
|
||||||
|
cache-from: type=gha,scope=arm64
|
||||||
|
cache-to: type=gha,mode=max,scope=arm64
|
||||||
|
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||||
|
|||||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -13,3 +13,8 @@ restart-dev.sh
|
|||||||
data/
|
data/
|
||||||
www/REFACTOR.md
|
www/REFACTOR.md
|
||||||
www/reload-frontend
|
www/reload-frontend
|
||||||
|
server/test.sqlite
|
||||||
|
CLAUDE.local.md
|
||||||
|
www/.env.development
|
||||||
|
www/.env.production
|
||||||
|
.playwright-mcp
|
||||||
|
|||||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
|||||||
|
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||||
@@ -3,10 +3,10 @@
|
|||||||
repos:
|
repos:
|
||||||
- repo: local
|
- repo: local
|
||||||
hooks:
|
hooks:
|
||||||
- id: yarn-format
|
- id: format
|
||||||
name: run yarn format
|
name: run format
|
||||||
language: system
|
language: system
|
||||||
entry: bash -c 'cd www && yarn format'
|
entry: bash -c 'cd www && pnpm format'
|
||||||
pass_filenames: false
|
pass_filenames: false
|
||||||
files: ^www/
|
files: ^www/
|
||||||
|
|
||||||
@@ -23,8 +23,12 @@ repos:
|
|||||||
- id: ruff
|
- id: ruff
|
||||||
args:
|
args:
|
||||||
- --fix
|
- --fix
|
||||||
- --select
|
# Uses select rules from server/pyproject.toml
|
||||||
- I,F401
|
|
||||||
files: ^server/
|
files: ^server/
|
||||||
- id: ruff-format
|
- id: ruff-format
|
||||||
files: ^server/
|
files: ^server/
|
||||||
|
|
||||||
|
- repo: https://github.com/gitleaks/gitleaks
|
||||||
|
rev: v8.28.0
|
||||||
|
hooks:
|
||||||
|
- id: gitleaks
|
||||||
|
|||||||
111
CHANGELOG.md
111
CHANGELOG.md
@@ -1,5 +1,116 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||||
|
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||||
|
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||||
|
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||||
|
|
||||||
|
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||||
|
|
||||||
|
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||||
|
|
||||||
|
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||||
|
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||||
|
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||||
|
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||||
|
|
||||||
|
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||||
|
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||||
|
|
||||||
|
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* docker image not loading libgomp.so.1 for torch ([#560](https://github.com/Monadical-SAS/reflector/issues/560)) ([773fccd](https://github.com/Monadical-SAS/reflector/commit/773fccd93e887c3493abc2e4a4864dddce610177))
|
||||||
|
* include shared rooms to search ([#558](https://github.com/Monadical-SAS/reflector/issues/558)) ([499eced](https://github.com/Monadical-SAS/reflector/commit/499eced3360b84fb3a90e1c8a3b554290d21adc2))
|
||||||
|
|
||||||
|
## [0.7.1](https://github.com/Monadical-SAS/reflector/compare/v0.7.0...v0.7.1) (2025-08-21)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* webvtt db null expectation mismatch ([#556](https://github.com/Monadical-SAS/reflector/issues/556)) ([e67ad1a](https://github.com/Monadical-SAS/reflector/commit/e67ad1a4a2054467bfeb1e0258fbac5868aaaf21))
|
||||||
|
|
||||||
|
## [0.7.0](https://github.com/Monadical-SAS/reflector/compare/v0.6.1...v0.7.0) (2025-08-21)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* delete recording with transcript ([#547](https://github.com/Monadical-SAS/reflector/issues/547)) ([99cc984](https://github.com/Monadical-SAS/reflector/commit/99cc9840b3f5de01e0adfbfae93234042d706d13))
|
||||||
|
* pipeline improvement with file processing, parakeet, silero-vad ([#540](https://github.com/Monadical-SAS/reflector/issues/540)) ([bcc29c9](https://github.com/Monadical-SAS/reflector/commit/bcc29c9e0050ae215f89d460e9d645aaf6a5e486))
|
||||||
|
* postgresql migration and removal of sqlite in pytest ([#546](https://github.com/Monadical-SAS/reflector/issues/546)) ([cd1990f](https://github.com/Monadical-SAS/reflector/commit/cd1990f8f0fe1503ef5069512f33777a73a93d7f))
|
||||||
|
* search backend ([#537](https://github.com/Monadical-SAS/reflector/issues/537)) ([5f9b892](https://github.com/Monadical-SAS/reflector/commit/5f9b89260c9ef7f3c921319719467df22830453f))
|
||||||
|
* search frontend ([#551](https://github.com/Monadical-SAS/reflector/issues/551)) ([3657242](https://github.com/Monadical-SAS/reflector/commit/365724271ca6e615e3425125a69ae2b46ce39285))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* evaluation cli event wrap ([#536](https://github.com/Monadical-SAS/reflector/issues/536)) ([941c3db](https://github.com/Monadical-SAS/reflector/commit/941c3db0bdacc7b61fea412f3746cc5a7cb67836))
|
||||||
|
* use structlog not logging ([#550](https://github.com/Monadical-SAS/reflector/issues/550)) ([27e2f81](https://github.com/Monadical-SAS/reflector/commit/27e2f81fda5232e53edc729d3e99c5ef03adbfe9))
|
||||||
|
|
||||||
|
## [0.6.1](https://github.com/Monadical-SAS/reflector/compare/v0.6.0...v0.6.1) (2025-08-06)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* delayed waveform loading ([#538](https://github.com/Monadical-SAS/reflector/issues/538)) ([ef64146](https://github.com/Monadical-SAS/reflector/commit/ef64146325d03f64dd9a1fe40234fb3e7e957ae2))
|
||||||
|
|
||||||
|
## [0.6.0](https://github.com/Monadical-SAS/reflector/compare/v0.5.0...v0.6.0) (2025-08-05)
|
||||||
|
|
||||||
|
|
||||||
|
### ⚠ BREAKING CHANGES
|
||||||
|
|
||||||
|
* Configuration keys have changed. Update your .env file:
|
||||||
|
- TRANSCRIPT_MODAL_API_KEY → TRANSCRIPT_API_KEY
|
||||||
|
- LLM_MODAL_API_KEY → (removed, use TRANSCRIPT_API_KEY)
|
||||||
|
- Add DIARIZATION_API_KEY and TRANSLATE_API_KEY if using those services
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* implement service-specific Modal API keys with auto processor pattern ([#528](https://github.com/Monadical-SAS/reflector/issues/528)) ([650befb](https://github.com/Monadical-SAS/reflector/commit/650befb291c47a1f49e94a01ab37d8fdfcd2b65d))
|
||||||
|
* use llamaindex everywhere ([#525](https://github.com/Monadical-SAS/reflector/issues/525)) ([3141d17](https://github.com/Monadical-SAS/reflector/commit/3141d172bc4d3b3d533370c8e6e351ea762169bf))
|
||||||
|
|
||||||
|
|
||||||
|
### Miscellaneous Chores
|
||||||
|
|
||||||
|
* **main:** release 0.6.0 ([ecdbf00](https://github.com/Monadical-SAS/reflector/commit/ecdbf003ea2476c3e95fd231adaeb852f2943df0))
|
||||||
|
|
||||||
## [0.5.0](https://github.com/Monadical-SAS/reflector/compare/v0.4.0...v0.5.0) (2025-07-31)
|
## [0.5.0](https://github.com/Monadical-SAS/reflector/compare/v0.4.0...v0.5.0) (2025-07-31)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
16
CLAUDE.md
16
CLAUDE.md
@@ -62,7 +62,7 @@ uv run python -m reflector.tools.process path/to/audio.wav
|
|||||||
**Setup:**
|
**Setup:**
|
||||||
```bash
|
```bash
|
||||||
# Install dependencies
|
# Install dependencies
|
||||||
yarn install
|
pnpm install
|
||||||
|
|
||||||
# Copy configuration templates
|
# Copy configuration templates
|
||||||
cp .env_template .env
|
cp .env_template .env
|
||||||
@@ -72,19 +72,19 @@ cp config-template.ts config.ts
|
|||||||
**Development:**
|
**Development:**
|
||||||
```bash
|
```bash
|
||||||
# Start development server
|
# Start development server
|
||||||
yarn dev
|
pnpm dev
|
||||||
|
|
||||||
# Generate TypeScript API client from OpenAPI spec
|
# Generate TypeScript API client from OpenAPI spec
|
||||||
yarn openapi
|
pnpm openapi
|
||||||
|
|
||||||
# Lint code
|
# Lint code
|
||||||
yarn lint
|
pnpm lint
|
||||||
|
|
||||||
# Format code
|
# Format code
|
||||||
yarn format
|
pnpm format
|
||||||
|
|
||||||
# Build for production
|
# Build for production
|
||||||
yarn build
|
pnpm build
|
||||||
```
|
```
|
||||||
|
|
||||||
### Docker Compose (Full Stack)
|
### Docker Compose (Full Stack)
|
||||||
@@ -144,7 +144,9 @@ All endpoints prefixed `/v1/`:
|
|||||||
**Backend** (`server/.env`):
|
**Backend** (`server/.env`):
|
||||||
- `DATABASE_URL` - Database connection string
|
- `DATABASE_URL` - Database connection string
|
||||||
- `REDIS_URL` - Redis broker for Celery
|
- `REDIS_URL` - Redis broker for Celery
|
||||||
- `MODAL_TOKEN_ID`, `MODAL_TOKEN_SECRET` - Modal.com GPU processing
|
- `TRANSCRIPT_BACKEND=modal` + `TRANSCRIPT_MODAL_API_KEY` - Modal.com transcription
|
||||||
|
- `DIARIZATION_BACKEND=modal` + `DIARIZATION_MODAL_API_KEY` - Modal.com diarization
|
||||||
|
- `TRANSLATION_BACKEND=modal` + `TRANSLATION_MODAL_API_KEY` - Modal.com translation
|
||||||
- `WHEREBY_API_KEY` - Video platform integration
|
- `WHEREBY_API_KEY` - Video platform integration
|
||||||
- `REFLECTOR_AUTH_BACKEND` - Authentication method (none, jwt)
|
- `REFLECTOR_AUTH_BACKEND` - Authentication method (none, jwt)
|
||||||
|
|
||||||
|
|||||||
@@ -1,264 +0,0 @@
|
|||||||
# Daily.co Migration Implementation Status
|
|
||||||
|
|
||||||
## Completed Components
|
|
||||||
|
|
||||||
### 1. Platform Abstraction Layer (`server/reflector/video_platforms/`)
|
|
||||||
- **base.py**: Abstract interface defining all platform operations
|
|
||||||
- **whereby.py**: Whereby implementation wrapping existing functionality
|
|
||||||
- **daily.py**: Daily.co client implementation (ready for testing when credentials available)
|
|
||||||
- **mock.py**: Mock implementation for unit testing
|
|
||||||
- **registry.py**: Platform registration and discovery
|
|
||||||
- **factory.py**: Factory methods for creating platform clients
|
|
||||||
|
|
||||||
### 2. Database Updates
|
|
||||||
- **Models**: Added `platform` field to Room and Meeting tables
|
|
||||||
- **Migration**: Created migration `20250801180012_add_platform_support.py`
|
|
||||||
- **Controllers**: Updated to handle platform field
|
|
||||||
|
|
||||||
### 3. Configuration
|
|
||||||
- **Settings**: Added Daily.co configuration variables
|
|
||||||
- **Feature Flags**:
|
|
||||||
- `DAILY_MIGRATION_ENABLED`: Master switch for migration
|
|
||||||
- `DAILY_MIGRATION_ROOM_IDS`: List of specific rooms to migrate
|
|
||||||
- `DEFAULT_VIDEO_PLATFORM`: Default platform when migration enabled
|
|
||||||
|
|
||||||
### 4. Backend API Updates
|
|
||||||
- **Room Creation**: Now assigns platform based on feature flags
|
|
||||||
- **Meeting Creation**: Uses platform abstraction instead of direct Whereby calls
|
|
||||||
- **Response Models**: Include platform field
|
|
||||||
- **Webhook Handler**: Added Daily.co webhook endpoint at `/v1/daily_webhook`
|
|
||||||
|
|
||||||
### 5. Frontend Components (`www/app/[roomName]/components/`)
|
|
||||||
- **RoomContainer.tsx**: Platform-agnostic container that routes to appropriate component
|
|
||||||
- **WherebyRoom.tsx**: Extracted existing Whereby functionality with consent management
|
|
||||||
- **DailyRoom.tsx**: Daily.co implementation using DailyIframe
|
|
||||||
- **Dependencies**: Added `@daily-co/daily-js` and `@daily-co/daily-react`
|
|
||||||
|
|
||||||
## How It Works
|
|
||||||
|
|
||||||
1. **Platform Selection**:
|
|
||||||
- If `DAILY_MIGRATION_ENABLED=false` → Always use Whereby
|
|
||||||
- If enabled and room ID in `DAILY_MIGRATION_ROOM_IDS` → Use Daily
|
|
||||||
- Otherwise → Use `DEFAULT_VIDEO_PLATFORM`
|
|
||||||
|
|
||||||
2. **Meeting Creation Flow**:
|
|
||||||
```python
|
|
||||||
platform = get_platform_for_room(room.id)
|
|
||||||
client = create_platform_client(platform)
|
|
||||||
meeting_data = await client.create_meeting(...)
|
|
||||||
```
|
|
||||||
|
|
||||||
3. **Testing Without Credentials**:
|
|
||||||
- Use `platform="mock"` in tests
|
|
||||||
- Mock client simulates all operations
|
|
||||||
- No external API calls needed
|
|
||||||
|
|
||||||
## Next Steps
|
|
||||||
|
|
||||||
### When Daily.co Credentials Available:
|
|
||||||
|
|
||||||
1. **Set Environment Variables**:
|
|
||||||
```bash
|
|
||||||
DAILY_API_KEY=your-key
|
|
||||||
DAILY_WEBHOOK_SECRET=your-secret
|
|
||||||
DAILY_SUBDOMAIN=your-subdomain
|
|
||||||
AWS_DAILY_S3_BUCKET=your-bucket
|
|
||||||
AWS_DAILY_ROLE_ARN=your-role
|
|
||||||
```
|
|
||||||
|
|
||||||
2. **Run Database Migration**:
|
|
||||||
```bash
|
|
||||||
cd server
|
|
||||||
uv run alembic upgrade head
|
|
||||||
```
|
|
||||||
|
|
||||||
3. **Test Platform Creation**:
|
|
||||||
```python
|
|
||||||
from reflector.video_platforms.factory import create_platform_client
|
|
||||||
client = create_platform_client("daily")
|
|
||||||
# Test operations...
|
|
||||||
```
|
|
||||||
|
|
||||||
### 6. Testing & Validation (`server/tests/`)
|
|
||||||
- **test_video_platforms.py**: Comprehensive unit tests for all platform clients
|
|
||||||
- **test_daily_webhook.py**: Integration tests for Daily.co webhook handling
|
|
||||||
- **utils/video_platform_test_utils.py**: Testing utilities and helpers
|
|
||||||
- **Mock Testing**: Full test coverage using mock platform client
|
|
||||||
- **Webhook Testing**: HMAC signature validation and event processing tests
|
|
||||||
|
|
||||||
### All Core Implementation Complete ✅
|
|
||||||
|
|
||||||
The Daily.co migration implementation is now complete and ready for testing with actual credentials:
|
|
||||||
|
|
||||||
- ✅ Platform abstraction layer with factory pattern
|
|
||||||
- ✅ Database schema migration
|
|
||||||
- ✅ Feature flag system for gradual rollout
|
|
||||||
- ✅ Backend API integration with webhook handling
|
|
||||||
- ✅ Frontend platform-agnostic components
|
|
||||||
- ✅ Comprehensive test suite with >95% coverage
|
|
||||||
|
|
||||||
## Daily.co Webhook Integration
|
|
||||||
|
|
||||||
### Webhook Configuration
|
|
||||||
|
|
||||||
Daily.co webhooks are configured via API (no dashboard interface). Use the Daily.co REST API to set up webhook endpoints:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# Configure webhook endpoint
|
|
||||||
curl -X POST https://api.daily.co/v1/webhook-endpoints \
|
|
||||||
-H "Authorization: Bearer ${DAILY_API_KEY}" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{
|
|
||||||
"url": "https://yourdomain.com/v1/daily_webhook",
|
|
||||||
"events": [
|
|
||||||
"participant.joined",
|
|
||||||
"participant.left",
|
|
||||||
"recording.started",
|
|
||||||
"recording.ready-to-download",
|
|
||||||
"recording.error"
|
|
||||||
]
|
|
||||||
}'
|
|
||||||
```
|
|
||||||
|
|
||||||
### Webhook Event Examples
|
|
||||||
|
|
||||||
**Participant Joined:**
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"type": "participant.joined",
|
|
||||||
"id": "evt_participant_joined_1640995200",
|
|
||||||
"ts": 1640995200000,
|
|
||||||
"data": {
|
|
||||||
"room": {"name": "test-room-123-abc"},
|
|
||||||
"participant": {
|
|
||||||
"id": "participant-123",
|
|
||||||
"user_name": "John Doe",
|
|
||||||
"session_id": "session-456"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
**Recording Ready:**
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"type": "recording.ready-to-download",
|
|
||||||
"id": "evt_recording_ready_1640995200",
|
|
||||||
"ts": 1640995200000,
|
|
||||||
"data": {
|
|
||||||
"room": {"name": "test-room-123-abc"},
|
|
||||||
"recording": {
|
|
||||||
"id": "recording-789",
|
|
||||||
"status": "finished",
|
|
||||||
"download_url": "https://bucket.s3.amazonaws.com/recording.mp4",
|
|
||||||
"start_time": "2025-01-01T10:00:00Z",
|
|
||||||
"duration": 1800
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
### Webhook Signature Verification
|
|
||||||
|
|
||||||
Daily.co uses HMAC-SHA256 for webhook verification:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import hmac
|
|
||||||
import hashlib
|
|
||||||
|
|
||||||
def verify_daily_webhook(body: bytes, signature: str, secret: str) -> bool:
|
|
||||||
expected = hmac.new(secret.encode(), body, hashlib.sha256).hexdigest()
|
|
||||||
return hmac.compare_digest(expected, signature)
|
|
||||||
```
|
|
||||||
|
|
||||||
Signature is sent in the `X-Daily-Signature` header.
|
|
||||||
|
|
||||||
### Recording Processing Flow
|
|
||||||
|
|
||||||
1. **Daily.co Meeting Ends** → Recording processed
|
|
||||||
2. **Webhook Fired** → `recording.ready-to-download` event
|
|
||||||
3. **Webhook Handler** → Extracts download URL and recording ID
|
|
||||||
4. **Background Task** → `process_recording_from_url.delay()` queued
|
|
||||||
5. **Download & Process** → Audio downloaded, validated, transcribed
|
|
||||||
6. **ML Pipeline** → Same processing as Whereby recordings
|
|
||||||
|
|
||||||
```python
|
|
||||||
# New Celery task for Daily.co recordings
|
|
||||||
@shared_task
|
|
||||||
@asynctask
|
|
||||||
async def process_recording_from_url(recording_url: str, meeting_id: str, recording_id: str):
|
|
||||||
# Downloads from Daily.co URL → Creates transcript → Triggers ML pipeline
|
|
||||||
# Identical processing to S3-based recordings after download
|
|
||||||
```
|
|
||||||
|
|
||||||
## Testing the Current Implementation
|
|
||||||
|
|
||||||
### Running the Test Suite
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# Run all video platform tests
|
|
||||||
uv run pytest tests/test_video_platforms.py -v
|
|
||||||
|
|
||||||
# Run webhook integration tests
|
|
||||||
uv run pytest tests/test_daily_webhook.py -v
|
|
||||||
|
|
||||||
# Run with coverage
|
|
||||||
uv run pytest tests/test_video_platforms.py tests/test_daily_webhook.py --cov=reflector.video_platforms --cov=reflector.views.daily
|
|
||||||
```
|
|
||||||
|
|
||||||
### Manual Testing with Mock Platform
|
|
||||||
|
|
||||||
```python
|
|
||||||
from reflector.video_platforms.factory import create_platform_client
|
|
||||||
|
|
||||||
# Create mock client (no credentials needed)
|
|
||||||
client = create_platform_client("mock")
|
|
||||||
|
|
||||||
# Test operations
|
|
||||||
from reflector.db.rooms import Room
|
|
||||||
from datetime import datetime, timedelta
|
|
||||||
|
|
||||||
mock_room = Room(id="test-123", name="Test Room", recording_type="cloud")
|
|
||||||
meeting = await client.create_meeting(
|
|
||||||
room_name_prefix="test",
|
|
||||||
end_date=datetime.utcnow() + timedelta(hours=1),
|
|
||||||
room=mock_room
|
|
||||||
)
|
|
||||||
print(f"Created meeting: {meeting.room_url}")
|
|
||||||
```
|
|
||||||
|
|
||||||
### Testing Daily.co Recording Processing
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Test webhook payload processing
|
|
||||||
from reflector.views.daily import daily_webhook
|
|
||||||
from reflector.worker.process import process_recording_from_url
|
|
||||||
|
|
||||||
# Simulate webhook event
|
|
||||||
event_data = {
|
|
||||||
"type": "recording.ready-to-download",
|
|
||||||
"id": "evt_123",
|
|
||||||
"ts": 1640995200000,
|
|
||||||
"data": {
|
|
||||||
"room": {"name": "test-room-123"},
|
|
||||||
"recording": {
|
|
||||||
"id": "rec-456",
|
|
||||||
"download_url": "https://daily.co/recordings/test.mp4"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
# Test processing task (when credentials available)
|
|
||||||
await process_recording_from_url(
|
|
||||||
recording_url="https://daily.co/recordings/test.mp4",
|
|
||||||
meeting_id="meeting-123",
|
|
||||||
recording_id="rec-456"
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Architecture Benefits
|
|
||||||
|
|
||||||
1. **Testable**: Mock implementation allows testing without external dependencies
|
|
||||||
2. **Extensible**: Easy to add new platforms (Zoom, Teams, etc.)
|
|
||||||
3. **Gradual Migration**: Feature flags enable room-by-room migration
|
|
||||||
4. **Rollback Ready**: Can disable Daily.co instantly via feature flag
|
|
||||||
287
PLAN.md
287
PLAN.md
@@ -1,287 +0,0 @@
|
|||||||
# Daily.co Migration Plan - Feature Parity Approach
|
|
||||||
|
|
||||||
## Overview
|
|
||||||
|
|
||||||
This plan outlines a systematic migration from Whereby to Daily.co, focusing on **1:1 feature parity** without introducing new capabilities. The goal is to improve code quality, developer experience, and platform reliability while maintaining the exact same user experience and processing pipeline.
|
|
||||||
|
|
||||||
## Migration Principles
|
|
||||||
|
|
||||||
1. **No Breaking Changes**: Existing recordings and workflows must continue to work
|
|
||||||
2. **Feature Parity First**: Match current functionality exactly before adding improvements
|
|
||||||
3. **Gradual Rollout**: Use feature flags to control migration per room/user
|
|
||||||
4. **Minimal Risk**: Keep changes isolated and reversible
|
|
||||||
|
|
||||||
## Phase 1: Foundation
|
|
||||||
|
|
||||||
### 1.1 Environment Setup
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [ ] Create Daily.co account and obtain API credentials (PENDING - User to provide)
|
|
||||||
- [x] Add environment variables to `.env` files:
|
|
||||||
```bash
|
|
||||||
DAILY_API_KEY=your-api-key
|
|
||||||
DAILY_WEBHOOK_SECRET=your-webhook-secret
|
|
||||||
DAILY_SUBDOMAIN=your-subdomain
|
|
||||||
AWS_DAILY_ROLE_ARN=arn:aws:iam::xxx:role/daily-recording
|
|
||||||
```
|
|
||||||
- [ ] Set up Daily.co webhook endpoint in dashboard (PENDING - Credentials needed)
|
|
||||||
- [ ] Configure S3 bucket permissions for Daily.co (PENDING - Credentials needed)
|
|
||||||
|
|
||||||
### 1.2 Database Migration
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [x] Create Alembic migration:
|
|
||||||
```python
|
|
||||||
# server/migrations/versions/20250801180012_add_platform_support.py
|
|
||||||
def upgrade():
|
|
||||||
op.add_column('rooms', sa.Column('platform', sa.String(), server_default='whereby'))
|
|
||||||
op.add_column('meetings', sa.Column('platform', sa.String(), server_default='whereby'))
|
|
||||||
```
|
|
||||||
- [ ] Run migration on development database (USER TO RUN: `uv run alembic upgrade head`)
|
|
||||||
- [x] Update models to include platform field
|
|
||||||
|
|
||||||
### 1.3 Feature Flag System
|
|
||||||
**Owner**: Full-stack Developer
|
|
||||||
|
|
||||||
- [x] Implement feature flag in backend settings:
|
|
||||||
```python
|
|
||||||
DAILY_MIGRATION_ENABLED = env.bool("DAILY_MIGRATION_ENABLED", False)
|
|
||||||
DAILY_MIGRATION_ROOM_IDS = env.list("DAILY_MIGRATION_ROOM_IDS", [])
|
|
||||||
```
|
|
||||||
- [x] Add platform selection logic to room creation
|
|
||||||
- [ ] Create admin UI to toggle platform per room (FUTURE - Not in Phase 1)
|
|
||||||
|
|
||||||
### 1.4 Daily.co API Client
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [x] Create `server/reflector/video_platforms/` with core functionality:
|
|
||||||
- `create_meeting()` - Match Whereby's meeting creation
|
|
||||||
- `get_room_sessions()` - Room status checking
|
|
||||||
- `delete_room()` - Cleanup functionality
|
|
||||||
- [x] Add comprehensive error handling
|
|
||||||
- [ ] Write unit tests for API client (Phase 4)
|
|
||||||
|
|
||||||
## Phase 2: Backend Integration
|
|
||||||
|
|
||||||
### 2.1 Webhook Handler
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [x] Create `server/reflector/views/daily.py` webhook endpoint
|
|
||||||
- [x] Implement HMAC signature verification
|
|
||||||
- [x] Handle events:
|
|
||||||
- `participant.joined`
|
|
||||||
- `participant.left`
|
|
||||||
- `recording.started`
|
|
||||||
- `recording.ready-to-download`
|
|
||||||
- [x] Map Daily.co events to existing database updates
|
|
||||||
- [x] Register webhook router in main app
|
|
||||||
- [ ] Add webhook tests with mocked events (Phase 4)
|
|
||||||
|
|
||||||
### 2.2 Room Management Updates
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [x] Update `server/reflector/views/rooms.py`:
|
|
||||||
```python
|
|
||||||
# Uses platform abstraction layer
|
|
||||||
platform = get_platform_for_room(room.id)
|
|
||||||
client = create_platform_client(platform)
|
|
||||||
meeting_data = await client.create_meeting(...)
|
|
||||||
```
|
|
||||||
- [x] Ensure room URLs are stored correctly
|
|
||||||
- [x] Update meeting status checks to support both platforms
|
|
||||||
- [ ] Test room creation/deletion for both platforms (Phase 4)
|
|
||||||
|
|
||||||
## Phase 3: Frontend Migration
|
|
||||||
|
|
||||||
### 3.1 Daily.co React Setup
|
|
||||||
**Owner**: Frontend Developer
|
|
||||||
|
|
||||||
- [x] Install Daily.co packages:
|
|
||||||
```bash
|
|
||||||
yarn add @daily-co/daily-react @daily-co/daily-js
|
|
||||||
```
|
|
||||||
- [x] Create platform-agnostic components structure
|
|
||||||
- [x] Set up TypeScript interfaces for meeting data
|
|
||||||
|
|
||||||
### 3.2 Room Component Refactor
|
|
||||||
**Owner**: Frontend Developer
|
|
||||||
|
|
||||||
- [x] Create platform-agnostic room component:
|
|
||||||
```tsx
|
|
||||||
// www/app/[roomName]/components/RoomContainer.tsx
|
|
||||||
export default function RoomContainer({ params }) {
|
|
||||||
const platform = meeting.response.platform || "whereby";
|
|
||||||
if (platform === 'daily') {
|
|
||||||
return <DailyRoom meeting={meeting.response} />
|
|
||||||
}
|
|
||||||
return <WherebyRoom meeting={meeting.response} />
|
|
||||||
}
|
|
||||||
```
|
|
||||||
- [x] Implement `DailyRoom` component with:
|
|
||||||
- Call initialization using DailyIframe
|
|
||||||
- Recording consent flow
|
|
||||||
- Leave meeting handling
|
|
||||||
- [x] Extract `WherebyRoom` component maintaining existing functionality
|
|
||||||
- [x] Simplified focus management (Daily.co handles this internally)
|
|
||||||
|
|
||||||
### 3.3 Consent Dialog Integration
|
|
||||||
**Owner**: Frontend Developer
|
|
||||||
|
|
||||||
- [x] Adapt consent dialog for Daily.co (uses same API endpoints)
|
|
||||||
- [x] Ensure recording status is properly tracked
|
|
||||||
- [x] Maintain consistent consent UI across both platforms
|
|
||||||
- [ ] Test consent flow with Daily.co recordings (Phase 4)
|
|
||||||
|
|
||||||
## Phase 4: Testing & Validation
|
|
||||||
|
|
||||||
### 4.1 Unit Testing ✅
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [x] Create comprehensive unit tests for all platform clients
|
|
||||||
- [x] Test mock platform client with full coverage
|
|
||||||
- [x] Test platform factory and registry functionality
|
|
||||||
- [x] Test webhook signature verification for all platforms
|
|
||||||
- [x] Test meeting lifecycle operations (create, delete, sessions)
|
|
||||||
|
|
||||||
### 4.2 Integration Testing ✅
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [x] Create webhook integration tests with mocked HTTP client
|
|
||||||
- [x] Test Daily.co webhook event processing
|
|
||||||
- [x] Test participant join/leave event handling
|
|
||||||
- [x] Test recording start/ready event processing
|
|
||||||
- [x] Test webhook signature validation with HMAC
|
|
||||||
- [x] Test error handling for malformed events
|
|
||||||
|
|
||||||
### 4.3 Test Utilities ✅
|
|
||||||
**Owner**: Backend Developer
|
|
||||||
|
|
||||||
- [x] Create video platform test helper utilities
|
|
||||||
- [x] Create webhook event generators for testing
|
|
||||||
- [x] Create platform-agnostic test scenarios
|
|
||||||
- [x] Implement mock data factories for consistent testing
|
|
||||||
|
|
||||||
### 4.4 Ready for Live Testing
|
|
||||||
**Owner**: QA + Development Team
|
|
||||||
|
|
||||||
- [ ] Test complete flow with actual Daily.co credentials:
|
|
||||||
- Room creation
|
|
||||||
- Join meeting
|
|
||||||
- Recording consent
|
|
||||||
- Recording to S3
|
|
||||||
- Webhook processing
|
|
||||||
- Transcript generation
|
|
||||||
- [ ] Verify S3 paths are compatible
|
|
||||||
- [ ] Check recording format (MP4) matches
|
|
||||||
- [ ] Ensure processing pipeline works unchanged
|
|
||||||
|
|
||||||
## Phase 5: Gradual Rollout
|
|
||||||
|
|
||||||
### 5.1 Internal Testing
|
|
||||||
**Owner**: Development Team
|
|
||||||
|
|
||||||
- [ ] Enable Daily.co for internal test rooms
|
|
||||||
- [ ] Monitor logs and error rates
|
|
||||||
- [ ] Fix any issues discovered
|
|
||||||
- [ ] Verify recordings process correctly
|
|
||||||
|
|
||||||
### 5.2 Beta Rollout
|
|
||||||
**Owner**: DevOps + Product
|
|
||||||
|
|
||||||
- [ ] Select beta users/rooms
|
|
||||||
- [ ] Enable Daily.co via feature flag
|
|
||||||
- [ ] Monitor metrics:
|
|
||||||
- Error rates
|
|
||||||
- Recording success
|
|
||||||
- User feedback
|
|
||||||
- [ ] Create rollback plan
|
|
||||||
|
|
||||||
### 5.3 Full Migration
|
|
||||||
**Owner**: DevOps + Product
|
|
||||||
|
|
||||||
- [ ] Gradually increase Daily.co usage
|
|
||||||
- [ ] Monitor all metrics
|
|
||||||
- [ ] Plan Whereby sunset timeline
|
|
||||||
- [ ] Update documentation
|
|
||||||
|
|
||||||
## Success Criteria
|
|
||||||
|
|
||||||
### Technical Metrics
|
|
||||||
- [x] Comprehensive test coverage (>95% for platform abstraction)
|
|
||||||
- [x] Mock testing confirms API integration patterns work
|
|
||||||
- [x] Webhook processing tested with realistic event payloads
|
|
||||||
- [x] Error handling validated for all failure scenarios
|
|
||||||
- [ ] Live API error rate < 0.1% (pending credentials)
|
|
||||||
- [ ] Live webhook delivery rate > 99.9% (pending credentials)
|
|
||||||
- [ ] Recording success rate matches Whereby (pending credentials)
|
|
||||||
|
|
||||||
### User Experience
|
|
||||||
- [x] Platform-agnostic components maintain existing UX
|
|
||||||
- [x] Recording consent flow preserved across platforms
|
|
||||||
- [x] Participant tracking architecture unchanged
|
|
||||||
- [ ] Live call quality validation (pending credentials)
|
|
||||||
- [ ] Live user acceptance testing (pending credentials)
|
|
||||||
|
|
||||||
### Code Quality ✅
|
|
||||||
- [x] Removed 70+ lines of focus management code in WherebyRoom extraction
|
|
||||||
- [x] Improved TypeScript coverage with platform interfaces
|
|
||||||
- [x] Better error handling with platform abstraction
|
|
||||||
- [x] Cleaner React component structure with platform routing
|
|
||||||
|
|
||||||
## Rollback Plan
|
|
||||||
|
|
||||||
If issues arise during migration:
|
|
||||||
|
|
||||||
1. **Immediate**: Disable Daily.co feature flag
|
|
||||||
2. **Short-term**: Revert frontend components via git
|
|
||||||
3. **Database**: Platform field defaults to 'whereby'
|
|
||||||
4. **Full rollback**: Remove Daily.co code (isolated in separate files)
|
|
||||||
|
|
||||||
## Post-Migration Opportunities
|
|
||||||
|
|
||||||
Once feature parity is achieved and stable:
|
|
||||||
|
|
||||||
1. **Raw-tracks recording** for better diarization
|
|
||||||
2. **Real-time transcription** via Daily.co API
|
|
||||||
3. **Advanced analytics** and participant insights
|
|
||||||
4. **Custom UI** improvements
|
|
||||||
5. **Performance optimizations**
|
|
||||||
|
|
||||||
## Phase Dependencies
|
|
||||||
|
|
||||||
- ✅ Backend Integration requires Foundation to be complete
|
|
||||||
- ✅ Frontend Migration can start after Backend API client is ready
|
|
||||||
- ✅ Testing requires both Backend and Frontend to be complete
|
|
||||||
- ⏳ Rollout begins after successful testing (pending Daily.co credentials)
|
|
||||||
|
|
||||||
## Risk Matrix
|
|
||||||
|
|
||||||
| Risk | Probability | Impact | Mitigation |
|
|
||||||
|------|-------------|---------|------------|
|
|
||||||
| API differences | Low | Medium | Abstraction layer |
|
|
||||||
| Recording format issues | Low | High | Extensive testing |
|
|
||||||
| User confusion | Low | Low | Gradual rollout |
|
|
||||||
| Performance degradation | Low | Medium | Monitoring |
|
|
||||||
|
|
||||||
## Communication Plan
|
|
||||||
|
|
||||||
1. **Week 1**: Announce migration plan to team
|
|
||||||
2. **Week 2**: Update on development progress
|
|
||||||
3. **Beta Launch**: Email to beta users
|
|
||||||
4. **Full Launch**: User notification (if UI changes)
|
|
||||||
5. **Post-Launch**: Success metrics report
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## Implementation Status: COMPLETE ✅
|
|
||||||
|
|
||||||
All development phases are complete and ready for live testing:
|
|
||||||
|
|
||||||
✅ **Phase 1**: Foundation (database, config, feature flags)
|
|
||||||
✅ **Phase 2**: Backend Integration (API clients, webhooks)
|
|
||||||
✅ **Phase 3**: Frontend Migration (platform components)
|
|
||||||
✅ **Phase 4**: Testing & Validation (comprehensive test suite)
|
|
||||||
|
|
||||||
**Next Steps**: Obtain Daily.co credentials and run live integration testing before gradual rollout.
|
|
||||||
|
|
||||||
This implementation prioritizes stability and risk mitigation through a phased approach. The modular design allows for easy adjustments based on live testing findings.
|
|
||||||
51
README.md
51
README.md
@@ -1,43 +1,60 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
|
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||||
|
|
||||||
# Reflector
|
# Reflector
|
||||||
|
|
||||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||||
|
|
||||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||||
[](https://opensource.org/licenses/MIT)
|
[](https://opensource.org/licenses/MIT)
|
||||||
</div>
|
</div>
|
||||||
|
</div>
|
||||||
## Screenshots
|
|
||||||
<table>
|
<table>
|
||||||
<tr>
|
<tr>
|
||||||
<td>
|
<td>
|
||||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||||
</a>
|
</a>
|
||||||
</td>
|
</td>
|
||||||
<td>
|
<td>
|
||||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||||
</a>
|
</a>
|
||||||
</td>
|
</td>
|
||||||
<td>
|
<td>
|
||||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||||
|
</a>
|
||||||
|
</td>
|
||||||
|
<td>
|
||||||
|
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||||
|
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||||
</a>
|
</a>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</table>
|
</table>
|
||||||
|
|
||||||
|
## What is Reflector?
|
||||||
|
|
||||||
|
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||||
|
|
||||||
|
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||||
|
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||||
|
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||||
|
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||||
|
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||||
|
|
||||||
|
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||||
|
|
||||||
## Background
|
## Background
|
||||||
|
|
||||||
The project architecture consists of three primary components:
|
The project architecture consists of three primary components:
|
||||||
|
|
||||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
|
||||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||||
|
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||||
|
|
||||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
It also uses authentik for authentication if activated.
|
||||||
|
|
||||||
## Contribution Guidelines
|
## Contribution Guidelines
|
||||||
|
|
||||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
|||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
|
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||||
|
|
||||||
### Frontend
|
### Frontend
|
||||||
|
|
||||||
Start with `cd www`.
|
Start with `cd www`.
|
||||||
@@ -79,7 +98,7 @@ Start with `cd www`.
|
|||||||
**Installation**
|
**Installation**
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
yarn install
|
pnpm install
|
||||||
cp .env_template .env
|
cp .env_template .env
|
||||||
cp config-template.ts config.ts
|
cp config-template.ts config.ts
|
||||||
```
|
```
|
||||||
@@ -89,7 +108,7 @@ Then, fill in the environment variables in `.env` and the configuration in `conf
|
|||||||
**Run in development mode**
|
**Run in development mode**
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
yarn dev
|
pnpm dev
|
||||||
```
|
```
|
||||||
|
|
||||||
Then (after completing server setup and starting it) open [http://localhost:3000](http://localhost:3000) to view it in the browser.
|
Then (after completing server setup and starting it) open [http://localhost:3000](http://localhost:3000) to view it in the browser.
|
||||||
@@ -99,7 +118,7 @@ Then (after completing server setup and starting it) open [http://localhost:3000
|
|||||||
To generate the TypeScript files from the openapi.json file, make sure the python server is running, then run:
|
To generate the TypeScript files from the openapi.json file, make sure the python server is running, then run:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
yarn openapi
|
pnpm openapi
|
||||||
```
|
```
|
||||||
|
|
||||||
### Backend
|
### Backend
|
||||||
|
|||||||
@@ -1,586 +0,0 @@
|
|||||||
# Whereby to Daily.co Migration Feasibility Analysis
|
|
||||||
|
|
||||||
## Executive Summary
|
|
||||||
|
|
||||||
After analysis of the current Whereby integration and Daily.co's capabilities, migrating to Daily.co is technically feasible. The migration can be done in phases:
|
|
||||||
|
|
||||||
1. **Phase 1**: Feature parity with current implementation (standard cloud recording)
|
|
||||||
2. **Phase 2**: Enhanced capabilities with raw-tracks recording for improved diarization
|
|
||||||
|
|
||||||
### Current Implementation Analysis
|
|
||||||
|
|
||||||
Based on code review:
|
|
||||||
- **Webhook handling**: The current webhook handler (`server/reflector/views/whereby.py`) only tracks `num_clients`, not individual participants
|
|
||||||
- **Focus management**: The frontend has 70+ lines managing focus between Whereby embed and consent dialog
|
|
||||||
- **Participant tracking**: No participant names or IDs are captured in the current implementation
|
|
||||||
- **Recording type**: Cloud recording to S3 in MP4 format with mixed audio
|
|
||||||
|
|
||||||
### Migration Approach
|
|
||||||
|
|
||||||
**Phase 1**: 1:1 feature replacement maintaining current functionality:
|
|
||||||
- Standard cloud recording (same as current Whereby implementation)
|
|
||||||
- Same recording workflow: Video platform → S3 → Reflector processing
|
|
||||||
- No changes to existing diarization or transcription pipeline
|
|
||||||
|
|
||||||
**Phase 2**: Enhanced capabilities (future implementation):
|
|
||||||
- Raw-tracks recording for speaker-separated audio
|
|
||||||
- Improved diarization with participant-to-audio mapping
|
|
||||||
- Per-participant transcription accuracy
|
|
||||||
|
|
||||||
## Current Whereby Integration Analysis
|
|
||||||
|
|
||||||
### Backend Integration
|
|
||||||
|
|
||||||
#### Core API Module (`server/reflector/whereby.py`)
|
|
||||||
- **Meeting Creation**: Creates rooms with S3 recording configuration
|
|
||||||
- **Session Monitoring**: Tracks meeting status via room sessions API
|
|
||||||
- **Logo Upload**: Handles branding for meetings
|
|
||||||
- **Key Functions**:
|
|
||||||
```python
|
|
||||||
create_meeting(room_name, logo_s3_url) -> dict
|
|
||||||
monitor_room_session(meeting_link) -> dict
|
|
||||||
upload_logo(file_stream, content_type) -> str
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Webhook Handler (`server/reflector/views/whereby.py`)
|
|
||||||
- **Endpoint**: `/v1/whereby_webhook`
|
|
||||||
- **Security**: HMAC signature validation
|
|
||||||
- **Events Handled**:
|
|
||||||
- `room.participant.joined`
|
|
||||||
- `room.participant.left`
|
|
||||||
- **Pain Point**: Delay between actual join/leave and webhook delivery
|
|
||||||
|
|
||||||
#### Room Management (`server/reflector/views/rooms.py`)
|
|
||||||
- Creates meetings via Whereby API
|
|
||||||
- Stores meeting data in database
|
|
||||||
- Manages recording lifecycle
|
|
||||||
|
|
||||||
### Frontend Integration
|
|
||||||
|
|
||||||
#### Main Room Component (`www/app/[roomName]/page.tsx`)
|
|
||||||
- Uses `@whereby.com/browser-sdk` (v3.3.4)
|
|
||||||
- Implements custom `<whereby-embed>` element
|
|
||||||
- Handles recording consent
|
|
||||||
- Focus management for accessibility
|
|
||||||
|
|
||||||
#### Configuration
|
|
||||||
- Environment Variables:
|
|
||||||
- `WHEREBY_API_URL`, `WHEREBY_API_KEY`, `WHEREBY_WEBHOOK_SECRET`
|
|
||||||
- AWS S3 credentials for recordings
|
|
||||||
- Recording workflow: Whereby → S3 → Reflector processing pipeline
|
|
||||||
|
|
||||||
## Daily.co Capabilities Analysis
|
|
||||||
|
|
||||||
### REST API Features
|
|
||||||
|
|
||||||
#### Room Management
|
|
||||||
```
|
|
||||||
POST /rooms - Create room with configuration
|
|
||||||
GET /rooms/:name/presence - Real-time participant data
|
|
||||||
POST /rooms/:name/recordings/start - Start recording
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Recording Options
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"enable_recording": "raw-tracks" // Key feature for diarization
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Webhook Events
|
|
||||||
- `participant.joined` / `participant.left`
|
|
||||||
- `waiting-participant.joined` / `waiting-participant.left`
|
|
||||||
- `recording.started` / `recording.ready-to-download`
|
|
||||||
- `recording.error`
|
|
||||||
|
|
||||||
### React SDK (@daily-co/daily-react)
|
|
||||||
|
|
||||||
#### Modern Hook-based Architecture
|
|
||||||
```jsx
|
|
||||||
// Participant tracking
|
|
||||||
const participantIds = useParticipantIds({ filter: 'remote' });
|
|
||||||
const [username, videoState] = useParticipantProperty(id, ['user_name', 'tracks.video.state']);
|
|
||||||
|
|
||||||
// Recording management
|
|
||||||
const { isRecording, startRecording, stopRecording } = useRecording();
|
|
||||||
|
|
||||||
// Real-time participant data
|
|
||||||
const participants = useParticipants();
|
|
||||||
```
|
|
||||||
|
|
||||||
## Feature Comparison
|
|
||||||
|
|
||||||
| Feature | Whereby | Daily.co |
|
|
||||||
|---------|---------|----------|
|
|
||||||
| **Room Creation** | REST API | REST API |
|
|
||||||
| **Recording Types** | Cloud (MP4) | Cloud (MP4), Local, Raw-tracks |
|
|
||||||
| **S3 Integration** | Direct upload | Direct upload with IAM roles |
|
|
||||||
| **Frontend Integration** | Custom element | React hooks or iframe |
|
|
||||||
| **Webhooks** | HMAC verified | HMAC verified |
|
|
||||||
| **Participant Data** | Via webhooks | Via webhooks + Presence API |
|
|
||||||
| **Recording Trigger** | Automatic/manual | Automatic/manual |
|
|
||||||
|
|
||||||
## Migration Plan
|
|
||||||
|
|
||||||
### Phase 1: Backend API Client
|
|
||||||
|
|
||||||
#### 1.1 Create Daily.co API Client (`server/reflector/daily.py`)
|
|
||||||
|
|
||||||
```python
|
|
||||||
from datetime import datetime
|
|
||||||
import httpx
|
|
||||||
from reflector.db.rooms import Room
|
|
||||||
from reflector.settings import settings
|
|
||||||
|
|
||||||
class DailyClient:
|
|
||||||
def __init__(self):
|
|
||||||
self.base_url = "https://api.daily.co/v1"
|
|
||||||
self.headers = {
|
|
||||||
"Authorization": f"Bearer {settings.DAILY_API_KEY}",
|
|
||||||
"Content-Type": "application/json"
|
|
||||||
}
|
|
||||||
self.timeout = 10
|
|
||||||
|
|
||||||
async def create_meeting(self, room_name_prefix: str, end_date: datetime, room: Room) -> dict:
|
|
||||||
"""Create a Daily.co room matching current Whereby functionality."""
|
|
||||||
data = {
|
|
||||||
"name": f"{room_name_prefix}-{datetime.now().strftime('%Y%m%d%H%M%S')}",
|
|
||||||
"privacy": "private" if room.is_locked else "public",
|
|
||||||
"properties": {
|
|
||||||
"enable_recording": "raw-tracks", #"cloud",
|
|
||||||
"enable_chat": True,
|
|
||||||
"enable_screenshare": True,
|
|
||||||
"start_video_off": False,
|
|
||||||
"start_audio_off": False,
|
|
||||||
"exp": int(end_date.timestamp()),
|
|
||||||
"enable_recording_ui": False, # We handle consent ourselves
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
# if room.recording_type == "cloud":
|
|
||||||
data["properties"]["recording_bucket"] = {
|
|
||||||
"bucket_name": settings.AWS_S3_BUCKET,
|
|
||||||
"bucket_region": settings.AWS_REGION,
|
|
||||||
"assume_role_arn": settings.AWS_DAILY_ROLE_ARN,
|
|
||||||
"path": f"recordings/{data['name']}"
|
|
||||||
}
|
|
||||||
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.post(
|
|
||||||
f"{self.base_url}/rooms",
|
|
||||||
headers=self.headers,
|
|
||||||
json=data,
|
|
||||||
timeout=self.timeout
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
room_data = response.json()
|
|
||||||
|
|
||||||
# Return in Whereby-compatible format
|
|
||||||
return {
|
|
||||||
"roomUrl": room_data["url"],
|
|
||||||
"hostRoomUrl": room_data["url"] + "?t=" + room_data["config"]["token"],
|
|
||||||
"roomName": room_data["name"],
|
|
||||||
"meetingId": room_data["id"]
|
|
||||||
}
|
|
||||||
|
|
||||||
async def get_room_sessions(self, room_name: str) -> dict:
|
|
||||||
"""Get room session data (similar to Whereby's insights)."""
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.get(
|
|
||||||
f"{self.base_url}/rooms/{room_name}",
|
|
||||||
headers=self.headers,
|
|
||||||
timeout=self.timeout
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 1.2 Update Webhook Handler (`server/reflector/views/daily.py`)
|
|
||||||
|
|
||||||
```python
|
|
||||||
import hmac
|
|
||||||
import json
|
|
||||||
from datetime import datetime
|
|
||||||
from hashlib import sha256
|
|
||||||
from fastapi import APIRouter, HTTPException, Request
|
|
||||||
from pydantic import BaseModel
|
|
||||||
from reflector.db.meetings import meetings_controller
|
|
||||||
from reflector.settings import settings
|
|
||||||
|
|
||||||
router = APIRouter()
|
|
||||||
|
|
||||||
class DailyWebhookEvent(BaseModel):
|
|
||||||
type: str
|
|
||||||
id: str
|
|
||||||
ts: int
|
|
||||||
data: dict
|
|
||||||
|
|
||||||
def verify_daily_webhook(body: bytes, signature: str) -> bool:
|
|
||||||
"""Verify Daily.co webhook signature."""
|
|
||||||
expected = hmac.new(
|
|
||||||
settings.DAILY_WEBHOOK_SECRET.encode(),
|
|
||||||
body,
|
|
||||||
sha256
|
|
||||||
).hexdigest()
|
|
||||||
return hmac.compare_digest(expected, signature)
|
|
||||||
|
|
||||||
@router.post("/daily")
|
|
||||||
async def daily_webhook(event: DailyWebhookEvent, request: Request):
|
|
||||||
# Verify webhook signature
|
|
||||||
body = await request.body()
|
|
||||||
signature = request.headers.get("X-Daily-Signature", "")
|
|
||||||
|
|
||||||
if not verify_daily_webhook(body, signature):
|
|
||||||
raise HTTPException(status_code=401, detail="Invalid webhook signature")
|
|
||||||
|
|
||||||
# Handle participant events
|
|
||||||
if event.type == "participant.joined":
|
|
||||||
meeting = await meetings_controller.get_by_room_name(event.data["room_name"])
|
|
||||||
if meeting:
|
|
||||||
# Update participant info immediately
|
|
||||||
await meetings_controller.add_participant(
|
|
||||||
meeting.id,
|
|
||||||
participant_id=event.data["participant"]["user_id"],
|
|
||||||
name=event.data["participant"]["user_name"],
|
|
||||||
joined_at=datetime.fromtimestamp(event.ts / 1000)
|
|
||||||
)
|
|
||||||
|
|
||||||
elif event.type == "participant.left":
|
|
||||||
meeting = await meetings_controller.get_by_room_name(event.data["room_name"])
|
|
||||||
if meeting:
|
|
||||||
await meetings_controller.remove_participant(
|
|
||||||
meeting.id,
|
|
||||||
participant_id=event.data["participant"]["user_id"],
|
|
||||||
left_at=datetime.fromtimestamp(event.ts / 1000)
|
|
||||||
)
|
|
||||||
|
|
||||||
elif event.type == "recording.ready-to-download":
|
|
||||||
# Process cloud recording (same as Whereby)
|
|
||||||
meeting = await meetings_controller.get_by_room_name(event.data["room_name"])
|
|
||||||
if meeting:
|
|
||||||
# Queue standard processing task
|
|
||||||
from reflector.worker.tasks import process_recording
|
|
||||||
process_recording.delay(
|
|
||||||
meeting_id=meeting.id,
|
|
||||||
recording_url=event.data["download_link"],
|
|
||||||
recording_id=event.data["recording_id"]
|
|
||||||
)
|
|
||||||
|
|
||||||
return {"status": "ok"}
|
|
||||||
```
|
|
||||||
|
|
||||||
### Phase 2: Frontend Components
|
|
||||||
|
|
||||||
#### 2.1 Replace Whereby SDK with Daily React
|
|
||||||
|
|
||||||
First, update dependencies:
|
|
||||||
```bash
|
|
||||||
# Remove Whereby
|
|
||||||
yarn remove @whereby.com/browser-sdk
|
|
||||||
|
|
||||||
# Add Daily.co
|
|
||||||
yarn add @daily-co/daily-react @daily-co/daily-js
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 2.2 New Room Component (`www/app/[roomName]/page.tsx`)
|
|
||||||
|
|
||||||
```tsx
|
|
||||||
"use client";
|
|
||||||
|
|
||||||
import { useCallback, useEffect, useRef, useState } from "react";
|
|
||||||
import {
|
|
||||||
DailyProvider,
|
|
||||||
useDaily,
|
|
||||||
useParticipantIds,
|
|
||||||
useRecording,
|
|
||||||
useDailyEvent,
|
|
||||||
useLocalParticipant,
|
|
||||||
} from "@daily-co/daily-react";
|
|
||||||
import { Box, Button, Text, VStack, HStack, Spinner } from "@chakra-ui/react";
|
|
||||||
import { toaster } from "../components/ui/toaster";
|
|
||||||
import useRoomMeeting from "./useRoomMeeting";
|
|
||||||
import { useRouter } from "next/navigation";
|
|
||||||
import { notFound } from "next/navigation";
|
|
||||||
import useSessionStatus from "../lib/useSessionStatus";
|
|
||||||
import { useRecordingConsent } from "../recordingConsentContext";
|
|
||||||
import DailyIframe from "@daily-co/daily-js";
|
|
||||||
|
|
||||||
// Daily.co Call Interface Component
|
|
||||||
function CallInterface() {
|
|
||||||
const daily = useDaily();
|
|
||||||
const { isRecording, startRecording, stopRecording } = useRecording();
|
|
||||||
const localParticipant = useLocalParticipant();
|
|
||||||
const participantIds = useParticipantIds({ filter: "remote" });
|
|
||||||
|
|
||||||
// Real-time participant tracking
|
|
||||||
useDailyEvent("participant-joined", useCallback((event) => {
|
|
||||||
console.log(`${event.participant.user_name} joined the call`);
|
|
||||||
// No need for webhooks - we have immediate access!
|
|
||||||
}, []));
|
|
||||||
|
|
||||||
useDailyEvent("participant-left", useCallback((event) => {
|
|
||||||
console.log(`${event.participant.user_name} left the call`);
|
|
||||||
}, []));
|
|
||||||
|
|
||||||
return (
|
|
||||||
<Box position="relative" width="100vw" height="100vh">
|
|
||||||
{/* Daily.co automatically handles the video/audio UI */}
|
|
||||||
<Box
|
|
||||||
as="iframe"
|
|
||||||
src={daily?.iframe()?.src}
|
|
||||||
width="100%"
|
|
||||||
height="100%"
|
|
||||||
allow="camera; microphone; fullscreen; speaker; display-capture"
|
|
||||||
style={{ border: "none" }}
|
|
||||||
/>
|
|
||||||
|
|
||||||
{/* Recording status indicator */}
|
|
||||||
{isRecording && (
|
|
||||||
<Box
|
|
||||||
position="absolute"
|
|
||||||
top={4}
|
|
||||||
right={4}
|
|
||||||
bg="red.500"
|
|
||||||
color="white"
|
|
||||||
px={3}
|
|
||||||
py={1}
|
|
||||||
borderRadius="md"
|
|
||||||
fontSize="sm"
|
|
||||||
>
|
|
||||||
Recording
|
|
||||||
</Box>
|
|
||||||
)}
|
|
||||||
|
|
||||||
{/* Participant count with real-time data */}
|
|
||||||
<Box position="absolute" bottom={4} left={4} bg="gray.800" color="white" px={3} py={1} borderRadius="md">
|
|
||||||
Participants: {participantIds.length + 1}
|
|
||||||
</Box>
|
|
||||||
</Box>
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Main Room Component with Daily.co Integration
|
|
||||||
export default function Room({ params }: { params: { roomName: string } }) {
|
|
||||||
const roomName = params.roomName;
|
|
||||||
const meeting = useRoomMeeting(roomName);
|
|
||||||
const router = useRouter();
|
|
||||||
const { isLoading, isAuthenticated } = useSessionStatus();
|
|
||||||
const [dailyUrl, setDailyUrl] = useState<string | null>(null);
|
|
||||||
const [callFrame, setCallFrame] = useState<DailyIframe | null>(null);
|
|
||||||
|
|
||||||
// Initialize Daily.co call
|
|
||||||
useEffect(() => {
|
|
||||||
if (!meeting?.response?.room_url) return;
|
|
||||||
|
|
||||||
const frame = DailyIframe.createCallObject({
|
|
||||||
showLeaveButton: true,
|
|
||||||
showFullscreenButton: true,
|
|
||||||
});
|
|
||||||
|
|
||||||
frame.on("left-meeting", () => {
|
|
||||||
router.push("/browse");
|
|
||||||
});
|
|
||||||
|
|
||||||
setCallFrame(frame);
|
|
||||||
setDailyUrl(meeting.response.room_url);
|
|
||||||
|
|
||||||
return () => {
|
|
||||||
frame.destroy();
|
|
||||||
};
|
|
||||||
}, [meeting?.response?.room_url, router]);
|
|
||||||
|
|
||||||
if (isLoading) {
|
|
||||||
return (
|
|
||||||
<Box display="flex" justifyContent="center" alignItems="center" height="100vh">
|
|
||||||
<Spinner color="blue.500" size="xl" />
|
|
||||||
</Box>
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!dailyUrl || !callFrame) {
|
|
||||||
return null;
|
|
||||||
}
|
|
||||||
|
|
||||||
return (
|
|
||||||
<DailyProvider callObject={callFrame} url={dailyUrl}>
|
|
||||||
<CallInterface />
|
|
||||||
<ConsentDialog meetingId={meeting?.response?.id} />
|
|
||||||
</DailyProvider>
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
### Phase 3: Testing & Validation
|
|
||||||
|
|
||||||
For Phase 1 (feature parity), the existing processing pipeline remains unchanged:
|
|
||||||
|
|
||||||
1. Daily.co records meeting to S3 (same as Whereby)
|
|
||||||
2. Webhook notifies when recording is ready
|
|
||||||
3. Existing pipeline downloads and processes the MP4 file
|
|
||||||
4. Current diarization and transcription tools continue to work
|
|
||||||
|
|
||||||
Key validation points:
|
|
||||||
- Recording format matches (MP4 with mixed audio)
|
|
||||||
- S3 paths are compatible
|
|
||||||
- Processing pipeline requires no changes
|
|
||||||
- Transcript quality remains the same
|
|
||||||
|
|
||||||
## Future Enhancement: Raw-Tracks Recording (Phase 2)
|
|
||||||
|
|
||||||
### Raw-Tracks Processing for Enhanced Diarization
|
|
||||||
|
|
||||||
Daily.co's raw-tracks recording provides individual audio streams per participant, enabling:
|
|
||||||
|
|
||||||
```python
|
|
||||||
@shared_task
|
|
||||||
def process_daily_raw_tracks(meeting_id: str, recording_id: str, tracks: list):
|
|
||||||
"""Process Daily.co raw-tracks with perfect speaker attribution."""
|
|
||||||
|
|
||||||
for track in tracks:
|
|
||||||
participant_id = track["participant_id"]
|
|
||||||
participant_name = track["participant_name"]
|
|
||||||
track_url = track["download_url"]
|
|
||||||
|
|
||||||
# Download individual participant audio
|
|
||||||
response = download_track(track_url)
|
|
||||||
|
|
||||||
# Process with known speaker identity
|
|
||||||
transcript = transcribe_audio(
|
|
||||||
audio_data=response.content,
|
|
||||||
speaker_id=participant_id,
|
|
||||||
speaker_name=participant_name
|
|
||||||
)
|
|
||||||
|
|
||||||
# Store with accurate speaker mapping
|
|
||||||
save_transcript_segment(
|
|
||||||
meeting_id=meeting_id,
|
|
||||||
speaker_id=participant_id,
|
|
||||||
text=transcript.text,
|
|
||||||
timestamps=transcript.timestamps
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Benefits of Raw-Tracks (Future)
|
|
||||||
|
|
||||||
1. **Deterministic Speaker Attribution**: Each audio track is already speaker-separated
|
|
||||||
2. **Improved Transcription Accuracy**: Clean audio without cross-talk
|
|
||||||
3. **Parallel Processing**: Process multiple speakers simultaneously
|
|
||||||
4. **Better Metrics**: Accurate talk-time per participant
|
|
||||||
|
|
||||||
### Phase 4: Database & Configuration
|
|
||||||
|
|
||||||
#### 4.1 Environment Variable Updates
|
|
||||||
|
|
||||||
Update `.env` files:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# Remove Whereby variables
|
|
||||||
# WHEREBY_API_URL=https://api.whereby.dev/v1
|
|
||||||
# WHEREBY_API_KEY=your-whereby-key
|
|
||||||
# WHEREBY_WEBHOOK_SECRET=your-whereby-secret
|
|
||||||
# AWS_WHEREBY_S3_BUCKET=whereby-recordings
|
|
||||||
# AWS_WHEREBY_ACCESS_KEY_ID=whereby-key
|
|
||||||
# AWS_WHEREBY_ACCESS_KEY_SECRET=whereby-secret
|
|
||||||
|
|
||||||
# Add Daily.co variables
|
|
||||||
DAILY_API_KEY=your-daily-api-key
|
|
||||||
DAILY_WEBHOOK_SECRET=your-daily-webhook-secret
|
|
||||||
AWS_DAILY_S3_BUCKET=daily-recordings
|
|
||||||
AWS_DAILY_ROLE_ARN=arn:aws:iam::123456789:role/daily-recording-role
|
|
||||||
AWS_REGION=us-west-2
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 4.2 Database Migration
|
|
||||||
|
|
||||||
```sql
|
|
||||||
-- Alembic migration to support Daily.co
|
|
||||||
-- server/alembic/versions/xxx_migrate_to_daily.py
|
|
||||||
|
|
||||||
def upgrade():
|
|
||||||
# Add platform field to support gradual migration
|
|
||||||
op.add_column('rooms', sa.Column('platform', sa.String(), server_default='whereby'))
|
|
||||||
op.add_column('meetings', sa.Column('platform', sa.String(), server_default='whereby'))
|
|
||||||
|
|
||||||
# No other schema changes needed for feature parity
|
|
||||||
|
|
||||||
def downgrade():
|
|
||||||
op.drop_column('meetings', 'platform')
|
|
||||||
op.drop_column('rooms', 'platform')
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 4.3 Settings Update (`server/reflector/settings.py`)
|
|
||||||
|
|
||||||
```python
|
|
||||||
class Settings(BaseSettings):
|
|
||||||
# Remove Whereby settings
|
|
||||||
# WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
|
|
||||||
# WHEREBY_API_KEY: str
|
|
||||||
# WHEREBY_WEBHOOK_SECRET: str
|
|
||||||
# AWS_WHEREBY_S3_BUCKET: str
|
|
||||||
# AWS_WHEREBY_ACCESS_KEY_ID: str
|
|
||||||
# AWS_WHEREBY_ACCESS_KEY_SECRET: str
|
|
||||||
|
|
||||||
# Add Daily.co settings
|
|
||||||
DAILY_API_KEY: str
|
|
||||||
DAILY_WEBHOOK_SECRET: str
|
|
||||||
AWS_DAILY_S3_BUCKET: str
|
|
||||||
AWS_DAILY_ROLE_ARN: str
|
|
||||||
AWS_REGION: str = "us-west-2"
|
|
||||||
|
|
||||||
# Daily.co room URL pattern
|
|
||||||
DAILY_ROOM_URL_PATTERN: str = "https://{subdomain}.daily.co/{room_name}"
|
|
||||||
DAILY_SUBDOMAIN: str = "reflector" # Your Daily.co subdomain
|
|
||||||
```
|
|
||||||
|
|
||||||
## Technical Differences
|
|
||||||
|
|
||||||
### Phase 1 Implementation
|
|
||||||
1. **Frontend**: Replace `<whereby-embed>` custom element with Daily.co React components or iframe
|
|
||||||
2. **Backend**: Create Daily.co API client matching Whereby's functionality
|
|
||||||
3. **Webhooks**: Map Daily.co events to existing database operations
|
|
||||||
4. **Recording**: Maintain same MP4 format and S3 storage
|
|
||||||
|
|
||||||
### Phase 2 Capabilities (Future)
|
|
||||||
1. **Raw-tracks recording**: Individual audio streams per participant
|
|
||||||
2. **Presence API**: Real-time participant data without webhook delays
|
|
||||||
3. **Transcription API**: Built-in transcription services
|
|
||||||
4. **Advanced recording options**: Multiple formats and layouts
|
|
||||||
|
|
||||||
## Risks and Mitigation
|
|
||||||
|
|
||||||
### Risk 1: API Differences
|
|
||||||
- **Mitigation**: Create abstraction layer to minimize changes
|
|
||||||
- Comprehensive testing of all endpoints
|
|
||||||
|
|
||||||
### Risk 2: Recording Format Changes
|
|
||||||
- **Mitigation**: Build adapter for raw-tracks processing
|
|
||||||
- Maintain backward compatibility during transition
|
|
||||||
|
|
||||||
### Risk 3: User Experience Changes
|
|
||||||
- **Mitigation**: A/B testing with gradual rollout
|
|
||||||
- Feature parity checklist before full migration
|
|
||||||
|
|
||||||
## Recommendation
|
|
||||||
|
|
||||||
Migration to Daily.co is technically feasible and can be implemented in phases:
|
|
||||||
|
|
||||||
### Phase 1: Feature Parity
|
|
||||||
- Replace Whereby with Daily.co maintaining exact same functionality
|
|
||||||
- Use standard cloud recording (MP4 to S3)
|
|
||||||
- No changes to processing pipeline
|
|
||||||
|
|
||||||
### Phase 2: Enhanced Capabilities (Future)
|
|
||||||
- Enable raw-tracks recording for improved diarization
|
|
||||||
- Implement participant-level audio processing
|
|
||||||
- Add real-time features using Presence API
|
|
||||||
|
|
||||||
## Next Steps
|
|
||||||
|
|
||||||
1. Set up Daily.co account and obtain API credentials
|
|
||||||
2. Implement feature flag system for gradual migration
|
|
||||||
3. Create Daily.co API client matching Whereby functionality
|
|
||||||
4. Update frontend to support both platforms
|
|
||||||
5. Test thoroughly before rollout
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
*Analysis based on current codebase review and API documentation comparison.*
|
|
||||||
@@ -6,6 +6,7 @@ services:
|
|||||||
- 1250:1250
|
- 1250:1250
|
||||||
volumes:
|
volumes:
|
||||||
- ./server/:/app/
|
- ./server/:/app/
|
||||||
|
- /app/.venv
|
||||||
env_file:
|
env_file:
|
||||||
- ./server/.env
|
- ./server/.env
|
||||||
environment:
|
environment:
|
||||||
@@ -16,6 +17,7 @@ services:
|
|||||||
context: server
|
context: server
|
||||||
volumes:
|
volumes:
|
||||||
- ./server/:/app/
|
- ./server/:/app/
|
||||||
|
- /app/.venv
|
||||||
env_file:
|
env_file:
|
||||||
- ./server/.env
|
- ./server/.env
|
||||||
environment:
|
environment:
|
||||||
@@ -26,6 +28,7 @@ services:
|
|||||||
context: server
|
context: server
|
||||||
volumes:
|
volumes:
|
||||||
- ./server/:/app/
|
- ./server/:/app/
|
||||||
|
- /app/.venv
|
||||||
env_file:
|
env_file:
|
||||||
- ./server/.env
|
- ./server/.env
|
||||||
environment:
|
environment:
|
||||||
@@ -39,11 +42,12 @@ services:
|
|||||||
image: node:18
|
image: node:18
|
||||||
ports:
|
ports:
|
||||||
- "3000:3000"
|
- "3000:3000"
|
||||||
command: sh -c "yarn install && yarn dev"
|
command: sh -c "corepack enable && pnpm install && pnpm dev"
|
||||||
restart: unless-stopped
|
restart: unless-stopped
|
||||||
working_dir: /app
|
working_dir: /app
|
||||||
volumes:
|
volumes:
|
||||||
- ./www:/app/
|
- ./www:/app/
|
||||||
|
- /app/node_modules
|
||||||
env_file:
|
env_file:
|
||||||
- ./www/.env.local
|
- ./www/.env.local
|
||||||
|
|
||||||
|
|||||||
3
server/.gitignore
vendored
3
server/.gitignore
vendored
@@ -176,7 +176,8 @@ artefacts/
|
|||||||
audio_*.wav
|
audio_*.wav
|
||||||
|
|
||||||
# ignore local database
|
# ignore local database
|
||||||
reflector.sqlite3
|
*.sqlite3
|
||||||
|
*.db
|
||||||
data/
|
data/
|
||||||
|
|
||||||
dump.rdb
|
dump.rdb
|
||||||
|
|||||||
@@ -1,7 +1,8 @@
|
|||||||
FROM python:3.12-slim
|
FROM python:3.12-slim
|
||||||
|
|
||||||
ENV PYTHONUNBUFFERED=1 \
|
ENV PYTHONUNBUFFERED=1 \
|
||||||
UV_LINK_MODE=copy
|
UV_LINK_MODE=copy \
|
||||||
|
UV_NO_CACHE=1
|
||||||
|
|
||||||
# builder install base dependencies
|
# builder install base dependencies
|
||||||
WORKDIR /tmp
|
WORKDIR /tmp
|
||||||
@@ -13,8 +14,8 @@ ENV PATH="/root/.local/bin/:$PATH"
|
|||||||
# install application dependencies
|
# install application dependencies
|
||||||
RUN mkdir -p /app
|
RUN mkdir -p /app
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
COPY pyproject.toml uv.lock /app/
|
COPY pyproject.toml uv.lock README.md /app/
|
||||||
RUN touch README.md && env uv sync --compile-bytecode --locked
|
RUN uv sync --compile-bytecode --locked
|
||||||
|
|
||||||
# pre-download nltk packages
|
# pre-download nltk packages
|
||||||
RUN uv run python -c "import nltk; nltk.download('punkt_tab'); nltk.download('averaged_perceptron_tagger_eng')"
|
RUN uv run python -c "import nltk; nltk.download('punkt_tab'); nltk.download('averaged_perceptron_tagger_eng')"
|
||||||
@@ -26,4 +27,15 @@ COPY migrations /app/migrations
|
|||||||
COPY reflector /app/reflector
|
COPY reflector /app/reflector
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Create symlink for libgomp if it doesn't exist (for ARM64 compatibility)
|
||||||
|
RUN if [ "$(uname -m)" = "aarch64" ] && [ ! -f /usr/lib/libgomp.so.1 ]; then \
|
||||||
|
LIBGOMP_PATH=$(find /app/.venv/lib -path "*/torch.libs/libgomp*.so.*" 2>/dev/null | head -n1); \
|
||||||
|
if [ -n "$LIBGOMP_PATH" ]; then \
|
||||||
|
ln -sf "$LIBGOMP_PATH" /usr/lib/libgomp.so.1; \
|
||||||
|
fi \
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Pre-check just to make sure the image will not fail
|
||||||
|
RUN uv run python -c "import silero_vad.model"
|
||||||
|
|
||||||
CMD ["./runserver.sh"]
|
CMD ["./runserver.sh"]
|
||||||
|
|||||||
@@ -40,3 +40,5 @@ uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeli
|
|||||||
```bash
|
```bash
|
||||||
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
|
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
.
|
||||||
|
|||||||
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
|||||||
|
# Data Retention and Cleanup
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
### Environment Variables
|
||||||
|
|
||||||
|
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||||
|
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||||
|
|
||||||
|
### What Gets Deleted
|
||||||
|
|
||||||
|
When data reaches the retention period, the following items are automatically removed:
|
||||||
|
|
||||||
|
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||||
|
- Database records
|
||||||
|
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||||
|
- Storage files (cloud storage if configured)
|
||||||
|
|
||||||
|
## Automatic Cleanup
|
||||||
|
|
||||||
|
### Celery Beat Schedule
|
||||||
|
|
||||||
|
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Automatically scheduled when PUBLIC_MODE=true
|
||||||
|
"cleanup_old_public_data": {
|
||||||
|
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||||
|
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Running the Worker
|
||||||
|
|
||||||
|
Ensure both Celery worker and beat scheduler are running:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Start Celery worker
|
||||||
|
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||||
|
|
||||||
|
# Start Celery beat scheduler (in another terminal)
|
||||||
|
uv run celery -A reflector.worker.app beat
|
||||||
|
```
|
||||||
|
|
||||||
|
## Manual Cleanup
|
||||||
|
|
||||||
|
For testing or manual intervention, use the cleanup tool:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Delete data older than 7 days (default)
|
||||||
|
uv run python -m reflector.tools.cleanup_old_data
|
||||||
|
|
||||||
|
# Delete data older than 30 days
|
||||||
|
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||||
|
|
||||||
|
## Important Notes
|
||||||
|
|
||||||
|
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||||
|
|
||||||
|
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||||
|
|
||||||
|
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||||
|
|
||||||
|
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||||
|
|
||||||
|
## Testing
|
||||||
|
|
||||||
|
Run the cleanup tests:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv run pytest tests/test_cleanup.py -v
|
||||||
|
```
|
||||||
|
|
||||||
|
## Monitoring
|
||||||
|
|
||||||
|
Check Celery logs for cleanup task execution:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Look for cleanup task logs
|
||||||
|
grep "cleanup_old_public_data" celery.log
|
||||||
|
grep "Starting cleanup of old public data" celery.log
|
||||||
|
```
|
||||||
|
|
||||||
|
Task statistics are logged after each run:
|
||||||
|
- Number of transcripts deleted
|
||||||
|
- Number of meetings deleted
|
||||||
|
- Number of orphaned recordings deleted
|
||||||
|
- Any errors encountered
|
||||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
|||||||
|
## Reflector GPU Transcription API (Specification)
|
||||||
|
|
||||||
|
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||||
|
|
||||||
|
### Base URL and Authentication
|
||||||
|
|
||||||
|
- Example base URLs (Modal web endpoints):
|
||||||
|
|
||||||
|
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||||
|
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||||
|
|
||||||
|
- All endpoints are served under `/v1` and require a Bearer token:
|
||||||
|
|
||||||
|
```
|
||||||
|
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||||
|
|
||||||
|
### Supported file types
|
||||||
|
|
||||||
|
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||||
|
|
||||||
|
### Models and languages
|
||||||
|
|
||||||
|
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||||
|
- Language support: only `en`. Other languages return HTTP 400.
|
||||||
|
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||||
|
- Language support: multilingual (per Whisper model capabilities).
|
||||||
|
|
||||||
|
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||||
|
|
||||||
|
### Endpoints
|
||||||
|
|
||||||
|
#### POST /v1/audio/transcriptions
|
||||||
|
|
||||||
|
Transcribe one or more uploaded audio files.
|
||||||
|
|
||||||
|
Request: multipart/form-data
|
||||||
|
|
||||||
|
- `file` (File) — optional. Single file to transcribe.
|
||||||
|
- `files` (File[]) — optional. One or more files to transcribe.
|
||||||
|
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||||
|
- `language` (string) — optional, defaults to `en`.
|
||||||
|
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||||
|
- Whisper: model-dependent; typically multilingual
|
||||||
|
- `batch` (boolean) — optional, defaults to `false`.
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
|
||||||
|
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||||
|
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||||
|
- Response shape for multiple files is the same regardless of `batch`.
|
||||||
|
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||||
|
|
||||||
|
Responses
|
||||||
|
|
||||||
|
Single file response:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [
|
||||||
|
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||||
|
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||||
|
],
|
||||||
|
"filename": "audio.mp3"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Multiple files response:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"results": [
|
||||||
|
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||||
|
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
|
||||||
|
- Word objects always include keys: `word`, `start`, `end`.
|
||||||
|
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||||
|
|
||||||
|
Example curl (single file):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -X POST \
|
||||||
|
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||||
|
-F "file=@/path/to/audio.mp3" \
|
||||||
|
-F "language=en" \
|
||||||
|
"$BASE_URL/v1/audio/transcriptions"
|
||||||
|
```
|
||||||
|
|
||||||
|
Example curl (multiple files, batch):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -X POST \
|
||||||
|
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||||
|
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||||
|
-F "batch=true" -F "language=en" \
|
||||||
|
"$BASE_URL/v1/audio/transcriptions"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### POST /v1/audio/transcriptions-from-url
|
||||||
|
|
||||||
|
Transcribe a single remote audio file by URL.
|
||||||
|
|
||||||
|
Request: application/json
|
||||||
|
|
||||||
|
Body parameters:
|
||||||
|
|
||||||
|
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||||
|
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||||
|
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||||
|
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"audio_file_url": "https://example.com/audio.mp3",
|
||||||
|
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||||
|
"language": "en",
|
||||||
|
"timestamp_offset": 0.0
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Response:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [
|
||||||
|
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||||
|
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
|
||||||
|
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||||
|
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||||
|
|
||||||
|
Example curl:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -X POST \
|
||||||
|
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"audio_file_url": "https://example.com/audio.mp3",
|
||||||
|
"language": "en",
|
||||||
|
"timestamp_offset": 0
|
||||||
|
}' \
|
||||||
|
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Error handling
|
||||||
|
|
||||||
|
- 400 Bad Request
|
||||||
|
- Parakeet: `language` other than `en`
|
||||||
|
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||||
|
- Unsupported file extension
|
||||||
|
- 401 Unauthorized
|
||||||
|
- Missing or invalid Bearer token
|
||||||
|
- 404 Not Found
|
||||||
|
- `audio_file_url` does not exist
|
||||||
|
|
||||||
|
### Implementation details
|
||||||
|
|
||||||
|
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||||
|
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||||
|
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||||
|
|
||||||
|
### Server configuration (Reflector API)
|
||||||
|
|
||||||
|
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||||
|
|
||||||
|
```
|
||||||
|
TRANSCRIPT_BACKEND=modal
|
||||||
|
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||||
|
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||||
|
```
|
||||||
|
|
||||||
|
### Conformance tests
|
||||||
|
|
||||||
|
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||||
|
|
||||||
|
```
|
||||||
|
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||||
|
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||||
|
uv run -m pytest -m gpu_modal --no-cov server/tests/test_gpu_modal_transcript.py
|
||||||
|
```
|
||||||
212
server/docs/webhook.md
Normal file
212
server/docs/webhook.md
Normal file
@@ -0,0 +1,212 @@
|
|||||||
|
# Reflector Webhook Documentation
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
Webhooks are configured at the room level with two fields:
|
||||||
|
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||||
|
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||||
|
|
||||||
|
## Events
|
||||||
|
|
||||||
|
### `transcript.completed`
|
||||||
|
|
||||||
|
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, and topic detection.
|
||||||
|
|
||||||
|
### `test`
|
||||||
|
|
||||||
|
A test event that can be triggered manually to verify webhook configuration.
|
||||||
|
|
||||||
|
## Webhook Request Format
|
||||||
|
|
||||||
|
### Headers
|
||||||
|
|
||||||
|
All webhook requests include the following headers:
|
||||||
|
|
||||||
|
| Header | Description | Example |
|
||||||
|
|--------|-------------|---------|
|
||||||
|
| `Content-Type` | Always `application/json` | `application/json` |
|
||||||
|
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||||
|
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||||
|
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||||
|
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||||
|
|
||||||
|
### Signature Verification
|
||||||
|
|
||||||
|
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||||
|
|
||||||
|
The signature format is: `t={timestamp},v1={signature}`
|
||||||
|
|
||||||
|
To verify the signature:
|
||||||
|
1. Extract the timestamp and signature from the header
|
||||||
|
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||||
|
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||||
|
4. Compare the computed signature with the received signature
|
||||||
|
|
||||||
|
Example verification (Python):
|
||||||
|
```python
|
||||||
|
import hmac
|
||||||
|
import hashlib
|
||||||
|
|
||||||
|
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||||
|
# Parse header: "t=1735306800,v1=abc123..."
|
||||||
|
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||||
|
timestamp = parts["t"]
|
||||||
|
received_signature = parts["v1"]
|
||||||
|
|
||||||
|
# Create signed payload
|
||||||
|
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||||
|
|
||||||
|
# Compute expected signature
|
||||||
|
expected_signature = hmac.new(
|
||||||
|
secret.encode("utf-8"),
|
||||||
|
signed_payload.encode("utf-8"),
|
||||||
|
hashlib.sha256
|
||||||
|
).hexdigest()
|
||||||
|
|
||||||
|
# Compare signatures
|
||||||
|
return hmac.compare_digest(expected_signature, received_signature)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Event Payloads
|
||||||
|
|
||||||
|
### `transcript.completed` Event
|
||||||
|
|
||||||
|
This event includes a convenient URL for accessing the transcript:
|
||||||
|
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"event": "transcript.completed",
|
||||||
|
"event_id": "transcript.completed-abc-123-def-456",
|
||||||
|
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||||
|
"transcript": {
|
||||||
|
"id": "abc-123-def-456",
|
||||||
|
"room_id": "room-789",
|
||||||
|
"created_at": "2025-08-27T12:00:00Z",
|
||||||
|
"duration": 1800.5,
|
||||||
|
"title": "Q3 Product Planning Meeting",
|
||||||
|
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||||
|
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||||
|
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||||
|
"topics": [
|
||||||
|
{
|
||||||
|
"title": "Introduction and Agenda",
|
||||||
|
"summary": "Meeting kickoff with agenda review",
|
||||||
|
"timestamp": 0.0,
|
||||||
|
"duration": 120.0,
|
||||||
|
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Mobile App Features Discussion",
|
||||||
|
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||||
|
"timestamp": 120.0,
|
||||||
|
"duration": 600.0,
|
||||||
|
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"participants": [
|
||||||
|
{
|
||||||
|
"id": "participant-1",
|
||||||
|
"name": "John Doe",
|
||||||
|
"speaker": "Speaker 1"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "participant-2",
|
||||||
|
"name": "Jane Smith",
|
||||||
|
"speaker": "Speaker 2"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source_language": "en",
|
||||||
|
"target_language": "en",
|
||||||
|
"status": "completed",
|
||||||
|
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||||
|
},
|
||||||
|
"room": {
|
||||||
|
"id": "room-789",
|
||||||
|
"name": "Product Team Room"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### `test` Event
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"event": "test",
|
||||||
|
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||||
|
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||||
|
"message": "This is a test webhook from Reflector",
|
||||||
|
"room": {
|
||||||
|
"id": "room-789",
|
||||||
|
"name": "Product Team Room"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Retry Policy
|
||||||
|
|
||||||
|
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||||
|
|
||||||
|
### Retry Mechanism
|
||||||
|
|
||||||
|
Reflector implements an exponential backoff strategy for webhook retries:
|
||||||
|
|
||||||
|
- **Initial retry delay**: 60 seconds after the first failure
|
||||||
|
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||||
|
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||||
|
- **Maximum retry attempts**: 30 attempts total
|
||||||
|
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||||
|
|
||||||
|
### How Retries Work
|
||||||
|
|
||||||
|
When a webhook fails, Reflector will:
|
||||||
|
1. Wait 60 seconds, then retry (attempt #1)
|
||||||
|
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||||
|
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||||
|
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||||
|
|
||||||
|
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||||
|
|
||||||
|
### Retry Behavior by HTTP Status Code
|
||||||
|
|
||||||
|
| Status Code | Behavior |
|
||||||
|
|-------------|----------|
|
||||||
|
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||||
|
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||||
|
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||||
|
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||||
|
|
||||||
|
**Important Notes:**
|
||||||
|
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||||
|
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||||
|
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||||
|
|
||||||
|
## Testing Webhooks
|
||||||
|
|
||||||
|
You can test your webhook configuration before processing transcripts:
|
||||||
|
|
||||||
|
```http
|
||||||
|
POST /v1/rooms/{room_id}/webhook/test
|
||||||
|
```
|
||||||
|
|
||||||
|
Response:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"success": true,
|
||||||
|
"status_code": 200,
|
||||||
|
"message": "Webhook test successful",
|
||||||
|
"response_preview": "OK"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Or in case of failure:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"success": false,
|
||||||
|
"error": "Webhook request timed out (10 seconds)"
|
||||||
|
}
|
||||||
|
```
|
||||||
@@ -24,7 +24,6 @@ AUTH_JWT_AUDIENCE=
|
|||||||
## Using serverless modal.com (require reflector-gpu-modal deployed)
|
## Using serverless modal.com (require reflector-gpu-modal deployed)
|
||||||
#TRANSCRIPT_BACKEND=modal
|
#TRANSCRIPT_BACKEND=modal
|
||||||
#TRANSCRIPT_URL=https://xxxxx--reflector-transcriber-web.modal.run
|
#TRANSCRIPT_URL=https://xxxxx--reflector-transcriber-web.modal.run
|
||||||
#TRANSLATE_URL=https://xxxxx--reflector-translator-web.modal.run
|
|
||||||
#TRANSCRIPT_MODAL_API_KEY=xxxxx
|
#TRANSCRIPT_MODAL_API_KEY=xxxxx
|
||||||
|
|
||||||
TRANSCRIPT_BACKEND=modal
|
TRANSCRIPT_BACKEND=modal
|
||||||
@@ -32,11 +31,13 @@ TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
|
|||||||
TRANSCRIPT_MODAL_API_KEY=
|
TRANSCRIPT_MODAL_API_KEY=
|
||||||
|
|
||||||
## =======================================================
|
## =======================================================
|
||||||
## Transcription backend
|
## Translation backend
|
||||||
##
|
##
|
||||||
## Only available in modal atm
|
## Only available in modal atm
|
||||||
## =======================================================
|
## =======================================================
|
||||||
|
TRANSLATION_BACKEND=modal
|
||||||
TRANSLATE_URL=https://monadical-sas--reflector-translator-web.modal.run
|
TRANSLATE_URL=https://monadical-sas--reflector-translator-web.modal.run
|
||||||
|
#TRANSLATION_MODAL_API_KEY=xxxxx
|
||||||
|
|
||||||
## =======================================================
|
## =======================================================
|
||||||
## LLM backend
|
## LLM backend
|
||||||
@@ -59,7 +60,9 @@ LLM_API_KEY=sk-
|
|||||||
## To allow diarization, you need to expose expose the files to be dowloded by the pipeline
|
## To allow diarization, you need to expose expose the files to be dowloded by the pipeline
|
||||||
## =======================================================
|
## =======================================================
|
||||||
DIARIZATION_ENABLED=false
|
DIARIZATION_ENABLED=false
|
||||||
|
DIARIZATION_BACKEND=modal
|
||||||
DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
|
DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
|
||||||
|
#DIARIZATION_MODAL_API_KEY=xxxxx
|
||||||
|
|
||||||
|
|
||||||
## =======================================================
|
## =======================================================
|
||||||
|
|||||||
@@ -4,7 +4,8 @@ This repository hold an API for the GPU implementation of the Reflector API serv
|
|||||||
and use [Modal.com](https://modal.com)
|
and use [Modal.com](https://modal.com)
|
||||||
|
|
||||||
- `reflector_diarizer.py` - Diarization API
|
- `reflector_diarizer.py` - Diarization API
|
||||||
- `reflector_transcriber.py` - Transcription API
|
- `reflector_transcriber.py` - Transcription API (Whisper)
|
||||||
|
- `reflector_transcriber_parakeet.py` - Transcription API (NVIDIA Parakeet)
|
||||||
- `reflector_translator.py` - Translation API
|
- `reflector_translator.py` - Translation API
|
||||||
|
|
||||||
## Modal.com deployment
|
## Modal.com deployment
|
||||||
@@ -19,21 +20,29 @@ $ modal deploy reflector_transcriber.py
|
|||||||
...
|
...
|
||||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||||
|
|
||||||
|
$ modal deploy reflector_transcriber_parakeet.py
|
||||||
|
...
|
||||||
|
└── 🔨 Created web => https://xxxx--reflector-transcriber-parakeet-web.modal.run
|
||||||
|
|
||||||
$ modal deploy reflector_llm.py
|
$ modal deploy reflector_llm.py
|
||||||
...
|
...
|
||||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||||
```
|
```
|
||||||
|
|
||||||
Then in your reflector api configuration `.env`, you can set theses keys:
|
Then in your reflector api configuration `.env`, you can set these keys:
|
||||||
|
|
||||||
```
|
```
|
||||||
TRANSCRIPT_BACKEND=modal
|
TRANSCRIPT_BACKEND=modal
|
||||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||||
|
|
||||||
LLM_BACKEND=modal
|
DIARIZATION_BACKEND=modal
|
||||||
LLM_URL=https://xxxx--reflector-llm-web.modal.run
|
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
||||||
LLM_MODAL_API_KEY=REFLECTOR_APIKEY
|
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||||
|
|
||||||
|
TRANSLATION_BACKEND=modal
|
||||||
|
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
||||||
|
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||||
```
|
```
|
||||||
|
|
||||||
## API
|
## API
|
||||||
@@ -64,6 +73,86 @@ Authorization: bearer <REFLECTOR_APIKEY>
|
|||||||
|
|
||||||
### Transcription
|
### Transcription
|
||||||
|
|
||||||
|
#### Parakeet Transcriber (`reflector_transcriber_parakeet.py`)
|
||||||
|
|
||||||
|
NVIDIA Parakeet is a state-of-the-art ASR model optimized for real-time transcription with superior word-level timestamps.
|
||||||
|
|
||||||
|
**GPU Configuration:**
|
||||||
|
- **A10G GPU** - Used for `/v1/audio/transcriptions` endpoint (small files, live transcription)
|
||||||
|
- Higher concurrency (max_inputs=10)
|
||||||
|
- Optimized for multiple small audio files
|
||||||
|
- Supports batch processing for efficiency
|
||||||
|
|
||||||
|
- **L40S GPU** - Used for `/v1/audio/transcriptions-from-url` endpoint (large files)
|
||||||
|
- Lower concurrency but more powerful processing
|
||||||
|
- Optimized for single large audio files
|
||||||
|
- VAD-based chunking for long-form audio
|
||||||
|
|
||||||
|
##### `/v1/audio/transcriptions` - Small file transcription
|
||||||
|
|
||||||
|
**request** (multipart/form-data)
|
||||||
|
- `file` or `files[]` - audio file(s) to transcribe
|
||||||
|
- `model` - model name (default: `nvidia/parakeet-tdt-0.6b-v2`)
|
||||||
|
- `language` - language code (default: `en`)
|
||||||
|
- `batch` - whether to use batch processing for multiple files (default: `true`)
|
||||||
|
|
||||||
|
**response**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [
|
||||||
|
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||||
|
{"word": "world", "start": 0.5, "end": 1.0}
|
||||||
|
],
|
||||||
|
"filename": "audio.mp3"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
For multiple files with batch=true:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"results": [
|
||||||
|
{
|
||||||
|
"filename": "audio1.mp3",
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [...]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"filename": "audio2.mp3",
|
||||||
|
"text": "transcribed text",
|
||||||
|
"words": [...]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
##### `/v1/audio/transcriptions-from-url` - Large file transcription
|
||||||
|
|
||||||
|
**request** (application/json)
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"audio_file_url": "https://example.com/audio.mp3",
|
||||||
|
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||||
|
"language": "en",
|
||||||
|
"timestamp_offset": 0.0
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**response**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "transcribed text from large file",
|
||||||
|
"words": [
|
||||||
|
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||||
|
{"word": "world", "start": 0.5, "end": 1.0}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Supported file types:** mp3, mp4, mpeg, mpga, m4a, wav, webm
|
||||||
|
|
||||||
|
#### Whisper Transcriber (`reflector_transcriber.py`)
|
||||||
|
|
||||||
`POST /transcribe`
|
`POST /transcribe`
|
||||||
|
|
||||||
**request** (multipart/form-data)
|
**request** (multipart/form-data)
|
||||||
|
|||||||
@@ -4,14 +4,80 @@ Reflector GPU backend - diarizer
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
import uuid
|
||||||
|
from typing import Mapping, NewType
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
import modal.gpu
|
import modal
|
||||||
from modal import App, Image, Secret, asgi_app, enter, method
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||||
MODEL_DIR = "/root/diarization_models"
|
MODEL_DIR = "/root/diarization_models"
|
||||||
app = App(name="reflector-diarizer")
|
UPLOADS_PATH = "/uploads"
|
||||||
|
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||||
|
|
||||||
|
DiarizerUniqFilename = NewType("DiarizerUniqFilename", str)
|
||||||
|
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||||
|
|
||||||
|
app = modal.App(name="reflector-diarizer")
|
||||||
|
|
||||||
|
# Volume for temporary file uploads
|
||||||
|
upload_volume = modal.Volume.from_name("diarizer-uploads", create_if_missing=True)
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||||
|
parsed_url = urlparse(url)
|
||||||
|
url_path = parsed_url.path
|
||||||
|
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return AudioFileExtension(ext)
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return AudioFileExtension("mp3")
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return AudioFileExtension("wav")
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return AudioFileExtension("mp4")
|
||||||
|
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported audio format for URL: {url}. "
|
||||||
|
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(
|
||||||
|
audio_file_url: str,
|
||||||
|
) -> tuple[DiarizerUniqFilename, AudioFileExtension]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
print(f"Checking audio file at: {audio_file_url}")
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
print(f"Downloading audio file from: {audio_file_url}")
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
print(f"Download failed with status {response.status_code}: {response.text}")
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=response.status_code,
|
||||||
|
detail=f"Failed to download audio file: {response.status_code}",
|
||||||
|
)
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = DiarizerUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
print(f"Writing file to: {file_path} (size: {len(response.content)} bytes)")
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
print(f"File saved as: {unique_filename}")
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
def migrate_cache_llm():
|
def migrate_cache_llm():
|
||||||
@@ -39,7 +105,7 @@ def download_pyannote_audio():
|
|||||||
|
|
||||||
|
|
||||||
diarizer_image = (
|
diarizer_image = (
|
||||||
Image.debian_slim(python_version="3.10.8")
|
modal.Image.debian_slim(python_version="3.10.8")
|
||||||
.pip_install(
|
.pip_install(
|
||||||
"pyannote.audio==3.1.0",
|
"pyannote.audio==3.1.0",
|
||||||
"requests",
|
"requests",
|
||||||
@@ -55,7 +121,8 @@ diarizer_image = (
|
|||||||
"hf-transfer",
|
"hf-transfer",
|
||||||
)
|
)
|
||||||
.run_function(
|
.run_function(
|
||||||
download_pyannote_audio, secrets=[Secret.from_name("my-huggingface-secret")]
|
download_pyannote_audio,
|
||||||
|
secrets=[modal.Secret.from_name("hf_token")],
|
||||||
)
|
)
|
||||||
.run_function(migrate_cache_llm)
|
.run_function(migrate_cache_llm)
|
||||||
.env(
|
.env(
|
||||||
@@ -70,44 +137,51 @@ diarizer_image = (
|
|||||||
|
|
||||||
|
|
||||||
@app.cls(
|
@app.cls(
|
||||||
gpu=modal.gpu.A100(size="40GB"),
|
gpu="A100",
|
||||||
timeout=60 * 30,
|
timeout=60 * 30,
|
||||||
scaledown_window=60,
|
|
||||||
allow_concurrent_inputs=1,
|
|
||||||
image=diarizer_image,
|
image=diarizer_image,
|
||||||
|
volumes={UPLOADS_PATH: upload_volume},
|
||||||
|
enable_memory_snapshot=True,
|
||||||
|
experimental_options={"enable_gpu_snapshot": True},
|
||||||
|
secrets=[
|
||||||
|
modal.Secret.from_name("hf_token"),
|
||||||
|
],
|
||||||
)
|
)
|
||||||
|
@modal.concurrent(max_inputs=1)
|
||||||
class Diarizer:
|
class Diarizer:
|
||||||
@enter()
|
@modal.enter(snap=True)
|
||||||
def enter(self):
|
def enter(self):
|
||||||
import torch
|
import torch
|
||||||
from pyannote.audio import Pipeline
|
from pyannote.audio import Pipeline
|
||||||
|
|
||||||
self.use_gpu = torch.cuda.is_available()
|
self.use_gpu = torch.cuda.is_available()
|
||||||
self.device = "cuda" if self.use_gpu else "cpu"
|
self.device = "cuda" if self.use_gpu else "cpu"
|
||||||
|
print(f"Using device: {self.device}")
|
||||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||||
PYANNOTE_MODEL_NAME, cache_dir=MODEL_DIR
|
PYANNOTE_MODEL_NAME,
|
||||||
|
cache_dir=MODEL_DIR,
|
||||||
|
use_auth_token=os.environ["HF_TOKEN"],
|
||||||
)
|
)
|
||||||
self.diarization_pipeline.to(torch.device(self.device))
|
self.diarization_pipeline.to(torch.device(self.device))
|
||||||
|
|
||||||
@method()
|
@modal.method()
|
||||||
def diarize(self, audio_data: str, audio_suffix: str, timestamp: float):
|
def diarize(self, filename: str, timestamp: float = 0.0):
|
||||||
import tempfile
|
|
||||||
|
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
|
||||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
upload_volume.reload()
|
||||||
fp.write(audio_data)
|
|
||||||
|
|
||||||
print("Diarizing audio")
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
waveform, sample_rate = torchaudio.load(fp.name)
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
print(f"Diarizing audio from: {file_path}")
|
||||||
|
waveform, sample_rate = torchaudio.load(file_path)
|
||||||
diarization = self.diarization_pipeline(
|
diarization = self.diarization_pipeline(
|
||||||
{"waveform": waveform, "sample_rate": sample_rate}
|
{"waveform": waveform, "sample_rate": sample_rate}
|
||||||
)
|
)
|
||||||
|
|
||||||
words = []
|
words = []
|
||||||
for diarization_segment, _, speaker in diarization.itertracks(
|
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||||
yield_label=True
|
|
||||||
):
|
|
||||||
words.append(
|
words.append(
|
||||||
{
|
{
|
||||||
"start": round(timestamp + diarization_segment.start, 3),
|
"start": round(timestamp + diarization_segment.start, 3),
|
||||||
@@ -127,17 +201,18 @@ class Diarizer:
|
|||||||
@app.function(
|
@app.function(
|
||||||
timeout=60 * 10,
|
timeout=60 * 10,
|
||||||
scaledown_window=60 * 3,
|
scaledown_window=60 * 3,
|
||||||
allow_concurrent_inputs=40,
|
|
||||||
secrets=[
|
secrets=[
|
||||||
Secret.from_name("reflector-gpu"),
|
modal.Secret.from_name("reflector-gpu"),
|
||||||
],
|
],
|
||||||
|
volumes={UPLOADS_PATH: upload_volume},
|
||||||
image=diarizer_image,
|
image=diarizer_image,
|
||||||
)
|
)
|
||||||
@asgi_app()
|
@modal.concurrent(max_inputs=40)
|
||||||
|
@modal.asgi_app()
|
||||||
def web():
|
def web():
|
||||||
import requests
|
|
||||||
from fastapi import Depends, FastAPI, HTTPException, status
|
from fastapi import Depends, FastAPI, HTTPException, status
|
||||||
from fastapi.security import OAuth2PasswordBearer
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
diarizerstub = Diarizer()
|
diarizerstub = Diarizer()
|
||||||
|
|
||||||
@@ -153,35 +228,26 @@ def web():
|
|||||||
headers={"WWW-Authenticate": "Bearer"},
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
)
|
)
|
||||||
|
|
||||||
def validate_audio_file(audio_file_url: str):
|
|
||||||
# Check if the audio file exists
|
|
||||||
response = requests.head(audio_file_url, allow_redirects=True)
|
|
||||||
if response.status_code == 404:
|
|
||||||
raise HTTPException(
|
|
||||||
status_code=response.status_code,
|
|
||||||
detail="The audio file does not exist.",
|
|
||||||
)
|
|
||||||
|
|
||||||
class DiarizationResponse(BaseModel):
|
class DiarizationResponse(BaseModel):
|
||||||
result: dict
|
result: dict
|
||||||
|
|
||||||
@app.post(
|
@app.post("/diarize", dependencies=[Depends(apikey_auth)])
|
||||||
"/diarize", dependencies=[Depends(apikey_auth), Depends(validate_audio_file)]
|
def diarize(audio_file_url: str, timestamp: float = 0.0) -> DiarizationResponse:
|
||||||
)
|
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||||
def diarize(
|
|
||||||
audio_file_url: str, timestamp: float = 0.0
|
|
||||||
) -> HTTPException | DiarizationResponse:
|
|
||||||
# Currently the uploaded files are in mp3 format
|
|
||||||
audio_suffix = "mp3"
|
|
||||||
|
|
||||||
print("Downloading audio file")
|
|
||||||
response = requests.get(audio_file_url, allow_redirects=True)
|
|
||||||
print("Audio file downloaded successfully")
|
|
||||||
|
|
||||||
|
try:
|
||||||
func = diarizerstub.diarize.spawn(
|
func = diarizerstub.diarize.spawn(
|
||||||
audio_data=response.content, audio_suffix=audio_suffix, timestamp=timestamp
|
filename=unique_filename, timestamp=timestamp
|
||||||
)
|
)
|
||||||
result = func.get()
|
result = func.get()
|
||||||
return result
|
return result
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
print(f"Deleting file: {file_path}")
|
||||||
|
os.remove(file_path)
|
||||||
|
upload_volume.commit()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error cleaning up {unique_filename}: {e}")
|
||||||
|
|
||||||
return app
|
return app
|
||||||
|
|||||||
@@ -1,41 +1,78 @@
|
|||||||
import os
|
import os
|
||||||
import tempfile
|
import sys
|
||||||
import threading
|
import threading
|
||||||
|
import uuid
|
||||||
|
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
import modal
|
import modal
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
MODELS_DIR = "/models"
|
|
||||||
|
|
||||||
MODEL_NAME = "large-v2"
|
MODEL_NAME = "large-v2"
|
||||||
MODEL_COMPUTE_TYPE: str = "float16"
|
MODEL_COMPUTE_TYPE: str = "float16"
|
||||||
MODEL_NUM_WORKERS: int = 1
|
MODEL_NUM_WORKERS: int = 1
|
||||||
|
|
||||||
MINUTES = 60 # seconds
|
MINUTES = 60 # seconds
|
||||||
|
SAMPLERATE = 16000
|
||||||
|
UPLOADS_PATH = "/uploads"
|
||||||
|
CACHE_PATH = "/models"
|
||||||
|
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||||
|
VAD_CONFIG = {
|
||||||
|
"batch_max_duration": 30.0,
|
||||||
|
"silence_padding": 0.5,
|
||||||
|
"window_size": 512,
|
||||||
|
}
|
||||||
|
|
||||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
|
||||||
|
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||||
|
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||||
|
|
||||||
app = modal.App("reflector-transcriber")
|
app = modal.App("reflector-transcriber")
|
||||||
|
|
||||||
|
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||||
|
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||||
|
|
||||||
|
|
||||||
|
class TimeSegment(NamedTuple):
|
||||||
|
"""Represents a time segment with start and end times."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
class AudioSegment(NamedTuple):
|
||||||
|
"""Represents an audio segment with timing and audio data."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
audio: any
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptResult(NamedTuple):
|
||||||
|
"""Represents a transcription result with text and word timings."""
|
||||||
|
|
||||||
|
text: str
|
||||||
|
words: list["WordTiming"]
|
||||||
|
|
||||||
|
|
||||||
|
class WordTiming(TypedDict):
|
||||||
|
"""Represents a word with its timing information."""
|
||||||
|
|
||||||
|
word: str
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
def download_model():
|
def download_model():
|
||||||
from faster_whisper import download_model
|
from faster_whisper import download_model
|
||||||
|
|
||||||
volume.reload()
|
model_cache.reload()
|
||||||
|
|
||||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||||
|
|
||||||
volume.commit()
|
model_cache.commit()
|
||||||
|
|
||||||
|
|
||||||
image = (
|
image = (
|
||||||
modal.Image.debian_slim(python_version="3.12")
|
modal.Image.debian_slim(python_version="3.12")
|
||||||
.pip_install(
|
|
||||||
"huggingface_hub==0.27.1",
|
|
||||||
"hf-transfer==0.1.9",
|
|
||||||
"torch==2.5.1",
|
|
||||||
"faster-whisper==1.1.1",
|
|
||||||
)
|
|
||||||
.env(
|
.env(
|
||||||
{
|
{
|
||||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||||
@@ -45,19 +82,98 @@ image = (
|
|||||||
),
|
),
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
.apt_install("ffmpeg")
|
||||||
|
.pip_install(
|
||||||
|
"huggingface_hub==0.27.1",
|
||||||
|
"hf-transfer==0.1.9",
|
||||||
|
"torch==2.5.1",
|
||||||
|
"faster-whisper==1.1.1",
|
||||||
|
"fastapi==0.115.12",
|
||||||
|
"requests",
|
||||||
|
"librosa==0.10.1",
|
||||||
|
"numpy<2",
|
||||||
|
"silero-vad==5.1.0",
|
||||||
)
|
)
|
||||||
|
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||||
|
parsed_url = urlparse(url)
|
||||||
|
url_path = parsed_url.path
|
||||||
|
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return AudioFileExtension(ext)
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return AudioFileExtension("mp3")
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return AudioFileExtension("wav")
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return AudioFileExtension("mp4")
|
||||||
|
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported audio format for URL: {url}. "
|
||||||
|
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(
|
||||||
|
audio_file_url: str,
|
||||||
|
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
|
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||||
|
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||||
|
|
||||||
|
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||||
|
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
audio_duration = len(audio_array) / sample_rate
|
||||||
|
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||||
|
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||||
|
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||||
|
return np.concatenate([audio_array, silence])
|
||||||
|
return audio_array
|
||||||
|
|
||||||
|
|
||||||
@app.cls(
|
@app.cls(
|
||||||
gpu="A10G",
|
gpu="A10G",
|
||||||
timeout=5 * MINUTES,
|
timeout=5 * MINUTES,
|
||||||
scaledown_window=5 * MINUTES,
|
scaledown_window=5 * MINUTES,
|
||||||
allow_concurrent_inputs=6,
|
|
||||||
image=image,
|
image=image,
|
||||||
volumes={MODELS_DIR: volume},
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
)
|
)
|
||||||
class Transcriber:
|
@modal.concurrent(max_inputs=10)
|
||||||
|
class TranscriberWhisperLive:
|
||||||
|
"""Live transcriber class for small audio segments (A10G).
|
||||||
|
|
||||||
|
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||||
|
"""
|
||||||
|
|
||||||
@modal.enter()
|
@modal.enter()
|
||||||
def enter(self):
|
def enter(self):
|
||||||
import faster_whisper
|
import faster_whisper
|
||||||
@@ -71,23 +187,28 @@ class Transcriber:
|
|||||||
device=self.device,
|
device=self.device,
|
||||||
compute_type=MODEL_COMPUTE_TYPE,
|
compute_type=MODEL_COMPUTE_TYPE,
|
||||||
num_workers=MODEL_NUM_WORKERS,
|
num_workers=MODEL_NUM_WORKERS,
|
||||||
download_root=MODELS_DIR,
|
download_root=CACHE_PATH,
|
||||||
local_files_only=True,
|
local_files_only=True,
|
||||||
)
|
)
|
||||||
|
print(f"Model is on device: {self.device}")
|
||||||
|
|
||||||
@modal.method()
|
@modal.method()
|
||||||
def transcribe_segment(
|
def transcribe_segment(
|
||||||
self,
|
self,
|
||||||
audio_data: str,
|
filename: str,
|
||||||
audio_suffix: str,
|
language: str = "en",
|
||||||
language: str,
|
|
||||||
):
|
):
|
||||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
"""Transcribe a single uploaded audio file by filename."""
|
||||||
fp.write(audio_data)
|
upload_volume.reload()
|
||||||
|
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
with self.lock:
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
segments, _ = self.model.transcribe(
|
segments, _ = self.model.transcribe(
|
||||||
fp.name,
|
file_path,
|
||||||
language=language,
|
language=language,
|
||||||
beam_size=5,
|
beam_size=5,
|
||||||
word_timestamps=True,
|
word_timestamps=True,
|
||||||
@@ -96,66 +217,392 @@ class Transcriber:
|
|||||||
)
|
)
|
||||||
|
|
||||||
segments = list(segments)
|
segments = list(segments)
|
||||||
text = "".join(segment.text for segment in segments)
|
text = "".join(segment.text for segment in segments).strip()
|
||||||
words = [
|
words = [
|
||||||
{"word": word.word, "start": word.start, "end": word.end}
|
{
|
||||||
|
"word": word.word,
|
||||||
|
"start": round(float(word.start), 2),
|
||||||
|
"end": round(float(word.end), 2),
|
||||||
|
}
|
||||||
for segment in segments
|
for segment in segments
|
||||||
for word in segment.words
|
for word in segment.words
|
||||||
]
|
]
|
||||||
|
|
||||||
return {"text": text, "words": words}
|
return {"text": text, "words": words}
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_batch(
|
||||||
|
self,
|
||||||
|
filenames: list[str],
|
||||||
|
language: str = "en",
|
||||||
|
):
|
||||||
|
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for filename in filenames:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
segments, _ = self.model.transcribe(
|
||||||
|
file_path,
|
||||||
|
language=language,
|
||||||
|
beam_size=5,
|
||||||
|
word_timestamps=True,
|
||||||
|
vad_filter=True,
|
||||||
|
vad_parameters={"min_silence_duration_ms": 500},
|
||||||
|
)
|
||||||
|
|
||||||
|
segments = list(segments)
|
||||||
|
text = "".join(seg.text for seg in segments).strip()
|
||||||
|
words = [
|
||||||
|
{
|
||||||
|
"word": w.word,
|
||||||
|
"start": round(float(w.start), 2),
|
||||||
|
"end": round(float(w.end), 2),
|
||||||
|
}
|
||||||
|
for seg in segments
|
||||||
|
for w in seg.words
|
||||||
|
]
|
||||||
|
|
||||||
|
results.append(
|
||||||
|
{
|
||||||
|
"filename": filename,
|
||||||
|
"text": text,
|
||||||
|
"words": words,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
@app.cls(
|
||||||
|
gpu="L40S",
|
||||||
|
timeout=15 * MINUTES,
|
||||||
|
image=image,
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
)
|
||||||
|
class TranscriberWhisperFile:
|
||||||
|
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||||
|
|
||||||
|
@modal.enter()
|
||||||
|
def enter(self):
|
||||||
|
import faster_whisper
|
||||||
|
import torch
|
||||||
|
from silero_vad import load_silero_vad
|
||||||
|
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
self.use_gpu = torch.cuda.is_available()
|
||||||
|
self.device = "cuda" if self.use_gpu else "cpu"
|
||||||
|
self.model = faster_whisper.WhisperModel(
|
||||||
|
MODEL_NAME,
|
||||||
|
device=self.device,
|
||||||
|
compute_type=MODEL_COMPUTE_TYPE,
|
||||||
|
num_workers=MODEL_NUM_WORKERS,
|
||||||
|
download_root=CACHE_PATH,
|
||||||
|
local_files_only=True,
|
||||||
|
)
|
||||||
|
self.vad_model = load_silero_vad(onnx=False)
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_segment(
|
||||||
|
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
from silero_vad import VADIterator
|
||||||
|
|
||||||
|
def vad_segments(
|
||||||
|
audio_array,
|
||||||
|
sample_rate: int = SAMPLERATE,
|
||||||
|
window_size: int = VAD_CONFIG["window_size"],
|
||||||
|
) -> Generator[TimeSegment, None, None]:
|
||||||
|
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||||
|
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||||
|
start = None
|
||||||
|
for i in range(0, len(audio_array), window_size):
|
||||||
|
chunk = audio_array[i : i + window_size]
|
||||||
|
if len(chunk) < window_size:
|
||||||
|
chunk = np.pad(
|
||||||
|
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||||
|
)
|
||||||
|
speech = iterator(chunk)
|
||||||
|
if not speech:
|
||||||
|
continue
|
||||||
|
if "start" in speech:
|
||||||
|
start = speech["start"]
|
||||||
|
continue
|
||||||
|
if "end" in speech and start is not None:
|
||||||
|
end = speech["end"]
|
||||||
|
yield TimeSegment(
|
||||||
|
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||||
|
)
|
||||||
|
start = None
|
||||||
|
iterator.reset_states()
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
|
||||||
|
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||||
|
merged_batches: list[TimeSegment] = []
|
||||||
|
batch_start = None
|
||||||
|
batch_end = None
|
||||||
|
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||||
|
for segment in vad_segments(audio_array):
|
||||||
|
seg_start, seg_end = segment.start, segment.end
|
||||||
|
if batch_start is None:
|
||||||
|
batch_start, batch_end = seg_start, seg_end
|
||||||
|
continue
|
||||||
|
if seg_end - batch_start <= max_duration:
|
||||||
|
batch_end = seg_end
|
||||||
|
else:
|
||||||
|
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||||
|
batch_start, batch_end = seg_start, seg_end
|
||||||
|
if batch_start is not None and batch_end is not None:
|
||||||
|
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||||
|
|
||||||
|
all_text = []
|
||||||
|
all_words = []
|
||||||
|
|
||||||
|
for segment in merged_batches:
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
s_idx = int(start_time * SAMPLERATE)
|
||||||
|
e_idx = int(end_time * SAMPLERATE)
|
||||||
|
segment = audio_array[s_idx:e_idx]
|
||||||
|
segment = pad_audio(segment, SAMPLERATE)
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
segments, _ = self.model.transcribe(
|
||||||
|
segment,
|
||||||
|
language=language,
|
||||||
|
beam_size=5,
|
||||||
|
word_timestamps=True,
|
||||||
|
vad_filter=True,
|
||||||
|
vad_parameters={"min_silence_duration_ms": 500},
|
||||||
|
)
|
||||||
|
|
||||||
|
segments = list(segments)
|
||||||
|
text = "".join(seg.text for seg in segments).strip()
|
||||||
|
words = [
|
||||||
|
{
|
||||||
|
"word": w.word,
|
||||||
|
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||||
|
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||||
|
}
|
||||||
|
for seg in segments
|
||||||
|
for w in seg.words
|
||||||
|
]
|
||||||
|
if text:
|
||||||
|
all_text.append(text)
|
||||||
|
all_words.extend(words)
|
||||||
|
|
||||||
|
return {"text": " ".join(all_text), "words": all_words}
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: dict) -> str:
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
url_path = urlparse(url).path
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return ext
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return "mp3"
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return "wav"
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return "mp4"
|
||||||
|
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=(
|
||||||
|
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
@app.function(
|
@app.function(
|
||||||
scaledown_window=60,
|
scaledown_window=60,
|
||||||
timeout=60,
|
timeout=600,
|
||||||
allow_concurrent_inputs=40,
|
|
||||||
secrets=[
|
secrets=[
|
||||||
modal.Secret.from_name("reflector-gpu"),
|
modal.Secret.from_name("reflector-gpu"),
|
||||||
],
|
],
|
||||||
volumes={MODELS_DIR: volume},
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
image=image,
|
||||||
)
|
)
|
||||||
|
@modal.concurrent(max_inputs=40)
|
||||||
@modal.asgi_app()
|
@modal.asgi_app()
|
||||||
def web():
|
def web():
|
||||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
from fastapi import (
|
||||||
|
Body,
|
||||||
|
Depends,
|
||||||
|
FastAPI,
|
||||||
|
Form,
|
||||||
|
HTTPException,
|
||||||
|
UploadFile,
|
||||||
|
status,
|
||||||
|
)
|
||||||
from fastapi.security import OAuth2PasswordBearer
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
from typing_extensions import Annotated
|
|
||||||
|
|
||||||
transcriber = Transcriber()
|
transcriber_live = TranscriberWhisperLive()
|
||||||
|
transcriber_file = TranscriberWhisperFile()
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||||
|
|
||||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
|
||||||
|
|
||||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||||
|
return
|
||||||
raise HTTPException(
|
raise HTTPException(
|
||||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||||
detail="Invalid API key",
|
detail="Invalid API key",
|
||||||
headers={"WWW-Authenticate": "Bearer"},
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
)
|
)
|
||||||
|
|
||||||
class TranscriptResponse(BaseModel):
|
class TranscriptResponse(dict):
|
||||||
result: dict
|
pass
|
||||||
|
|
||||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||||
def transcribe(
|
def transcribe(
|
||||||
file: UploadFile,
|
file: UploadFile = None,
|
||||||
model: str = "whisper-1",
|
files: list[UploadFile] | None = None,
|
||||||
language: Annotated[str, Body(...)] = "en",
|
model: str = Form(MODEL_NAME),
|
||||||
) -> TranscriptResponse:
|
language: str = Form("en"),
|
||||||
audio_data = file.file.read()
|
batch: bool = Form(False),
|
||||||
audio_suffix = file.filename.split(".")[-1]
|
):
|
||||||
assert audio_suffix in supported_file_types
|
if not file and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||||
|
)
|
||||||
|
if batch and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Batch transcription requires 'files'"
|
||||||
|
)
|
||||||
|
|
||||||
func = transcriber.transcribe_segment.spawn(
|
upload_files = [file] if file else files
|
||||||
audio_data=audio_data,
|
|
||||||
audio_suffix=audio_suffix,
|
uploaded_filenames: list[str] = []
|
||||||
|
for upload_file in upload_files:
|
||||||
|
audio_suffix = upload_file.filename.split(".")[-1]
|
||||||
|
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=(
|
||||||
|
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
content = upload_file.file.read()
|
||||||
|
f.write(content)
|
||||||
|
uploaded_filenames.append(unique_filename)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
try:
|
||||||
|
if batch and len(upload_files) > 1:
|
||||||
|
func = transcriber_live.transcribe_batch.spawn(
|
||||||
|
filenames=uploaded_filenames,
|
||||||
|
language=language,
|
||||||
|
)
|
||||||
|
results = func.get()
|
||||||
|
return {"results": results}
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
func = transcriber_live.transcribe_segment.spawn(
|
||||||
|
filename=filename,
|
||||||
|
language=language,
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
result["filename"] = filename
|
||||||
|
results.append(result)
|
||||||
|
|
||||||
|
return {"results": results} if len(results) > 1 else results[0]
|
||||||
|
finally:
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
os.remove(file_path)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||||
|
def transcribe_from_url(
|
||||||
|
audio_file_url: str = Body(
|
||||||
|
..., description="URL of the audio file to transcribe"
|
||||||
|
),
|
||||||
|
model: str = Body(MODEL_NAME),
|
||||||
|
language: str = Body("en"),
|
||||||
|
timestamp_offset: float = Body(0.0),
|
||||||
|
):
|
||||||
|
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||||
|
try:
|
||||||
|
func = transcriber_file.transcribe_segment.spawn(
|
||||||
|
filename=unique_filename,
|
||||||
|
timestamp_offset=timestamp_offset,
|
||||||
language=language,
|
language=language,
|
||||||
)
|
)
|
||||||
result = func.get()
|
result = func.get()
|
||||||
return result
|
return result
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
os.remove(file_path)
|
||||||
|
upload_volume.commit()
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
return app
|
return app
|
||||||
|
|
||||||
|
|
||||||
|
class NoStdStreams:
|
||||||
|
def __init__(self):
|
||||||
|
self.devnull = open(os.devnull, "w")
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||||
|
self._stdout.flush()
|
||||||
|
self._stderr.flush()
|
||||||
|
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||||||
|
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||||
|
self.devnull.close()
|
||||||
|
|||||||
658
server/gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
658
server/gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
@@ -0,0 +1,658 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import threading
|
||||||
|
import uuid
|
||||||
|
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import modal
|
||||||
|
|
||||||
|
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
|
||||||
|
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||||
|
SAMPLERATE = 16000
|
||||||
|
UPLOADS_PATH = "/uploads"
|
||||||
|
CACHE_PATH = "/cache"
|
||||||
|
VAD_CONFIG = {
|
||||||
|
"batch_max_duration": 30.0,
|
||||||
|
"silence_padding": 0.5,
|
||||||
|
"window_size": 512,
|
||||||
|
}
|
||||||
|
|
||||||
|
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||||
|
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||||
|
|
||||||
|
|
||||||
|
class TimeSegment(NamedTuple):
|
||||||
|
"""Represents a time segment with start and end times."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
class AudioSegment(NamedTuple):
|
||||||
|
"""Represents an audio segment with timing and audio data."""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
audio: any
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptResult(NamedTuple):
|
||||||
|
"""Represents a transcription result with text and word timings."""
|
||||||
|
|
||||||
|
text: str
|
||||||
|
words: list["WordTiming"]
|
||||||
|
|
||||||
|
|
||||||
|
class WordTiming(TypedDict):
|
||||||
|
"""Represents a word with its timing information."""
|
||||||
|
|
||||||
|
word: str
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
|
||||||
|
|
||||||
|
app = modal.App("reflector-transcriber-parakeet")
|
||||||
|
|
||||||
|
# Volume for caching model weights
|
||||||
|
model_cache = modal.Volume.from_name("parakeet-model-cache", create_if_missing=True)
|
||||||
|
# Volume for temporary file uploads
|
||||||
|
upload_volume = modal.Volume.from_name("parakeet-uploads", create_if_missing=True)
|
||||||
|
|
||||||
|
image = (
|
||||||
|
modal.Image.from_registry(
|
||||||
|
"nvidia/cuda:12.8.0-cudnn-devel-ubuntu22.04", add_python="3.12"
|
||||||
|
)
|
||||||
|
.env(
|
||||||
|
{
|
||||||
|
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||||
|
"HF_HOME": "/cache",
|
||||||
|
"DEBIAN_FRONTEND": "noninteractive",
|
||||||
|
"CXX": "g++",
|
||||||
|
"CC": "g++",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
.apt_install("ffmpeg")
|
||||||
|
.pip_install(
|
||||||
|
"hf_transfer==0.1.9",
|
||||||
|
"huggingface_hub[hf-xet]==0.31.2",
|
||||||
|
"nemo_toolkit[asr]==2.3.0",
|
||||||
|
"cuda-python==12.8.0",
|
||||||
|
"fastapi==0.115.12",
|
||||||
|
"numpy<2",
|
||||||
|
"librosa==0.10.1",
|
||||||
|
"requests",
|
||||||
|
"silero-vad==5.1.0",
|
||||||
|
"torch",
|
||||||
|
)
|
||||||
|
.entrypoint([]) # silence chatty logs by container on start
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||||
|
parsed_url = urlparse(url)
|
||||||
|
url_path = parsed_url.path
|
||||||
|
|
||||||
|
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||||
|
if url_path.lower().endswith(f".{ext}"):
|
||||||
|
return AudioFileExtension(ext)
|
||||||
|
|
||||||
|
content_type = headers.get("content-type", "").lower()
|
||||||
|
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||||
|
return AudioFileExtension("mp3")
|
||||||
|
if "audio/wav" in content_type:
|
||||||
|
return AudioFileExtension("wav")
|
||||||
|
if "audio/mp4" in content_type:
|
||||||
|
return AudioFileExtension("mp4")
|
||||||
|
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported audio format for URL: {url}. "
|
||||||
|
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def download_audio_to_volume(
|
||||||
|
audio_file_url: str,
|
||||||
|
) -> tuple[ParakeetUniqFilename, AudioFileExtension]:
|
||||||
|
import requests
|
||||||
|
from fastapi import HTTPException
|
||||||
|
|
||||||
|
response = requests.head(audio_file_url, allow_redirects=True)
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||||
|
|
||||||
|
response = requests.get(audio_file_url, allow_redirects=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||||
|
unique_filename = ParakeetUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
return unique_filename, audio_suffix
|
||||||
|
|
||||||
|
|
||||||
|
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||||
|
"""Add 0.5 seconds of silence if audio is less than 500ms.
|
||||||
|
|
||||||
|
This is a workaround for a Parakeet bug where very short audio (<500ms) causes:
|
||||||
|
ValueError: `char_offsets`: [] and `processed_tokens`: [157, 834, 834, 841]
|
||||||
|
have to be of the same length
|
||||||
|
|
||||||
|
See: https://github.com/NVIDIA/NeMo/issues/8451
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
audio_duration = len(audio_array) / sample_rate
|
||||||
|
if audio_duration < 0.5:
|
||||||
|
silence_samples = int(sample_rate * 0.5)
|
||||||
|
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||||
|
return np.concatenate([audio_array, silence])
|
||||||
|
return audio_array
|
||||||
|
|
||||||
|
|
||||||
|
@app.cls(
|
||||||
|
gpu="A10G",
|
||||||
|
timeout=600,
|
||||||
|
scaledown_window=300,
|
||||||
|
image=image,
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
enable_memory_snapshot=True,
|
||||||
|
experimental_options={"enable_gpu_snapshot": True},
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=10)
|
||||||
|
class TranscriberParakeetLive:
|
||||||
|
@modal.enter(snap=True)
|
||||||
|
def enter(self):
|
||||||
|
import nemo.collections.asr as nemo_asr
|
||||||
|
|
||||||
|
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||||
|
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||||
|
device = next(self.model.parameters()).device
|
||||||
|
print(f"Model is on device: {device}")
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_segment(
|
||||||
|
self,
|
||||||
|
filename: str,
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
padded_audio = pad_audio(audio_array, sample_rate)
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||||
|
|
||||||
|
text = output.text.strip()
|
||||||
|
words: list[WordTiming] = [
|
||||||
|
WordTiming(
|
||||||
|
# XXX the space added here is to match the output of whisper
|
||||||
|
# whisper add space to each words, while parakeet don't
|
||||||
|
word=word_info["word"] + " ",
|
||||||
|
start=round(word_info["start"], 2),
|
||||||
|
end=round(word_info["end"], 2),
|
||||||
|
)
|
||||||
|
for word_info in output.timestamp["word"]
|
||||||
|
]
|
||||||
|
|
||||||
|
return {"text": text, "words": words}
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_batch(
|
||||||
|
self,
|
||||||
|
filenames: list[str],
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
results = []
|
||||||
|
audio_arrays = []
|
||||||
|
|
||||||
|
# Load all audio files with padding
|
||||||
|
for filename in filenames:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
padded_audio = pad_audio(audio_array, sample_rate)
|
||||||
|
audio_arrays.append(padded_audio)
|
||||||
|
|
||||||
|
with self.lock:
|
||||||
|
with NoStdStreams():
|
||||||
|
outputs = self.model.transcribe(audio_arrays, timestamps=True)
|
||||||
|
|
||||||
|
# Process results for each file
|
||||||
|
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||||
|
text = output.text.strip()
|
||||||
|
|
||||||
|
words: list[WordTiming] = [
|
||||||
|
WordTiming(
|
||||||
|
word=word_info["word"] + " ",
|
||||||
|
start=round(word_info["start"], 2),
|
||||||
|
end=round(word_info["end"], 2),
|
||||||
|
)
|
||||||
|
for word_info in output.timestamp["word"]
|
||||||
|
]
|
||||||
|
|
||||||
|
results.append(
|
||||||
|
{
|
||||||
|
"filename": filename,
|
||||||
|
"text": text,
|
||||||
|
"words": words,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
# L40S class for file transcription (bigger files)
|
||||||
|
@app.cls(
|
||||||
|
gpu="L40S",
|
||||||
|
timeout=900,
|
||||||
|
image=image,
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
enable_memory_snapshot=True,
|
||||||
|
experimental_options={"enable_gpu_snapshot": True},
|
||||||
|
)
|
||||||
|
class TranscriberParakeetFile:
|
||||||
|
@modal.enter(snap=True)
|
||||||
|
def enter(self):
|
||||||
|
import nemo.collections.asr as nemo_asr
|
||||||
|
import torch
|
||||||
|
from silero_vad import load_silero_vad
|
||||||
|
|
||||||
|
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||||
|
|
||||||
|
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||||
|
device = next(self.model.parameters()).device
|
||||||
|
print(f"Model is on device: {device}")
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
self.vad_model = load_silero_vad(onnx=False)
|
||||||
|
print("Silero VAD initialized")
|
||||||
|
|
||||||
|
@modal.method()
|
||||||
|
def transcribe_segment(
|
||||||
|
self,
|
||||||
|
filename: str,
|
||||||
|
timestamp_offset: float = 0.0,
|
||||||
|
):
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
from silero_vad import VADIterator
|
||||||
|
|
||||||
|
def load_and_convert_audio(file_path):
|
||||||
|
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||||
|
return audio_array
|
||||||
|
|
||||||
|
def vad_segment_generator(
|
||||||
|
audio_array,
|
||||||
|
) -> Generator[TimeSegment, None, None]:
|
||||||
|
"""Generate speech segments using VAD with start/end sample indices"""
|
||||||
|
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||||
|
window_size = VAD_CONFIG["window_size"]
|
||||||
|
start = None
|
||||||
|
|
||||||
|
for i in range(0, len(audio_array), window_size):
|
||||||
|
chunk = audio_array[i : i + window_size]
|
||||||
|
if len(chunk) < window_size:
|
||||||
|
chunk = np.pad(
|
||||||
|
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||||
|
)
|
||||||
|
|
||||||
|
speech_dict = vad_iterator(chunk)
|
||||||
|
if not speech_dict:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if "start" in speech_dict:
|
||||||
|
start = speech_dict["start"]
|
||||||
|
continue
|
||||||
|
|
||||||
|
if "end" in speech_dict and start is not None:
|
||||||
|
end = speech_dict["end"]
|
||||||
|
start_time = start / float(SAMPLERATE)
|
||||||
|
end_time = end / float(SAMPLERATE)
|
||||||
|
|
||||||
|
yield TimeSegment(start_time, end_time)
|
||||||
|
start = None
|
||||||
|
|
||||||
|
vad_iterator.reset_states()
|
||||||
|
|
||||||
|
def batch_speech_segments(
|
||||||
|
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||||
|
) -> Generator[TimeSegment, None, None]:
|
||||||
|
"""
|
||||||
|
Input segments:
|
||||||
|
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||||
|
|
||||||
|
↓ (max_duration=10)
|
||||||
|
|
||||||
|
Output batches:
|
||||||
|
[0-8] [10-19] [20-22]
|
||||||
|
|
||||||
|
Note: silences are kept for better transcription, previous implementation was
|
||||||
|
passing segments separatly, but the output was less accurate.
|
||||||
|
"""
|
||||||
|
batch_start_time = None
|
||||||
|
batch_end_time = None
|
||||||
|
|
||||||
|
for segment in segments:
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
if batch_start_time is None or batch_end_time is None:
|
||||||
|
batch_start_time = start_time
|
||||||
|
batch_end_time = end_time
|
||||||
|
continue
|
||||||
|
|
||||||
|
total_duration = end_time - batch_start_time
|
||||||
|
|
||||||
|
if total_duration <= max_duration:
|
||||||
|
batch_end_time = end_time
|
||||||
|
continue
|
||||||
|
|
||||||
|
yield TimeSegment(batch_start_time, batch_end_time)
|
||||||
|
batch_start_time = start_time
|
||||||
|
batch_end_time = end_time
|
||||||
|
|
||||||
|
if batch_start_time is None or batch_end_time is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
yield TimeSegment(batch_start_time, batch_end_time)
|
||||||
|
|
||||||
|
def batch_segment_to_audio_segment(
|
||||||
|
segments: Generator[TimeSegment, None, None],
|
||||||
|
audio_array,
|
||||||
|
) -> Generator[AudioSegment, None, None]:
|
||||||
|
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||||
|
|
||||||
|
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||||
|
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||||
|
segments, which are corrected by enforce_word_timing_constraints.
|
||||||
|
"""
|
||||||
|
for segment in segments:
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
start_sample = int(start_time * SAMPLERATE)
|
||||||
|
end_sample = int(end_time * SAMPLERATE)
|
||||||
|
audio_segment = audio_array[start_sample:end_sample]
|
||||||
|
|
||||||
|
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||||
|
|
||||||
|
yield AudioSegment(start_time, end_time, padded_segment)
|
||||||
|
|
||||||
|
def transcribe_batch(model, audio_segments: list) -> list:
|
||||||
|
with NoStdStreams():
|
||||||
|
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def enforce_word_timing_constraints(
|
||||||
|
words: list[WordTiming],
|
||||||
|
) -> list[WordTiming]:
|
||||||
|
"""Enforce that word end times don't exceed the start time of the next word.
|
||||||
|
|
||||||
|
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||||
|
transcription accuracy, word timings from different segments may overlap.
|
||||||
|
This function ensures there are no overlaps by adjusting end times.
|
||||||
|
"""
|
||||||
|
if len(words) <= 1:
|
||||||
|
return words
|
||||||
|
|
||||||
|
enforced_words = []
|
||||||
|
for i, word in enumerate(words):
|
||||||
|
enforced_word = word.copy()
|
||||||
|
|
||||||
|
if i < len(words) - 1:
|
||||||
|
next_start = words[i + 1]["start"]
|
||||||
|
if enforced_word["end"] > next_start:
|
||||||
|
enforced_word["end"] = next_start
|
||||||
|
|
||||||
|
enforced_words.append(enforced_word)
|
||||||
|
|
||||||
|
return enforced_words
|
||||||
|
|
||||||
|
def emit_results(
|
||||||
|
results: list,
|
||||||
|
segments_info: list[AudioSegment],
|
||||||
|
) -> Generator[TranscriptResult, None, None]:
|
||||||
|
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||||
|
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||||
|
start_time, end_time = segment.start, segment.end
|
||||||
|
text = output.text.strip()
|
||||||
|
words: list[WordTiming] = [
|
||||||
|
WordTiming(
|
||||||
|
word=word_info["word"] + " ",
|
||||||
|
start=round(
|
||||||
|
word_info["start"] + start_time + timestamp_offset, 2
|
||||||
|
),
|
||||||
|
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||||
|
)
|
||||||
|
for word_info in output.timestamp["word"]
|
||||||
|
]
|
||||||
|
|
||||||
|
yield TranscriptResult(text, words)
|
||||||
|
|
||||||
|
upload_volume.reload()
|
||||||
|
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
audio_array = load_and_convert_audio(file_path)
|
||||||
|
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||||
|
|
||||||
|
all_text_parts: list[str] = []
|
||||||
|
all_words: list[WordTiming] = []
|
||||||
|
|
||||||
|
raw_segments = vad_segment_generator(audio_array)
|
||||||
|
speech_segments = batch_speech_segments(
|
||||||
|
raw_segments,
|
||||||
|
VAD_CONFIG["batch_max_duration"],
|
||||||
|
)
|
||||||
|
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||||
|
|
||||||
|
for batch in audio_segments:
|
||||||
|
audio_segment = batch.audio
|
||||||
|
results = transcribe_batch(self.model, [audio_segment])
|
||||||
|
|
||||||
|
for result in emit_results(
|
||||||
|
results,
|
||||||
|
[batch],
|
||||||
|
):
|
||||||
|
if not result.text:
|
||||||
|
continue
|
||||||
|
all_text_parts.append(result.text)
|
||||||
|
all_words.extend(result.words)
|
||||||
|
|
||||||
|
all_words = enforce_word_timing_constraints(all_words)
|
||||||
|
|
||||||
|
combined_text = " ".join(all_text_parts)
|
||||||
|
return {"text": combined_text, "words": all_words}
|
||||||
|
|
||||||
|
|
||||||
|
@app.function(
|
||||||
|
scaledown_window=60,
|
||||||
|
timeout=600,
|
||||||
|
secrets=[
|
||||||
|
modal.Secret.from_name("reflector-gpu"),
|
||||||
|
],
|
||||||
|
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||||
|
image=image,
|
||||||
|
)
|
||||||
|
@modal.concurrent(max_inputs=40)
|
||||||
|
@modal.asgi_app()
|
||||||
|
def web():
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
|
||||||
|
from fastapi import (
|
||||||
|
Body,
|
||||||
|
Depends,
|
||||||
|
FastAPI,
|
||||||
|
Form,
|
||||||
|
HTTPException,
|
||||||
|
UploadFile,
|
||||||
|
status,
|
||||||
|
)
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
transcriber_live = TranscriberParakeetLive()
|
||||||
|
transcriber_file = TranscriberParakeetFile()
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||||
|
|
||||||
|
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||||
|
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||||
|
return
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||||
|
detail="Invalid API key",
|
||||||
|
headers={"WWW-Authenticate": "Bearer"},
|
||||||
|
)
|
||||||
|
|
||||||
|
class TranscriptResponse(BaseModel):
|
||||||
|
result: dict
|
||||||
|
|
||||||
|
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||||
|
def transcribe(
|
||||||
|
file: UploadFile = None,
|
||||||
|
files: list[UploadFile] | None = None,
|
||||||
|
model: str = Form(MODEL_NAME),
|
||||||
|
language: str = Form("en"),
|
||||||
|
batch: bool = Form(False),
|
||||||
|
):
|
||||||
|
# Parakeet only supports English
|
||||||
|
if language != "en":
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||||
|
)
|
||||||
|
# Handle both single file and multiple files
|
||||||
|
if not file and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||||
|
)
|
||||||
|
if batch and not files:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400, detail="Batch transcription requires 'files'"
|
||||||
|
)
|
||||||
|
|
||||||
|
upload_files = [file] if file else files
|
||||||
|
|
||||||
|
# Upload files to volume
|
||||||
|
uploaded_filenames = []
|
||||||
|
for upload_file in upload_files:
|
||||||
|
audio_suffix = upload_file.filename.split(".")[-1]
|
||||||
|
assert audio_suffix in SUPPORTED_FILE_EXTENSIONS
|
||||||
|
|
||||||
|
# Generate unique filename
|
||||||
|
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
|
||||||
|
print(f"Writing file to: {file_path}")
|
||||||
|
with open(file_path, "wb") as f:
|
||||||
|
content = upload_file.file.read()
|
||||||
|
f.write(content)
|
||||||
|
|
||||||
|
uploaded_filenames.append(unique_filename)
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Use A10G live transcriber for per-file transcription
|
||||||
|
if batch and len(upload_files) > 1:
|
||||||
|
# Use batch transcription
|
||||||
|
func = transcriber_live.transcribe_batch.spawn(
|
||||||
|
filenames=uploaded_filenames,
|
||||||
|
)
|
||||||
|
results = func.get()
|
||||||
|
return {"results": results}
|
||||||
|
|
||||||
|
# Per-file transcription
|
||||||
|
results = []
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
func = transcriber_live.transcribe_segment.spawn(
|
||||||
|
filename=filename,
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
result["filename"] = filename
|
||||||
|
results.append(result)
|
||||||
|
|
||||||
|
return {"results": results} if len(results) > 1 else results[0]
|
||||||
|
|
||||||
|
finally:
|
||||||
|
for filename in uploaded_filenames:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||||
|
print(f"Deleting file: {file_path}")
|
||||||
|
os.remove(file_path)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error deleting {filename}: {e}")
|
||||||
|
|
||||||
|
upload_volume.commit()
|
||||||
|
|
||||||
|
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||||
|
def transcribe_from_url(
|
||||||
|
audio_file_url: str = Body(
|
||||||
|
..., description="URL of the audio file to transcribe"
|
||||||
|
),
|
||||||
|
model: str = Body(MODEL_NAME),
|
||||||
|
language: str = Body("en", description="Language code (only 'en' supported)"),
|
||||||
|
timestamp_offset: float = Body(0.0),
|
||||||
|
):
|
||||||
|
# Parakeet only supports English
|
||||||
|
if language != "en":
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||||
|
)
|
||||||
|
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||||
|
|
||||||
|
try:
|
||||||
|
func = transcriber_file.transcribe_segment.spawn(
|
||||||
|
filename=unique_filename,
|
||||||
|
timestamp_offset=timestamp_offset,
|
||||||
|
)
|
||||||
|
result = func.get()
|
||||||
|
return result
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||||
|
print(f"Deleting file: {file_path}")
|
||||||
|
os.remove(file_path)
|
||||||
|
upload_volume.commit()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error cleaning up {unique_filename}: {e}")
|
||||||
|
|
||||||
|
return app
|
||||||
|
|
||||||
|
|
||||||
|
class NoStdStreams:
|
||||||
|
def __init__(self):
|
||||||
|
self.devnull = open(os.devnull, "w")
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||||
|
self._stdout.flush()
|
||||||
|
self._stderr.flush()
|
||||||
|
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||||||
|
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||||
|
self.devnull.close()
|
||||||
@@ -1 +1,3 @@
|
|||||||
Generic single-database configuration.
|
Generic single-database configuration.
|
||||||
|
|
||||||
|
Both data migrations and schema migrations must be in migrations.
|
||||||
@@ -0,0 +1,36 @@
|
|||||||
|
"""Add webhook fields to rooms
|
||||||
|
|
||||||
|
Revision ID: 0194f65cd6d3
|
||||||
|
Revises: 5a8907fd1d78
|
||||||
|
Create Date: 2025-08-27 09:03:19.610995
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "0194f65cd6d3"
|
||||||
|
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||||
|
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.drop_column("webhook_secret")
|
||||||
|
batch_op.drop_column("webhook_url")
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,64 @@
|
|||||||
|
"""add_long_summary_to_search_vector
|
||||||
|
|
||||||
|
Revision ID: 0ab2d7ffaa16
|
||||||
|
Revises: b1c33bd09963
|
||||||
|
Create Date: 2025-08-15 13:27:52.680211
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "0ab2d7ffaa16"
|
||||||
|
down_revision: Union[str, None] = "b1c33bd09963"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Drop the existing search vector column and index
|
||||||
|
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||||
|
op.drop_column("transcript", "search_vector_en")
|
||||||
|
|
||||||
|
# Recreate the search vector column with long_summary included
|
||||||
|
op.execute("""
|
||||||
|
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||||
|
GENERATED ALWAYS AS (
|
||||||
|
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||||
|
setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') ||
|
||||||
|
setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')
|
||||||
|
) STORED
|
||||||
|
""")
|
||||||
|
|
||||||
|
# Recreate the GIN index for the search vector
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_search_vector_en",
|
||||||
|
"transcript",
|
||||||
|
["search_vector_en"],
|
||||||
|
postgresql_using="gin",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# Drop the updated search vector column and index
|
||||||
|
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||||
|
op.drop_column("transcript", "search_vector_en")
|
||||||
|
|
||||||
|
# Recreate the original search vector column without long_summary
|
||||||
|
op.execute("""
|
||||||
|
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||||
|
GENERATED ALWAYS AS (
|
||||||
|
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||||
|
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||||
|
) STORED
|
||||||
|
""")
|
||||||
|
|
||||||
|
# Recreate the GIN index for the search vector
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_search_vector_en",
|
||||||
|
"transcript",
|
||||||
|
["search_vector_en"],
|
||||||
|
postgresql_using="gin",
|
||||||
|
)
|
||||||
@@ -0,0 +1,25 @@
|
|||||||
|
"""add_webvtt_field_to_transcript
|
||||||
|
|
||||||
|
Revision ID: 0bc0f3ff0111
|
||||||
|
Revises: b7df9609542c
|
||||||
|
Create Date: 2025-08-05 19:36:41.740957
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
revision: str = "0bc0f3ff0111"
|
||||||
|
down_revision: Union[str, None] = "b7df9609542c"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
op.add_column("transcript", sa.Column("webvtt", sa.Text(), nullable=True))
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
op.drop_column("transcript", "webvtt")
|
||||||
@@ -0,0 +1,46 @@
|
|||||||
|
"""add_full_text_search
|
||||||
|
|
||||||
|
Revision ID: 116b2f287eab
|
||||||
|
Revises: 0bc0f3ff0111
|
||||||
|
Create Date: 2025-08-07 11:27:38.473517
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
revision: str = "116b2f287eab"
|
||||||
|
down_revision: Union[str, None] = "0bc0f3ff0111"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
conn = op.get_bind()
|
||||||
|
if conn.dialect.name != "postgresql":
|
||||||
|
return
|
||||||
|
|
||||||
|
op.execute("""
|
||||||
|
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||||
|
GENERATED ALWAYS AS (
|
||||||
|
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||||
|
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||||
|
) STORED
|
||||||
|
""")
|
||||||
|
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_search_vector_en",
|
||||||
|
"transcript",
|
||||||
|
["search_vector_en"],
|
||||||
|
postgresql_using="gin",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
conn = op.get_bind()
|
||||||
|
if conn.dialect.name != "postgresql":
|
||||||
|
return
|
||||||
|
|
||||||
|
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||||
|
op.drop_column("transcript", "search_vector_en")
|
||||||
@@ -0,0 +1,50 @@
|
|||||||
|
"""add cascade delete to meeting consent foreign key
|
||||||
|
|
||||||
|
Revision ID: 5a8907fd1d78
|
||||||
|
Revises: 0ab2d7ffaa16
|
||||||
|
Create Date: 2025-08-26 17:26:50.945491
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "5a8907fd1d78"
|
||||||
|
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||||
|
batch_op.drop_constraint(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||||
|
)
|
||||||
|
batch_op.create_foreign_key(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||||
|
"meeting",
|
||||||
|
["meeting_id"],
|
||||||
|
["id"],
|
||||||
|
ondelete="CASCADE",
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||||
|
batch_op.drop_constraint(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||||
|
)
|
||||||
|
batch_op.create_foreign_key(
|
||||||
|
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||||
|
"meeting",
|
||||||
|
["meeting_id"],
|
||||||
|
["id"],
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -0,0 +1,28 @@
|
|||||||
|
"""webhook url and secret null by default
|
||||||
|
|
||||||
|
|
||||||
|
Revision ID: 61882a919591
|
||||||
|
Revises: 0194f65cd6d3
|
||||||
|
Create Date: 2025-08-29 11:46:36.738091
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "61882a919591"
|
||||||
|
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
pass
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
pass
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -32,7 +32,7 @@ def upgrade() -> None:
|
|||||||
sa.Column("user_id", sa.String(), nullable=True),
|
sa.Column("user_id", sa.String(), nullable=True),
|
||||||
sa.Column("room_id", sa.String(), nullable=True),
|
sa.Column("room_id", sa.String(), nullable=True),
|
||||||
sa.Column(
|
sa.Column(
|
||||||
"is_locked", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
"is_locked", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||||
),
|
),
|
||||||
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
||||||
sa.Column(
|
sa.Column(
|
||||||
@@ -53,12 +53,15 @@ def upgrade() -> None:
|
|||||||
sa.Column("user_id", sa.String(), nullable=False),
|
sa.Column("user_id", sa.String(), nullable=False),
|
||||||
sa.Column("created_at", sa.DateTime(), nullable=False),
|
sa.Column("created_at", sa.DateTime(), nullable=False),
|
||||||
sa.Column(
|
sa.Column(
|
||||||
"zulip_auto_post", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
"zulip_auto_post",
|
||||||
|
sa.Boolean(),
|
||||||
|
server_default=sa.text("false"),
|
||||||
|
nullable=False,
|
||||||
),
|
),
|
||||||
sa.Column("zulip_stream", sa.String(), nullable=True),
|
sa.Column("zulip_stream", sa.String(), nullable=True),
|
||||||
sa.Column("zulip_topic", sa.String(), nullable=True),
|
sa.Column("zulip_topic", sa.String(), nullable=True),
|
||||||
sa.Column(
|
sa.Column(
|
||||||
"is_locked", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
"is_locked", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||||
),
|
),
|
||||||
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
||||||
sa.Column(
|
sa.Column(
|
||||||
|
|||||||
@@ -20,11 +20,14 @@ depends_on: Union[str, Sequence[str], None] = None
|
|||||||
|
|
||||||
def upgrade() -> None:
|
def upgrade() -> None:
|
||||||
# ### commands auto generated by Alembic - please adjust! ###
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
sourcekind_enum = sa.Enum("room", "live", "file", name="sourcekind")
|
||||||
|
sourcekind_enum.create(op.get_bind())
|
||||||
|
|
||||||
op.add_column(
|
op.add_column(
|
||||||
"transcript",
|
"transcript",
|
||||||
sa.Column(
|
sa.Column(
|
||||||
"source_kind",
|
"source_kind",
|
||||||
sa.Enum("ROOM", "LIVE", "FILE", name="sourcekind"),
|
sourcekind_enum,
|
||||||
nullable=True,
|
nullable=True,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
@@ -43,6 +46,8 @@ def upgrade() -> None:
|
|||||||
def downgrade() -> None:
|
def downgrade() -> None:
|
||||||
# ### commands auto generated by Alembic - please adjust! ###
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
op.drop_column("transcript", "source_kind")
|
op.drop_column("transcript", "source_kind")
|
||||||
|
sourcekind_enum = sa.Enum(name="sourcekind")
|
||||||
|
sourcekind_enum.drop(op.get_bind())
|
||||||
|
|
||||||
|
|
||||||
# ### end Alembic commands ###
|
# ### end Alembic commands ###
|
||||||
|
|||||||
@@ -1,54 +0,0 @@
|
|||||||
"""dailyco platform
|
|
||||||
|
|
||||||
Revision ID: 7e47155afd51
|
|
||||||
Revises: b7df9609542c
|
|
||||||
Create Date: 2025-08-04 11:14:19.663115
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
from typing import Sequence, Union
|
|
||||||
|
|
||||||
import sqlalchemy as sa
|
|
||||||
from alembic import op
|
|
||||||
|
|
||||||
# revision identifiers, used by Alembic.
|
|
||||||
revision: str = "7e47155afd51"
|
|
||||||
down_revision: Union[str, None] = "b7df9609542c"
|
|
||||||
branch_labels: Union[str, Sequence[str], None] = None
|
|
||||||
depends_on: Union[str, Sequence[str], None] = None
|
|
||||||
|
|
||||||
|
|
||||||
def upgrade() -> None:
|
|
||||||
# ### commands auto generated by Alembic - please adjust! ###
|
|
||||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
|
||||||
batch_op.add_column(
|
|
||||||
sa.Column("platform", sa.String(), server_default="whereby", nullable=False)
|
|
||||||
)
|
|
||||||
batch_op.drop_index(
|
|
||||||
batch_op.f("idx_one_active_meeting_per_room"),
|
|
||||||
sqlite_where=sa.text("is_active = 1"),
|
|
||||||
)
|
|
||||||
|
|
||||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
|
||||||
batch_op.add_column(
|
|
||||||
sa.Column("platform", sa.String(), server_default="whereby", nullable=False)
|
|
||||||
)
|
|
||||||
|
|
||||||
# ### end Alembic commands ###
|
|
||||||
|
|
||||||
|
|
||||||
def downgrade() -> None:
|
|
||||||
# ### commands auto generated by Alembic - please adjust! ###
|
|
||||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
|
||||||
batch_op.drop_column("platform")
|
|
||||||
|
|
||||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
|
||||||
batch_op.create_index(
|
|
||||||
batch_op.f("idx_one_active_meeting_per_room"),
|
|
||||||
["room_id"],
|
|
||||||
unique=1,
|
|
||||||
sqlite_where=sa.text("is_active = 1"),
|
|
||||||
)
|
|
||||||
batch_op.drop_column("platform")
|
|
||||||
|
|
||||||
# ### end Alembic commands ###
|
|
||||||
@@ -0,0 +1,106 @@
|
|||||||
|
"""populate_webvtt_from_topics
|
||||||
|
|
||||||
|
Revision ID: 8120ebc75366
|
||||||
|
Revises: 116b2f287eab
|
||||||
|
Create Date: 2025-08-11 19:11:01.316947
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
from sqlalchemy import text
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "8120ebc75366"
|
||||||
|
down_revision: Union[str, None] = "116b2f287eab"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def topics_to_webvtt(topics):
|
||||||
|
"""Convert topics list to WebVTT format string."""
|
||||||
|
if not topics:
|
||||||
|
return None
|
||||||
|
|
||||||
|
lines = ["WEBVTT", ""]
|
||||||
|
|
||||||
|
for topic in topics:
|
||||||
|
start_time = format_timestamp(topic.get("start"))
|
||||||
|
end_time = format_timestamp(topic.get("end"))
|
||||||
|
text = topic.get("text", "").strip()
|
||||||
|
|
||||||
|
if start_time and end_time and text:
|
||||||
|
lines.append(f"{start_time} --> {end_time}")
|
||||||
|
lines.append(text)
|
||||||
|
lines.append("")
|
||||||
|
|
||||||
|
return "\n".join(lines).strip()
|
||||||
|
|
||||||
|
|
||||||
|
def format_timestamp(seconds):
|
||||||
|
"""Format seconds to WebVTT timestamp format (HH:MM:SS.mmm)."""
|
||||||
|
if seconds is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
hours = int(seconds // 3600)
|
||||||
|
minutes = int((seconds % 3600) // 60)
|
||||||
|
secs = seconds % 60
|
||||||
|
|
||||||
|
return f"{hours:02d}:{minutes:02d}:{secs:06.3f}"
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
"""Populate WebVTT field for all transcripts with topics."""
|
||||||
|
|
||||||
|
# Get connection
|
||||||
|
connection = op.get_bind()
|
||||||
|
|
||||||
|
# Query all transcripts with topics
|
||||||
|
result = connection.execute(
|
||||||
|
text("SELECT id, topics FROM transcript WHERE topics IS NOT NULL")
|
||||||
|
)
|
||||||
|
|
||||||
|
rows = result.fetchall()
|
||||||
|
print(f"Found {len(rows)} transcripts with topics")
|
||||||
|
|
||||||
|
updated_count = 0
|
||||||
|
error_count = 0
|
||||||
|
|
||||||
|
for row in rows:
|
||||||
|
transcript_id = row[0]
|
||||||
|
topics_data = row[1]
|
||||||
|
|
||||||
|
if not topics_data:
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Parse JSON if it's a string
|
||||||
|
if isinstance(topics_data, str):
|
||||||
|
topics_data = json.loads(topics_data)
|
||||||
|
|
||||||
|
# Convert topics to WebVTT format
|
||||||
|
webvtt_content = topics_to_webvtt(topics_data)
|
||||||
|
|
||||||
|
if webvtt_content:
|
||||||
|
# Update the webvtt field
|
||||||
|
connection.execute(
|
||||||
|
text("UPDATE transcript SET webvtt = :webvtt WHERE id = :id"),
|
||||||
|
{"webvtt": webvtt_content, "id": transcript_id},
|
||||||
|
)
|
||||||
|
updated_count += 1
|
||||||
|
print(f"✓ Updated transcript {transcript_id}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
error_count += 1
|
||||||
|
print(f"✗ Error updating transcript {transcript_id}: {e}")
|
||||||
|
|
||||||
|
print(f"\nMigration complete!")
|
||||||
|
print(f" Updated: {updated_count}")
|
||||||
|
print(f" Errors: {error_count}")
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
"""Clear WebVTT field for all transcripts."""
|
||||||
|
op.execute(text("UPDATE transcript SET webvtt = NULL"))
|
||||||
@@ -22,7 +22,7 @@ def upgrade() -> None:
|
|||||||
# ### commands auto generated by Alembic - please adjust! ###
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
op.execute(
|
op.execute(
|
||||||
"UPDATE transcript SET events = "
|
"UPDATE transcript SET events = "
|
||||||
'REPLACE(events, \'"event": "SUMMARY"\', \'"event": "LONG_SUMMARY"\');'
|
'REPLACE(events::text, \'"event": "SUMMARY"\', \'"event": "LONG_SUMMARY"\')::json;'
|
||||||
)
|
)
|
||||||
op.alter_column("transcript", "summary", new_column_name="long_summary")
|
op.alter_column("transcript", "summary", new_column_name="long_summary")
|
||||||
op.add_column("transcript", sa.Column("title", sa.String(), nullable=True))
|
op.add_column("transcript", sa.Column("title", sa.String(), nullable=True))
|
||||||
@@ -34,7 +34,7 @@ def downgrade() -> None:
|
|||||||
# ### commands auto generated by Alembic - please adjust! ###
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
op.execute(
|
op.execute(
|
||||||
"UPDATE transcript SET events = "
|
"UPDATE transcript SET events = "
|
||||||
'REPLACE(events, \'"event": "LONG_SUMMARY"\', \'"event": "SUMMARY"\');'
|
'REPLACE(events::text, \'"event": "LONG_SUMMARY"\', \'"event": "SUMMARY"\')::json;'
|
||||||
)
|
)
|
||||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||||
batch_op.alter_column("long_summary", nullable=True, new_column_name="summary")
|
batch_op.alter_column("long_summary", nullable=True, new_column_name="summary")
|
||||||
|
|||||||
121
server/migrations/versions/9f5c78d352d6_datetime_timezone.py
Normal file
121
server/migrations/versions/9f5c78d352d6_datetime_timezone.py
Normal file
@@ -0,0 +1,121 @@
|
|||||||
|
"""datetime timezone
|
||||||
|
|
||||||
|
Revision ID: 9f5c78d352d6
|
||||||
|
Revises: 8120ebc75366
|
||||||
|
Create Date: 2025-08-13 19:18:27.113593
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from alembic import op
|
||||||
|
from sqlalchemy.dialects import postgresql
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "9f5c78d352d6"
|
||||||
|
down_revision: Union[str, None] = "8120ebc75366"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"start_date",
|
||||||
|
existing_type=postgresql.TIMESTAMP(),
|
||||||
|
type_=sa.DateTime(timezone=True),
|
||||||
|
existing_nullable=True,
|
||||||
|
)
|
||||||
|
batch_op.alter_column(
|
||||||
|
"end_date",
|
||||||
|
existing_type=postgresql.TIMESTAMP(),
|
||||||
|
type_=sa.DateTime(timezone=True),
|
||||||
|
existing_nullable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"consent_timestamp",
|
||||||
|
existing_type=postgresql.TIMESTAMP(),
|
||||||
|
type_=sa.DateTime(timezone=True),
|
||||||
|
existing_nullable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"recorded_at",
|
||||||
|
existing_type=postgresql.TIMESTAMP(),
|
||||||
|
type_=sa.DateTime(timezone=True),
|
||||||
|
existing_nullable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"created_at",
|
||||||
|
existing_type=postgresql.TIMESTAMP(),
|
||||||
|
type_=sa.DateTime(timezone=True),
|
||||||
|
existing_nullable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"created_at",
|
||||||
|
existing_type=postgresql.TIMESTAMP(),
|
||||||
|
type_=sa.DateTime(timezone=True),
|
||||||
|
existing_nullable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"created_at",
|
||||||
|
existing_type=sa.DateTime(timezone=True),
|
||||||
|
type_=postgresql.TIMESTAMP(),
|
||||||
|
existing_nullable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"created_at",
|
||||||
|
existing_type=sa.DateTime(timezone=True),
|
||||||
|
type_=postgresql.TIMESTAMP(),
|
||||||
|
existing_nullable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"recorded_at",
|
||||||
|
existing_type=sa.DateTime(timezone=True),
|
||||||
|
type_=postgresql.TIMESTAMP(),
|
||||||
|
existing_nullable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"consent_timestamp",
|
||||||
|
existing_type=sa.DateTime(timezone=True),
|
||||||
|
type_=postgresql.TIMESTAMP(),
|
||||||
|
existing_nullable=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
|
batch_op.alter_column(
|
||||||
|
"end_date",
|
||||||
|
existing_type=sa.DateTime(timezone=True),
|
||||||
|
type_=postgresql.TIMESTAMP(),
|
||||||
|
existing_nullable=True,
|
||||||
|
)
|
||||||
|
batch_op.alter_column(
|
||||||
|
"start_date",
|
||||||
|
existing_type=sa.DateTime(timezone=True),
|
||||||
|
type_=postgresql.TIMESTAMP(),
|
||||||
|
existing_nullable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
||||||
@@ -25,7 +25,7 @@ def upgrade() -> None:
|
|||||||
sa.Column(
|
sa.Column(
|
||||||
"is_shared",
|
"is_shared",
|
||||||
sa.Boolean(),
|
sa.Boolean(),
|
||||||
server_default=sa.text("0"),
|
server_default=sa.text("false"),
|
||||||
nullable=False,
|
nullable=False,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -23,7 +23,10 @@ def upgrade() -> None:
|
|||||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||||
batch_op.add_column(
|
batch_op.add_column(
|
||||||
sa.Column(
|
sa.Column(
|
||||||
"is_active", sa.Boolean(), server_default=sa.text("1"), nullable=False
|
"is_active",
|
||||||
|
sa.Boolean(),
|
||||||
|
server_default=sa.text("true"),
|
||||||
|
nullable=False,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -0,0 +1,41 @@
|
|||||||
|
"""add_search_optimization_indexes
|
||||||
|
|
||||||
|
Revision ID: b1c33bd09963
|
||||||
|
Revises: 9f5c78d352d6
|
||||||
|
Create Date: 2025-08-14 17:26:02.117408
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Sequence, Union
|
||||||
|
|
||||||
|
from alembic import op
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision: str = "b1c33bd09963"
|
||||||
|
down_revision: Union[str, None] = "9f5c78d352d6"
|
||||||
|
branch_labels: Union[str, Sequence[str], None] = None
|
||||||
|
depends_on: Union[str, Sequence[str], None] = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade() -> None:
|
||||||
|
# Add indexes for actual search filtering patterns used in frontend
|
||||||
|
# Based on /browse page filters: room_id and source_kind
|
||||||
|
|
||||||
|
# Index for room_id + created_at (for room-specific searches with date ordering)
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_room_id_created_at",
|
||||||
|
"transcript",
|
||||||
|
["room_id", "created_at"],
|
||||||
|
if_not_exists=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Index for source_kind alone (actively used filter in frontend)
|
||||||
|
op.create_index(
|
||||||
|
"idx_transcript_source_kind", "transcript", ["source_kind"], if_not_exists=True
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade() -> None:
|
||||||
|
# Remove the indexes in reverse order
|
||||||
|
op.drop_index("idx_transcript_source_kind", "transcript", if_exists=True)
|
||||||
|
op.drop_index("idx_transcript_room_id_created_at", "transcript", if_exists=True)
|
||||||
@@ -23,7 +23,7 @@ def upgrade() -> None:
|
|||||||
op.add_column(
|
op.add_column(
|
||||||
"transcript",
|
"transcript",
|
||||||
sa.Column(
|
sa.Column(
|
||||||
"reviewed", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
"reviewed", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
# ### end Alembic commands ###
|
# ### end Alembic commands ###
|
||||||
|
|||||||
@@ -32,14 +32,14 @@ dependencies = [
|
|||||||
"redis>=5.0.1",
|
"redis>=5.0.1",
|
||||||
"python-jose[cryptography]>=3.3.0",
|
"python-jose[cryptography]>=3.3.0",
|
||||||
"python-multipart>=0.0.6",
|
"python-multipart>=0.0.6",
|
||||||
"faster-whisper>=0.10.0",
|
|
||||||
"transformers>=4.36.2",
|
"transformers>=4.36.2",
|
||||||
"black==24.1.1",
|
|
||||||
"jsonschema>=4.23.0",
|
"jsonschema>=4.23.0",
|
||||||
"openai>=1.59.7",
|
"openai>=1.59.7",
|
||||||
"psycopg2-binary>=2.9.10",
|
"psycopg2-binary>=2.9.10",
|
||||||
"llama-index>=0.12.52",
|
"llama-index>=0.12.52",
|
||||||
"llama-index-llms-openai-like>=0.4.0",
|
"llama-index-llms-openai-like>=0.4.0",
|
||||||
|
"pytest-env>=1.1.5",
|
||||||
|
"webvtt-py>=0.5.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
[dependency-groups]
|
[dependency-groups]
|
||||||
@@ -56,6 +56,9 @@ tests = [
|
|||||||
"httpx-ws>=0.4.1",
|
"httpx-ws>=0.4.1",
|
||||||
"pytest-httpx>=0.23.1",
|
"pytest-httpx>=0.23.1",
|
||||||
"pytest-celery>=0.0.0",
|
"pytest-celery>=0.0.0",
|
||||||
|
"pytest-recording>=0.13.4",
|
||||||
|
"pytest-docker>=3.2.3",
|
||||||
|
"asgi-lifespan>=2.1.0",
|
||||||
]
|
]
|
||||||
aws = ["aioboto3>=11.2.0"]
|
aws = ["aioboto3>=11.2.0"]
|
||||||
evaluation = [
|
evaluation = [
|
||||||
@@ -64,6 +67,15 @@ evaluation = [
|
|||||||
"tqdm>=4.66.0",
|
"tqdm>=4.66.0",
|
||||||
"pydantic>=2.1.1",
|
"pydantic>=2.1.1",
|
||||||
]
|
]
|
||||||
|
local = [
|
||||||
|
"pyannote-audio>=3.3.2",
|
||||||
|
"faster-whisper>=0.10.0",
|
||||||
|
]
|
||||||
|
silero-vad = [
|
||||||
|
"silero-vad>=5.1.2",
|
||||||
|
"torch>=2.8.0",
|
||||||
|
"torchaudio>=2.8.0",
|
||||||
|
]
|
||||||
|
|
||||||
[tool.uv]
|
[tool.uv]
|
||||||
default-groups = [
|
default-groups = [
|
||||||
@@ -71,6 +83,21 @@ default-groups = [
|
|||||||
"tests",
|
"tests",
|
||||||
"aws",
|
"aws",
|
||||||
"evaluation",
|
"evaluation",
|
||||||
|
"local",
|
||||||
|
"silero-vad"
|
||||||
|
]
|
||||||
|
|
||||||
|
[[tool.uv.index]]
|
||||||
|
name = "pytorch-cpu"
|
||||||
|
url = "https://download.pytorch.org/whl/cpu"
|
||||||
|
explicit = true
|
||||||
|
|
||||||
|
[tool.uv.sources]
|
||||||
|
torch = [
|
||||||
|
{ index = "pytorch-cpu" },
|
||||||
|
]
|
||||||
|
torchaudio = [
|
||||||
|
{ index = "pytorch-cpu" },
|
||||||
]
|
]
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
@@ -83,10 +110,28 @@ packages = ["reflector"]
|
|||||||
[tool.coverage.run]
|
[tool.coverage.run]
|
||||||
source = ["reflector"]
|
source = ["reflector"]
|
||||||
|
|
||||||
|
[tool.pytest_env]
|
||||||
|
ENVIRONMENT = "pytest"
|
||||||
|
DATABASE_URL = "postgresql://test_user:test_password@localhost:15432/reflector_test"
|
||||||
|
|
||||||
[tool.pytest.ini_options]
|
[tool.pytest.ini_options]
|
||||||
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
||||||
testpaths = ["tests"]
|
testpaths = ["tests"]
|
||||||
asyncio_mode = "auto"
|
asyncio_mode = "auto"
|
||||||
|
markers = [
|
||||||
|
"gpu_modal: mark test to run only with GPU Modal endpoints (deselect with '-m \"not gpu_modal\"')",
|
||||||
|
]
|
||||||
|
|
||||||
|
[tool.ruff.lint]
|
||||||
|
select = [
|
||||||
|
"I", # isort - import sorting
|
||||||
|
"F401", # unused imports
|
||||||
|
"PLC0415", # import-outside-top-level - detect inline imports
|
||||||
|
]
|
||||||
|
|
||||||
[tool.ruff.lint.per-file-ignores]
|
[tool.ruff.lint.per-file-ignores]
|
||||||
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
||||||
|
"gpu/**.py" = ["PLC0415"]
|
||||||
|
"reflector/tools/**.py" = ["PLC0415"]
|
||||||
|
"migrations/versions/**.py" = ["PLC0415"]
|
||||||
|
"tests/**.py" = ["PLC0415"]
|
||||||
|
|||||||
@@ -12,7 +12,6 @@ from reflector.events import subscribers_shutdown, subscribers_startup
|
|||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
from reflector.metrics import metrics_init
|
from reflector.metrics import metrics_init
|
||||||
from reflector.settings import settings
|
from reflector.settings import settings
|
||||||
from reflector.views.daily import router as daily_router
|
|
||||||
from reflector.views.meetings import router as meetings_router
|
from reflector.views.meetings import router as meetings_router
|
||||||
from reflector.views.rooms import router as rooms_router
|
from reflector.views.rooms import router as rooms_router
|
||||||
from reflector.views.rtc_offer import router as rtc_offer_router
|
from reflector.views.rtc_offer import router as rtc_offer_router
|
||||||
@@ -87,7 +86,6 @@ app.include_router(transcripts_process_router, prefix="/v1")
|
|||||||
app.include_router(user_router, prefix="/v1")
|
app.include_router(user_router, prefix="/v1")
|
||||||
app.include_router(zulip_router, prefix="/v1")
|
app.include_router(zulip_router, prefix="/v1")
|
||||||
app.include_router(whereby_router, prefix="/v1")
|
app.include_router(whereby_router, prefix="/v1")
|
||||||
app.include_router(daily_router, prefix="/v1")
|
|
||||||
add_pagination(app)
|
add_pagination(app)
|
||||||
|
|
||||||
# prepare celery
|
# prepare celery
|
||||||
|
|||||||
27
server/reflector/asynctask.py
Normal file
27
server/reflector/asynctask.py
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
import asyncio
|
||||||
|
import functools
|
||||||
|
|
||||||
|
from reflector.db import get_database
|
||||||
|
|
||||||
|
|
||||||
|
def asynctask(f):
|
||||||
|
@functools.wraps(f)
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
async def run_with_db():
|
||||||
|
database = get_database()
|
||||||
|
await database.connect()
|
||||||
|
try:
|
||||||
|
return await f(*args, **kwargs)
|
||||||
|
finally:
|
||||||
|
await database.disconnect()
|
||||||
|
|
||||||
|
coro = run_with_db()
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_running_loop()
|
||||||
|
except RuntimeError:
|
||||||
|
loop = None
|
||||||
|
if loop and loop.is_running():
|
||||||
|
return loop.run_until_complete(coro)
|
||||||
|
return asyncio.run(coro)
|
||||||
|
|
||||||
|
return wrapper
|
||||||
@@ -1,12 +1,28 @@
|
|||||||
|
import contextvars
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import databases
|
import databases
|
||||||
import sqlalchemy
|
import sqlalchemy
|
||||||
|
|
||||||
from reflector.events import subscribers_shutdown, subscribers_startup
|
from reflector.events import subscribers_shutdown, subscribers_startup
|
||||||
from reflector.settings import settings
|
from reflector.settings import settings
|
||||||
|
|
||||||
database = databases.Database(settings.DATABASE_URL)
|
|
||||||
metadata = sqlalchemy.MetaData()
|
metadata = sqlalchemy.MetaData()
|
||||||
|
|
||||||
|
_database_context: contextvars.ContextVar[Optional[databases.Database]] = (
|
||||||
|
contextvars.ContextVar("database", default=None)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_database() -> databases.Database:
|
||||||
|
"""Get database instance for current asyncio context"""
|
||||||
|
db = _database_context.get()
|
||||||
|
if db is None:
|
||||||
|
db = databases.Database(settings.DATABASE_URL)
|
||||||
|
_database_context.set(db)
|
||||||
|
return db
|
||||||
|
|
||||||
|
|
||||||
# import models
|
# import models
|
||||||
import reflector.db.meetings # noqa
|
import reflector.db.meetings # noqa
|
||||||
import reflector.db.recordings # noqa
|
import reflector.db.recordings # noqa
|
||||||
@@ -14,16 +30,18 @@ import reflector.db.rooms # noqa
|
|||||||
import reflector.db.transcripts # noqa
|
import reflector.db.transcripts # noqa
|
||||||
|
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
if "sqlite" in settings.DATABASE_URL:
|
if "postgres" not in settings.DATABASE_URL:
|
||||||
kwargs["connect_args"] = {"check_same_thread": False}
|
raise Exception("Only postgres database is supported in reflector")
|
||||||
engine = sqlalchemy.create_engine(settings.DATABASE_URL, **kwargs)
|
engine = sqlalchemy.create_engine(settings.DATABASE_URL, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
@subscribers_startup.append
|
@subscribers_startup.append
|
||||||
async def database_connect(_):
|
async def database_connect(_):
|
||||||
|
database = get_database()
|
||||||
await database.connect()
|
await database.connect()
|
||||||
|
|
||||||
|
|
||||||
@subscribers_shutdown.append
|
@subscribers_shutdown.append
|
||||||
async def database_disconnect(_):
|
async def database_disconnect(_):
|
||||||
|
database = get_database()
|
||||||
await database.disconnect()
|
await database.disconnect()
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ import sqlalchemy as sa
|
|||||||
from fastapi import HTTPException
|
from fastapi import HTTPException
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
from reflector.db import database, metadata
|
from reflector.db import get_database, metadata
|
||||||
from reflector.db.rooms import Room
|
from reflector.db.rooms import Room
|
||||||
from reflector.utils import generate_uuid4
|
from reflector.utils import generate_uuid4
|
||||||
|
|
||||||
@@ -16,8 +16,8 @@ meetings = sa.Table(
|
|||||||
sa.Column("room_name", sa.String),
|
sa.Column("room_name", sa.String),
|
||||||
sa.Column("room_url", sa.String),
|
sa.Column("room_url", sa.String),
|
||||||
sa.Column("host_room_url", sa.String),
|
sa.Column("host_room_url", sa.String),
|
||||||
sa.Column("start_date", sa.DateTime),
|
sa.Column("start_date", sa.DateTime(timezone=True)),
|
||||||
sa.Column("end_date", sa.DateTime),
|
sa.Column("end_date", sa.DateTime(timezone=True)),
|
||||||
sa.Column("user_id", sa.String),
|
sa.Column("user_id", sa.String),
|
||||||
sa.Column("room_id", sa.String),
|
sa.Column("room_id", sa.String),
|
||||||
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||||
@@ -41,23 +41,28 @@ meetings = sa.Table(
|
|||||||
nullable=False,
|
nullable=False,
|
||||||
server_default=sa.true(),
|
server_default=sa.true(),
|
||||||
),
|
),
|
||||||
sa.Column(
|
|
||||||
"platform",
|
|
||||||
sa.String,
|
|
||||||
nullable=False,
|
|
||||||
server_default="whereby",
|
|
||||||
),
|
|
||||||
sa.Index("idx_meeting_room_id", "room_id"),
|
sa.Index("idx_meeting_room_id", "room_id"),
|
||||||
|
sa.Index(
|
||||||
|
"idx_one_active_meeting_per_room",
|
||||||
|
"room_id",
|
||||||
|
unique=True,
|
||||||
|
postgresql_where=sa.text("is_active = true"),
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
meeting_consent = sa.Table(
|
meeting_consent = sa.Table(
|
||||||
"meeting_consent",
|
"meeting_consent",
|
||||||
metadata,
|
metadata,
|
||||||
sa.Column("id", sa.String, primary_key=True),
|
sa.Column("id", sa.String, primary_key=True),
|
||||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
sa.Column(
|
||||||
|
"meeting_id",
|
||||||
|
sa.String,
|
||||||
|
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||||
|
nullable=False,
|
||||||
|
),
|
||||||
sa.Column("user_id", sa.String),
|
sa.Column("user_id", sa.String),
|
||||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||||
sa.Column("consent_timestamp", sa.DateTime, nullable=False),
|
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -85,7 +90,6 @@ class Meeting(BaseModel):
|
|||||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||||
] = "automatic-2nd-participant"
|
] = "automatic-2nd-participant"
|
||||||
num_clients: int = 0
|
num_clients: int = 0
|
||||||
platform: Literal["whereby", "daily"] = "whereby"
|
|
||||||
|
|
||||||
|
|
||||||
class MeetingController:
|
class MeetingController:
|
||||||
@@ -116,10 +120,9 @@ class MeetingController:
|
|||||||
room_mode=room.room_mode,
|
room_mode=room.room_mode,
|
||||||
recording_type=room.recording_type,
|
recording_type=room.recording_type,
|
||||||
recording_trigger=room.recording_trigger,
|
recording_trigger=room.recording_trigger,
|
||||||
platform=room.platform,
|
|
||||||
)
|
)
|
||||||
query = meetings.insert().values(**meeting.model_dump())
|
query = meetings.insert().values(**meeting.model_dump())
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
return meeting
|
return meeting
|
||||||
|
|
||||||
async def get_all_active(self) -> list[Meeting]:
|
async def get_all_active(self) -> list[Meeting]:
|
||||||
@@ -127,7 +130,7 @@ class MeetingController:
|
|||||||
Get active meetings.
|
Get active meetings.
|
||||||
"""
|
"""
|
||||||
query = meetings.select().where(meetings.c.is_active)
|
query = meetings.select().where(meetings.c.is_active)
|
||||||
return await database.fetch_all(query)
|
return await get_database().fetch_all(query)
|
||||||
|
|
||||||
async def get_by_room_name(
|
async def get_by_room_name(
|
||||||
self,
|
self,
|
||||||
@@ -137,7 +140,7 @@ class MeetingController:
|
|||||||
Get a meeting by room name.
|
Get a meeting by room name.
|
||||||
"""
|
"""
|
||||||
query = meetings.select().where(meetings.c.room_name == room_name)
|
query = meetings.select().where(meetings.c.room_name == room_name)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
@@ -159,7 +162,7 @@ class MeetingController:
|
|||||||
)
|
)
|
||||||
.order_by(end_date.desc())
|
.order_by(end_date.desc())
|
||||||
)
|
)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
@@ -170,7 +173,7 @@ class MeetingController:
|
|||||||
Get a meeting by id
|
Get a meeting by id
|
||||||
"""
|
"""
|
||||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
return Meeting(**result)
|
return Meeting(**result)
|
||||||
@@ -182,7 +185,7 @@ class MeetingController:
|
|||||||
If not found, it will raise a 404 error.
|
If not found, it will raise a 404 error.
|
||||||
"""
|
"""
|
||||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||||
|
|
||||||
@@ -194,7 +197,7 @@ class MeetingController:
|
|||||||
|
|
||||||
async def update_meeting(self, meeting_id: str, **kwargs):
|
async def update_meeting(self, meeting_id: str, **kwargs):
|
||||||
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
|
|
||||||
|
|
||||||
class MeetingConsentController:
|
class MeetingConsentController:
|
||||||
@@ -202,7 +205,7 @@ class MeetingConsentController:
|
|||||||
query = meeting_consent.select().where(
|
query = meeting_consent.select().where(
|
||||||
meeting_consent.c.meeting_id == meeting_id
|
meeting_consent.c.meeting_id == meeting_id
|
||||||
)
|
)
|
||||||
results = await database.fetch_all(query)
|
results = await get_database().fetch_all(query)
|
||||||
return [MeetingConsent(**result) for result in results]
|
return [MeetingConsent(**result) for result in results]
|
||||||
|
|
||||||
async def get_by_meeting_and_user(
|
async def get_by_meeting_and_user(
|
||||||
@@ -213,7 +216,7 @@ class MeetingConsentController:
|
|||||||
meeting_consent.c.meeting_id == meeting_id,
|
meeting_consent.c.meeting_id == meeting_id,
|
||||||
meeting_consent.c.user_id == user_id,
|
meeting_consent.c.user_id == user_id,
|
||||||
)
|
)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if result is None:
|
if result is None:
|
||||||
return None
|
return None
|
||||||
return MeetingConsent(**result) if result else None
|
return MeetingConsent(**result) if result else None
|
||||||
@@ -235,14 +238,14 @@ class MeetingConsentController:
|
|||||||
consent_timestamp=consent.consent_timestamp,
|
consent_timestamp=consent.consent_timestamp,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
|
|
||||||
existing.consent_given = consent.consent_given
|
existing.consent_given = consent.consent_given
|
||||||
existing.consent_timestamp = consent.consent_timestamp
|
existing.consent_timestamp = consent.consent_timestamp
|
||||||
return existing
|
return existing
|
||||||
|
|
||||||
query = meeting_consent.insert().values(**consent.model_dump())
|
query = meeting_consent.insert().values(**consent.model_dump())
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
return consent
|
return consent
|
||||||
|
|
||||||
async def has_any_denial(self, meeting_id: str) -> bool:
|
async def has_any_denial(self, meeting_id: str) -> bool:
|
||||||
@@ -251,7 +254,7 @@ class MeetingConsentController:
|
|||||||
meeting_consent.c.meeting_id == meeting_id,
|
meeting_consent.c.meeting_id == meeting_id,
|
||||||
meeting_consent.c.consent_given.is_(False),
|
meeting_consent.c.consent_given.is_(False),
|
||||||
)
|
)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
return result is not None
|
return result is not None
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from typing import Literal
|
|||||||
import sqlalchemy as sa
|
import sqlalchemy as sa
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
from reflector.db import database, metadata
|
from reflector.db import get_database, metadata
|
||||||
from reflector.utils import generate_uuid4
|
from reflector.utils import generate_uuid4
|
||||||
|
|
||||||
recordings = sa.Table(
|
recordings = sa.Table(
|
||||||
@@ -13,7 +13,7 @@ recordings = sa.Table(
|
|||||||
sa.Column("id", sa.String, primary_key=True),
|
sa.Column("id", sa.String, primary_key=True),
|
||||||
sa.Column("bucket_name", sa.String, nullable=False),
|
sa.Column("bucket_name", sa.String, nullable=False),
|
||||||
sa.Column("object_key", sa.String, nullable=False),
|
sa.Column("object_key", sa.String, nullable=False),
|
||||||
sa.Column("recorded_at", sa.DateTime, nullable=False),
|
sa.Column("recorded_at", sa.DateTime(timezone=True), nullable=False),
|
||||||
sa.Column(
|
sa.Column(
|
||||||
"status",
|
"status",
|
||||||
sa.String,
|
sa.String,
|
||||||
@@ -37,12 +37,12 @@ class Recording(BaseModel):
|
|||||||
class RecordingController:
|
class RecordingController:
|
||||||
async def create(self, recording: Recording):
|
async def create(self, recording: Recording):
|
||||||
query = recordings.insert().values(**recording.model_dump())
|
query = recordings.insert().values(**recording.model_dump())
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
return recording
|
return recording
|
||||||
|
|
||||||
async def get_by_id(self, id: str) -> Recording:
|
async def get_by_id(self, id: str) -> Recording:
|
||||||
query = recordings.select().where(recordings.c.id == id)
|
query = recordings.select().where(recordings.c.id == id)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
return Recording(**result) if result else None
|
return Recording(**result) if result else None
|
||||||
|
|
||||||
async def get_by_object_key(self, bucket_name: str, object_key: str) -> Recording:
|
async def get_by_object_key(self, bucket_name: str, object_key: str) -> Recording:
|
||||||
@@ -50,8 +50,12 @@ class RecordingController:
|
|||||||
recordings.c.bucket_name == bucket_name,
|
recordings.c.bucket_name == bucket_name,
|
||||||
recordings.c.object_key == object_key,
|
recordings.c.object_key == object_key,
|
||||||
)
|
)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
return Recording(**result) if result else None
|
return Recording(**result) if result else None
|
||||||
|
|
||||||
|
async def remove_by_id(self, id: str) -> None:
|
||||||
|
query = recordings.delete().where(recordings.c.id == id)
|
||||||
|
await get_database().execute(query)
|
||||||
|
|
||||||
|
|
||||||
recordings_controller = RecordingController()
|
recordings_controller = RecordingController()
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
from datetime import datetime
|
import secrets
|
||||||
|
from datetime import datetime, timezone
|
||||||
from sqlite3 import IntegrityError
|
from sqlite3 import IntegrityError
|
||||||
from typing import Literal
|
from typing import Literal
|
||||||
|
|
||||||
@@ -7,7 +8,7 @@ from fastapi import HTTPException
|
|||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from sqlalchemy.sql import false, or_
|
from sqlalchemy.sql import false, or_
|
||||||
|
|
||||||
from reflector.db import database, metadata
|
from reflector.db import get_database, metadata
|
||||||
from reflector.utils import generate_uuid4
|
from reflector.utils import generate_uuid4
|
||||||
|
|
||||||
rooms = sqlalchemy.Table(
|
rooms = sqlalchemy.Table(
|
||||||
@@ -16,7 +17,7 @@ rooms = sqlalchemy.Table(
|
|||||||
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
||||||
sqlalchemy.Column("name", sqlalchemy.String, nullable=False, unique=True),
|
sqlalchemy.Column("name", sqlalchemy.String, nullable=False, unique=True),
|
||||||
sqlalchemy.Column("user_id", sqlalchemy.String, nullable=False),
|
sqlalchemy.Column("user_id", sqlalchemy.String, nullable=False),
|
||||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime, nullable=False),
|
sqlalchemy.Column("created_at", sqlalchemy.DateTime(timezone=True), nullable=False),
|
||||||
sqlalchemy.Column(
|
sqlalchemy.Column(
|
||||||
"zulip_auto_post", sqlalchemy.Boolean, nullable=False, server_default=false()
|
"zulip_auto_post", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||||
),
|
),
|
||||||
@@ -40,9 +41,8 @@ rooms = sqlalchemy.Table(
|
|||||||
sqlalchemy.Column(
|
sqlalchemy.Column(
|
||||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||||
),
|
),
|
||||||
sqlalchemy.Column(
|
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
|
||||||
"platform", sqlalchemy.String, nullable=False, server_default="whereby"
|
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
|
||||||
),
|
|
||||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -51,7 +51,7 @@ class Room(BaseModel):
|
|||||||
id: str = Field(default_factory=generate_uuid4)
|
id: str = Field(default_factory=generate_uuid4)
|
||||||
name: str
|
name: str
|
||||||
user_id: str
|
user_id: str
|
||||||
created_at: datetime = Field(default_factory=datetime.utcnow)
|
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||||
zulip_auto_post: bool = False
|
zulip_auto_post: bool = False
|
||||||
zulip_stream: str = ""
|
zulip_stream: str = ""
|
||||||
zulip_topic: str = ""
|
zulip_topic: str = ""
|
||||||
@@ -62,7 +62,8 @@ class Room(BaseModel):
|
|||||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||||
] = "automatic-2nd-participant"
|
] = "automatic-2nd-participant"
|
||||||
is_shared: bool = False
|
is_shared: bool = False
|
||||||
platform: Literal["whereby", "daily"] = "whereby"
|
webhook_url: str | None = None
|
||||||
|
webhook_secret: str | None = None
|
||||||
|
|
||||||
|
|
||||||
class RoomController:
|
class RoomController:
|
||||||
@@ -96,7 +97,7 @@ class RoomController:
|
|||||||
if return_query:
|
if return_query:
|
||||||
return query
|
return query
|
||||||
|
|
||||||
results = await database.fetch_all(query)
|
results = await get_database().fetch_all(query)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
async def add(
|
async def add(
|
||||||
@@ -111,11 +112,15 @@ class RoomController:
|
|||||||
recording_type: str,
|
recording_type: str,
|
||||||
recording_trigger: str,
|
recording_trigger: str,
|
||||||
is_shared: bool,
|
is_shared: bool,
|
||||||
platform: str = "whereby",
|
webhook_url: str = "",
|
||||||
|
webhook_secret: str = "",
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Add a new room
|
Add a new room
|
||||||
"""
|
"""
|
||||||
|
if webhook_url and not webhook_secret:
|
||||||
|
webhook_secret = secrets.token_urlsafe(32)
|
||||||
|
|
||||||
room = Room(
|
room = Room(
|
||||||
name=name,
|
name=name,
|
||||||
user_id=user_id,
|
user_id=user_id,
|
||||||
@@ -127,11 +132,12 @@ class RoomController:
|
|||||||
recording_type=recording_type,
|
recording_type=recording_type,
|
||||||
recording_trigger=recording_trigger,
|
recording_trigger=recording_trigger,
|
||||||
is_shared=is_shared,
|
is_shared=is_shared,
|
||||||
platform=platform,
|
webhook_url=webhook_url,
|
||||||
|
webhook_secret=webhook_secret,
|
||||||
)
|
)
|
||||||
query = rooms.insert().values(**room.model_dump())
|
query = rooms.insert().values(**room.model_dump())
|
||||||
try:
|
try:
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
except IntegrityError:
|
except IntegrityError:
|
||||||
raise HTTPException(status_code=400, detail="Room name is not unique")
|
raise HTTPException(status_code=400, detail="Room name is not unique")
|
||||||
return room
|
return room
|
||||||
@@ -140,9 +146,12 @@ class RoomController:
|
|||||||
"""
|
"""
|
||||||
Update a room fields with key/values in values
|
Update a room fields with key/values in values
|
||||||
"""
|
"""
|
||||||
|
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||||
|
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||||
|
|
||||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||||
try:
|
try:
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
except IntegrityError:
|
except IntegrityError:
|
||||||
raise HTTPException(status_code=400, detail="Room name is not unique")
|
raise HTTPException(status_code=400, detail="Room name is not unique")
|
||||||
|
|
||||||
@@ -157,7 +166,7 @@ class RoomController:
|
|||||||
query = rooms.select().where(rooms.c.id == room_id)
|
query = rooms.select().where(rooms.c.id == room_id)
|
||||||
if "user_id" in kwargs:
|
if "user_id" in kwargs:
|
||||||
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
return Room(**result)
|
return Room(**result)
|
||||||
@@ -169,7 +178,7 @@ class RoomController:
|
|||||||
query = rooms.select().where(rooms.c.name == room_name)
|
query = rooms.select().where(rooms.c.name == room_name)
|
||||||
if "user_id" in kwargs:
|
if "user_id" in kwargs:
|
||||||
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
return Room(**result)
|
return Room(**result)
|
||||||
@@ -181,7 +190,7 @@ class RoomController:
|
|||||||
If not found, it will raise a 404 error.
|
If not found, it will raise a 404 error.
|
||||||
"""
|
"""
|
||||||
query = rooms.select().where(rooms.c.id == meeting_id)
|
query = rooms.select().where(rooms.c.id == meeting_id)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
raise HTTPException(status_code=404, detail="Room not found")
|
raise HTTPException(status_code=404, detail="Room not found")
|
||||||
|
|
||||||
@@ -203,7 +212,7 @@ class RoomController:
|
|||||||
if user_id is not None and room.user_id != user_id:
|
if user_id is not None and room.user_id != user_id:
|
||||||
return
|
return
|
||||||
query = rooms.delete().where(rooms.c.id == room_id)
|
query = rooms.delete().where(rooms.c.id == room_id)
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
|
|
||||||
|
|
||||||
rooms_controller = RoomController()
|
rooms_controller = RoomController()
|
||||||
|
|||||||
468
server/reflector/db/search.py
Normal file
468
server/reflector/db/search.py
Normal file
@@ -0,0 +1,468 @@
|
|||||||
|
"""Search functionality for transcripts and other entities."""
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from datetime import datetime
|
||||||
|
from io import StringIO
|
||||||
|
from typing import Annotated, Any, Dict, Iterator
|
||||||
|
|
||||||
|
import sqlalchemy
|
||||||
|
import webvtt
|
||||||
|
from databases.interfaces import Record as DbRecord
|
||||||
|
from fastapi import HTTPException
|
||||||
|
from pydantic import (
|
||||||
|
BaseModel,
|
||||||
|
Field,
|
||||||
|
NonNegativeFloat,
|
||||||
|
NonNegativeInt,
|
||||||
|
TypeAdapter,
|
||||||
|
ValidationError,
|
||||||
|
constr,
|
||||||
|
field_serializer,
|
||||||
|
)
|
||||||
|
|
||||||
|
from reflector.db import get_database
|
||||||
|
from reflector.db.rooms import rooms
|
||||||
|
from reflector.db.transcripts import SourceKind, transcripts
|
||||||
|
from reflector.db.utils import is_postgresql
|
||||||
|
from reflector.logger import logger
|
||||||
|
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||||
|
|
||||||
|
DEFAULT_SEARCH_LIMIT = 20
|
||||||
|
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||||
|
DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||||
|
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||||
|
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||||
|
|
||||||
|
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||||
|
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||||
|
SearchOffsetBase = Annotated[int, Field(ge=0)]
|
||||||
|
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||||
|
|
||||||
|
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||||
|
search_query_adapter = TypeAdapter(SearchQuery)
|
||||||
|
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||||
|
SearchOffset = Annotated[
|
||||||
|
SearchOffsetBase, Field(description="Number of results to skip")
|
||||||
|
]
|
||||||
|
SearchTotal = Annotated[
|
||||||
|
SearchTotalBase, Field(description="Total number of search results")
|
||||||
|
]
|
||||||
|
|
||||||
|
WEBVTT_SPEC_HEADER = "WEBVTT"
|
||||||
|
|
||||||
|
WebVTTContent = Annotated[
|
||||||
|
str,
|
||||||
|
Field(min_length=len(WEBVTT_SPEC_HEADER), description="WebVTT content"),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class WebVTTProcessor:
|
||||||
|
"""Stateless processor for WebVTT content operations."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def parse(raw_content: str) -> WebVTTContent:
|
||||||
|
"""Parse WebVTT content and return it as a string."""
|
||||||
|
if not raw_content.startswith(WEBVTT_SPEC_HEADER):
|
||||||
|
raise ValueError(f"Invalid WebVTT content, no header {WEBVTT_SPEC_HEADER}")
|
||||||
|
return raw_content
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def extract_text(webvtt_content: WebVTTContent) -> str:
|
||||||
|
"""Extract plain text from WebVTT content using webvtt library."""
|
||||||
|
try:
|
||||||
|
buffer = StringIO(webvtt_content)
|
||||||
|
vtt = webvtt.read_buffer(buffer)
|
||||||
|
return " ".join(caption.text for caption in vtt if caption.text)
|
||||||
|
except webvtt.errors.MalformedFileError as e:
|
||||||
|
logger.warning(f"Malformed WebVTT content: {e}")
|
||||||
|
return ""
|
||||||
|
except (UnicodeDecodeError, ValueError) as e:
|
||||||
|
logger.warning(f"Failed to decode WebVTT content: {e}")
|
||||||
|
return ""
|
||||||
|
except AttributeError as e:
|
||||||
|
logger.error(
|
||||||
|
f"WebVTT parsing error - unexpected format: {e}", exc_info=True
|
||||||
|
)
|
||||||
|
return ""
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Unexpected error parsing WebVTT: {e}", exc_info=True)
|
||||||
|
return ""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def generate_snippets(
|
||||||
|
webvtt_content: WebVTTContent,
|
||||||
|
query: SearchQuery,
|
||||||
|
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||||
|
) -> list[str]:
|
||||||
|
"""Generate snippets from WebVTT content."""
|
||||||
|
return SnippetGenerator.generate(
|
||||||
|
WebVTTProcessor.extract_text(webvtt_content),
|
||||||
|
query,
|
||||||
|
max_snippets=max_snippets,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class SnippetCandidate:
|
||||||
|
"""Represents a candidate snippet with its position."""
|
||||||
|
|
||||||
|
_text: str
|
||||||
|
start: NonNegativeInt
|
||||||
|
_original_text_length: int
|
||||||
|
|
||||||
|
@property
|
||||||
|
def end(self) -> NonNegativeInt:
|
||||||
|
"""Calculate end position from start and raw text length."""
|
||||||
|
return self.start + len(self._text)
|
||||||
|
|
||||||
|
def text(self) -> str:
|
||||||
|
"""Get display text with ellipses added if needed."""
|
||||||
|
result = self._text.strip()
|
||||||
|
if self.start > 0:
|
||||||
|
result = "..." + result
|
||||||
|
if self.end < self._original_text_length:
|
||||||
|
result = result + "..."
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
class SearchParameters(BaseModel):
|
||||||
|
"""Validated search parameters for full-text search."""
|
||||||
|
|
||||||
|
query_text: SearchQuery | None = None
|
||||||
|
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||||
|
offset: SearchOffset = 0
|
||||||
|
user_id: str | None = None
|
||||||
|
room_id: str | None = None
|
||||||
|
source_kind: SourceKind | None = None
|
||||||
|
|
||||||
|
|
||||||
|
class SearchResultDB(BaseModel):
|
||||||
|
"""Intermediate model for validating raw database results."""
|
||||||
|
|
||||||
|
id: str = Field(..., min_length=1)
|
||||||
|
created_at: datetime
|
||||||
|
status: str = Field(..., min_length=1)
|
||||||
|
duration: float | None = Field(None, ge=0)
|
||||||
|
user_id: str | None = None
|
||||||
|
title: str | None = None
|
||||||
|
source_kind: SourceKind
|
||||||
|
room_id: str | None = None
|
||||||
|
rank: float = Field(..., ge=0, le=1)
|
||||||
|
|
||||||
|
|
||||||
|
class SearchResult(BaseModel):
|
||||||
|
"""Public search result model with computed fields."""
|
||||||
|
|
||||||
|
id: str = Field(..., min_length=1)
|
||||||
|
title: str | None = None
|
||||||
|
user_id: str | None = None
|
||||||
|
room_id: str | None = None
|
||||||
|
room_name: str | None = None
|
||||||
|
source_kind: SourceKind
|
||||||
|
created_at: datetime
|
||||||
|
status: str = Field(..., min_length=1)
|
||||||
|
rank: float = Field(..., ge=0, le=1)
|
||||||
|
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
|
||||||
|
search_snippets: list[str] = Field(
|
||||||
|
description="Text snippets around search matches"
|
||||||
|
)
|
||||||
|
total_match_count: NonNegativeInt = Field(
|
||||||
|
default=0, description="Total number of matches found in the transcript"
|
||||||
|
)
|
||||||
|
|
||||||
|
@field_serializer("created_at", when_used="json")
|
||||||
|
def serialize_datetime(self, dt: datetime) -> str:
|
||||||
|
if dt.tzinfo is None:
|
||||||
|
return dt.isoformat() + "Z"
|
||||||
|
return dt.isoformat()
|
||||||
|
|
||||||
|
|
||||||
|
class SnippetGenerator:
|
||||||
|
"""Stateless generator for text snippets and match operations."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def find_all_matches(text: str, query: str) -> Iterator[int]:
|
||||||
|
"""Generate all match positions for a query in text."""
|
||||||
|
if not text:
|
||||||
|
logger.warning("Empty text for search query in find_all_matches")
|
||||||
|
return
|
||||||
|
if not query:
|
||||||
|
logger.warning("Empty query for search text in find_all_matches")
|
||||||
|
return
|
||||||
|
|
||||||
|
text_lower = text.lower()
|
||||||
|
query_lower = query.lower()
|
||||||
|
start = 0
|
||||||
|
prev_start = start
|
||||||
|
while (pos := text_lower.find(query_lower, start)) != -1:
|
||||||
|
yield pos
|
||||||
|
start = pos + len(query_lower)
|
||||||
|
if start <= prev_start:
|
||||||
|
raise ValueError("panic! find_all_matches is not incremental")
|
||||||
|
prev_start = start
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||||
|
"""Count total number of matches for a query in text."""
|
||||||
|
ZERO = NonNegativeInt(0)
|
||||||
|
if not text:
|
||||||
|
logger.warning("Empty text for search query in count_matches")
|
||||||
|
return ZERO
|
||||||
|
assert query is not None
|
||||||
|
return NonNegativeInt(
|
||||||
|
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create_snippet(
|
||||||
|
text: str, match_pos: int, max_length: int = DEFAULT_SNIPPET_MAX_LENGTH
|
||||||
|
) -> SnippetCandidate:
|
||||||
|
"""Create a snippet from a match position."""
|
||||||
|
snippet_start = NonNegativeInt(max(0, match_pos - SNIPPET_CONTEXT_LENGTH))
|
||||||
|
snippet_end = min(len(text), match_pos + max_length - SNIPPET_CONTEXT_LENGTH)
|
||||||
|
|
||||||
|
snippet_text = text[snippet_start:snippet_end]
|
||||||
|
|
||||||
|
return SnippetCandidate(
|
||||||
|
_text=snippet_text, start=snippet_start, _original_text_length=len(text)
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def filter_non_overlapping(
|
||||||
|
candidates: Iterator[SnippetCandidate],
|
||||||
|
) -> Iterator[str]:
|
||||||
|
"""Filter out overlapping snippets and return only display text."""
|
||||||
|
last_end = 0
|
||||||
|
for candidate in candidates:
|
||||||
|
display_text = candidate.text()
|
||||||
|
# it means that next overlapping snippets simply don't get included
|
||||||
|
# it's fine as simplistic logic and users probably won't care much because they already have their search results just fin
|
||||||
|
if candidate.start >= last_end and display_text:
|
||||||
|
yield display_text
|
||||||
|
last_end = candidate.end
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def generate(
|
||||||
|
text: str,
|
||||||
|
query: SearchQuery,
|
||||||
|
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||||
|
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||||
|
) -> list[str]:
|
||||||
|
"""Generate snippets from text."""
|
||||||
|
assert query is not None
|
||||||
|
if not text:
|
||||||
|
logger.warning("Empty text for generate_snippets")
|
||||||
|
return []
|
||||||
|
|
||||||
|
candidates = (
|
||||||
|
SnippetGenerator.create_snippet(text, pos, max_length)
|
||||||
|
for pos in SnippetGenerator.find_all_matches(text, query)
|
||||||
|
)
|
||||||
|
filtered = SnippetGenerator.filter_non_overlapping(candidates)
|
||||||
|
snippets = list(itertools.islice(filtered, max_snippets))
|
||||||
|
|
||||||
|
# Fallback to first word search if no full matches
|
||||||
|
# it's another assumption: proper snippet logic generation is quite complicated and tied to db logic, so simplification is used here
|
||||||
|
if not snippets and " " in query:
|
||||||
|
first_word = query.split()[0]
|
||||||
|
return SnippetGenerator.generate(text, first_word, max_length, max_snippets)
|
||||||
|
|
||||||
|
return snippets
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def from_summary(
|
||||||
|
summary: str,
|
||||||
|
query: SearchQuery,
|
||||||
|
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||||
|
) -> list[str]:
|
||||||
|
"""Generate snippets from summary text."""
|
||||||
|
return SnippetGenerator.generate(summary, query, max_snippets=max_snippets)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def combine_sources(
|
||||||
|
summary: NonEmptyString | None,
|
||||||
|
webvtt: WebVTTContent | None,
|
||||||
|
query: SearchQuery,
|
||||||
|
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||||
|
) -> tuple[list[str], NonNegativeInt]:
|
||||||
|
"""Combine snippets from multiple sources and return total match count.
|
||||||
|
|
||||||
|
Returns (snippets, total_match_count) tuple.
|
||||||
|
|
||||||
|
snippets can be empty for real in case of e.g. title match
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert (
|
||||||
|
summary is not None or webvtt is not None
|
||||||
|
), "At least one source must be present"
|
||||||
|
|
||||||
|
webvtt_matches = 0
|
||||||
|
summary_matches = 0
|
||||||
|
|
||||||
|
if webvtt:
|
||||||
|
webvtt_text = WebVTTProcessor.extract_text(webvtt)
|
||||||
|
webvtt_matches = SnippetGenerator.count_matches(webvtt_text, query)
|
||||||
|
|
||||||
|
if summary:
|
||||||
|
summary_matches = SnippetGenerator.count_matches(summary, query)
|
||||||
|
|
||||||
|
total_matches = NonNegativeInt(webvtt_matches + summary_matches)
|
||||||
|
|
||||||
|
summary_snippets = (
|
||||||
|
SnippetGenerator.from_summary(summary, query) if summary else []
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(summary_snippets) >= max_total:
|
||||||
|
return summary_snippets[:max_total], total_matches
|
||||||
|
|
||||||
|
remaining = max_total - len(summary_snippets)
|
||||||
|
webvtt_snippets = (
|
||||||
|
WebVTTProcessor.generate_snippets(webvtt, query, remaining)
|
||||||
|
if webvtt
|
||||||
|
else []
|
||||||
|
)
|
||||||
|
|
||||||
|
return summary_snippets + webvtt_snippets, total_matches
|
||||||
|
|
||||||
|
|
||||||
|
class SearchController:
|
||||||
|
"""Controller for search operations across different entities."""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def search_transcripts(
|
||||||
|
cls, params: SearchParameters
|
||||||
|
) -> tuple[list[SearchResult], int]:
|
||||||
|
"""
|
||||||
|
Full-text search for transcripts using PostgreSQL tsvector.
|
||||||
|
Returns (results, total_count).
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not is_postgresql():
|
||||||
|
logger.warning(
|
||||||
|
"Full-text search requires PostgreSQL. Returning empty results."
|
||||||
|
)
|
||||||
|
return [], 0
|
||||||
|
|
||||||
|
base_columns = [
|
||||||
|
transcripts.c.id,
|
||||||
|
transcripts.c.title,
|
||||||
|
transcripts.c.created_at,
|
||||||
|
transcripts.c.duration,
|
||||||
|
transcripts.c.status,
|
||||||
|
transcripts.c.user_id,
|
||||||
|
transcripts.c.room_id,
|
||||||
|
transcripts.c.source_kind,
|
||||||
|
transcripts.c.webvtt,
|
||||||
|
transcripts.c.long_summary,
|
||||||
|
sqlalchemy.case(
|
||||||
|
(
|
||||||
|
transcripts.c.room_id.isnot(None) & rooms.c.id.is_(None),
|
||||||
|
"Deleted Room",
|
||||||
|
),
|
||||||
|
else_=rooms.c.name,
|
||||||
|
).label("room_name"),
|
||||||
|
]
|
||||||
|
search_query = None
|
||||||
|
if params.query_text is not None:
|
||||||
|
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||||
|
"english", params.query_text
|
||||||
|
)
|
||||||
|
rank_column = sqlalchemy.func.ts_rank(
|
||||||
|
transcripts.c.search_vector_en,
|
||||||
|
search_query,
|
||||||
|
32, # normalization flag: rank/(rank+1) for 0-1 range
|
||||||
|
).label("rank")
|
||||||
|
else:
|
||||||
|
rank_column = sqlalchemy.cast(1.0, sqlalchemy.Float).label("rank")
|
||||||
|
|
||||||
|
columns = base_columns + [rank_column]
|
||||||
|
base_query = sqlalchemy.select(columns).select_from(
|
||||||
|
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.query_text is not None:
|
||||||
|
# because already initialized based on params.query_text presence above
|
||||||
|
assert search_query is not None
|
||||||
|
base_query = base_query.where(
|
||||||
|
transcripts.c.search_vector_en.op("@@")(search_query)
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.user_id:
|
||||||
|
base_query = base_query.where(
|
||||||
|
sqlalchemy.or_(
|
||||||
|
transcripts.c.user_id == params.user_id, rooms.c.is_shared
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
base_query = base_query.where(rooms.c.is_shared)
|
||||||
|
if params.room_id:
|
||||||
|
base_query = base_query.where(transcripts.c.room_id == params.room_id)
|
||||||
|
if params.source_kind:
|
||||||
|
base_query = base_query.where(
|
||||||
|
transcripts.c.source_kind == params.source_kind
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.query_text is not None:
|
||||||
|
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||||
|
else:
|
||||||
|
order_by = sqlalchemy.desc(transcripts.c.created_at)
|
||||||
|
|
||||||
|
query = base_query.order_by(order_by).limit(params.limit).offset(params.offset)
|
||||||
|
|
||||||
|
rs = await get_database().fetch_all(query)
|
||||||
|
|
||||||
|
count_query = sqlalchemy.select([sqlalchemy.func.count()]).select_from(
|
||||||
|
base_query.alias("search_results")
|
||||||
|
)
|
||||||
|
total = await get_database().fetch_val(count_query)
|
||||||
|
|
||||||
|
def _process_result(r: DbRecord) -> SearchResult:
|
||||||
|
r_dict: Dict[str, Any] = dict(r)
|
||||||
|
|
||||||
|
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||||
|
webvtt: WebVTTContent | None
|
||||||
|
if webvtt_raw:
|
||||||
|
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||||
|
else:
|
||||||
|
webvtt = None
|
||||||
|
|
||||||
|
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||||
|
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||||
|
room_name: str | None = r_dict.pop("room_name", None)
|
||||||
|
db_result = SearchResultDB.model_validate(r_dict)
|
||||||
|
|
||||||
|
at_least_one_source = webvtt is not None or long_summary is not None
|
||||||
|
has_query = params.query_text is not None
|
||||||
|
snippets, total_match_count = (
|
||||||
|
SnippetGenerator.combine_sources(
|
||||||
|
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||||
|
)
|
||||||
|
if has_query and at_least_one_source
|
||||||
|
else ([], 0)
|
||||||
|
)
|
||||||
|
|
||||||
|
return SearchResult(
|
||||||
|
**db_result.model_dump(),
|
||||||
|
room_name=room_name,
|
||||||
|
search_snippets=snippets,
|
||||||
|
total_match_count=total_match_count,
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = [_process_result(r) for r in rs]
|
||||||
|
except ValidationError as e:
|
||||||
|
logger.error(f"Invalid search result data: {e}", exc_info=True)
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=500, detail="Internal search result data consistency error"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing search results: {e}", exc_info=True)
|
||||||
|
raise
|
||||||
|
|
||||||
|
return results, total
|
||||||
|
|
||||||
|
|
||||||
|
search_controller = SearchController()
|
||||||
|
webvtt_processor = WebVTTProcessor()
|
||||||
|
snippet_generator = SnippetGenerator()
|
||||||
@@ -3,7 +3,7 @@ import json
|
|||||||
import os
|
import os
|
||||||
import shutil
|
import shutil
|
||||||
from contextlib import asynccontextmanager
|
from contextlib import asynccontextmanager
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timedelta, timezone
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Literal
|
from typing import Any, Literal
|
||||||
|
|
||||||
@@ -11,13 +11,19 @@ import sqlalchemy
|
|||||||
from fastapi import HTTPException
|
from fastapi import HTTPException
|
||||||
from pydantic import BaseModel, ConfigDict, Field, field_serializer
|
from pydantic import BaseModel, ConfigDict, Field, field_serializer
|
||||||
from sqlalchemy import Enum
|
from sqlalchemy import Enum
|
||||||
|
from sqlalchemy.dialects.postgresql import TSVECTOR
|
||||||
from sqlalchemy.sql import false, or_
|
from sqlalchemy.sql import false, or_
|
||||||
|
|
||||||
from reflector.db import database, metadata
|
from reflector.db import get_database, metadata
|
||||||
|
from reflector.db.recordings import recordings_controller
|
||||||
|
from reflector.db.rooms import rooms
|
||||||
|
from reflector.db.utils import is_postgresql
|
||||||
|
from reflector.logger import logger
|
||||||
from reflector.processors.types import Word as ProcessorWord
|
from reflector.processors.types import Word as ProcessorWord
|
||||||
from reflector.settings import settings
|
from reflector.settings import settings
|
||||||
from reflector.storage import get_transcripts_storage
|
from reflector.storage import get_recordings_storage, get_transcripts_storage
|
||||||
from reflector.utils import generate_uuid4
|
from reflector.utils import generate_uuid4
|
||||||
|
from reflector.utils.webvtt import topics_to_webvtt
|
||||||
|
|
||||||
|
|
||||||
class SourceKind(enum.StrEnum):
|
class SourceKind(enum.StrEnum):
|
||||||
@@ -34,7 +40,7 @@ transcripts = sqlalchemy.Table(
|
|||||||
sqlalchemy.Column("status", sqlalchemy.String),
|
sqlalchemy.Column("status", sqlalchemy.String),
|
||||||
sqlalchemy.Column("locked", sqlalchemy.Boolean),
|
sqlalchemy.Column("locked", sqlalchemy.Boolean),
|
||||||
sqlalchemy.Column("duration", sqlalchemy.Float),
|
sqlalchemy.Column("duration", sqlalchemy.Float),
|
||||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime),
|
sqlalchemy.Column("created_at", sqlalchemy.DateTime(timezone=True)),
|
||||||
sqlalchemy.Column("title", sqlalchemy.String),
|
sqlalchemy.Column("title", sqlalchemy.String),
|
||||||
sqlalchemy.Column("short_summary", sqlalchemy.String),
|
sqlalchemy.Column("short_summary", sqlalchemy.String),
|
||||||
sqlalchemy.Column("long_summary", sqlalchemy.String),
|
sqlalchemy.Column("long_summary", sqlalchemy.String),
|
||||||
@@ -76,11 +82,38 @@ transcripts = sqlalchemy.Table(
|
|||||||
# same field could've been in recording/meeting, and it's maybe even ok to dupe it at need
|
# same field could've been in recording/meeting, and it's maybe even ok to dupe it at need
|
||||||
sqlalchemy.Column("audio_deleted", sqlalchemy.Boolean),
|
sqlalchemy.Column("audio_deleted", sqlalchemy.Boolean),
|
||||||
sqlalchemy.Column("room_id", sqlalchemy.String),
|
sqlalchemy.Column("room_id", sqlalchemy.String),
|
||||||
|
sqlalchemy.Column("webvtt", sqlalchemy.Text),
|
||||||
sqlalchemy.Index("idx_transcript_recording_id", "recording_id"),
|
sqlalchemy.Index("idx_transcript_recording_id", "recording_id"),
|
||||||
sqlalchemy.Index("idx_transcript_user_id", "user_id"),
|
sqlalchemy.Index("idx_transcript_user_id", "user_id"),
|
||||||
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
||||||
sqlalchemy.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
sqlalchemy.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
||||||
sqlalchemy.Index("idx_transcript_room_id", "room_id"),
|
sqlalchemy.Index("idx_transcript_room_id", "room_id"),
|
||||||
|
sqlalchemy.Index("idx_transcript_source_kind", "source_kind"),
|
||||||
|
sqlalchemy.Index("idx_transcript_room_id_created_at", "room_id", "created_at"),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add PostgreSQL-specific full-text search column
|
||||||
|
# This matches the migration in migrations/versions/116b2f287eab_add_full_text_search.py
|
||||||
|
if is_postgresql():
|
||||||
|
transcripts.append_column(
|
||||||
|
sqlalchemy.Column(
|
||||||
|
"search_vector_en",
|
||||||
|
TSVECTOR,
|
||||||
|
sqlalchemy.Computed(
|
||||||
|
"setweight(to_tsvector('english', coalesce(title, '')), 'A') || "
|
||||||
|
"setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') || "
|
||||||
|
"setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')",
|
||||||
|
persisted=True,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# Add GIN index for the search vector
|
||||||
|
transcripts.append_constraint(
|
||||||
|
sqlalchemy.Index(
|
||||||
|
"idx_transcript_search_vector_en",
|
||||||
|
"search_vector_en",
|
||||||
|
postgresql_using="gin",
|
||||||
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -89,6 +122,15 @@ def generate_transcript_name() -> str:
|
|||||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||||
|
|
||||||
|
|
||||||
|
TranscriptStatus = Literal[
|
||||||
|
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class StrValue(BaseModel):
|
||||||
|
value: str
|
||||||
|
|
||||||
|
|
||||||
class AudioWaveform(BaseModel):
|
class AudioWaveform(BaseModel):
|
||||||
data: list[float]
|
data: list[float]
|
||||||
|
|
||||||
@@ -147,14 +189,18 @@ class TranscriptParticipant(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class Transcript(BaseModel):
|
class Transcript(BaseModel):
|
||||||
|
"""Full transcript model with all fields."""
|
||||||
|
|
||||||
id: str = Field(default_factory=generate_uuid4)
|
id: str = Field(default_factory=generate_uuid4)
|
||||||
user_id: str | None = None
|
user_id: str | None = None
|
||||||
name: str = Field(default_factory=generate_transcript_name)
|
name: str = Field(default_factory=generate_transcript_name)
|
||||||
status: str = "idle"
|
status: TranscriptStatus = "idle"
|
||||||
locked: bool = False
|
|
||||||
duration: float = 0
|
duration: float = 0
|
||||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||||
title: str | None = None
|
title: str | None = None
|
||||||
|
source_kind: SourceKind
|
||||||
|
room_id: str | None = None
|
||||||
|
locked: bool = False
|
||||||
short_summary: str | None = None
|
short_summary: str | None = None
|
||||||
long_summary: str | None = None
|
long_summary: str | None = None
|
||||||
topics: list[TranscriptTopic] = []
|
topics: list[TranscriptTopic] = []
|
||||||
@@ -168,9 +214,8 @@ class Transcript(BaseModel):
|
|||||||
meeting_id: str | None = None
|
meeting_id: str | None = None
|
||||||
recording_id: str | None = None
|
recording_id: str | None = None
|
||||||
zulip_message_id: int | None = None
|
zulip_message_id: int | None = None
|
||||||
source_kind: SourceKind
|
|
||||||
audio_deleted: bool | None = None
|
audio_deleted: bool | None = None
|
||||||
room_id: str | None = None
|
webvtt: str | None = None
|
||||||
|
|
||||||
@field_serializer("created_at", when_used="json")
|
@field_serializer("created_at", when_used="json")
|
||||||
def serialize_datetime(self, dt: datetime) -> str:
|
def serialize_datetime(self, dt: datetime) -> str:
|
||||||
@@ -271,10 +316,12 @@ class Transcript(BaseModel):
|
|||||||
# we need to create an url to be used for diarization
|
# we need to create an url to be used for diarization
|
||||||
# we can't use the audio_mp3_filename because it's not accessible
|
# we can't use the audio_mp3_filename because it's not accessible
|
||||||
# from the diarization processor
|
# from the diarization processor
|
||||||
from datetime import timedelta
|
|
||||||
|
|
||||||
from reflector.app import app
|
# TODO don't import app in db
|
||||||
from reflector.views.transcripts import create_access_token
|
from reflector.app import app # noqa: PLC0415
|
||||||
|
|
||||||
|
# TODO a util + don''t import views in db
|
||||||
|
from reflector.views.transcripts import create_access_token # noqa: PLC0415
|
||||||
|
|
||||||
path = app.url_path_for(
|
path = app.url_path_for(
|
||||||
"transcript_get_audio_mp3",
|
"transcript_get_audio_mp3",
|
||||||
@@ -335,7 +382,6 @@ class TranscriptController:
|
|||||||
- `room_id`: filter transcripts by room ID
|
- `room_id`: filter transcripts by room ID
|
||||||
- `search_term`: filter transcripts by search term
|
- `search_term`: filter transcripts by search term
|
||||||
"""
|
"""
|
||||||
from reflector.db.rooms import rooms
|
|
||||||
|
|
||||||
query = transcripts.select().join(
|
query = transcripts.select().join(
|
||||||
rooms, transcripts.c.room_id == rooms.c.id, isouter=True
|
rooms, transcripts.c.room_id == rooms.c.id, isouter=True
|
||||||
@@ -386,7 +432,7 @@ class TranscriptController:
|
|||||||
if return_query:
|
if return_query:
|
||||||
return query
|
return query
|
||||||
|
|
||||||
results = await database.fetch_all(query)
|
results = await get_database().fetch_all(query)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
async def get_by_id(self, transcript_id: str, **kwargs) -> Transcript | None:
|
async def get_by_id(self, transcript_id: str, **kwargs) -> Transcript | None:
|
||||||
@@ -396,7 +442,7 @@ class TranscriptController:
|
|||||||
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
||||||
if "user_id" in kwargs:
|
if "user_id" in kwargs:
|
||||||
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
return Transcript(**result)
|
return Transcript(**result)
|
||||||
@@ -410,7 +456,7 @@ class TranscriptController:
|
|||||||
query = transcripts.select().where(transcripts.c.recording_id == recording_id)
|
query = transcripts.select().where(transcripts.c.recording_id == recording_id)
|
||||||
if "user_id" in kwargs:
|
if "user_id" in kwargs:
|
||||||
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
return None
|
return None
|
||||||
return Transcript(**result)
|
return Transcript(**result)
|
||||||
@@ -428,7 +474,7 @@ class TranscriptController:
|
|||||||
if order_by.startswith("-"):
|
if order_by.startswith("-"):
|
||||||
field = field.desc()
|
field = field.desc()
|
||||||
query = query.order_by(field)
|
query = query.order_by(field)
|
||||||
results = await database.fetch_all(query)
|
results = await get_database().fetch_all(query)
|
||||||
return [Transcript(**result) for result in results]
|
return [Transcript(**result) for result in results]
|
||||||
|
|
||||||
async def get_by_id_for_http(
|
async def get_by_id_for_http(
|
||||||
@@ -446,7 +492,7 @@ class TranscriptController:
|
|||||||
to determine if the user can access the transcript.
|
to determine if the user can access the transcript.
|
||||||
"""
|
"""
|
||||||
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
||||||
result = await database.fetch_one(query)
|
result = await get_database().fetch_one(query)
|
||||||
if not result:
|
if not result:
|
||||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||||
|
|
||||||
@@ -499,23 +545,52 @@ class TranscriptController:
|
|||||||
room_id=room_id,
|
room_id=room_id,
|
||||||
)
|
)
|
||||||
query = transcripts.insert().values(**transcript.model_dump())
|
query = transcripts.insert().values(**transcript.model_dump())
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
return transcript
|
return transcript
|
||||||
|
|
||||||
async def update(self, transcript: Transcript, values: dict, mutate=True):
|
# TODO investigate why mutate= is used. it's used in one place currently, maybe because of ORM field updates.
|
||||||
|
# using mutate=True is discouraged
|
||||||
|
async def update(
|
||||||
|
self, transcript: Transcript, values: dict, mutate=False
|
||||||
|
) -> Transcript:
|
||||||
"""
|
"""
|
||||||
Update a transcript fields with key/values in values
|
Update a transcript fields with key/values in values.
|
||||||
|
Returns a copy of the transcript with updated values.
|
||||||
"""
|
"""
|
||||||
|
values = TranscriptController._handle_topics_update(values)
|
||||||
|
|
||||||
query = (
|
query = (
|
||||||
transcripts.update()
|
transcripts.update()
|
||||||
.where(transcripts.c.id == transcript.id)
|
.where(transcripts.c.id == transcript.id)
|
||||||
.values(**values)
|
.values(**values)
|
||||||
)
|
)
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
if mutate:
|
if mutate:
|
||||||
for key, value in values.items():
|
for key, value in values.items():
|
||||||
setattr(transcript, key, value)
|
setattr(transcript, key, value)
|
||||||
|
|
||||||
|
updated_transcript = transcript.model_copy(update=values)
|
||||||
|
return updated_transcript
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _handle_topics_update(values: dict) -> dict:
|
||||||
|
"""Auto-update WebVTT when topics are updated."""
|
||||||
|
|
||||||
|
if values.get("webvtt") is not None:
|
||||||
|
logger.warn("trying to update read-only webvtt column")
|
||||||
|
pass
|
||||||
|
|
||||||
|
topics_data = values.get("topics")
|
||||||
|
if topics_data is None:
|
||||||
|
return values
|
||||||
|
|
||||||
|
return {
|
||||||
|
**values,
|
||||||
|
"webvtt": topics_to_webvtt(
|
||||||
|
[TranscriptTopic(**topic_dict) for topic_dict in topics_data]
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
async def remove_by_id(
|
async def remove_by_id(
|
||||||
self,
|
self,
|
||||||
transcript_id: str,
|
transcript_id: str,
|
||||||
@@ -529,23 +604,55 @@ class TranscriptController:
|
|||||||
return
|
return
|
||||||
if user_id is not None and transcript.user_id != user_id:
|
if user_id is not None and transcript.user_id != user_id:
|
||||||
return
|
return
|
||||||
|
if transcript.audio_location == "storage" and not transcript.audio_deleted:
|
||||||
|
try:
|
||||||
|
await get_transcripts_storage().delete_file(
|
||||||
|
transcript.storage_audio_path
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(
|
||||||
|
"Failed to delete transcript audio from storage",
|
||||||
|
exc_info=e,
|
||||||
|
transcript_id=transcript.id,
|
||||||
|
)
|
||||||
transcript.unlink()
|
transcript.unlink()
|
||||||
|
if transcript.recording_id:
|
||||||
|
try:
|
||||||
|
recording = await recordings_controller.get_by_id(
|
||||||
|
transcript.recording_id
|
||||||
|
)
|
||||||
|
if recording:
|
||||||
|
try:
|
||||||
|
await get_recordings_storage().delete_file(recording.object_key)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(
|
||||||
|
"Failed to delete recording object from S3",
|
||||||
|
exc_info=e,
|
||||||
|
recording_id=transcript.recording_id,
|
||||||
|
)
|
||||||
|
await recordings_controller.remove_by_id(transcript.recording_id)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(
|
||||||
|
"Failed to delete recording row",
|
||||||
|
exc_info=e,
|
||||||
|
recording_id=transcript.recording_id,
|
||||||
|
)
|
||||||
query = transcripts.delete().where(transcripts.c.id == transcript_id)
|
query = transcripts.delete().where(transcripts.c.id == transcript_id)
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
|
|
||||||
async def remove_by_recording_id(self, recording_id: str):
|
async def remove_by_recording_id(self, recording_id: str):
|
||||||
"""
|
"""
|
||||||
Remove a transcript by recording_id
|
Remove a transcript by recording_id
|
||||||
"""
|
"""
|
||||||
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
|
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
|
||||||
await database.execute(query)
|
await get_database().execute(query)
|
||||||
|
|
||||||
@asynccontextmanager
|
@asynccontextmanager
|
||||||
async def transaction(self):
|
async def transaction(self):
|
||||||
"""
|
"""
|
||||||
A context manager for database transaction
|
A context manager for database transaction
|
||||||
"""
|
"""
|
||||||
async with database.transaction(isolation="serializable"):
|
async with get_database().transaction(isolation="serializable"):
|
||||||
yield
|
yield
|
||||||
|
|
||||||
async def append_event(
|
async def append_event(
|
||||||
@@ -558,11 +665,7 @@ class TranscriptController:
|
|||||||
Append an event to a transcript
|
Append an event to a transcript
|
||||||
"""
|
"""
|
||||||
resp = transcript.add_event(event=event, data=data)
|
resp = transcript.add_event(event=event, data=data)
|
||||||
await self.update(
|
await self.update(transcript, {"events": transcript.events_dump()})
|
||||||
transcript,
|
|
||||||
{"events": transcript.events_dump()},
|
|
||||||
mutate=False,
|
|
||||||
)
|
|
||||||
return resp
|
return resp
|
||||||
|
|
||||||
async def upsert_topic(
|
async def upsert_topic(
|
||||||
@@ -574,11 +677,7 @@ class TranscriptController:
|
|||||||
Upsert topics to a transcript
|
Upsert topics to a transcript
|
||||||
"""
|
"""
|
||||||
transcript.upsert_topic(topic)
|
transcript.upsert_topic(topic)
|
||||||
await self.update(
|
await self.update(transcript, {"topics": transcript.topics_dump()})
|
||||||
transcript,
|
|
||||||
{"topics": transcript.topics_dump()},
|
|
||||||
mutate=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def move_mp3_to_storage(self, transcript: Transcript):
|
async def move_mp3_to_storage(self, transcript: Transcript):
|
||||||
"""
|
"""
|
||||||
@@ -603,7 +702,8 @@ class TranscriptController:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# indicate on the transcript that the audio is now on storage
|
# indicate on the transcript that the audio is now on storage
|
||||||
await self.update(transcript, {"audio_location": "storage"})
|
# mutates transcript argument
|
||||||
|
await self.update(transcript, {"audio_location": "storage"}, mutate=True)
|
||||||
|
|
||||||
# unlink the local file
|
# unlink the local file
|
||||||
transcript.audio_mp3_filename.unlink(missing_ok=True)
|
transcript.audio_mp3_filename.unlink(missing_ok=True)
|
||||||
@@ -627,11 +727,7 @@ class TranscriptController:
|
|||||||
Add/update a participant to a transcript
|
Add/update a participant to a transcript
|
||||||
"""
|
"""
|
||||||
result = transcript.upsert_participant(participant)
|
result = transcript.upsert_participant(participant)
|
||||||
await self.update(
|
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||||
transcript,
|
|
||||||
{"participants": transcript.participants_dump()},
|
|
||||||
mutate=False,
|
|
||||||
)
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
async def delete_participant(
|
async def delete_participant(
|
||||||
@@ -643,11 +739,29 @@ class TranscriptController:
|
|||||||
Delete a participant from a transcript
|
Delete a participant from a transcript
|
||||||
"""
|
"""
|
||||||
transcript.delete_participant(participant_id)
|
transcript.delete_participant(participant_id)
|
||||||
await self.update(
|
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||||
transcript,
|
|
||||||
{"participants": transcript.participants_dump()},
|
async def set_status(
|
||||||
mutate=False,
|
self, transcript_id: str, status: TranscriptStatus
|
||||||
|
) -> TranscriptEvent | None:
|
||||||
|
"""
|
||||||
|
Update the status of a transcript
|
||||||
|
|
||||||
|
Will add an event STATUS + update the status field of transcript
|
||||||
|
"""
|
||||||
|
async with self.transaction():
|
||||||
|
transcript = await self.get_by_id(transcript_id)
|
||||||
|
if not transcript:
|
||||||
|
raise Exception(f"Transcript {transcript_id} not found")
|
||||||
|
if transcript.status == status:
|
||||||
|
return
|
||||||
|
resp = await self.append_event(
|
||||||
|
transcript=transcript,
|
||||||
|
event="STATUS",
|
||||||
|
data=StrValue(value=status),
|
||||||
)
|
)
|
||||||
|
await self.update(transcript, {"status": status})
|
||||||
|
return resp
|
||||||
|
|
||||||
|
|
||||||
transcripts_controller = TranscriptController()
|
transcripts_controller = TranscriptController()
|
||||||
|
|||||||
9
server/reflector/db/utils.py
Normal file
9
server/reflector/db/utils.py
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
"""Database utility functions."""
|
||||||
|
|
||||||
|
from reflector.db import get_database
|
||||||
|
|
||||||
|
|
||||||
|
def is_postgresql() -> bool:
|
||||||
|
return get_database().url.scheme and get_database().url.scheme.startswith(
|
||||||
|
"postgresql"
|
||||||
|
)
|
||||||
421
server/reflector/pipelines/main_file_pipeline.py
Normal file
421
server/reflector/pipelines/main_file_pipeline.py
Normal file
@@ -0,0 +1,421 @@
|
|||||||
|
"""
|
||||||
|
File-based processing pipeline
|
||||||
|
==============================
|
||||||
|
|
||||||
|
Optimized pipeline for processing complete audio/video files.
|
||||||
|
Uses parallel processing for transcription, diarization, and waveform generation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import uuid
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import av
|
||||||
|
import structlog
|
||||||
|
from celery import shared_task
|
||||||
|
|
||||||
|
from reflector.asynctask import asynctask
|
||||||
|
from reflector.db.rooms import rooms_controller
|
||||||
|
from reflector.db.transcripts import (
|
||||||
|
SourceKind,
|
||||||
|
Transcript,
|
||||||
|
TranscriptStatus,
|
||||||
|
transcripts_controller,
|
||||||
|
)
|
||||||
|
from reflector.logger import logger
|
||||||
|
from reflector.pipelines.main_live_pipeline import (
|
||||||
|
PipelineMainBase,
|
||||||
|
broadcast_to_sockets,
|
||||||
|
)
|
||||||
|
from reflector.processors import (
|
||||||
|
AudioFileWriterProcessor,
|
||||||
|
TranscriptFinalSummaryProcessor,
|
||||||
|
TranscriptFinalTitleProcessor,
|
||||||
|
TranscriptTopicDetectorProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||||
|
from reflector.processors.file_diarization import FileDiarizationInput
|
||||||
|
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||||
|
from reflector.processors.file_transcript import FileTranscriptInput
|
||||||
|
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||||
|
from reflector.processors.transcript_diarization_assembler import (
|
||||||
|
TranscriptDiarizationAssemblerInput,
|
||||||
|
TranscriptDiarizationAssemblerProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.types import (
|
||||||
|
DiarizationSegment,
|
||||||
|
TitleSummary,
|
||||||
|
)
|
||||||
|
from reflector.processors.types import (
|
||||||
|
Transcript as TranscriptType,
|
||||||
|
)
|
||||||
|
from reflector.settings import settings
|
||||||
|
from reflector.storage import get_transcripts_storage
|
||||||
|
from reflector.worker.webhook import send_transcript_webhook
|
||||||
|
|
||||||
|
|
||||||
|
class EmptyPipeline:
|
||||||
|
"""Empty pipeline for processors that need a pipeline reference"""
|
||||||
|
|
||||||
|
def __init__(self, logger: structlog.BoundLogger):
|
||||||
|
self.logger = logger
|
||||||
|
|
||||||
|
def get_pref(self, k, d=None):
|
||||||
|
return d
|
||||||
|
|
||||||
|
async def emit(self, event):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineMainFile(PipelineMainBase):
|
||||||
|
"""
|
||||||
|
Optimized file processing pipeline.
|
||||||
|
Processes complete audio/video files with parallel execution.
|
||||||
|
"""
|
||||||
|
|
||||||
|
logger: structlog.BoundLogger = None
|
||||||
|
empty_pipeline = None
|
||||||
|
|
||||||
|
def __init__(self, transcript_id: str):
|
||||||
|
super().__init__(transcript_id=transcript_id)
|
||||||
|
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||||
|
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||||
|
|
||||||
|
def _handle_gather_exceptions(self, results: list, operation: str) -> None:
|
||||||
|
"""Handle exceptions from asyncio.gather with return_exceptions=True"""
|
||||||
|
for i, result in enumerate(results):
|
||||||
|
if not isinstance(result, Exception):
|
||||||
|
continue
|
||||||
|
self.logger.error(
|
||||||
|
f"Error in {operation} (task {i}): {result}",
|
||||||
|
transcript_id=self.transcript_id,
|
||||||
|
exc_info=result,
|
||||||
|
)
|
||||||
|
|
||||||
|
@broadcast_to_sockets
|
||||||
|
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||||
|
async with self.lock_transaction():
|
||||||
|
return await transcripts_controller.set_status(transcript_id, status)
|
||||||
|
|
||||||
|
async def process(self, file_path: Path):
|
||||||
|
"""Main entry point for file processing"""
|
||||||
|
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||||
|
|
||||||
|
transcript = await self.get_transcript()
|
||||||
|
|
||||||
|
# Clear transcript as we're going to regenerate everything
|
||||||
|
async with self.transaction():
|
||||||
|
await transcripts_controller.update(
|
||||||
|
transcript,
|
||||||
|
{
|
||||||
|
"events": [],
|
||||||
|
"topics": [],
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract audio and write to transcript location
|
||||||
|
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||||
|
|
||||||
|
# Upload for processing
|
||||||
|
audio_url = await self.upload_audio(audio_path, transcript)
|
||||||
|
|
||||||
|
# Run parallel processing
|
||||||
|
await self.run_parallel_processing(
|
||||||
|
audio_path,
|
||||||
|
audio_url,
|
||||||
|
transcript.source_language,
|
||||||
|
transcript.target_language,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.logger.info("File pipeline complete")
|
||||||
|
|
||||||
|
await transcripts_controller.set_status(transcript.id, "ended")
|
||||||
|
|
||||||
|
async def extract_and_write_audio(
|
||||||
|
self, file_path: Path, transcript: Transcript
|
||||||
|
) -> Path:
|
||||||
|
"""Extract audio from video if needed and write to transcript location as MP3"""
|
||||||
|
self.logger.info(f"Processing audio file: {file_path}")
|
||||||
|
|
||||||
|
# Check if it's already audio-only
|
||||||
|
container = av.open(str(file_path))
|
||||||
|
has_video = len(container.streams.video) > 0
|
||||||
|
container.close()
|
||||||
|
|
||||||
|
# Use AudioFileWriterProcessor to write MP3 to transcript location
|
||||||
|
mp3_writer = AudioFileWriterProcessor(
|
||||||
|
path=transcript.audio_mp3_filename,
|
||||||
|
on_duration=self.on_duration,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process audio frames and write to transcript location
|
||||||
|
input_container = av.open(str(file_path))
|
||||||
|
for frame in input_container.decode(audio=0):
|
||||||
|
await mp3_writer.push(frame)
|
||||||
|
|
||||||
|
await mp3_writer.flush()
|
||||||
|
input_container.close()
|
||||||
|
|
||||||
|
if has_video:
|
||||||
|
self.logger.info(
|
||||||
|
f"Extracted audio from video and saved to {transcript.audio_mp3_filename}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.logger.info(
|
||||||
|
f"Converted audio file and saved to {transcript.audio_mp3_filename}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return transcript.audio_mp3_filename
|
||||||
|
|
||||||
|
async def upload_audio(self, audio_path: Path, transcript: Transcript) -> str:
|
||||||
|
"""Upload audio to storage for processing"""
|
||||||
|
storage = get_transcripts_storage()
|
||||||
|
|
||||||
|
if not storage:
|
||||||
|
raise Exception(
|
||||||
|
"Storage backend required for file processing. Configure TRANSCRIPT_STORAGE_* settings."
|
||||||
|
)
|
||||||
|
|
||||||
|
self.logger.info("Uploading audio to storage")
|
||||||
|
|
||||||
|
with open(audio_path, "rb") as f:
|
||||||
|
audio_data = f.read()
|
||||||
|
|
||||||
|
storage_path = f"file_pipeline/{transcript.id}/audio.mp3"
|
||||||
|
await storage.put_file(storage_path, audio_data)
|
||||||
|
|
||||||
|
audio_url = await storage.get_file_url(storage_path)
|
||||||
|
|
||||||
|
self.logger.info(f"Audio uploaded to {audio_url}")
|
||||||
|
return audio_url
|
||||||
|
|
||||||
|
async def run_parallel_processing(
|
||||||
|
self,
|
||||||
|
audio_path: Path,
|
||||||
|
audio_url: str,
|
||||||
|
source_language: str,
|
||||||
|
target_language: str,
|
||||||
|
):
|
||||||
|
"""Coordinate parallel processing of transcription, diarization, and waveform"""
|
||||||
|
self.logger.info(
|
||||||
|
"Starting parallel processing", transcript_id=self.transcript_id
|
||||||
|
)
|
||||||
|
|
||||||
|
# Phase 1: Parallel processing of independent tasks
|
||||||
|
transcription_task = self.transcribe_file(audio_url, source_language)
|
||||||
|
diarization_task = self.diarize_file(audio_url)
|
||||||
|
waveform_task = self.generate_waveform(audio_path)
|
||||||
|
|
||||||
|
results = await asyncio.gather(
|
||||||
|
transcription_task, diarization_task, waveform_task, return_exceptions=True
|
||||||
|
)
|
||||||
|
|
||||||
|
transcript_result = results[0]
|
||||||
|
diarization_result = results[1]
|
||||||
|
|
||||||
|
# Handle errors - raise any exception that occurred
|
||||||
|
self._handle_gather_exceptions(results, "parallel processing")
|
||||||
|
for result in results:
|
||||||
|
if isinstance(result, Exception):
|
||||||
|
raise result
|
||||||
|
|
||||||
|
# Phase 2: Assemble transcript with diarization
|
||||||
|
self.logger.info(
|
||||||
|
"Assembling transcript with diarization", transcript_id=self.transcript_id
|
||||||
|
)
|
||||||
|
processor = TranscriptDiarizationAssemblerProcessor()
|
||||||
|
input_data = TranscriptDiarizationAssemblerInput(
|
||||||
|
transcript=transcript_result, diarization=diarization_result or []
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store result for retrieval
|
||||||
|
diarized_transcript: Transcript | None = None
|
||||||
|
|
||||||
|
async def capture_result(transcript):
|
||||||
|
nonlocal diarized_transcript
|
||||||
|
diarized_transcript = transcript
|
||||||
|
|
||||||
|
processor.on(capture_result)
|
||||||
|
await processor.push(input_data)
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
if not diarized_transcript:
|
||||||
|
raise ValueError("No diarized transcript captured")
|
||||||
|
|
||||||
|
# Phase 3: Generate topics from diarized transcript
|
||||||
|
self.logger.info("Generating topics", transcript_id=self.transcript_id)
|
||||||
|
topics = await self.detect_topics(diarized_transcript, target_language)
|
||||||
|
|
||||||
|
# Phase 4: Generate title and summaries in parallel
|
||||||
|
self.logger.info(
|
||||||
|
"Generating title and summaries", transcript_id=self.transcript_id
|
||||||
|
)
|
||||||
|
results = await asyncio.gather(
|
||||||
|
self.generate_title(topics),
|
||||||
|
self.generate_summaries(topics),
|
||||||
|
return_exceptions=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
self._handle_gather_exceptions(results, "title and summary generation")
|
||||||
|
|
||||||
|
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||||
|
"""Transcribe complete file"""
|
||||||
|
processor = FileTranscriptAutoProcessor()
|
||||||
|
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||||
|
|
||||||
|
# Store result for retrieval
|
||||||
|
result: TranscriptType | None = None
|
||||||
|
|
||||||
|
async def capture_result(transcript):
|
||||||
|
nonlocal result
|
||||||
|
result = transcript
|
||||||
|
|
||||||
|
processor.on(capture_result)
|
||||||
|
await processor.push(input_data)
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
if not result:
|
||||||
|
raise ValueError("No transcript captured")
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
async def diarize_file(self, audio_url: str) -> list[DiarizationSegment] | None:
|
||||||
|
"""Get diarization for file"""
|
||||||
|
if not settings.DIARIZATION_BACKEND:
|
||||||
|
self.logger.info("Diarization disabled")
|
||||||
|
return None
|
||||||
|
|
||||||
|
processor = FileDiarizationAutoProcessor()
|
||||||
|
input_data = FileDiarizationInput(audio_url=audio_url)
|
||||||
|
|
||||||
|
# Store result for retrieval
|
||||||
|
result = None
|
||||||
|
|
||||||
|
async def capture_result(diarization_output):
|
||||||
|
nonlocal result
|
||||||
|
result = diarization_output.diarization
|
||||||
|
|
||||||
|
try:
|
||||||
|
processor.on(capture_result)
|
||||||
|
await processor.push(input_data)
|
||||||
|
await processor.flush()
|
||||||
|
return result
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Diarization failed: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def generate_waveform(self, audio_path: Path):
|
||||||
|
"""Generate and save waveform"""
|
||||||
|
transcript = await self.get_transcript()
|
||||||
|
|
||||||
|
processor = AudioWaveformProcessor(
|
||||||
|
audio_path=audio_path,
|
||||||
|
waveform_path=transcript.audio_waveform_filename,
|
||||||
|
on_waveform=self.on_waveform,
|
||||||
|
)
|
||||||
|
processor.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
async def detect_topics(
|
||||||
|
self, transcript: TranscriptType, target_language: str
|
||||||
|
) -> list[TitleSummary]:
|
||||||
|
"""Detect topics from complete transcript"""
|
||||||
|
chunk_size = 300
|
||||||
|
topics: list[TitleSummary] = []
|
||||||
|
|
||||||
|
async def on_topic(topic: TitleSummary):
|
||||||
|
topics.append(topic)
|
||||||
|
return await self.on_topic(topic)
|
||||||
|
|
||||||
|
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||||
|
topic_detector.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
for i in range(0, len(transcript.words), chunk_size):
|
||||||
|
chunk_words = transcript.words[i : i + chunk_size]
|
||||||
|
if not chunk_words:
|
||||||
|
continue
|
||||||
|
|
||||||
|
chunk_transcript = TranscriptType(
|
||||||
|
words=chunk_words, translation=transcript.translation
|
||||||
|
)
|
||||||
|
|
||||||
|
await topic_detector.push(chunk_transcript)
|
||||||
|
|
||||||
|
await topic_detector.flush()
|
||||||
|
return topics
|
||||||
|
|
||||||
|
async def generate_title(self, topics: list[TitleSummary]):
|
||||||
|
"""Generate title from topics"""
|
||||||
|
if not topics:
|
||||||
|
self.logger.warning("No topics for title generation")
|
||||||
|
return
|
||||||
|
|
||||||
|
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||||
|
processor.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
for topic in topics:
|
||||||
|
await processor.push(topic)
|
||||||
|
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||||
|
"""Generate long and short summaries from topics"""
|
||||||
|
if not topics:
|
||||||
|
self.logger.warning("No topics for summary generation")
|
||||||
|
return
|
||||||
|
|
||||||
|
transcript = await self.get_transcript()
|
||||||
|
processor = TranscriptFinalSummaryProcessor(
|
||||||
|
transcript=transcript,
|
||||||
|
callback=self.on_long_summary,
|
||||||
|
on_short_summary=self.on_short_summary,
|
||||||
|
)
|
||||||
|
processor.set_pipeline(self.empty_pipeline)
|
||||||
|
|
||||||
|
for topic in topics:
|
||||||
|
await processor.push(topic)
|
||||||
|
|
||||||
|
await processor.flush()
|
||||||
|
|
||||||
|
|
||||||
|
@shared_task
|
||||||
|
@asynctask
|
||||||
|
async def task_pipeline_file_process(*, transcript_id: str):
|
||||||
|
"""Celery task for file pipeline processing"""
|
||||||
|
|
||||||
|
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||||
|
if not transcript:
|
||||||
|
raise Exception(f"Transcript {transcript_id} not found")
|
||||||
|
|
||||||
|
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||||
|
try:
|
||||||
|
await pipeline.set_status(transcript_id, "processing")
|
||||||
|
|
||||||
|
# Find the file to process
|
||||||
|
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||||
|
if not audio_file:
|
||||||
|
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||||
|
|
||||||
|
if not audio_file:
|
||||||
|
raise Exception("No audio file found to process")
|
||||||
|
|
||||||
|
await pipeline.process(audio_file)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
await pipeline.set_status(transcript_id, "error")
|
||||||
|
raise
|
||||||
|
|
||||||
|
# Trigger webhook if this is a room recording with webhook configured
|
||||||
|
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||||
|
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||||
|
if room and room.webhook_url:
|
||||||
|
logger.info(
|
||||||
|
"Dispatching webhook task",
|
||||||
|
transcript_id=transcript_id,
|
||||||
|
room_id=room.id,
|
||||||
|
webhook_url=room.webhook_url,
|
||||||
|
)
|
||||||
|
send_transcript_webhook.delay(
|
||||||
|
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||||
|
)
|
||||||
@@ -14,12 +14,15 @@ It is directly linked to our data model.
|
|||||||
import asyncio
|
import asyncio
|
||||||
import functools
|
import functools
|
||||||
from contextlib import asynccontextmanager
|
from contextlib import asynccontextmanager
|
||||||
|
from typing import Generic
|
||||||
|
|
||||||
|
import av
|
||||||
import boto3
|
import boto3
|
||||||
from celery import chord, current_task, group, shared_task
|
from celery import chord, current_task, group, shared_task
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from structlog import BoundLogger as Logger
|
from structlog import BoundLogger as Logger
|
||||||
|
|
||||||
|
from reflector.asynctask import asynctask
|
||||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||||
from reflector.db.recordings import recordings_controller
|
from reflector.db.recordings import recordings_controller
|
||||||
from reflector.db.rooms import rooms_controller
|
from reflector.db.rooms import rooms_controller
|
||||||
@@ -29,16 +32,18 @@ from reflector.db.transcripts import (
|
|||||||
TranscriptFinalLongSummary,
|
TranscriptFinalLongSummary,
|
||||||
TranscriptFinalShortSummary,
|
TranscriptFinalShortSummary,
|
||||||
TranscriptFinalTitle,
|
TranscriptFinalTitle,
|
||||||
|
TranscriptStatus,
|
||||||
TranscriptText,
|
TranscriptText,
|
||||||
TranscriptTopic,
|
TranscriptTopic,
|
||||||
TranscriptWaveform,
|
TranscriptWaveform,
|
||||||
transcripts_controller,
|
transcripts_controller,
|
||||||
)
|
)
|
||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
from reflector.pipelines.runner import PipelineRunner
|
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||||
from reflector.processors import (
|
from reflector.processors import (
|
||||||
AudioChunkerProcessor,
|
AudioChunkerAutoProcessor,
|
||||||
AudioDiarizationAutoProcessor,
|
AudioDiarizationAutoProcessor,
|
||||||
|
AudioDownscaleProcessor,
|
||||||
AudioFileWriterProcessor,
|
AudioFileWriterProcessor,
|
||||||
AudioMergeProcessor,
|
AudioMergeProcessor,
|
||||||
AudioTranscriptAutoProcessor,
|
AudioTranscriptAutoProcessor,
|
||||||
@@ -47,7 +52,7 @@ from reflector.processors import (
|
|||||||
TranscriptFinalTitleProcessor,
|
TranscriptFinalTitleProcessor,
|
||||||
TranscriptLinerProcessor,
|
TranscriptLinerProcessor,
|
||||||
TranscriptTopicDetectorProcessor,
|
TranscriptTopicDetectorProcessor,
|
||||||
TranscriptTranslatorProcessor,
|
TranscriptTranslatorAutoProcessor,
|
||||||
)
|
)
|
||||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||||
from reflector.processors.types import AudioDiarizationInput
|
from reflector.processors.types import AudioDiarizationInput
|
||||||
@@ -65,30 +70,6 @@ from reflector.zulip import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def asynctask(f):
|
|
||||||
@functools.wraps(f)
|
|
||||||
def wrapper(*args, **kwargs):
|
|
||||||
async def run_with_db():
|
|
||||||
from reflector.db import database
|
|
||||||
|
|
||||||
await database.connect()
|
|
||||||
try:
|
|
||||||
return await f(*args, **kwargs)
|
|
||||||
finally:
|
|
||||||
await database.disconnect()
|
|
||||||
|
|
||||||
coro = run_with_db()
|
|
||||||
try:
|
|
||||||
loop = asyncio.get_running_loop()
|
|
||||||
except RuntimeError:
|
|
||||||
loop = None
|
|
||||||
if loop and loop.is_running():
|
|
||||||
return loop.run_until_complete(coro)
|
|
||||||
return asyncio.run(coro)
|
|
||||||
|
|
||||||
return wrapper
|
|
||||||
|
|
||||||
|
|
||||||
def broadcast_to_sockets(func):
|
def broadcast_to_sockets(func):
|
||||||
"""
|
"""
|
||||||
Decorator to broadcast transcript event to websockets
|
Decorator to broadcast transcript event to websockets
|
||||||
@@ -144,16 +125,19 @@ class StrValue(BaseModel):
|
|||||||
value: str
|
value: str
|
||||||
|
|
||||||
|
|
||||||
class PipelineMainBase(PipelineRunner):
|
class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]):
|
||||||
transcript_id: str
|
def __init__(self, transcript_id: str):
|
||||||
ws_room_id: str | None = None
|
super().__init__()
|
||||||
ws_manager: WebsocketManager | None = None
|
|
||||||
|
|
||||||
def prepare(self):
|
|
||||||
# prepare websocket
|
|
||||||
self._lock = asyncio.Lock()
|
self._lock = asyncio.Lock()
|
||||||
|
self.transcript_id = transcript_id
|
||||||
self.ws_room_id = f"ts:{self.transcript_id}"
|
self.ws_room_id = f"ts:{self.transcript_id}"
|
||||||
self.ws_manager = get_ws_manager()
|
self._ws_manager = None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def ws_manager(self) -> WebsocketManager:
|
||||||
|
if self._ws_manager is None:
|
||||||
|
self._ws_manager = get_ws_manager()
|
||||||
|
return self._ws_manager
|
||||||
|
|
||||||
async def get_transcript(self) -> Transcript:
|
async def get_transcript(self) -> Transcript:
|
||||||
# fetch the transcript
|
# fetch the transcript
|
||||||
@@ -164,7 +148,11 @@ class PipelineMainBase(PipelineRunner):
|
|||||||
raise Exception("Transcript not found")
|
raise Exception("Transcript not found")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def get_transcript_topics(self, transcript: Transcript) -> list[TranscriptTopic]:
|
@staticmethod
|
||||||
|
def wrap_transcript_topics(
|
||||||
|
topics: list[TranscriptTopic],
|
||||||
|
) -> list[TitleSummaryWithIdProcessorType]:
|
||||||
|
# transformation to a pipe-supported format
|
||||||
return [
|
return [
|
||||||
TitleSummaryWithIdProcessorType(
|
TitleSummaryWithIdProcessorType(
|
||||||
id=topic.id,
|
id=topic.id,
|
||||||
@@ -174,12 +162,19 @@ class PipelineMainBase(PipelineRunner):
|
|||||||
duration=topic.duration,
|
duration=topic.duration,
|
||||||
transcript=TranscriptProcessorType(words=topic.words),
|
transcript=TranscriptProcessorType(words=topic.words),
|
||||||
)
|
)
|
||||||
for topic in transcript.topics
|
for topic in topics
|
||||||
]
|
]
|
||||||
|
|
||||||
@asynccontextmanager
|
@asynccontextmanager
|
||||||
async def transaction(self):
|
async def lock_transaction(self):
|
||||||
|
# This lock is to prevent multiple processor starting adding
|
||||||
|
# into event array at the same time
|
||||||
async with self._lock:
|
async with self._lock:
|
||||||
|
yield
|
||||||
|
|
||||||
|
@asynccontextmanager
|
||||||
|
async def transaction(self):
|
||||||
|
async with self.lock_transaction():
|
||||||
async with transcripts_controller.transaction():
|
async with transcripts_controller.transaction():
|
||||||
yield
|
yield
|
||||||
|
|
||||||
@@ -188,14 +183,14 @@ class PipelineMainBase(PipelineRunner):
|
|||||||
# if it's the first part, update the status of the transcript
|
# if it's the first part, update the status of the transcript
|
||||||
# but do not set the ended status yet.
|
# but do not set the ended status yet.
|
||||||
if isinstance(self, PipelineMainLive):
|
if isinstance(self, PipelineMainLive):
|
||||||
status_mapping = {
|
status_mapping: dict[str, TranscriptStatus] = {
|
||||||
"started": "recording",
|
"started": "recording",
|
||||||
"push": "recording",
|
"push": "recording",
|
||||||
"flush": "processing",
|
"flush": "processing",
|
||||||
"error": "error",
|
"error": "error",
|
||||||
}
|
}
|
||||||
elif isinstance(self, PipelineMainFinalSummaries):
|
elif isinstance(self, PipelineMainFinalSummaries):
|
||||||
status_mapping = {
|
status_mapping: dict[str, TranscriptStatus] = {
|
||||||
"push": "processing",
|
"push": "processing",
|
||||||
"flush": "processing",
|
"flush": "processing",
|
||||||
"error": "error",
|
"error": "error",
|
||||||
@@ -211,22 +206,8 @@ class PipelineMainBase(PipelineRunner):
|
|||||||
return
|
return
|
||||||
|
|
||||||
# when the status of the pipeline changes, update the transcript
|
# when the status of the pipeline changes, update the transcript
|
||||||
async with self.transaction():
|
async with self._lock:
|
||||||
transcript = await self.get_transcript()
|
return await transcripts_controller.set_status(self.transcript_id, status)
|
||||||
if status == transcript.status:
|
|
||||||
return
|
|
||||||
resp = await transcripts_controller.append_event(
|
|
||||||
transcript=transcript,
|
|
||||||
event="STATUS",
|
|
||||||
data=StrValue(value=status),
|
|
||||||
)
|
|
||||||
await transcripts_controller.update(
|
|
||||||
transcript,
|
|
||||||
{
|
|
||||||
"status": status,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
return resp
|
|
||||||
|
|
||||||
@broadcast_to_sockets
|
@broadcast_to_sockets
|
||||||
async def on_transcript(self, data):
|
async def on_transcript(self, data):
|
||||||
@@ -349,7 +330,6 @@ class PipelineMainLive(PipelineMainBase):
|
|||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
# create a context for the whole rtc transaction
|
# create a context for the whole rtc transaction
|
||||||
# add a customised logger to the context
|
# add a customised logger to the context
|
||||||
self.prepare()
|
|
||||||
transcript = await self.get_transcript()
|
transcript = await self.get_transcript()
|
||||||
|
|
||||||
processors = [
|
processors = [
|
||||||
@@ -357,11 +337,12 @@ class PipelineMainLive(PipelineMainBase):
|
|||||||
path=transcript.audio_wav_filename,
|
path=transcript.audio_wav_filename,
|
||||||
on_duration=self.on_duration,
|
on_duration=self.on_duration,
|
||||||
),
|
),
|
||||||
AudioChunkerProcessor(),
|
AudioDownscaleProcessor(),
|
||||||
|
AudioChunkerAutoProcessor(),
|
||||||
AudioMergeProcessor(),
|
AudioMergeProcessor(),
|
||||||
AudioTranscriptAutoProcessor.as_threaded(),
|
AudioTranscriptAutoProcessor.as_threaded(),
|
||||||
TranscriptLinerProcessor(),
|
TranscriptLinerProcessor(),
|
||||||
TranscriptTranslatorProcessor.as_threaded(callback=self.on_transcript),
|
TranscriptTranslatorAutoProcessor.as_threaded(callback=self.on_transcript),
|
||||||
TranscriptTopicDetectorProcessor.as_threaded(callback=self.on_topic),
|
TranscriptTopicDetectorProcessor.as_threaded(callback=self.on_topic),
|
||||||
]
|
]
|
||||||
pipeline = Pipeline(*processors)
|
pipeline = Pipeline(*processors)
|
||||||
@@ -370,6 +351,7 @@ class PipelineMainLive(PipelineMainBase):
|
|||||||
pipeline.set_pref("audio:target_language", transcript.target_language)
|
pipeline.set_pref("audio:target_language", transcript.target_language)
|
||||||
pipeline.logger.bind(transcript_id=transcript.id)
|
pipeline.logger.bind(transcript_id=transcript.id)
|
||||||
pipeline.logger.info("Pipeline main live created")
|
pipeline.logger.info("Pipeline main live created")
|
||||||
|
pipeline.describe()
|
||||||
|
|
||||||
return pipeline
|
return pipeline
|
||||||
|
|
||||||
@@ -380,7 +362,7 @@ class PipelineMainLive(PipelineMainBase):
|
|||||||
pipeline_post(transcript_id=self.transcript_id)
|
pipeline_post(transcript_id=self.transcript_id)
|
||||||
|
|
||||||
|
|
||||||
class PipelineMainDiarization(PipelineMainBase):
|
class PipelineMainDiarization(PipelineMainBase[AudioDiarizationInput]):
|
||||||
"""
|
"""
|
||||||
Diarize the audio and update topics
|
Diarize the audio and update topics
|
||||||
"""
|
"""
|
||||||
@@ -388,7 +370,6 @@ class PipelineMainDiarization(PipelineMainBase):
|
|||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
# create a context for the whole rtc transaction
|
# create a context for the whole rtc transaction
|
||||||
# add a customised logger to the context
|
# add a customised logger to the context
|
||||||
self.prepare()
|
|
||||||
pipeline = Pipeline(
|
pipeline = Pipeline(
|
||||||
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
||||||
)
|
)
|
||||||
@@ -404,11 +385,10 @@ class PipelineMainDiarization(PipelineMainBase):
|
|||||||
pipeline.logger.info("Audio is local, skipping diarization")
|
pipeline.logger.info("Audio is local, skipping diarization")
|
||||||
return
|
return
|
||||||
|
|
||||||
topics = self.get_transcript_topics(transcript)
|
|
||||||
audio_url = await transcript.get_audio_url()
|
audio_url = await transcript.get_audio_url()
|
||||||
audio_diarization_input = AudioDiarizationInput(
|
audio_diarization_input = AudioDiarizationInput(
|
||||||
audio_url=audio_url,
|
audio_url=audio_url,
|
||||||
topics=topics,
|
topics=self.wrap_transcript_topics(transcript.topics),
|
||||||
)
|
)
|
||||||
|
|
||||||
# as tempting to use pipeline.push, prefer to use the runner
|
# as tempting to use pipeline.push, prefer to use the runner
|
||||||
@@ -421,7 +401,7 @@ class PipelineMainDiarization(PipelineMainBase):
|
|||||||
return pipeline
|
return pipeline
|
||||||
|
|
||||||
|
|
||||||
class PipelineMainFromTopics(PipelineMainBase):
|
class PipelineMainFromTopics(PipelineMainBase[TitleSummaryWithIdProcessorType]):
|
||||||
"""
|
"""
|
||||||
Pseudo class for generating a pipeline from topics
|
Pseudo class for generating a pipeline from topics
|
||||||
"""
|
"""
|
||||||
@@ -430,8 +410,6 @@ class PipelineMainFromTopics(PipelineMainBase):
|
|||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
self.prepare()
|
|
||||||
|
|
||||||
# get transcript
|
# get transcript
|
||||||
self._transcript = transcript = await self.get_transcript()
|
self._transcript = transcript = await self.get_transcript()
|
||||||
|
|
||||||
@@ -443,7 +421,7 @@ class PipelineMainFromTopics(PipelineMainBase):
|
|||||||
pipeline.logger.info(f"{self.__class__.__name__} pipeline created")
|
pipeline.logger.info(f"{self.__class__.__name__} pipeline created")
|
||||||
|
|
||||||
# push topics
|
# push topics
|
||||||
topics = self.get_transcript_topics(transcript)
|
topics = PipelineMainBase.wrap_transcript_topics(transcript.topics)
|
||||||
for topic in topics:
|
for topic in topics:
|
||||||
await self.push(topic)
|
await self.push(topic)
|
||||||
|
|
||||||
@@ -524,8 +502,6 @@ async def pipeline_convert_to_mp3(transcript: Transcript, logger: Logger):
|
|||||||
# Convert to mp3
|
# Convert to mp3
|
||||||
mp3_filename = transcript.audio_mp3_filename
|
mp3_filename = transcript.audio_mp3_filename
|
||||||
|
|
||||||
import av
|
|
||||||
|
|
||||||
with av.open(wav_filename.as_posix()) as in_container:
|
with av.open(wav_filename.as_posix()) as in_container:
|
||||||
in_stream = in_container.streams.audio[0]
|
in_stream = in_container.streams.audio[0]
|
||||||
with av.open(mp3_filename.as_posix(), "w") as out_container:
|
with av.open(mp3_filename.as_posix(), "w") as out_container:
|
||||||
@@ -604,7 +580,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
|||||||
meeting.id
|
meeting.id
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to get fetch consent: {e}")
|
logger.error(f"Failed to get fetch consent: {e}", exc_info=e)
|
||||||
consent_denied = True
|
consent_denied = True
|
||||||
|
|
||||||
if not consent_denied:
|
if not consent_denied:
|
||||||
@@ -627,7 +603,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
|||||||
f"Deleted original Whereby recording: {recording.bucket_name}/{recording.object_key}"
|
f"Deleted original Whereby recording: {recording.bucket_name}/{recording.object_key}"
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to delete Whereby recording: {e}")
|
logger.error(f"Failed to delete Whereby recording: {e}", exc_info=e)
|
||||||
|
|
||||||
# non-transactional, files marked for deletion not actually deleted is possible
|
# non-transactional, files marked for deletion not actually deleted is possible
|
||||||
await transcripts_controller.update(transcript, {"audio_deleted": True})
|
await transcripts_controller.update(transcript, {"audio_deleted": True})
|
||||||
@@ -640,7 +616,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
|||||||
f"Deleted processed audio from storage: {transcript.storage_audio_path}"
|
f"Deleted processed audio from storage: {transcript.storage_audio_path}"
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to delete processed audio: {e}")
|
logger.error(f"Failed to delete processed audio: {e}", exc_info=e)
|
||||||
|
|
||||||
# 3. Delete local audio files
|
# 3. Delete local audio files
|
||||||
try:
|
try:
|
||||||
@@ -649,7 +625,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
|||||||
if hasattr(transcript, "audio_wav_filename") and transcript.audio_wav_filename:
|
if hasattr(transcript, "audio_wav_filename") and transcript.audio_wav_filename:
|
||||||
transcript.audio_wav_filename.unlink(missing_ok=True)
|
transcript.audio_wav_filename.unlink(missing_ok=True)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to delete local audio files: {e}")
|
logger.error(f"Failed to delete local audio files: {e}", exc_info=e)
|
||||||
|
|
||||||
logger.info("Consent cleanup done")
|
logger.info("Consent cleanup done")
|
||||||
|
|
||||||
@@ -789,13 +765,11 @@ def pipeline_post(*, transcript_id: str):
|
|||||||
chain_final_summaries,
|
chain_final_summaries,
|
||||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||||
|
|
||||||
chain.delay()
|
return chain.delay()
|
||||||
|
|
||||||
|
|
||||||
@get_transcript
|
@get_transcript
|
||||||
async def pipeline_process(transcript: Transcript, logger: Logger):
|
async def pipeline_process(transcript: Transcript, logger: Logger):
|
||||||
import av
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if transcript.audio_location == "storage":
|
if transcript.audio_location == "storage":
|
||||||
await transcripts_controller.download_mp3_from_storage(transcript)
|
await transcripts_controller.download_mp3_from_storage(transcript)
|
||||||
|
|||||||
@@ -16,21 +16,16 @@ During its lifecycle, it will emit the following status:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import asyncio
|
import asyncio
|
||||||
|
from typing import Generic, TypeVar
|
||||||
from pydantic import BaseModel, ConfigDict
|
|
||||||
|
|
||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
from reflector.processors import Pipeline
|
from reflector.processors import Pipeline
|
||||||
|
|
||||||
|
PipelineMessage = TypeVar("PipelineMessage")
|
||||||
|
|
||||||
class PipelineRunner(BaseModel):
|
|
||||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
||||||
|
|
||||||
status: str = "idle"
|
class PipelineRunner(Generic[PipelineMessage]):
|
||||||
pipeline: Pipeline | None = None
|
def __init__(self):
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
self._task = None
|
self._task = None
|
||||||
self._q_cmd = asyncio.Queue(maxsize=4096)
|
self._q_cmd = asyncio.Queue(maxsize=4096)
|
||||||
self._ev_done = asyncio.Event()
|
self._ev_done = asyncio.Event()
|
||||||
@@ -39,6 +34,8 @@ class PipelineRunner(BaseModel):
|
|||||||
runner=id(self),
|
runner=id(self),
|
||||||
runner_cls=self.__class__.__name__,
|
runner_cls=self.__class__.__name__,
|
||||||
)
|
)
|
||||||
|
self.status = "idle"
|
||||||
|
self.pipeline: Pipeline | None = None
|
||||||
|
|
||||||
async def create(self) -> Pipeline:
|
async def create(self) -> Pipeline:
|
||||||
"""
|
"""
|
||||||
@@ -67,7 +64,7 @@ class PipelineRunner(BaseModel):
|
|||||||
coro = self.run()
|
coro = self.run()
|
||||||
asyncio.run(coro)
|
asyncio.run(coro)
|
||||||
|
|
||||||
async def push(self, data):
|
async def push(self, data: PipelineMessage):
|
||||||
"""
|
"""
|
||||||
Push data to the pipeline
|
Push data to the pipeline
|
||||||
"""
|
"""
|
||||||
@@ -92,7 +89,11 @@ class PipelineRunner(BaseModel):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
async def _add_cmd(
|
async def _add_cmd(
|
||||||
self, cmd: str, data, max_retries: int = 3, retry_time_limit: int = 3
|
self,
|
||||||
|
cmd: str,
|
||||||
|
data: PipelineMessage,
|
||||||
|
max_retries: int = 3,
|
||||||
|
retry_time_limit: int = 3,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Enqueue a command to be executed in the runner.
|
Enqueue a command to be executed in the runner.
|
||||||
@@ -143,6 +144,9 @@ class PipelineRunner(BaseModel):
|
|||||||
cmd, data = await self._q_cmd.get()
|
cmd, data = await self._q_cmd.get()
|
||||||
func = getattr(self, f"cmd_{cmd.lower()}")
|
func = getattr(self, f"cmd_{cmd.lower()}")
|
||||||
if func:
|
if func:
|
||||||
|
if cmd.upper() == "FLUSH":
|
||||||
|
await func()
|
||||||
|
else:
|
||||||
await func(data)
|
await func(data)
|
||||||
else:
|
else:
|
||||||
raise Exception(f"Unknown command {cmd}")
|
raise Exception(f"Unknown command {cmd}")
|
||||||
@@ -152,13 +156,13 @@ class PipelineRunner(BaseModel):
|
|||||||
self._ev_done.set()
|
self._ev_done.set()
|
||||||
raise
|
raise
|
||||||
|
|
||||||
async def cmd_push(self, data):
|
async def cmd_push(self, data: PipelineMessage):
|
||||||
if self._is_first_push:
|
if self._is_first_push:
|
||||||
await self._set_status("push")
|
await self._set_status("push")
|
||||||
self._is_first_push = False
|
self._is_first_push = False
|
||||||
await self.pipeline.push(data)
|
await self.pipeline.push(data)
|
||||||
|
|
||||||
async def cmd_flush(self, data):
|
async def cmd_flush(self):
|
||||||
await self._set_status("flush")
|
await self._set_status("flush")
|
||||||
await self.pipeline.flush()
|
await self.pipeline.flush()
|
||||||
await self._set_status("ended")
|
await self._set_status("ended")
|
||||||
|
|||||||
@@ -1,5 +1,7 @@
|
|||||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||||
|
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||||
|
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||||
@@ -11,11 +13,19 @@ from .base import ( # noqa: F401
|
|||||||
Processor,
|
Processor,
|
||||||
ThreadedProcessor,
|
ThreadedProcessor,
|
||||||
)
|
)
|
||||||
|
from .file_diarization import FileDiarizationProcessor # noqa: F401
|
||||||
|
from .file_diarization_auto import FileDiarizationAutoProcessor # noqa: F401
|
||||||
|
from .file_transcript import FileTranscriptProcessor # noqa: F401
|
||||||
|
from .file_transcript_auto import FileTranscriptAutoProcessor # noqa: F401
|
||||||
|
from .transcript_diarization_assembler import (
|
||||||
|
TranscriptDiarizationAssemblerProcessor, # noqa: F401
|
||||||
|
)
|
||||||
from .transcript_final_summary import TranscriptFinalSummaryProcessor # noqa: F401
|
from .transcript_final_summary import TranscriptFinalSummaryProcessor # noqa: F401
|
||||||
from .transcript_final_title import TranscriptFinalTitleProcessor # noqa: F401
|
from .transcript_final_title import TranscriptFinalTitleProcessor # noqa: F401
|
||||||
from .transcript_liner import TranscriptLinerProcessor # noqa: F401
|
from .transcript_liner import TranscriptLinerProcessor # noqa: F401
|
||||||
from .transcript_topic_detector import TranscriptTopicDetectorProcessor # noqa: F401
|
from .transcript_topic_detector import TranscriptTopicDetectorProcessor # noqa: F401
|
||||||
from .transcript_translator import TranscriptTranslatorProcessor # noqa: F401
|
from .transcript_translator import TranscriptTranslatorProcessor # noqa: F401
|
||||||
|
from .transcript_translator_auto import TranscriptTranslatorAutoProcessor # noqa: F401
|
||||||
from .types import ( # noqa: F401
|
from .types import ( # noqa: F401
|
||||||
AudioFile,
|
AudioFile,
|
||||||
FinalLongSummary,
|
FinalLongSummary,
|
||||||
|
|||||||
@@ -1,28 +1,78 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
import av
|
import av
|
||||||
|
from prometheus_client import Counter, Histogram
|
||||||
|
|
||||||
from reflector.processors.base import Processor
|
from reflector.processors.base import Processor
|
||||||
|
|
||||||
|
|
||||||
class AudioChunkerProcessor(Processor):
|
class AudioChunkerProcessor(Processor):
|
||||||
"""
|
"""
|
||||||
Assemble audio frames into chunks
|
Base class for assembling audio frames into chunks
|
||||||
"""
|
"""
|
||||||
|
|
||||||
INPUT_TYPE = av.AudioFrame
|
INPUT_TYPE = av.AudioFrame
|
||||||
OUTPUT_TYPE = list[av.AudioFrame]
|
OUTPUT_TYPE = list[av.AudioFrame]
|
||||||
|
|
||||||
def __init__(self, max_frames=256):
|
m_chunk = Histogram(
|
||||||
super().__init__()
|
"audio_chunker",
|
||||||
|
"Time spent in AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_chunk_call = Counter(
|
||||||
|
"audio_chunker_call",
|
||||||
|
"Number of calls to AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_chunk_success = Counter(
|
||||||
|
"audio_chunker_success",
|
||||||
|
"Number of successful calls to AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_chunk_failure = Counter(
|
||||||
|
"audio_chunker_failure",
|
||||||
|
"Number of failed calls to AudioChunker.chunk",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
name = self.__class__.__name__
|
||||||
|
self.m_chunk = self.m_chunk.labels(name)
|
||||||
|
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||||
|
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||||
|
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
self.frames: list[av.AudioFrame] = []
|
self.frames: list[av.AudioFrame] = []
|
||||||
self.max_frames = max_frames
|
|
||||||
|
|
||||||
async def _push(self, data: av.AudioFrame):
|
async def _push(self, data: av.AudioFrame):
|
||||||
self.frames.append(data)
|
"""Process incoming audio frame"""
|
||||||
if len(self.frames) >= self.max_frames:
|
# Validate audio format on first frame
|
||||||
await self.flush()
|
if len(self.frames) == 0:
|
||||||
|
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||||
|
f"with {len(data.layout.channels)} channel(s). "
|
||||||
|
f"Use AudioDownscaleProcessor before this processor."
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.m_chunk_call.inc()
|
||||||
|
with self.m_chunk.time():
|
||||||
|
result = await self._chunk(data)
|
||||||
|
self.m_chunk_success.inc()
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
except Exception:
|
||||||
|
self.m_chunk_failure.inc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||||
|
"""
|
||||||
|
Process audio frame and return chunk when ready.
|
||||||
|
Subclasses should implement their chunking logic here.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
async def _flush(self):
|
async def _flush(self):
|
||||||
frames = self.frames[:]
|
"""Flush any remaining frames when processing ends"""
|
||||||
self.frames = []
|
raise NotImplementedError
|
||||||
if frames:
|
|
||||||
await self.emit(frames)
|
|
||||||
|
|||||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||||
|
_registry = {}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def register(cls, name, kclass):
|
||||||
|
cls._registry[name] = kclass
|
||||||
|
|
||||||
|
def __new__(cls, name: str | None = None, **kwargs):
|
||||||
|
if name is None:
|
||||||
|
name = settings.AUDIO_CHUNKER_BACKEND
|
||||||
|
if name not in cls._registry:
|
||||||
|
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||||
|
importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# gather specific configuration for the processor
|
||||||
|
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||||
|
config = {}
|
||||||
|
name_upper = name.upper()
|
||||||
|
settings_prefix = "AUDIO_CHUNKER_"
|
||||||
|
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||||
|
for key, value in settings:
|
||||||
|
if key.startswith(config_prefix):
|
||||||
|
config_name = key[len(settings_prefix) :].lower()
|
||||||
|
config[config_name] = value
|
||||||
|
|
||||||
|
return cls._registry[name](**config | kwargs)
|
||||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import av
|
||||||
|
|
||||||
|
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||||
|
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||||
|
|
||||||
|
|
||||||
|
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||||
|
"""
|
||||||
|
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, max_frames=256, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.max_frames = max_frames
|
||||||
|
|
||||||
|
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||||
|
self.frames.append(data)
|
||||||
|
if len(self.frames) >= self.max_frames:
|
||||||
|
frames_to_emit = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
return frames_to_emit
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _flush(self):
|
||||||
|
frames = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
if frames:
|
||||||
|
await self.emit(frames)
|
||||||
|
|
||||||
|
|
||||||
|
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||||
298
server/reflector/processors/audio_chunker_silero.py
Normal file
298
server/reflector/processors/audio_chunker_silero.py
Normal file
@@ -0,0 +1,298 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import av
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from silero_vad import VADIterator, load_silero_vad
|
||||||
|
|
||||||
|
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||||
|
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||||
|
|
||||||
|
|
||||||
|
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
|
||||||
|
"""
|
||||||
|
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
block_frames=256,
|
||||||
|
max_frames=1024,
|
||||||
|
use_onnx=True,
|
||||||
|
min_frames=2,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.block_frames = block_frames
|
||||||
|
self.max_frames = max_frames
|
||||||
|
self.min_frames = min_frames
|
||||||
|
|
||||||
|
# Initialize Silero VAD
|
||||||
|
self._init_vad(use_onnx)
|
||||||
|
|
||||||
|
def _init_vad(self, use_onnx=False):
|
||||||
|
"""Initialize Silero VAD model"""
|
||||||
|
try:
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||||
|
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||||
|
self.logger.info("Silero VAD initialized successfully")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||||
|
self.vad_model = None
|
||||||
|
self.vad_iterator = None
|
||||||
|
|
||||||
|
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||||
|
"""Process audio frame and return chunk when ready"""
|
||||||
|
self.frames.append(data)
|
||||||
|
|
||||||
|
# Check for speech segments every 32 frames (~1 second)
|
||||||
|
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||||
|
return await self._process_block()
|
||||||
|
|
||||||
|
# Safety fallback - emit if we hit max frames
|
||||||
|
elif len(self.frames) >= self.max_frames:
|
||||||
|
self.logger.warning(
|
||||||
|
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
|
||||||
|
f"emitting first {self.max_frames // 2} frames"
|
||||||
|
)
|
||||||
|
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||||
|
self.frames = self.frames[self.max_frames // 2 :]
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
|
||||||
|
# Need at least 32 frames for VAD detection (~1 second)
|
||||||
|
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Processing block with current buffer size
|
||||||
|
print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Convert frames to numpy array for VAD
|
||||||
|
audio_array = self._frames_to_numpy(self.frames)
|
||||||
|
|
||||||
|
if audio_array is None:
|
||||||
|
# Fallback: emit all frames if conversion failed
|
||||||
|
frames_to_emit = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Find complete speech segments in the buffer
|
||||||
|
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||||
|
|
||||||
|
if speech_end_frame is None or speech_end_frame <= 0:
|
||||||
|
# No speech found but buffer is getting large
|
||||||
|
if len(self.frames) > 512:
|
||||||
|
# Check if it's all silence and can be discarded
|
||||||
|
# No speech segment found, buffer at {len(self.frames)} frames
|
||||||
|
|
||||||
|
# Could emit silence or discard old frames here
|
||||||
|
# For now, keep first 256 frames and discard older silence
|
||||||
|
if len(self.frames) > 768:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||||
|
)
|
||||||
|
self.frames = self.frames[-256:]
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Calculate segment timing information
|
||||||
|
frames_to_emit = self.frames[:speech_end_frame]
|
||||||
|
|
||||||
|
# Get timing from av.AudioFrame
|
||||||
|
if frames_to_emit:
|
||||||
|
first_frame = frames_to_emit[0]
|
||||||
|
last_frame = frames_to_emit[-1]
|
||||||
|
sample_rate = first_frame.sample_rate
|
||||||
|
|
||||||
|
# Calculate duration
|
||||||
|
total_samples = sum(f.samples for f in frames_to_emit)
|
||||||
|
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||||
|
|
||||||
|
# Get timestamps if available
|
||||||
|
start_time = (
|
||||||
|
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||||
|
)
|
||||||
|
end_time = (
|
||||||
|
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||||
|
)
|
||||||
|
|
||||||
|
# Convert to HH:MM:SS format for logging
|
||||||
|
def format_time(seconds):
|
||||||
|
if not seconds:
|
||||||
|
return "00:00:00"
|
||||||
|
total_seconds = int(float(seconds))
|
||||||
|
hours = total_seconds // 3600
|
||||||
|
minutes = (total_seconds % 3600) // 60
|
||||||
|
secs = total_seconds % 60
|
||||||
|
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||||
|
|
||||||
|
start_formatted = format_time(start_time)
|
||||||
|
end_formatted = format_time(end_time)
|
||||||
|
|
||||||
|
# Keep remaining frames for next processing
|
||||||
|
remaining_after = len(self.frames) - speech_end_frame
|
||||||
|
|
||||||
|
# Single structured log line
|
||||||
|
self.logger.info(
|
||||||
|
"Speech segment found",
|
||||||
|
start=start_formatted,
|
||||||
|
end=end_formatted,
|
||||||
|
frames=speech_end_frame,
|
||||||
|
duration=round(duration_seconds, 2),
|
||||||
|
buffer_before=len(self.frames),
|
||||||
|
remaining=remaining_after,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Keep remaining frames for next processing
|
||||||
|
self.frames = self.frames[speech_end_frame:]
|
||||||
|
|
||||||
|
# Filter out segments with too few frames
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Error in VAD processing: {e}")
|
||||||
|
# Fallback to simple chunking
|
||||||
|
if len(self.frames) >= self.block_frames:
|
||||||
|
frames_to_emit = self.frames[: self.block_frames]
|
||||||
|
self.frames = self.frames[self.block_frames :]
|
||||||
|
if len(frames_to_emit) >= self.min_frames:
|
||||||
|
return frames_to_emit
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||||
|
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||||
|
if not frames:
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
audio_data = []
|
||||||
|
for frame in frames:
|
||||||
|
frame_array = frame.to_ndarray()
|
||||||
|
|
||||||
|
if len(frame_array.shape) == 2:
|
||||||
|
frame_array = frame_array.flatten()
|
||||||
|
|
||||||
|
audio_data.append(frame_array)
|
||||||
|
|
||||||
|
if not audio_data:
|
||||||
|
return None
|
||||||
|
|
||||||
|
combined_audio = np.concatenate(audio_data)
|
||||||
|
|
||||||
|
# Ensure float32 format
|
||||||
|
if combined_audio.dtype == np.int16:
|
||||||
|
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||||
|
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||||
|
elif combined_audio.dtype != np.float32:
|
||||||
|
combined_audio = combined_audio.astype(np.float32)
|
||||||
|
|
||||||
|
return combined_audio
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||||
|
"""Find complete speech segments and return frame index at segment end"""
|
||||||
|
if self.vad_iterator is None or len(audio_array) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Process audio in 512-sample windows for VAD
|
||||||
|
window_size = 512
|
||||||
|
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||||
|
|
||||||
|
# Track speech state
|
||||||
|
in_speech = False
|
||||||
|
speech_start = None
|
||||||
|
speech_end = None
|
||||||
|
silence_count = 0
|
||||||
|
|
||||||
|
for i in range(0, len(audio_array), window_size):
|
||||||
|
chunk = audio_array[i : i + window_size]
|
||||||
|
if len(chunk) < window_size:
|
||||||
|
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||||
|
|
||||||
|
# Detect if this window has speech
|
||||||
|
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||||
|
|
||||||
|
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||||
|
if speech_dict:
|
||||||
|
if not in_speech:
|
||||||
|
# Speech started
|
||||||
|
speech_start = i
|
||||||
|
in_speech = True
|
||||||
|
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||||
|
silence_count = 0 # Reset silence counter
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not in_speech:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# We're in speech but found silence
|
||||||
|
silence_count += 1
|
||||||
|
if silence_count < min_silence_windows:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Found end of speech segment
|
||||||
|
speech_end = i - (min_silence_windows - 1) * window_size
|
||||||
|
# Debug: print(f"Speech END at sample {speech_end}")
|
||||||
|
|
||||||
|
# Convert sample position to frame index
|
||||||
|
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||||
|
frame_index = speech_end // samples_per_frame
|
||||||
|
|
||||||
|
# Ensure we don't exceed buffer
|
||||||
|
frame_index = min(frame_index, len(self.frames))
|
||||||
|
return frame_index
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Error finding speech segment: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _flush(self):
|
||||||
|
frames = self.frames[:]
|
||||||
|
self.frames = []
|
||||||
|
if frames:
|
||||||
|
if len(frames) >= self.min_frames:
|
||||||
|
await self.emit(frames)
|
||||||
|
else:
|
||||||
|
self.logger.debug(
|
||||||
|
f"Ignoring flush segment with {len(frames)} frames "
|
||||||
|
f"(< {self.min_frames} minimum)"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)
|
||||||
@@ -1,5 +1,10 @@
|
|||||||
from reflector.processors.base import Processor
|
from reflector.processors.base import Processor
|
||||||
from reflector.processors.types import AudioDiarizationInput, TitleSummary, Word
|
from reflector.processors.types import (
|
||||||
|
AudioDiarizationInput,
|
||||||
|
DiarizationSegment,
|
||||||
|
TitleSummary,
|
||||||
|
Word,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class AudioDiarizationProcessor(Processor):
|
class AudioDiarizationProcessor(Processor):
|
||||||
@@ -33,18 +38,21 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
async def _diarize(self, data: AudioDiarizationInput):
|
async def _diarize(self, data: AudioDiarizationInput):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def assign_speaker(self, words: list[Word], diarization: list[dict]):
|
@classmethod
|
||||||
self._diarization_remove_overlap(diarization)
|
def assign_speaker(cls, words: list[Word], diarization: list[DiarizationSegment]):
|
||||||
self._diarization_remove_segment_without_words(words, diarization)
|
cls._diarization_remove_overlap(diarization)
|
||||||
self._diarization_merge_same_speaker(words, diarization)
|
cls._diarization_remove_segment_without_words(words, diarization)
|
||||||
self._diarization_assign_speaker(words, diarization)
|
cls._diarization_merge_same_speaker(diarization)
|
||||||
|
cls._diarization_assign_speaker(words, diarization)
|
||||||
|
|
||||||
def iter_words_from_topics(self, topics: TitleSummary):
|
@staticmethod
|
||||||
|
def iter_words_from_topics(topics: list[TitleSummary]):
|
||||||
for topic in topics:
|
for topic in topics:
|
||||||
for word in topic.transcript.words:
|
for word in topic.transcript.words:
|
||||||
yield word
|
yield word
|
||||||
|
|
||||||
def is_word_continuation(self, word_prev, word):
|
@staticmethod
|
||||||
|
def is_word_continuation(word_prev, word):
|
||||||
"""
|
"""
|
||||||
Return True if the word is a continuation of the previous word
|
Return True if the word is a continuation of the previous word
|
||||||
by checking if the previous word is ending with a punctuation
|
by checking if the previous word is ending with a punctuation
|
||||||
@@ -57,7 +65,8 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def _diarization_remove_overlap(self, diarization: list[dict]):
|
@staticmethod
|
||||||
|
def _diarization_remove_overlap(diarization: list[DiarizationSegment]):
|
||||||
"""
|
"""
|
||||||
Remove overlap in diarization results
|
Remove overlap in diarization results
|
||||||
|
|
||||||
@@ -82,8 +91,9 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
else:
|
else:
|
||||||
diarization_idx += 1
|
diarization_idx += 1
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
def _diarization_remove_segment_without_words(
|
def _diarization_remove_segment_without_words(
|
||||||
self, words: list[Word], diarization: list[dict]
|
words: list[Word], diarization: list[DiarizationSegment]
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Remove diarization segments without words
|
Remove diarization segments without words
|
||||||
@@ -112,9 +122,8 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
else:
|
else:
|
||||||
diarization_idx += 1
|
diarization_idx += 1
|
||||||
|
|
||||||
def _diarization_merge_same_speaker(
|
@staticmethod
|
||||||
self, words: list[Word], diarization: list[dict]
|
def _diarization_merge_same_speaker(diarization: list[DiarizationSegment]):
|
||||||
):
|
|
||||||
"""
|
"""
|
||||||
Merge diarization contigous segments with the same speaker
|
Merge diarization contigous segments with the same speaker
|
||||||
|
|
||||||
@@ -131,7 +140,10 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
else:
|
else:
|
||||||
diarization_idx += 1
|
diarization_idx += 1
|
||||||
|
|
||||||
def _diarization_assign_speaker(self, words: list[Word], diarization: list[dict]):
|
@classmethod
|
||||||
|
def _diarization_assign_speaker(
|
||||||
|
cls, words: list[Word], diarization: list[DiarizationSegment]
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Assign speaker to words based on diarization
|
Assign speaker to words based on diarization
|
||||||
|
|
||||||
@@ -139,7 +151,7 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
word_idx = 0
|
word_idx = 0
|
||||||
last_speaker = None
|
last_speaker = 0
|
||||||
for d in diarization:
|
for d in diarization:
|
||||||
start = d["start"]
|
start = d["start"]
|
||||||
end = d["end"]
|
end = d["end"]
|
||||||
@@ -154,7 +166,7 @@ class AudioDiarizationProcessor(Processor):
|
|||||||
# If it's a continuation, assign with the last speaker
|
# If it's a continuation, assign with the last speaker
|
||||||
is_continuation = False
|
is_continuation = False
|
||||||
if word_idx > 0 and word_idx < len(words) - 1:
|
if word_idx > 0 and word_idx < len(words) - 1:
|
||||||
is_continuation = self.is_word_continuation(
|
is_continuation = cls.is_word_continuation(
|
||||||
*words[word_idx - 1 : word_idx + 1]
|
*words[word_idx - 1 : word_idx + 1]
|
||||||
)
|
)
|
||||||
if is_continuation:
|
if is_continuation:
|
||||||
|
|||||||
@@ -10,12 +10,17 @@ class AudioDiarizationModalProcessor(AudioDiarizationProcessor):
|
|||||||
INPUT_TYPE = AudioDiarizationInput
|
INPUT_TYPE = AudioDiarizationInput
|
||||||
OUTPUT_TYPE = TitleSummary
|
OUTPUT_TYPE = TitleSummary
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
if not settings.DIARIZATION_URL:
|
||||||
|
raise Exception(
|
||||||
|
"DIARIZATION_URL required to use AudioDiarizationModalProcessor"
|
||||||
|
)
|
||||||
self.diarization_url = settings.DIARIZATION_URL + "/diarize"
|
self.diarization_url = settings.DIARIZATION_URL + "/diarize"
|
||||||
self.headers = {
|
self.modal_api_key = modal_api_key
|
||||||
"Authorization": f"Bearer {settings.LLM_MODAL_API_KEY}",
|
self.headers = {}
|
||||||
}
|
if self.modal_api_key:
|
||||||
|
self.headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||||
|
|
||||||
async def _diarize(self, data: AudioDiarizationInput):
|
async def _diarize(self, data: AudioDiarizationInput):
|
||||||
# Gather diarization data
|
# Gather diarization data
|
||||||
|
|||||||
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from pyannote.audio import Pipeline
|
||||||
|
|
||||||
|
from reflector.processors.audio_diarization import AudioDiarizationProcessor
|
||||||
|
from reflector.processors.audio_diarization_auto import AudioDiarizationAutoProcessor
|
||||||
|
from reflector.processors.types import AudioDiarizationInput, DiarizationSegment
|
||||||
|
|
||||||
|
|
||||||
|
class AudioDiarizationPyannoteProcessor(AudioDiarizationProcessor):
|
||||||
|
"""Local diarization processor using pyannote.audio library"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = "pyannote/speaker-diarization-3.1",
|
||||||
|
pyannote_auth_token: str | None = None,
|
||||||
|
device: str | None = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.model_name = model_name
|
||||||
|
self.auth_token = pyannote_auth_token or os.environ.get("HF_TOKEN")
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
if device is None:
|
||||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
|
self.logger.info(f"Loading pyannote diarization model: {self.model_name}")
|
||||||
|
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||||
|
self.model_name, use_auth_token=self.auth_token
|
||||||
|
)
|
||||||
|
self.diarization_pipeline.to(torch.device(self.device))
|
||||||
|
self.logger.info(f"Diarization model loaded on device: {self.device}")
|
||||||
|
|
||||||
|
async def _diarize(self, data: AudioDiarizationInput) -> list[DiarizationSegment]:
|
||||||
|
try:
|
||||||
|
# Load audio file (audio_url is assumed to be a local file path)
|
||||||
|
self.logger.info(f"Loading local audio file: {data.audio_url}")
|
||||||
|
waveform, sample_rate = torchaudio.load(data.audio_url)
|
||||||
|
audio_input = {"waveform": waveform, "sample_rate": sample_rate}
|
||||||
|
self.logger.info("Running speaker diarization")
|
||||||
|
diarization = self.diarization_pipeline(audio_input)
|
||||||
|
|
||||||
|
# Convert pyannote diarization output to our format
|
||||||
|
segments = []
|
||||||
|
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||||
|
# Extract speaker number from label (e.g., "SPEAKER_00" -> 0)
|
||||||
|
speaker_id = 0
|
||||||
|
if speaker.startswith("SPEAKER_"):
|
||||||
|
try:
|
||||||
|
speaker_id = int(speaker.split("_")[-1])
|
||||||
|
except (ValueError, IndexError):
|
||||||
|
# Fallback to hash-based ID if parsing fails
|
||||||
|
speaker_id = hash(speaker) % 1000
|
||||||
|
|
||||||
|
segments.append(
|
||||||
|
{
|
||||||
|
"start": round(segment.start, 3),
|
||||||
|
"end": round(segment.end, 3),
|
||||||
|
"speaker": speaker_id,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
self.logger.info(f"Diarization completed with {len(segments)} segments")
|
||||||
|
return segments
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.exception(f"Diarization failed: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
AudioDiarizationAutoProcessor.register("pyannote", AudioDiarizationPyannoteProcessor)
|
||||||
60
server/reflector/processors/audio_downscale.py
Normal file
60
server/reflector/processors/audio_downscale.py
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import av
|
||||||
|
from av.audio.resampler import AudioResampler
|
||||||
|
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
|
||||||
|
|
||||||
|
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||||
|
frame_copy = frame.from_ndarray(
|
||||||
|
frame.to_ndarray(),
|
||||||
|
format=frame.format.name,
|
||||||
|
layout=frame.layout.name,
|
||||||
|
)
|
||||||
|
frame_copy.sample_rate = frame.sample_rate
|
||||||
|
frame_copy.pts = frame.pts
|
||||||
|
frame_copy.time_base = frame.time_base
|
||||||
|
return frame_copy
|
||||||
|
|
||||||
|
|
||||||
|
class AudioDownscaleProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Downscale audio frames to 16kHz mono format
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = av.AudioFrame
|
||||||
|
OUTPUT_TYPE = av.AudioFrame
|
||||||
|
|
||||||
|
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.target_rate = target_rate
|
||||||
|
self.target_layout = target_layout
|
||||||
|
self.resampler: Optional[AudioResampler] = None
|
||||||
|
self.needs_resampling: Optional[bool] = None
|
||||||
|
|
||||||
|
async def _push(self, data: av.AudioFrame):
|
||||||
|
if self.needs_resampling is None:
|
||||||
|
self.needs_resampling = (
|
||||||
|
data.sample_rate != self.target_rate
|
||||||
|
or data.layout.name != self.target_layout
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.needs_resampling:
|
||||||
|
self.resampler = AudioResampler(
|
||||||
|
format="s16", layout=self.target_layout, rate=self.target_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
if not self.needs_resampling or not self.resampler:
|
||||||
|
await self.emit(data)
|
||||||
|
return
|
||||||
|
|
||||||
|
resampled_frames = self.resampler.resample(copy_frame(data))
|
||||||
|
for resampled_frame in resampled_frames:
|
||||||
|
await self.emit(resampled_frame)
|
||||||
|
|
||||||
|
async def _flush(self):
|
||||||
|
if self.needs_resampling and self.resampler:
|
||||||
|
final_frames = self.resampler.resample(None)
|
||||||
|
for frame in final_frames:
|
||||||
|
await self.emit(frame)
|
||||||
@@ -16,37 +16,46 @@ class AudioMergeProcessor(Processor):
|
|||||||
INPUT_TYPE = list[av.AudioFrame]
|
INPUT_TYPE = list[av.AudioFrame]
|
||||||
OUTPUT_TYPE = AudioFile
|
OUTPUT_TYPE = AudioFile
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
async def _push(self, data: list[av.AudioFrame]):
|
async def _push(self, data: list[av.AudioFrame]):
|
||||||
if not data:
|
if not data:
|
||||||
return
|
return
|
||||||
|
|
||||||
# get audio information from first frame
|
# get audio information from first frame
|
||||||
frame = data[0]
|
frame = data[0]
|
||||||
channels = len(frame.layout.channels)
|
output_channels = len(frame.layout.channels)
|
||||||
sample_rate = frame.sample_rate
|
output_sample_rate = frame.sample_rate
|
||||||
sample_width = frame.format.bytes
|
output_sample_width = frame.format.bytes
|
||||||
|
|
||||||
# create audio file
|
# create audio file
|
||||||
uu = uuid4().hex
|
uu = uuid4().hex
|
||||||
fd = io.BytesIO()
|
fd = io.BytesIO()
|
||||||
|
|
||||||
|
# Use PyAV to write frames
|
||||||
out_container = av.open(fd, "w", format="wav")
|
out_container = av.open(fd, "w", format="wav")
|
||||||
out_stream = out_container.add_stream("pcm_s16le", rate=sample_rate)
|
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||||
|
out_stream.layout = frame.layout.name
|
||||||
|
|
||||||
for frame in data:
|
for frame in data:
|
||||||
for packet in out_stream.encode(frame):
|
for packet in out_stream.encode(frame):
|
||||||
out_container.mux(packet)
|
out_container.mux(packet)
|
||||||
|
|
||||||
|
# Flush the encoder
|
||||||
for packet in out_stream.encode(None):
|
for packet in out_stream.encode(None):
|
||||||
out_container.mux(packet)
|
out_container.mux(packet)
|
||||||
out_container.close()
|
out_container.close()
|
||||||
|
|
||||||
fd.seek(0)
|
fd.seek(0)
|
||||||
|
|
||||||
# emit audio file
|
# emit audio file
|
||||||
audiofile = AudioFile(
|
audiofile = AudioFile(
|
||||||
name=f"{monotonic_ns()}-{uu}.wav",
|
name=f"{monotonic_ns()}-{uu}.wav",
|
||||||
fd=fd,
|
fd=fd,
|
||||||
sample_rate=sample_rate,
|
sample_rate=output_sample_rate,
|
||||||
channels=channels,
|
channels=output_channels,
|
||||||
sample_width=sample_width,
|
sample_width=output_sample_width,
|
||||||
timestamp=data[0].pts * data[0].time_base,
|
timestamp=data[0].pts * data[0].time_base,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -21,16 +21,24 @@ from reflector.settings import settings
|
|||||||
|
|
||||||
|
|
||||||
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||||
def __init__(self, modal_api_key: str):
|
def __init__(
|
||||||
|
self,
|
||||||
|
modal_api_key: str | None = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
if not settings.TRANSCRIPT_URL:
|
||||||
|
raise Exception(
|
||||||
|
"TRANSCRIPT_URL required to use AudioTranscriptModalProcessor"
|
||||||
|
)
|
||||||
self.transcript_url = settings.TRANSCRIPT_URL + "/v1"
|
self.transcript_url = settings.TRANSCRIPT_URL + "/v1"
|
||||||
self.timeout = settings.TRANSCRIPT_TIMEOUT
|
self.timeout = settings.TRANSCRIPT_TIMEOUT
|
||||||
self.api_key = settings.TRANSCRIPT_MODAL_API_KEY
|
self.modal_api_key = modal_api_key
|
||||||
|
|
||||||
async def _transcript(self, data: AudioFile):
|
async def _transcript(self, data: AudioFile):
|
||||||
async with AsyncOpenAI(
|
async with AsyncOpenAI(
|
||||||
base_url=self.transcript_url,
|
base_url=self.transcript_url,
|
||||||
api_key=self.api_key,
|
api_key=self.modal_api_key,
|
||||||
timeout=self.timeout,
|
timeout=self.timeout,
|
||||||
) as client:
|
) as client:
|
||||||
self.logger.debug(f"Try to transcribe audio {data.name}")
|
self.logger.debug(f"Try to transcribe audio {data.name}")
|
||||||
|
|||||||
@@ -173,6 +173,7 @@ class Processor(Emitter):
|
|||||||
except Exception:
|
except Exception:
|
||||||
self.m_processor_failure.inc()
|
self.m_processor_failure.inc()
|
||||||
self.logger.exception("Error in push")
|
self.logger.exception("Error in push")
|
||||||
|
raise
|
||||||
|
|
||||||
async def flush(self):
|
async def flush(self):
|
||||||
"""
|
"""
|
||||||
@@ -240,14 +241,15 @@ class ThreadedProcessor(Processor):
|
|||||||
self.INPUT_TYPE = processor.INPUT_TYPE
|
self.INPUT_TYPE = processor.INPUT_TYPE
|
||||||
self.OUTPUT_TYPE = processor.OUTPUT_TYPE
|
self.OUTPUT_TYPE = processor.OUTPUT_TYPE
|
||||||
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||||
self.queue = asyncio.Queue()
|
self.queue = asyncio.Queue(maxsize=50)
|
||||||
self.task = asyncio.get_running_loop().create_task(self.loop())
|
self.task: asyncio.Task | None = None
|
||||||
|
|
||||||
def set_pipeline(self, pipeline: "Pipeline"):
|
def set_pipeline(self, pipeline: "Pipeline"):
|
||||||
super().set_pipeline(pipeline)
|
super().set_pipeline(pipeline)
|
||||||
self.processor.set_pipeline(pipeline)
|
self.processor.set_pipeline(pipeline)
|
||||||
|
|
||||||
async def loop(self):
|
async def loop(self):
|
||||||
|
try:
|
||||||
while True:
|
while True:
|
||||||
data = await self.queue.get()
|
data = await self.queue.get()
|
||||||
self.m_processor_queue.set(self.queue.qsize())
|
self.m_processor_queue.set(self.queue.qsize())
|
||||||
@@ -265,8 +267,19 @@ class ThreadedProcessor(Processor):
|
|||||||
)
|
)
|
||||||
finally:
|
finally:
|
||||||
self.queue.task_done()
|
self.queue.task_done()
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Crash in {self.__class__.__name__}: {e}", exc_info=e)
|
||||||
|
|
||||||
|
async def _ensure_task(self):
|
||||||
|
if self.task is None:
|
||||||
|
self.task = asyncio.get_running_loop().create_task(self.loop())
|
||||||
|
|
||||||
|
# XXX not doing a sleep here make the whole pipeline prior the thread
|
||||||
|
# to be running without having a chance to work on the task here.
|
||||||
|
await asyncio.sleep(0)
|
||||||
|
|
||||||
async def _push(self, data):
|
async def _push(self, data):
|
||||||
|
await self._ensure_task()
|
||||||
await self.queue.put(data)
|
await self.queue.put(data)
|
||||||
|
|
||||||
async def _flush(self):
|
async def _flush(self):
|
||||||
|
|||||||
33
server/reflector/processors/file_diarization.py
Normal file
33
server/reflector/processors/file_diarization.py
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
from reflector.processors.types import DiarizationSegment
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationInput(BaseModel):
|
||||||
|
"""Input for file diarization containing audio URL"""
|
||||||
|
|
||||||
|
audio_url: str
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationOutput(BaseModel):
|
||||||
|
"""Output for file diarization containing speaker segments"""
|
||||||
|
|
||||||
|
diarization: list[DiarizationSegment]
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Diarize complete audio files from URL
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = FileDiarizationInput
|
||||||
|
OUTPUT_TYPE = FileDiarizationOutput
|
||||||
|
|
||||||
|
async def _push(self, data: FileDiarizationInput):
|
||||||
|
result = await self._diarize(data)
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
|
||||||
|
async def _diarize(self, data: FileDiarizationInput):
|
||||||
|
raise NotImplementedError
|
||||||
33
server/reflector/processors/file_diarization_auto.py
Normal file
33
server/reflector/processors/file_diarization_auto.py
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
from reflector.processors.file_diarization import FileDiarizationProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationAutoProcessor(FileDiarizationProcessor):
|
||||||
|
_registry = {}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def register(cls, name, kclass):
|
||||||
|
cls._registry[name] = kclass
|
||||||
|
|
||||||
|
def __new__(cls, name: str | None = None, **kwargs):
|
||||||
|
if name is None:
|
||||||
|
name = settings.DIARIZATION_BACKEND
|
||||||
|
|
||||||
|
if name not in cls._registry:
|
||||||
|
module_name = f"reflector.processors.file_diarization_{name}"
|
||||||
|
importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# gather specific configuration for the processor
|
||||||
|
# search `DIARIZATION_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||||
|
config = {}
|
||||||
|
name_upper = name.upper()
|
||||||
|
settings_prefix = "DIARIZATION_"
|
||||||
|
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||||
|
for key, value in settings:
|
||||||
|
if key.startswith(config_prefix):
|
||||||
|
config_name = key[len(settings_prefix) :].lower()
|
||||||
|
config[config_name] = value
|
||||||
|
|
||||||
|
return cls._registry[name](**config | kwargs)
|
||||||
57
server/reflector/processors/file_diarization_modal.py
Normal file
57
server/reflector/processors/file_diarization_modal.py
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
"""
|
||||||
|
File diarization implementation using the GPU service from modal.com
|
||||||
|
|
||||||
|
API will be a POST request to DIARIZATION_URL:
|
||||||
|
|
||||||
|
```
|
||||||
|
POST /diarize?audio_file_url=...×tamp=0
|
||||||
|
Authorization: Bearer <modal_api_key>
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
|
||||||
|
from reflector.processors.file_diarization import (
|
||||||
|
FileDiarizationInput,
|
||||||
|
FileDiarizationOutput,
|
||||||
|
FileDiarizationProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileDiarizationModalProcessor(FileDiarizationProcessor):
|
||||||
|
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
if not settings.DIARIZATION_URL:
|
||||||
|
raise Exception(
|
||||||
|
"DIARIZATION_URL required to use FileDiarizationModalProcessor"
|
||||||
|
)
|
||||||
|
self.diarization_url = settings.DIARIZATION_URL + "/diarize"
|
||||||
|
self.file_timeout = settings.DIARIZATION_FILE_TIMEOUT
|
||||||
|
self.modal_api_key = modal_api_key
|
||||||
|
|
||||||
|
async def _diarize(self, data: FileDiarizationInput):
|
||||||
|
"""Get speaker diarization for file"""
|
||||||
|
self.logger.info(f"Starting diarization from {data.audio_url}")
|
||||||
|
|
||||||
|
headers = {}
|
||||||
|
if self.modal_api_key:
|
||||||
|
headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||||
|
|
||||||
|
async with httpx.AsyncClient(timeout=self.file_timeout) as client:
|
||||||
|
response = await client.post(
|
||||||
|
self.diarization_url,
|
||||||
|
headers=headers,
|
||||||
|
params={
|
||||||
|
"audio_file_url": data.audio_url,
|
||||||
|
"timestamp": 0,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
diarization_data = response.json()["diarization"]
|
||||||
|
|
||||||
|
return FileDiarizationOutput(diarization=diarization_data)
|
||||||
|
|
||||||
|
|
||||||
|
FileDiarizationAutoProcessor.register("modal", FileDiarizationModalProcessor)
|
||||||
65
server/reflector/processors/file_transcript.py
Normal file
65
server/reflector/processors/file_transcript.py
Normal file
@@ -0,0 +1,65 @@
|
|||||||
|
from prometheus_client import Counter, Histogram
|
||||||
|
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
from reflector.processors.types import Transcript
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptInput:
|
||||||
|
"""Input for file transcription containing audio URL and language settings"""
|
||||||
|
|
||||||
|
def __init__(self, audio_url: str, language: str = "en"):
|
||||||
|
self.audio_url = audio_url
|
||||||
|
self.language = language
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Transcript complete audio files from URL
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = FileTranscriptInput
|
||||||
|
OUTPUT_TYPE = Transcript
|
||||||
|
|
||||||
|
m_transcript = Histogram(
|
||||||
|
"file_transcript",
|
||||||
|
"Time spent in FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_transcript_call = Counter(
|
||||||
|
"file_transcript_call",
|
||||||
|
"Number of calls to FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_transcript_success = Counter(
|
||||||
|
"file_transcript_success",
|
||||||
|
"Number of successful calls to FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
m_transcript_failure = Counter(
|
||||||
|
"file_transcript_failure",
|
||||||
|
"Number of failed calls to FileTranscript.transcript",
|
||||||
|
["backend"],
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
name = self.__class__.__name__
|
||||||
|
self.m_transcript = self.m_transcript.labels(name)
|
||||||
|
self.m_transcript_call = self.m_transcript_call.labels(name)
|
||||||
|
self.m_transcript_success = self.m_transcript_success.labels(name)
|
||||||
|
self.m_transcript_failure = self.m_transcript_failure.labels(name)
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
async def _push(self, data: FileTranscriptInput):
|
||||||
|
try:
|
||||||
|
self.m_transcript_call.inc()
|
||||||
|
with self.m_transcript.time():
|
||||||
|
result = await self._transcript(data)
|
||||||
|
self.m_transcript_success.inc()
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
except Exception:
|
||||||
|
self.m_transcript_failure.inc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def _transcript(self, data: FileTranscriptInput):
|
||||||
|
raise NotImplementedError
|
||||||
32
server/reflector/processors/file_transcript_auto.py
Normal file
32
server/reflector/processors/file_transcript_auto.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
from reflector.processors.file_transcript import FileTranscriptProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptAutoProcessor(FileTranscriptProcessor):
|
||||||
|
_registry = {}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def register(cls, name, kclass):
|
||||||
|
cls._registry[name] = kclass
|
||||||
|
|
||||||
|
def __new__(cls, name: str | None = None, **kwargs):
|
||||||
|
if name is None:
|
||||||
|
name = settings.TRANSCRIPT_BACKEND
|
||||||
|
if name not in cls._registry:
|
||||||
|
module_name = f"reflector.processors.file_transcript_{name}"
|
||||||
|
importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# gather specific configuration for the processor
|
||||||
|
# search `TRANSCRIPT_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||||
|
config = {}
|
||||||
|
name_upper = name.upper()
|
||||||
|
settings_prefix = "TRANSCRIPT_"
|
||||||
|
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||||
|
for key, value in settings:
|
||||||
|
if key.startswith(config_prefix):
|
||||||
|
config_name = key[len(settings_prefix) :].lower()
|
||||||
|
config[config_name] = value
|
||||||
|
|
||||||
|
return cls._registry[name](**config | kwargs)
|
||||||
77
server/reflector/processors/file_transcript_modal.py
Normal file
77
server/reflector/processors/file_transcript_modal.py
Normal file
@@ -0,0 +1,77 @@
|
|||||||
|
"""
|
||||||
|
File transcription implementation using the GPU service from modal.com
|
||||||
|
|
||||||
|
API will be a POST request to TRANSCRIPT_URL:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"audio_file_url": "https://...",
|
||||||
|
"language": "en",
|
||||||
|
"model": "parakeet-tdt-0.6b-v2",
|
||||||
|
"batch": true
|
||||||
|
}
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
|
||||||
|
from reflector.processors.file_transcript import (
|
||||||
|
FileTranscriptInput,
|
||||||
|
FileTranscriptProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||||
|
from reflector.processors.types import Transcript, Word
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class FileTranscriptModalProcessor(FileTranscriptProcessor):
|
||||||
|
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
if not settings.TRANSCRIPT_URL:
|
||||||
|
raise Exception(
|
||||||
|
"TRANSCRIPT_URL required to use FileTranscriptModalProcessor"
|
||||||
|
)
|
||||||
|
self.transcript_url = settings.TRANSCRIPT_URL
|
||||||
|
self.file_timeout = settings.TRANSCRIPT_FILE_TIMEOUT
|
||||||
|
self.modal_api_key = modal_api_key
|
||||||
|
|
||||||
|
async def _transcript(self, data: FileTranscriptInput):
|
||||||
|
"""Send full file to Modal for transcription"""
|
||||||
|
url = f"{self.transcript_url}/v1/audio/transcriptions-from-url"
|
||||||
|
|
||||||
|
self.logger.info(f"Starting file transcription from {data.audio_url}")
|
||||||
|
|
||||||
|
headers = {}
|
||||||
|
if self.modal_api_key:
|
||||||
|
headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||||
|
|
||||||
|
async with httpx.AsyncClient(timeout=self.file_timeout) as client:
|
||||||
|
response = await client.post(
|
||||||
|
url,
|
||||||
|
headers=headers,
|
||||||
|
json={
|
||||||
|
"audio_file_url": data.audio_url,
|
||||||
|
"language": data.language,
|
||||||
|
"batch": True,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
words = [
|
||||||
|
Word(
|
||||||
|
text=word_info["word"],
|
||||||
|
start=word_info["start"],
|
||||||
|
end=word_info["end"],
|
||||||
|
)
|
||||||
|
for word_info in result.get("words", [])
|
||||||
|
]
|
||||||
|
|
||||||
|
# words come not in order
|
||||||
|
words.sort(key=lambda w: w.start)
|
||||||
|
|
||||||
|
return Transcript(words=words)
|
||||||
|
|
||||||
|
|
||||||
|
# Register with the auto processor
|
||||||
|
FileTranscriptAutoProcessor.register("modal", FileTranscriptModalProcessor)
|
||||||
@@ -6,7 +6,7 @@ This script is used to generate a summary of a meeting notes transcript.
|
|||||||
|
|
||||||
import asyncio
|
import asyncio
|
||||||
import sys
|
import sys
|
||||||
from datetime import datetime
|
from datetime import datetime, timezone
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from textwrap import dedent
|
from textwrap import dedent
|
||||||
from typing import Type, TypeVar
|
from typing import Type, TypeVar
|
||||||
@@ -474,7 +474,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
if args.save:
|
if args.save:
|
||||||
# write the summary to a file, on the format summary-<iso date>.md
|
# write the summary to a file, on the format summary-<iso date>.md
|
||||||
filename = f"summary-{datetime.now().isoformat()}.md"
|
filename = f"summary-{datetime.now(timezone.utc).isoformat()}.md"
|
||||||
with open(filename, "w", encoding="utf-8") as f:
|
with open(filename, "w", encoding="utf-8") as f:
|
||||||
f.write(sm.as_markdown())
|
f.write(sm.as_markdown())
|
||||||
|
|
||||||
|
|||||||
@@ -0,0 +1,45 @@
|
|||||||
|
"""
|
||||||
|
Processor to assemble transcript with diarization results
|
||||||
|
"""
|
||||||
|
|
||||||
|
from reflector.processors.audio_diarization import AudioDiarizationProcessor
|
||||||
|
from reflector.processors.base import Processor
|
||||||
|
from reflector.processors.types import DiarizationSegment, Transcript
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptDiarizationAssemblerInput:
|
||||||
|
"""Input containing transcript and diarization data"""
|
||||||
|
|
||||||
|
def __init__(self, transcript: Transcript, diarization: list[DiarizationSegment]):
|
||||||
|
self.transcript = transcript
|
||||||
|
self.diarization = diarization
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptDiarizationAssemblerProcessor(Processor):
|
||||||
|
"""
|
||||||
|
Assemble transcript with diarization results by applying speaker assignments
|
||||||
|
"""
|
||||||
|
|
||||||
|
INPUT_TYPE = TranscriptDiarizationAssemblerInput
|
||||||
|
OUTPUT_TYPE = Transcript
|
||||||
|
|
||||||
|
async def _push(self, data: TranscriptDiarizationAssemblerInput):
|
||||||
|
result = await self._assemble(data)
|
||||||
|
if result:
|
||||||
|
await self.emit(result)
|
||||||
|
|
||||||
|
async def _assemble(self, data: TranscriptDiarizationAssemblerInput):
|
||||||
|
"""Apply diarization to transcript words"""
|
||||||
|
if not data.diarization:
|
||||||
|
self.logger.info(
|
||||||
|
"No diarization data provided, returning original transcript"
|
||||||
|
)
|
||||||
|
return data.transcript
|
||||||
|
|
||||||
|
# Reuse logic from AudioDiarizationProcessor
|
||||||
|
processor = AudioDiarizationProcessor()
|
||||||
|
words = data.transcript.words
|
||||||
|
processor.assign_speaker(words, data.diarization)
|
||||||
|
|
||||||
|
self.logger.info(f"Applied diarization to {len(words)} words")
|
||||||
|
return data.transcript
|
||||||
@@ -1,9 +1,5 @@
|
|||||||
import httpx
|
|
||||||
|
|
||||||
from reflector.processors.base import Processor
|
from reflector.processors.base import Processor
|
||||||
from reflector.processors.types import Transcript, TranslationLanguages
|
from reflector.processors.types import Transcript
|
||||||
from reflector.settings import settings
|
|
||||||
from reflector.utils.retry import retry
|
|
||||||
|
|
||||||
|
|
||||||
class TranscriptTranslatorProcessor(Processor):
|
class TranscriptTranslatorProcessor(Processor):
|
||||||
@@ -17,56 +13,23 @@ class TranscriptTranslatorProcessor(Processor):
|
|||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.transcript = None
|
self.transcript = None
|
||||||
self.translate_url = settings.TRANSLATE_URL
|
|
||||||
self.timeout = settings.TRANSLATE_TIMEOUT
|
|
||||||
self.headers = {"Authorization": f"Bearer {settings.TRANSCRIPT_MODAL_API_KEY}"}
|
|
||||||
|
|
||||||
async def _push(self, data: Transcript):
|
async def _push(self, data: Transcript):
|
||||||
self.transcript = data
|
self.transcript = data
|
||||||
await self.flush()
|
await self.flush()
|
||||||
|
|
||||||
async def get_translation(self, text: str) -> str | None:
|
async def _translate(self, text: str) -> str | None:
|
||||||
# FIXME this should be a processor after, as each user may want
|
raise NotImplementedError
|
||||||
# different languages
|
|
||||||
|
|
||||||
source_language = self.get_pref("audio:source_language", "en")
|
|
||||||
target_language = self.get_pref("audio:target_language", "en")
|
|
||||||
if source_language == target_language:
|
|
||||||
return
|
|
||||||
|
|
||||||
languages = TranslationLanguages()
|
|
||||||
# Only way to set the target should be the UI element like dropdown.
|
|
||||||
# Hence, this assert should never fail.
|
|
||||||
assert languages.is_supported(target_language)
|
|
||||||
self.logger.debug(f"Try to translate {text=}")
|
|
||||||
json_payload = {
|
|
||||||
"text": text,
|
|
||||||
"source_language": source_language,
|
|
||||||
"target_language": target_language,
|
|
||||||
}
|
|
||||||
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await retry(client.post)(
|
|
||||||
self.translate_url + "/translate",
|
|
||||||
headers=self.headers,
|
|
||||||
params=json_payload,
|
|
||||||
timeout=self.timeout,
|
|
||||||
follow_redirects=True,
|
|
||||||
logger=self.logger,
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
result = response.json()["text"]
|
|
||||||
|
|
||||||
# Sanity check for translation status in the result
|
|
||||||
if target_language in result:
|
|
||||||
translation = result[target_language]
|
|
||||||
self.logger.debug(f"Translation response: {text=}, {translation=}")
|
|
||||||
return translation
|
|
||||||
|
|
||||||
async def _flush(self):
|
async def _flush(self):
|
||||||
if not self.transcript:
|
if not self.transcript:
|
||||||
return
|
return
|
||||||
self.transcript.translation = await self.get_translation(
|
|
||||||
text=self.transcript.text
|
source_language = self.get_pref("audio:source_language", "en")
|
||||||
)
|
target_language = self.get_pref("audio:target_language", "en")
|
||||||
|
if source_language == target_language:
|
||||||
|
self.transcript.translation = None
|
||||||
|
else:
|
||||||
|
self.transcript.translation = await self._translate(self.transcript.text)
|
||||||
|
|
||||||
await self.emit(self.transcript)
|
await self.emit(self.transcript)
|
||||||
|
|||||||
32
server/reflector/processors/transcript_translator_auto.py
Normal file
32
server/reflector/processors/transcript_translator_auto.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
from reflector.processors.transcript_translator import TranscriptTranslatorProcessor
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptTranslatorAutoProcessor(TranscriptTranslatorProcessor):
|
||||||
|
_registry = {}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def register(cls, name, kclass):
|
||||||
|
cls._registry[name] = kclass
|
||||||
|
|
||||||
|
def __new__(cls, name: str | None = None, **kwargs):
|
||||||
|
if name is None:
|
||||||
|
name = settings.TRANSLATION_BACKEND
|
||||||
|
if name not in cls._registry:
|
||||||
|
module_name = f"reflector.processors.transcript_translator_{name}"
|
||||||
|
importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# gather specific configuration for the processor
|
||||||
|
# search `TRANSLATION_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||||
|
config = {}
|
||||||
|
name_upper = name.upper()
|
||||||
|
settings_prefix = "TRANSLATION_"
|
||||||
|
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||||
|
for key, value in settings:
|
||||||
|
if key.startswith(config_prefix):
|
||||||
|
config_name = key[len(settings_prefix) :].lower()
|
||||||
|
config[config_name] = value
|
||||||
|
|
||||||
|
return cls._registry[name](**config | kwargs)
|
||||||
66
server/reflector/processors/transcript_translator_modal.py
Normal file
66
server/reflector/processors/transcript_translator_modal.py
Normal file
@@ -0,0 +1,66 @@
|
|||||||
|
import httpx
|
||||||
|
|
||||||
|
from reflector.processors.transcript_translator import TranscriptTranslatorProcessor
|
||||||
|
from reflector.processors.transcript_translator_auto import (
|
||||||
|
TranscriptTranslatorAutoProcessor,
|
||||||
|
)
|
||||||
|
from reflector.processors.types import TranslationLanguages
|
||||||
|
from reflector.settings import settings
|
||||||
|
from reflector.utils.retry import retry
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptTranslatorModalProcessor(TranscriptTranslatorProcessor):
|
||||||
|
"""
|
||||||
|
Translate the transcript into the target language using Modal.com
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
if not settings.TRANSLATE_URL:
|
||||||
|
raise Exception(
|
||||||
|
"TRANSLATE_URL is required for TranscriptTranslatorModalProcessor"
|
||||||
|
)
|
||||||
|
self.translate_url = settings.TRANSLATE_URL
|
||||||
|
self.timeout = settings.TRANSLATE_TIMEOUT
|
||||||
|
self.modal_api_key = modal_api_key
|
||||||
|
self.headers = {}
|
||||||
|
if self.modal_api_key:
|
||||||
|
self.headers["Authorization"] = f"Bearer {self.modal_api_key}"
|
||||||
|
|
||||||
|
async def _translate(self, text: str) -> str | None:
|
||||||
|
source_language = self.get_pref("audio:source_language", "en")
|
||||||
|
target_language = self.get_pref("audio:target_language", "en")
|
||||||
|
|
||||||
|
languages = TranslationLanguages()
|
||||||
|
# Only way to set the target should be the UI element like dropdown.
|
||||||
|
# Hence, this assert should never fail.
|
||||||
|
assert languages.is_supported(target_language)
|
||||||
|
self.logger.debug(f"Try to translate {text=}")
|
||||||
|
json_payload = {
|
||||||
|
"text": text,
|
||||||
|
"source_language": source_language,
|
||||||
|
"target_language": target_language,
|
||||||
|
}
|
||||||
|
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
response = await retry(client.post)(
|
||||||
|
self.translate_url + "/translate",
|
||||||
|
headers=self.headers,
|
||||||
|
params=json_payload,
|
||||||
|
timeout=self.timeout,
|
||||||
|
follow_redirects=True,
|
||||||
|
logger=self.logger,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
result = response.json()["text"]
|
||||||
|
|
||||||
|
# Sanity check for translation status in the result
|
||||||
|
if target_language in result:
|
||||||
|
translation = result[target_language]
|
||||||
|
else:
|
||||||
|
translation = None
|
||||||
|
self.logger.debug(f"Translation response: {text=}, {translation=}")
|
||||||
|
return translation
|
||||||
|
|
||||||
|
|
||||||
|
TranscriptTranslatorAutoProcessor.register("modal", TranscriptTranslatorModalProcessor)
|
||||||
@@ -0,0 +1,14 @@
|
|||||||
|
from reflector.processors.transcript_translator import TranscriptTranslatorProcessor
|
||||||
|
from reflector.processors.transcript_translator_auto import (
|
||||||
|
TranscriptTranslatorAutoProcessor,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class TranscriptTranslatorPassthroughProcessor(TranscriptTranslatorProcessor):
|
||||||
|
async def _translate(self, text: str) -> None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
TranscriptTranslatorAutoProcessor.register(
|
||||||
|
"passthrough", TranscriptTranslatorPassthroughProcessor
|
||||||
|
)
|
||||||
@@ -2,12 +2,22 @@ import io
|
|||||||
import re
|
import re
|
||||||
import tempfile
|
import tempfile
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Annotated, TypedDict
|
||||||
|
|
||||||
from profanityfilter import ProfanityFilter
|
from profanityfilter import ProfanityFilter
|
||||||
from pydantic import BaseModel, PrivateAttr
|
from pydantic import BaseModel, Field, PrivateAttr
|
||||||
|
|
||||||
from reflector.redis_cache import redis_cache
|
from reflector.redis_cache import redis_cache
|
||||||
|
|
||||||
|
|
||||||
|
class DiarizationSegment(TypedDict):
|
||||||
|
"""Type definition for diarization segment containing speaker information"""
|
||||||
|
|
||||||
|
start: float
|
||||||
|
end: float
|
||||||
|
speaker: int
|
||||||
|
|
||||||
|
|
||||||
PUNC_RE = re.compile(r"[.;:?!…]")
|
PUNC_RE = re.compile(r"[.;:?!…]")
|
||||||
|
|
||||||
profanity_filter = ProfanityFilter()
|
profanity_filter = ProfanityFilter()
|
||||||
@@ -48,20 +58,70 @@ class AudioFile(BaseModel):
|
|||||||
self._path.unlink()
|
self._path.unlink()
|
||||||
|
|
||||||
|
|
||||||
|
# non-negative seconds with float part
|
||||||
|
Seconds = Annotated[float, Field(ge=0.0, description="Time in seconds with float part")]
|
||||||
|
|
||||||
|
|
||||||
class Word(BaseModel):
|
class Word(BaseModel):
|
||||||
text: str
|
text: str
|
||||||
start: float
|
start: Seconds
|
||||||
end: float
|
end: Seconds
|
||||||
speaker: int = 0
|
speaker: int = 0
|
||||||
|
|
||||||
|
|
||||||
class TranscriptSegment(BaseModel):
|
class TranscriptSegment(BaseModel):
|
||||||
text: str
|
text: str
|
||||||
start: float
|
start: Seconds
|
||||||
end: float
|
end: Seconds
|
||||||
speaker: int = 0
|
speaker: int = 0
|
||||||
|
|
||||||
|
|
||||||
|
def words_to_segments(words: list[Word]) -> list[TranscriptSegment]:
|
||||||
|
# from a list of word, create a list of segments
|
||||||
|
# join the word that are less than 2 seconds apart
|
||||||
|
# but separate if the speaker changes, or if the punctuation is a . , ; : ? !
|
||||||
|
segments = []
|
||||||
|
current_segment = None
|
||||||
|
MAX_SEGMENT_LENGTH = 120
|
||||||
|
|
||||||
|
for word in words:
|
||||||
|
if current_segment is None:
|
||||||
|
current_segment = TranscriptSegment(
|
||||||
|
text=word.text,
|
||||||
|
start=word.start,
|
||||||
|
end=word.end,
|
||||||
|
speaker=word.speaker,
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# If the word is attach to another speaker, push the current segment
|
||||||
|
# and start a new one
|
||||||
|
if word.speaker != current_segment.speaker:
|
||||||
|
segments.append(current_segment)
|
||||||
|
current_segment = TranscriptSegment(
|
||||||
|
text=word.text,
|
||||||
|
start=word.start,
|
||||||
|
end=word.end,
|
||||||
|
speaker=word.speaker,
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# if the word is the end of a sentence, and we have enough content,
|
||||||
|
# add the word to the current segment and push it
|
||||||
|
current_segment.text += word.text
|
||||||
|
current_segment.end = word.end
|
||||||
|
|
||||||
|
have_punc = PUNC_RE.search(word.text)
|
||||||
|
if have_punc and (len(current_segment.text) > MAX_SEGMENT_LENGTH):
|
||||||
|
segments.append(current_segment)
|
||||||
|
current_segment = None
|
||||||
|
|
||||||
|
if current_segment:
|
||||||
|
segments.append(current_segment)
|
||||||
|
|
||||||
|
return segments
|
||||||
|
|
||||||
|
|
||||||
class Transcript(BaseModel):
|
class Transcript(BaseModel):
|
||||||
translation: str | None = None
|
translation: str | None = None
|
||||||
words: list[Word] = None
|
words: list[Word] = None
|
||||||
@@ -117,49 +177,7 @@ class Transcript(BaseModel):
|
|||||||
return Transcript(text=self.text, translation=self.translation, words=words)
|
return Transcript(text=self.text, translation=self.translation, words=words)
|
||||||
|
|
||||||
def as_segments(self) -> list[TranscriptSegment]:
|
def as_segments(self) -> list[TranscriptSegment]:
|
||||||
# from a list of word, create a list of segments
|
return words_to_segments(self.words)
|
||||||
# join the word that are less than 2 seconds apart
|
|
||||||
# but separate if the speaker changes, or if the punctuation is a . , ; : ? !
|
|
||||||
segments = []
|
|
||||||
current_segment = None
|
|
||||||
MAX_SEGMENT_LENGTH = 120
|
|
||||||
|
|
||||||
for word in self.words:
|
|
||||||
if current_segment is None:
|
|
||||||
current_segment = TranscriptSegment(
|
|
||||||
text=word.text,
|
|
||||||
start=word.start,
|
|
||||||
end=word.end,
|
|
||||||
speaker=word.speaker,
|
|
||||||
)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# If the word is attach to another speaker, push the current segment
|
|
||||||
# and start a new one
|
|
||||||
if word.speaker != current_segment.speaker:
|
|
||||||
segments.append(current_segment)
|
|
||||||
current_segment = TranscriptSegment(
|
|
||||||
text=word.text,
|
|
||||||
start=word.start,
|
|
||||||
end=word.end,
|
|
||||||
speaker=word.speaker,
|
|
||||||
)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# if the word is the end of a sentence, and we have enough content,
|
|
||||||
# add the word to the current segment and push it
|
|
||||||
current_segment.text += word.text
|
|
||||||
current_segment.end = word.end
|
|
||||||
|
|
||||||
have_punc = PUNC_RE.search(word.text)
|
|
||||||
if have_punc and (len(current_segment.text) > MAX_SEGMENT_LENGTH):
|
|
||||||
segments.append(current_segment)
|
|
||||||
current_segment = None
|
|
||||||
|
|
||||||
if current_segment:
|
|
||||||
segments.append(current_segment)
|
|
||||||
|
|
||||||
return segments
|
|
||||||
|
|
||||||
|
|
||||||
class TitleSummary(BaseModel):
|
class TitleSummary(BaseModel):
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
from pydantic.types import PositiveInt
|
||||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||||
|
|
||||||
|
|
||||||
@@ -14,18 +15,25 @@ class Settings(BaseSettings):
|
|||||||
CORS_ALLOW_CREDENTIALS: bool = False
|
CORS_ALLOW_CREDENTIALS: bool = False
|
||||||
|
|
||||||
# Database
|
# Database
|
||||||
DATABASE_URL: str = "sqlite:///./reflector.sqlite3"
|
DATABASE_URL: str = (
|
||||||
|
"postgresql+asyncpg://reflector:reflector@localhost:5432/reflector"
|
||||||
|
)
|
||||||
|
|
||||||
# local data directory
|
# local data directory
|
||||||
DATA_DIR: str = "./data"
|
DATA_DIR: str = "./data"
|
||||||
|
|
||||||
|
# Audio Chunking
|
||||||
|
# backends: silero, frames
|
||||||
|
AUDIO_CHUNKER_BACKEND: str = "frames"
|
||||||
|
|
||||||
# Audio Transcription
|
# Audio Transcription
|
||||||
# backends: whisper, modal
|
# backends: whisper, modal
|
||||||
TRANSCRIPT_BACKEND: str = "whisper"
|
TRANSCRIPT_BACKEND: str = "whisper"
|
||||||
TRANSCRIPT_URL: str | None = None
|
TRANSCRIPT_URL: str | None = None
|
||||||
TRANSCRIPT_TIMEOUT: int = 90
|
TRANSCRIPT_TIMEOUT: int = 90
|
||||||
|
TRANSCRIPT_FILE_TIMEOUT: int = 600
|
||||||
|
|
||||||
# Audio transcription modal.com configuration
|
# Audio Transcription: modal backend
|
||||||
TRANSCRIPT_MODAL_API_KEY: str | None = None
|
TRANSCRIPT_MODAL_API_KEY: str | None = None
|
||||||
|
|
||||||
# Audio transcription storage
|
# Audio transcription storage
|
||||||
@@ -37,10 +45,23 @@ class Settings(BaseSettings):
|
|||||||
TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID: str | None = None
|
TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID: str | None = None
|
||||||
TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY: str | None = None
|
TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY: str | None = None
|
||||||
|
|
||||||
|
# Recording storage
|
||||||
|
RECORDING_STORAGE_BACKEND: str | None = None
|
||||||
|
|
||||||
|
# Recording storage configuration for AWS
|
||||||
|
RECORDING_STORAGE_AWS_BUCKET_NAME: str = "recording-bucket"
|
||||||
|
RECORDING_STORAGE_AWS_REGION: str = "us-east-1"
|
||||||
|
RECORDING_STORAGE_AWS_ACCESS_KEY_ID: str | None = None
|
||||||
|
RECORDING_STORAGE_AWS_SECRET_ACCESS_KEY: str | None = None
|
||||||
|
|
||||||
# Translate into the target language
|
# Translate into the target language
|
||||||
|
TRANSLATION_BACKEND: str = "passthrough"
|
||||||
TRANSLATE_URL: str | None = None
|
TRANSLATE_URL: str | None = None
|
||||||
TRANSLATE_TIMEOUT: int = 90
|
TRANSLATE_TIMEOUT: int = 90
|
||||||
|
|
||||||
|
# Translation: modal backend
|
||||||
|
TRANSLATE_MODAL_API_KEY: str | None = None
|
||||||
|
|
||||||
# LLM
|
# LLM
|
||||||
LLM_MODEL: str = "microsoft/phi-4"
|
LLM_MODEL: str = "microsoft/phi-4"
|
||||||
LLM_URL: str | None = None
|
LLM_URL: str | None = None
|
||||||
@@ -51,6 +72,13 @@ class Settings(BaseSettings):
|
|||||||
DIARIZATION_ENABLED: bool = True
|
DIARIZATION_ENABLED: bool = True
|
||||||
DIARIZATION_BACKEND: str = "modal"
|
DIARIZATION_BACKEND: str = "modal"
|
||||||
DIARIZATION_URL: str | None = None
|
DIARIZATION_URL: str | None = None
|
||||||
|
DIARIZATION_FILE_TIMEOUT: int = 600
|
||||||
|
|
||||||
|
# Diarization: modal backend
|
||||||
|
DIARIZATION_MODAL_API_KEY: str | None = None
|
||||||
|
|
||||||
|
# Diarization: local pyannote.audio
|
||||||
|
DIARIZATION_PYANNOTE_AUTH_TOKEN: str | None = None
|
||||||
|
|
||||||
# Sentry
|
# Sentry
|
||||||
SENTRY_DSN: str | None = None
|
SENTRY_DSN: str | None = None
|
||||||
@@ -63,9 +91,8 @@ class Settings(BaseSettings):
|
|||||||
AUTH_JWT_PUBLIC_KEY: str | None = "authentik.monadical.com_public.pem"
|
AUTH_JWT_PUBLIC_KEY: str | None = "authentik.monadical.com_public.pem"
|
||||||
AUTH_JWT_AUDIENCE: str | None = None
|
AUTH_JWT_AUDIENCE: str | None = None
|
||||||
|
|
||||||
# API public mode
|
|
||||||
# if set, all anonymous record will be public
|
|
||||||
PUBLIC_MODE: bool = False
|
PUBLIC_MODE: bool = False
|
||||||
|
PUBLIC_DATA_RETENTION_DAYS: PositiveInt = 7
|
||||||
|
|
||||||
# Min transcript length to generate topic + summary
|
# Min transcript length to generate topic + summary
|
||||||
MIN_TRANSCRIPT_LENGTH: int = 750
|
MIN_TRANSCRIPT_LENGTH: int = 750
|
||||||
@@ -95,25 +122,11 @@ class Settings(BaseSettings):
|
|||||||
WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
|
WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
|
||||||
WHEREBY_API_KEY: str | None = None
|
WHEREBY_API_KEY: str | None = None
|
||||||
WHEREBY_WEBHOOK_SECRET: str | None = None
|
WHEREBY_WEBHOOK_SECRET: str | None = None
|
||||||
AWS_WHEREBY_S3_BUCKET: str | None = None
|
|
||||||
AWS_WHEREBY_ACCESS_KEY_ID: str | None = None
|
AWS_WHEREBY_ACCESS_KEY_ID: str | None = None
|
||||||
AWS_WHEREBY_ACCESS_KEY_SECRET: str | None = None
|
AWS_WHEREBY_ACCESS_KEY_SECRET: str | None = None
|
||||||
AWS_PROCESS_RECORDING_QUEUE_URL: str | None = None
|
AWS_PROCESS_RECORDING_QUEUE_URL: str | None = None
|
||||||
SQS_POLLING_TIMEOUT_SECONDS: int = 60
|
SQS_POLLING_TIMEOUT_SECONDS: int = 60
|
||||||
|
|
||||||
# Daily.co integration
|
|
||||||
DAILY_API_KEY: str | None = None
|
|
||||||
DAILY_WEBHOOK_SECRET: str | None = None
|
|
||||||
DAILY_SUBDOMAIN: str | None = None
|
|
||||||
AWS_DAILY_S3_BUCKET: str | None = None
|
|
||||||
AWS_DAILY_S3_REGION: str = "us-west-2"
|
|
||||||
AWS_DAILY_ROLE_ARN: str | None = None
|
|
||||||
|
|
||||||
# Video platform migration feature flags
|
|
||||||
DAILY_MIGRATION_ENABLED: bool = True
|
|
||||||
DAILY_MIGRATION_ROOM_IDS: list[str] = []
|
|
||||||
DEFAULT_VIDEO_PLATFORM: str = "daily"
|
|
||||||
|
|
||||||
# Zulip integration
|
# Zulip integration
|
||||||
ZULIP_REALM: str | None = None
|
ZULIP_REALM: str | None = None
|
||||||
ZULIP_API_KEY: str | None = None
|
ZULIP_API_KEY: str | None = None
|
||||||
|
|||||||
@@ -1,10 +1,17 @@
|
|||||||
from .base import Storage # noqa
|
from .base import Storage # noqa
|
||||||
|
from reflector.settings import settings
|
||||||
|
|
||||||
|
|
||||||
def get_transcripts_storage() -> Storage:
|
def get_transcripts_storage() -> Storage:
|
||||||
from reflector.settings import settings
|
assert settings.TRANSCRIPT_STORAGE_BACKEND
|
||||||
|
|
||||||
return Storage.get_instance(
|
return Storage.get_instance(
|
||||||
name=settings.TRANSCRIPT_STORAGE_BACKEND,
|
name=settings.TRANSCRIPT_STORAGE_BACKEND,
|
||||||
settings_prefix="TRANSCRIPT_STORAGE_",
|
settings_prefix="TRANSCRIPT_STORAGE_",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_recordings_storage() -> Storage:
|
||||||
|
return Storage.get_instance(
|
||||||
|
name=settings.RECORDING_STORAGE_BACKEND,
|
||||||
|
settings_prefix="RECORDING_STORAGE_",
|
||||||
|
)
|
||||||
|
|||||||
72
server/reflector/tools/cleanup_old_data.py
Normal file
72
server/reflector/tools/cleanup_old_data.py
Normal file
@@ -0,0 +1,72 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
"""
|
||||||
|
Manual cleanup tool for old public data.
|
||||||
|
Uses the same implementation as the Celery worker task.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import asyncio
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import structlog
|
||||||
|
|
||||||
|
from reflector.settings import settings
|
||||||
|
from reflector.worker.cleanup import _cleanup_old_public_data
|
||||||
|
|
||||||
|
logger = structlog.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
async def cleanup_old_data(days: int = 7):
|
||||||
|
logger.info(
|
||||||
|
"Starting manual cleanup",
|
||||||
|
retention_days=days,
|
||||||
|
public_mode=settings.PUBLIC_MODE,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not settings.PUBLIC_MODE:
|
||||||
|
logger.critical(
|
||||||
|
"WARNING: PUBLIC_MODE is False. "
|
||||||
|
"This tool is intended for public instances only."
|
||||||
|
)
|
||||||
|
raise Exception("Tool intended for public instances only")
|
||||||
|
|
||||||
|
result = await _cleanup_old_public_data(days=days)
|
||||||
|
|
||||||
|
if result:
|
||||||
|
logger.info(
|
||||||
|
"Cleanup completed",
|
||||||
|
transcripts_deleted=result.get("transcripts_deleted", 0),
|
||||||
|
meetings_deleted=result.get("meetings_deleted", 0),
|
||||||
|
recordings_deleted=result.get("recordings_deleted", 0),
|
||||||
|
errors_count=len(result.get("errors", [])),
|
||||||
|
)
|
||||||
|
if result.get("errors"):
|
||||||
|
logger.warning(
|
||||||
|
"Errors encountered during cleanup:", errors=result["errors"][:10]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logger.info("Cleanup skipped or completed without results")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Clean up old transcripts and meetings"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--days",
|
||||||
|
type=int,
|
||||||
|
default=7,
|
||||||
|
help="Number of days to keep data (default: 7)",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if args.days < 1:
|
||||||
|
logger.error("Days must be at least 1")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
asyncio.run(cleanup_old_data(days=args.days))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -9,8 +9,9 @@ async def export_db(filename: str) -> None:
|
|||||||
filename = pathlib.Path(filename).resolve()
|
filename = pathlib.Path(filename).resolve()
|
||||||
settings.DATABASE_URL = f"sqlite:///{filename}"
|
settings.DATABASE_URL = f"sqlite:///{filename}"
|
||||||
|
|
||||||
from reflector.db import database, transcripts
|
from reflector.db import get_database, transcripts
|
||||||
|
|
||||||
|
database = get_database()
|
||||||
await database.connect()
|
await database.connect()
|
||||||
transcripts = await database.fetch_all(transcripts.select())
|
transcripts = await database.fetch_all(transcripts.select())
|
||||||
await database.disconnect()
|
await database.disconnect()
|
||||||
|
|||||||
@@ -8,8 +8,9 @@ async def export_db(filename: str) -> None:
|
|||||||
filename = pathlib.Path(filename).resolve()
|
filename = pathlib.Path(filename).resolve()
|
||||||
settings.DATABASE_URL = f"sqlite:///{filename}"
|
settings.DATABASE_URL = f"sqlite:///{filename}"
|
||||||
|
|
||||||
from reflector.db import database, transcripts
|
from reflector.db import get_database, transcripts
|
||||||
|
|
||||||
|
database = get_database()
|
||||||
await database.connect()
|
await database.connect()
|
||||||
transcripts = await database.fetch_all(transcripts.select())
|
transcripts = await database.fetch_all(transcripts.select())
|
||||||
await database.disconnect()
|
await database.disconnect()
|
||||||
|
|||||||
@@ -1,105 +1,220 @@
|
|||||||
|
"""
|
||||||
|
Process audio file with diarization support
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
import asyncio
|
import asyncio
|
||||||
|
import json
|
||||||
|
import shutil
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, List, Literal
|
||||||
|
|
||||||
import av
|
from reflector.db.transcripts import SourceKind, TranscriptTopic, transcripts_controller
|
||||||
|
|
||||||
from reflector.logger import logger
|
from reflector.logger import logger
|
||||||
from reflector.processors import (
|
from reflector.pipelines.main_file_pipeline import (
|
||||||
AudioChunkerProcessor,
|
task_pipeline_file_process as task_pipeline_file_process,
|
||||||
AudioMergeProcessor,
|
)
|
||||||
AudioTranscriptAutoProcessor,
|
from reflector.pipelines.main_live_pipeline import pipeline_post as live_pipeline_post
|
||||||
Pipeline,
|
from reflector.pipelines.main_live_pipeline import (
|
||||||
PipelineEvent,
|
pipeline_process as live_pipeline_process,
|
||||||
TranscriptFinalSummaryProcessor,
|
|
||||||
TranscriptFinalTitleProcessor,
|
|
||||||
TranscriptLinerProcessor,
|
|
||||||
TranscriptTopicDetectorProcessor,
|
|
||||||
TranscriptTranslatorProcessor,
|
|
||||||
)
|
)
|
||||||
from reflector.processors.base import BroadcastProcessor
|
|
||||||
|
|
||||||
|
|
||||||
async def process_audio_file(
|
def serialize_topics(topics: List[TranscriptTopic]) -> List[Dict[str, Any]]:
|
||||||
filename,
|
"""Convert TranscriptTopic objects to JSON-serializable dicts"""
|
||||||
event_callback,
|
serialized = []
|
||||||
only_transcript=False,
|
for topic in topics:
|
||||||
source_language="en",
|
topic_dict = topic.model_dump()
|
||||||
target_language="en",
|
serialized.append(topic_dict)
|
||||||
|
return serialized
|
||||||
|
|
||||||
|
|
||||||
|
def debug_print_speakers(serialized_topics: List[Dict[str, Any]]) -> None:
|
||||||
|
"""Print debug info about speakers found in topics"""
|
||||||
|
all_speakers = set()
|
||||||
|
for topic_dict in serialized_topics:
|
||||||
|
for word in topic_dict.get("words", []):
|
||||||
|
all_speakers.add(word.get("speaker", 0))
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Found {len(serialized_topics)} topics with speakers: {all_speakers}",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
TranscriptId = str
|
||||||
|
|
||||||
|
|
||||||
|
# common interface for every flow: it needs an Entry in db with specific ceremony (file path + status + actual file in file system)
|
||||||
|
# ideally we want to get rid of it at some point
|
||||||
|
async def prepare_entry(
|
||||||
|
source_path: str,
|
||||||
|
source_language: str,
|
||||||
|
target_language: str,
|
||||||
|
) -> TranscriptId:
|
||||||
|
file_path = Path(source_path)
|
||||||
|
|
||||||
|
transcript = await transcripts_controller.add(
|
||||||
|
file_path.name,
|
||||||
|
# note that the real file upload has SourceKind: LIVE for the reason of it's an error
|
||||||
|
source_kind=SourceKind.FILE,
|
||||||
|
source_language=source_language,
|
||||||
|
target_language=target_language,
|
||||||
|
user_id=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Created empty transcript {transcript.id} for file {file_path.name} because technically we need an empty transcript before we start transcript"
|
||||||
|
)
|
||||||
|
|
||||||
|
# pipelines expect files as upload.*
|
||||||
|
|
||||||
|
extension = file_path.suffix
|
||||||
|
upload_path = transcript.data_path / f"upload{extension}"
|
||||||
|
upload_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
shutil.copy2(source_path, upload_path)
|
||||||
|
logger.info(f"Copied {source_path} to {upload_path}")
|
||||||
|
|
||||||
|
# pipelines expect entity status "uploaded"
|
||||||
|
await transcripts_controller.update(transcript, {"status": "uploaded"})
|
||||||
|
|
||||||
|
return transcript.id
|
||||||
|
|
||||||
|
|
||||||
|
# same reason as prepare_entry
|
||||||
|
async def extract_result_from_entry(
|
||||||
|
transcript_id: TranscriptId, output_path: str
|
||||||
|
) -> None:
|
||||||
|
post_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||||
|
|
||||||
|
# assert post_final_transcript.status == "ended"
|
||||||
|
# File pipeline doesn't set status to "ended", only live pipeline does https://github.com/Monadical-SAS/reflector/issues/582
|
||||||
|
topics = post_final_transcript.topics
|
||||||
|
if not topics:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"No topics found for transcript {transcript_id} after processing"
|
||||||
|
)
|
||||||
|
|
||||||
|
serialized_topics = serialize_topics(topics)
|
||||||
|
|
||||||
|
if output_path:
|
||||||
|
# Write to JSON file
|
||||||
|
with open(output_path, "w") as f:
|
||||||
|
for topic_dict in serialized_topics:
|
||||||
|
json.dump(topic_dict, f)
|
||||||
|
f.write("\n")
|
||||||
|
print(f"Results written to {output_path}", file=sys.stderr)
|
||||||
|
else:
|
||||||
|
# Write to stdout as JSONL
|
||||||
|
for topic_dict in serialized_topics:
|
||||||
|
print(json.dumps(topic_dict))
|
||||||
|
|
||||||
|
debug_print_speakers(serialized_topics)
|
||||||
|
|
||||||
|
|
||||||
|
async def process_live_pipeline(
|
||||||
|
transcript_id: TranscriptId,
|
||||||
):
|
):
|
||||||
# build pipeline for audio processing
|
"""Process transcript_id with transcription and diarization"""
|
||||||
processors = [
|
|
||||||
AudioChunkerProcessor(),
|
|
||||||
AudioMergeProcessor(),
|
|
||||||
AudioTranscriptAutoProcessor.as_threaded(),
|
|
||||||
TranscriptLinerProcessor(),
|
|
||||||
TranscriptTranslatorProcessor.as_threaded(),
|
|
||||||
]
|
|
||||||
if not only_transcript:
|
|
||||||
processors += [
|
|
||||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
|
||||||
BroadcastProcessor(
|
|
||||||
processors=[
|
|
||||||
TranscriptFinalTitleProcessor.as_threaded(),
|
|
||||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
|
||||||
],
|
|
||||||
),
|
|
||||||
]
|
|
||||||
|
|
||||||
# transcription output
|
print(f"Processing transcript_id {transcript_id}...", file=sys.stderr)
|
||||||
pipeline = Pipeline(*processors)
|
await live_pipeline_process(transcript_id=transcript_id)
|
||||||
pipeline.set_pref("audio:source_language", source_language)
|
print(f"Processing complete for transcript {transcript_id}", file=sys.stderr)
|
||||||
pipeline.set_pref("audio:target_language", target_language)
|
|
||||||
pipeline.describe()
|
pre_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||||
pipeline.on(event_callback)
|
|
||||||
|
# assert documented behaviour: after process, the pipeline isn't ended. this is the reason of calling pipeline_post
|
||||||
|
assert pre_final_transcript.status != "ended"
|
||||||
|
|
||||||
|
# at this point, diarization is running but we have no access to it. run diarization in parallel - one will hopefully win after polling
|
||||||
|
result = live_pipeline_post(transcript_id=transcript_id)
|
||||||
|
|
||||||
|
# result.ready() blocks even without await; it mutates result also
|
||||||
|
while not result.ready():
|
||||||
|
print(f"Status: {result.state}")
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
|
||||||
|
async def process_file_pipeline(
|
||||||
|
transcript_id: TranscriptId,
|
||||||
|
):
|
||||||
|
"""Process audio/video file using the optimized file pipeline"""
|
||||||
|
|
||||||
|
# task_pipeline_file_process is a Celery task, need to use .delay() for async execution
|
||||||
|
result = task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||||
|
|
||||||
|
# Wait for the Celery task to complete
|
||||||
|
while not result.ready():
|
||||||
|
print(f"File pipeline status: {result.state}", file=sys.stderr)
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
logger.info("File pipeline processing complete")
|
||||||
|
|
||||||
|
|
||||||
|
async def process(
|
||||||
|
source_path: str,
|
||||||
|
source_language: str,
|
||||||
|
target_language: str,
|
||||||
|
pipeline: Literal["live", "file"],
|
||||||
|
output_path: str = None,
|
||||||
|
):
|
||||||
|
from reflector.db import get_database
|
||||||
|
|
||||||
|
database = get_database()
|
||||||
|
# db connect is a part of ceremony
|
||||||
|
await database.connect()
|
||||||
|
|
||||||
# start processing audio
|
|
||||||
logger.info(f"Opening {filename}")
|
|
||||||
container = av.open(filename)
|
|
||||||
try:
|
try:
|
||||||
logger.info("Start pushing audio into the pipeline")
|
transcript_id = await prepare_entry(
|
||||||
for frame in container.decode(audio=0):
|
source_path,
|
||||||
await pipeline.push(frame)
|
source_language,
|
||||||
finally:
|
target_language,
|
||||||
logger.info("Flushing the pipeline")
|
)
|
||||||
await pipeline.flush()
|
|
||||||
|
|
||||||
logger.info("All done !")
|
pipeline_handlers = {
|
||||||
|
"live": process_live_pipeline,
|
||||||
|
"file": process_file_pipeline,
|
||||||
|
}
|
||||||
|
|
||||||
|
handler = pipeline_handlers.get(pipeline)
|
||||||
|
if not handler:
|
||||||
|
raise ValueError(f"Unknown pipeline type: {pipeline}")
|
||||||
|
|
||||||
|
await handler(transcript_id)
|
||||||
|
|
||||||
|
await extract_result_from_entry(transcript_id, output_path)
|
||||||
|
finally:
|
||||||
|
await database.disconnect()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import argparse
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Process audio files with speaker diarization"
|
||||||
parser = argparse.ArgumentParser()
|
)
|
||||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
||||||
parser.add_argument("--only-transcript", "-t", action="store_true")
|
parser.add_argument(
|
||||||
parser.add_argument("--source-language", default="en")
|
"--pipeline",
|
||||||
parser.add_argument("--target-language", default="en")
|
required=True,
|
||||||
|
choices=["live", "file"],
|
||||||
|
help="Pipeline type to use for processing (live: streaming/incremental, file: batch/parallel)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--source-language", default="en", help="Source language code (default: en)"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--target-language", default="en", help="Target language code (default: en)"
|
||||||
|
)
|
||||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
output_fd = None
|
|
||||||
if args.output:
|
|
||||||
output_fd = open(args.output, "w")
|
|
||||||
|
|
||||||
async def event_callback(event: PipelineEvent):
|
|
||||||
processor = event.processor
|
|
||||||
# ignore some processor
|
|
||||||
if processor in ("AudioChunkerProcessor", "AudioMergeProcessor"):
|
|
||||||
return
|
|
||||||
logger.info(f"Event: {event}")
|
|
||||||
if output_fd:
|
|
||||||
output_fd.write(event.model_dump_json())
|
|
||||||
output_fd.write("\n")
|
|
||||||
|
|
||||||
asyncio.run(
|
asyncio.run(
|
||||||
process_audio_file(
|
process(
|
||||||
args.source,
|
args.source,
|
||||||
event_callback,
|
args.source_language,
|
||||||
only_transcript=args.only_transcript,
|
args.target_language,
|
||||||
source_language=args.source_language,
|
args.pipeline,
|
||||||
target_language=args.target_language,
|
args.output,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
if output_fd:
|
|
||||||
output_fd.close()
|
|
||||||
logger.info(f"Output written to {args.output}")
|
|
||||||
|
|||||||
@@ -1,316 +0,0 @@
|
|||||||
"""
|
|
||||||
@vibe-generated
|
|
||||||
Process audio file with diarization support
|
|
||||||
===========================================
|
|
||||||
|
|
||||||
Extended version of process.py that includes speaker diarization.
|
|
||||||
This tool processes audio files locally without requiring the full server infrastructure.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
import tempfile
|
|
||||||
import uuid
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import av
|
|
||||||
|
|
||||||
from reflector.logger import logger
|
|
||||||
from reflector.processors import (
|
|
||||||
AudioChunkerProcessor,
|
|
||||||
AudioFileWriterProcessor,
|
|
||||||
AudioMergeProcessor,
|
|
||||||
AudioTranscriptAutoProcessor,
|
|
||||||
Pipeline,
|
|
||||||
PipelineEvent,
|
|
||||||
TranscriptFinalSummaryProcessor,
|
|
||||||
TranscriptFinalTitleProcessor,
|
|
||||||
TranscriptLinerProcessor,
|
|
||||||
TranscriptTopicDetectorProcessor,
|
|
||||||
TranscriptTranslatorProcessor,
|
|
||||||
)
|
|
||||||
from reflector.processors.base import BroadcastProcessor, Processor
|
|
||||||
from reflector.processors.types import (
|
|
||||||
AudioDiarizationInput,
|
|
||||||
TitleSummary,
|
|
||||||
TitleSummaryWithId,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class TopicCollectorProcessor(Processor):
|
|
||||||
"""Collect topics for diarization"""
|
|
||||||
|
|
||||||
INPUT_TYPE = TitleSummary
|
|
||||||
OUTPUT_TYPE = TitleSummary
|
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
self.topics: List[TitleSummaryWithId] = []
|
|
||||||
self._topic_id = 0
|
|
||||||
|
|
||||||
async def _push(self, data: TitleSummary):
|
|
||||||
# Convert to TitleSummaryWithId and collect
|
|
||||||
self._topic_id += 1
|
|
||||||
topic_with_id = TitleSummaryWithId(
|
|
||||||
id=str(self._topic_id),
|
|
||||||
title=data.title,
|
|
||||||
summary=data.summary,
|
|
||||||
timestamp=data.timestamp,
|
|
||||||
duration=data.duration,
|
|
||||||
transcript=data.transcript,
|
|
||||||
)
|
|
||||||
self.topics.append(topic_with_id)
|
|
||||||
|
|
||||||
# Pass through the original topic
|
|
||||||
await self.emit(data)
|
|
||||||
|
|
||||||
def get_topics(self) -> List[TitleSummaryWithId]:
|
|
||||||
return self.topics
|
|
||||||
|
|
||||||
|
|
||||||
async def process_audio_file_with_diarization(
|
|
||||||
filename,
|
|
||||||
event_callback,
|
|
||||||
only_transcript=False,
|
|
||||||
source_language="en",
|
|
||||||
target_language="en",
|
|
||||||
enable_diarization=True,
|
|
||||||
diarization_backend="modal",
|
|
||||||
):
|
|
||||||
# Create temp file for audio if diarization is enabled
|
|
||||||
audio_temp_path = None
|
|
||||||
if enable_diarization:
|
|
||||||
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
|
||||||
audio_temp_path = audio_temp_file.name
|
|
||||||
audio_temp_file.close()
|
|
||||||
|
|
||||||
# Create processor for collecting topics
|
|
||||||
topic_collector = TopicCollectorProcessor()
|
|
||||||
|
|
||||||
# Build pipeline for audio processing
|
|
||||||
processors = []
|
|
||||||
|
|
||||||
# Add audio file writer at the beginning if diarization is enabled
|
|
||||||
if enable_diarization:
|
|
||||||
processors.append(AudioFileWriterProcessor(audio_temp_path))
|
|
||||||
|
|
||||||
# Add the rest of the processors
|
|
||||||
processors += [
|
|
||||||
AudioChunkerProcessor(),
|
|
||||||
AudioMergeProcessor(),
|
|
||||||
AudioTranscriptAutoProcessor.as_threaded(),
|
|
||||||
]
|
|
||||||
|
|
||||||
processors += [
|
|
||||||
TranscriptLinerProcessor(),
|
|
||||||
TranscriptTranslatorProcessor.as_threaded(),
|
|
||||||
]
|
|
||||||
|
|
||||||
if not only_transcript:
|
|
||||||
processors += [
|
|
||||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
|
||||||
# Collect topics for diarization
|
|
||||||
topic_collector,
|
|
||||||
BroadcastProcessor(
|
|
||||||
processors=[
|
|
||||||
TranscriptFinalTitleProcessor.as_threaded(),
|
|
||||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
|
||||||
],
|
|
||||||
),
|
|
||||||
]
|
|
||||||
|
|
||||||
# Create main pipeline
|
|
||||||
pipeline = Pipeline(*processors)
|
|
||||||
pipeline.set_pref("audio:source_language", source_language)
|
|
||||||
pipeline.set_pref("audio:target_language", target_language)
|
|
||||||
pipeline.describe()
|
|
||||||
pipeline.on(event_callback)
|
|
||||||
|
|
||||||
# Start processing audio
|
|
||||||
logger.info(f"Opening {filename}")
|
|
||||||
container = av.open(filename)
|
|
||||||
try:
|
|
||||||
logger.info("Start pushing audio into the pipeline")
|
|
||||||
for frame in container.decode(audio=0):
|
|
||||||
await pipeline.push(frame)
|
|
||||||
finally:
|
|
||||||
logger.info("Flushing the pipeline")
|
|
||||||
await pipeline.flush()
|
|
||||||
|
|
||||||
# Run diarization if enabled and we have topics
|
|
||||||
if enable_diarization and not only_transcript and audio_temp_path:
|
|
||||||
topics = topic_collector.get_topics()
|
|
||||||
|
|
||||||
if topics:
|
|
||||||
logger.info(f"Starting diarization with {len(topics)} topics")
|
|
||||||
|
|
||||||
try:
|
|
||||||
# Import diarization processor
|
|
||||||
from reflector.processors import AudioDiarizationAutoProcessor
|
|
||||||
|
|
||||||
# Create diarization processor
|
|
||||||
diarization_processor = AudioDiarizationAutoProcessor(
|
|
||||||
name=diarization_backend
|
|
||||||
)
|
|
||||||
diarization_processor.on(event_callback)
|
|
||||||
|
|
||||||
# For Modal backend, we need to upload the file to S3 first
|
|
||||||
if diarization_backend == "modal":
|
|
||||||
from datetime import datetime
|
|
||||||
|
|
||||||
from reflector.storage import get_transcripts_storage
|
|
||||||
from reflector.utils.s3_temp_file import S3TemporaryFile
|
|
||||||
|
|
||||||
storage = get_transcripts_storage()
|
|
||||||
|
|
||||||
# Generate a unique filename in evaluation folder
|
|
||||||
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
|
||||||
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
|
|
||||||
|
|
||||||
# Use context manager for automatic cleanup
|
|
||||||
async with S3TemporaryFile(storage, audio_filename) as s3_file:
|
|
||||||
# Read and upload the audio file
|
|
||||||
with open(audio_temp_path, "rb") as f:
|
|
||||||
audio_data = f.read()
|
|
||||||
|
|
||||||
audio_url = await s3_file.upload(audio_data)
|
|
||||||
logger.info(f"Uploaded audio to S3: {audio_filename}")
|
|
||||||
|
|
||||||
# Create diarization input with S3 URL
|
|
||||||
diarization_input = AudioDiarizationInput(
|
|
||||||
audio_url=audio_url, topics=topics
|
|
||||||
)
|
|
||||||
|
|
||||||
# Run diarization
|
|
||||||
await diarization_processor.push(diarization_input)
|
|
||||||
await diarization_processor.flush()
|
|
||||||
|
|
||||||
logger.info("Diarization complete")
|
|
||||||
# File will be automatically cleaned up when exiting the context
|
|
||||||
else:
|
|
||||||
# For local backend, use local file path
|
|
||||||
audio_url = audio_temp_path
|
|
||||||
|
|
||||||
# Create diarization input
|
|
||||||
diarization_input = AudioDiarizationInput(
|
|
||||||
audio_url=audio_url, topics=topics
|
|
||||||
)
|
|
||||||
|
|
||||||
# Run diarization
|
|
||||||
await diarization_processor.push(diarization_input)
|
|
||||||
await diarization_processor.flush()
|
|
||||||
|
|
||||||
logger.info("Diarization complete")
|
|
||||||
|
|
||||||
except ImportError as e:
|
|
||||||
logger.error(f"Failed to import diarization dependencies: {e}")
|
|
||||||
logger.error(
|
|
||||||
"Install with: uv pip install pyannote.audio torch torchaudio"
|
|
||||||
)
|
|
||||||
logger.error(
|
|
||||||
"And set HF_TOKEN environment variable for pyannote models"
|
|
||||||
)
|
|
||||||
raise SystemExit(1)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Diarization failed: {e}")
|
|
||||||
raise SystemExit(1)
|
|
||||||
else:
|
|
||||||
logger.warning("Skipping diarization: no topics available")
|
|
||||||
|
|
||||||
# Clean up temp file
|
|
||||||
if audio_temp_path:
|
|
||||||
try:
|
|
||||||
Path(audio_temp_path).unlink()
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
|
|
||||||
|
|
||||||
logger.info("All done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import argparse
|
|
||||||
import os
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Process audio files with optional speaker diarization"
|
|
||||||
)
|
|
||||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--only-transcript",
|
|
||||||
"-t",
|
|
||||||
action="store_true",
|
|
||||||
help="Only generate transcript without topics/summaries",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--source-language", default="en", help="Source language code (default: en)"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--target-language", default="en", help="Target language code (default: en)"
|
|
||||||
)
|
|
||||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
|
||||||
parser.add_argument(
|
|
||||||
"--enable-diarization",
|
|
||||||
"-d",
|
|
||||||
action="store_true",
|
|
||||||
help="Enable speaker diarization",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--diarization-backend",
|
|
||||||
default="modal",
|
|
||||||
choices=["modal"],
|
|
||||||
help="Diarization backend to use (default: modal)",
|
|
||||||
)
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Set REDIS_HOST to localhost if not provided
|
|
||||||
if "REDIS_HOST" not in os.environ:
|
|
||||||
os.environ["REDIS_HOST"] = "localhost"
|
|
||||||
logger.info("REDIS_HOST not set, defaulting to localhost")
|
|
||||||
|
|
||||||
output_fd = None
|
|
||||||
if args.output:
|
|
||||||
output_fd = open(args.output, "w")
|
|
||||||
|
|
||||||
async def event_callback(event: PipelineEvent):
|
|
||||||
processor = event.processor
|
|
||||||
data = event.data
|
|
||||||
|
|
||||||
# Ignore internal processors
|
|
||||||
if processor in (
|
|
||||||
"AudioChunkerProcessor",
|
|
||||||
"AudioMergeProcessor",
|
|
||||||
"AudioFileWriterProcessor",
|
|
||||||
"TopicCollectorProcessor",
|
|
||||||
"BroadcastProcessor",
|
|
||||||
):
|
|
||||||
return
|
|
||||||
|
|
||||||
# If diarization is enabled, skip the original topic events from the pipeline
|
|
||||||
# The diarization processor will emit the same topics but with speaker info
|
|
||||||
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
|
|
||||||
return
|
|
||||||
|
|
||||||
# Log all events
|
|
||||||
logger.info(f"Event: {processor} - {type(data).__name__}")
|
|
||||||
|
|
||||||
# Write to output
|
|
||||||
if output_fd:
|
|
||||||
output_fd.write(event.model_dump_json())
|
|
||||||
output_fd.write("\n")
|
|
||||||
output_fd.flush()
|
|
||||||
|
|
||||||
asyncio.run(
|
|
||||||
process_audio_file_with_diarization(
|
|
||||||
args.source,
|
|
||||||
event_callback,
|
|
||||||
only_transcript=args.only_transcript,
|
|
||||||
source_language=args.source_language,
|
|
||||||
target_language=args.target_language,
|
|
||||||
enable_diarization=args.enable_diarization,
|
|
||||||
diarization_backend=args.diarization_backend,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
if output_fd:
|
|
||||||
output_fd.close()
|
|
||||||
logger.info(f"Output written to {args.output}")
|
|
||||||
@@ -53,7 +53,7 @@ async def run_single_processor(args):
|
|||||||
async def event_callback(event: PipelineEvent):
|
async def event_callback(event: PipelineEvent):
|
||||||
processor = event.processor
|
processor = event.processor
|
||||||
# ignore some processor
|
# ignore some processor
|
||||||
if processor in ("AudioChunkerProcessor", "AudioMergeProcessor"):
|
if processor in ("AudioChunkerAutoProcessor", "AudioMergeProcessor"):
|
||||||
return
|
return
|
||||||
print(f"Event: {event}")
|
print(f"Event: {event}")
|
||||||
if output_fd:
|
if output_fd:
|
||||||
|
|||||||
@@ -1,96 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
@vibe-generated
|
|
||||||
Test script for the diarization CLI tool
|
|
||||||
=========================================
|
|
||||||
|
|
||||||
This script helps test the diarization functionality with sample audio files.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
import sys
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from reflector.logger import logger
|
|
||||||
|
|
||||||
|
|
||||||
async def test_diarization(audio_file: str):
|
|
||||||
"""Test the diarization functionality"""
|
|
||||||
|
|
||||||
# Import the processing function
|
|
||||||
from process_with_diarization import process_audio_file_with_diarization
|
|
||||||
|
|
||||||
# Collect events
|
|
||||||
events = []
|
|
||||||
|
|
||||||
async def event_callback(event):
|
|
||||||
events.append({"processor": event.processor, "data": event.data})
|
|
||||||
logger.info(f"Event from {event.processor}")
|
|
||||||
|
|
||||||
# Process the audio file
|
|
||||||
logger.info(f"Processing audio file: {audio_file}")
|
|
||||||
|
|
||||||
try:
|
|
||||||
await process_audio_file_with_diarization(
|
|
||||||
audio_file,
|
|
||||||
event_callback,
|
|
||||||
only_transcript=False,
|
|
||||||
source_language="en",
|
|
||||||
target_language="en",
|
|
||||||
enable_diarization=True,
|
|
||||||
diarization_backend="modal",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Analyze results
|
|
||||||
logger.info(f"Processing complete. Received {len(events)} events")
|
|
||||||
|
|
||||||
# Look for diarization results
|
|
||||||
diarized_topics = []
|
|
||||||
for event in events:
|
|
||||||
if "TitleSummary" in event["processor"]:
|
|
||||||
# Check if words have speaker information
|
|
||||||
if hasattr(event["data"], "transcript") and event["data"].transcript:
|
|
||||||
words = event["data"].transcript.words
|
|
||||||
if words and hasattr(words[0], "speaker"):
|
|
||||||
speakers = set(
|
|
||||||
w.speaker for w in words if hasattr(w, "speaker")
|
|
||||||
)
|
|
||||||
logger.info(
|
|
||||||
f"Found {len(speakers)} speakers in topic: {event['data'].title}"
|
|
||||||
)
|
|
||||||
diarized_topics.append(event["data"])
|
|
||||||
|
|
||||||
if diarized_topics:
|
|
||||||
logger.info(f"Successfully diarized {len(diarized_topics)} topics")
|
|
||||||
|
|
||||||
# Print sample output
|
|
||||||
sample_topic = diarized_topics[0]
|
|
||||||
logger.info("Sample diarized output:")
|
|
||||||
for i, word in enumerate(sample_topic.transcript.words[:10]):
|
|
||||||
logger.info(f" Word {i}: '{word.text}' - Speaker {word.speaker}")
|
|
||||||
else:
|
|
||||||
logger.warning("No diarization results found in output")
|
|
||||||
|
|
||||||
return events
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error during processing: {e}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
if len(sys.argv) < 2:
|
|
||||||
print("Usage: python test_diarization.py <audio_file>")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
audio_file = sys.argv[1]
|
|
||||||
if not Path(audio_file).exists():
|
|
||||||
print(f"Error: Audio file '{audio_file}' not found")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# Run the test
|
|
||||||
asyncio.run(test_diarization(audio_file))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
20
server/reflector/utils/string.py
Normal file
20
server/reflector/utils/string.py
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
from typing import Annotated
|
||||||
|
|
||||||
|
from pydantic import Field, TypeAdapter, constr
|
||||||
|
|
||||||
|
NonEmptyStringBase = constr(min_length=1, strip_whitespace=False)
|
||||||
|
NonEmptyString = Annotated[
|
||||||
|
NonEmptyStringBase,
|
||||||
|
Field(description="A non-empty string", min_length=1),
|
||||||
|
]
|
||||||
|
non_empty_string_adapter = TypeAdapter(NonEmptyString)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_non_empty_string(s: str) -> NonEmptyString:
|
||||||
|
return non_empty_string_adapter.validate_python(s)
|
||||||
|
|
||||||
|
|
||||||
|
def try_parse_non_empty_string(s: str) -> NonEmptyString | None:
|
||||||
|
if not s:
|
||||||
|
return None
|
||||||
|
return parse_non_empty_string(s)
|
||||||
63
server/reflector/utils/webvtt.py
Normal file
63
server/reflector/utils/webvtt.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
"""WebVTT utilities for generating subtitle files from transcript data."""
|
||||||
|
|
||||||
|
from typing import TYPE_CHECKING, Annotated
|
||||||
|
|
||||||
|
import webvtt
|
||||||
|
|
||||||
|
from reflector.processors.types import Seconds, Word, words_to_segments
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from reflector.db.transcripts import TranscriptTopic
|
||||||
|
|
||||||
|
VttTimestamp = Annotated[str, "vtt_timestamp"]
|
||||||
|
WebVTTStr = Annotated[str, "webvtt_str"]
|
||||||
|
|
||||||
|
|
||||||
|
def _seconds_to_timestamp(seconds: Seconds) -> VttTimestamp:
|
||||||
|
# lib doesn't do that
|
||||||
|
hours = int(seconds // 3600)
|
||||||
|
minutes = int((seconds % 3600) // 60)
|
||||||
|
secs = int(seconds % 60)
|
||||||
|
milliseconds = int((seconds % 1) * 1000)
|
||||||
|
|
||||||
|
return f"{hours:02d}:{minutes:02d}:{secs:02d}.{milliseconds:03d}"
|
||||||
|
|
||||||
|
|
||||||
|
def words_to_webvtt(words: list[Word]) -> WebVTTStr:
|
||||||
|
"""Convert words to WebVTT using existing segmentation logic."""
|
||||||
|
vtt = webvtt.WebVTT()
|
||||||
|
if not words:
|
||||||
|
return vtt.content
|
||||||
|
|
||||||
|
segments = words_to_segments(words)
|
||||||
|
|
||||||
|
for segment in segments:
|
||||||
|
text = segment.text.strip()
|
||||||
|
# lib doesn't do that
|
||||||
|
text = f"<v Speaker{segment.speaker}>{text}"
|
||||||
|
|
||||||
|
caption = webvtt.Caption(
|
||||||
|
start=_seconds_to_timestamp(segment.start),
|
||||||
|
end=_seconds_to_timestamp(segment.end),
|
||||||
|
text=text,
|
||||||
|
)
|
||||||
|
vtt.captions.append(caption)
|
||||||
|
|
||||||
|
return vtt.content
|
||||||
|
|
||||||
|
|
||||||
|
def topics_to_webvtt(topics: list["TranscriptTopic"]) -> WebVTTStr:
|
||||||
|
if not topics:
|
||||||
|
return webvtt.WebVTT().content
|
||||||
|
|
||||||
|
all_words: list[Word] = []
|
||||||
|
for topic in topics:
|
||||||
|
all_words.extend(topic.words)
|
||||||
|
|
||||||
|
# assert it's in sequence
|
||||||
|
for i in range(len(all_words) - 1):
|
||||||
|
assert (
|
||||||
|
all_words[i].start <= all_words[i + 1].start
|
||||||
|
), f"Words are not in sequence: {all_words[i].text} and {all_words[i + 1].text} are not consecutive: {all_words[i].start} > {all_words[i + 1].start}"
|
||||||
|
|
||||||
|
return words_to_webvtt(all_words)
|
||||||
@@ -1,17 +0,0 @@
|
|||||||
# Video Platform Abstraction Layer
|
|
||||||
"""
|
|
||||||
This module provides an abstraction layer for different video conferencing platforms.
|
|
||||||
It allows seamless switching between providers (Whereby, Daily.co, etc.) without
|
|
||||||
changing the core application logic.
|
|
||||||
"""
|
|
||||||
|
|
||||||
from .base import MeetingData, VideoPlatformClient, VideoPlatformConfig
|
|
||||||
from .registry import get_platform_client, register_platform
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"VideoPlatformClient",
|
|
||||||
"VideoPlatformConfig",
|
|
||||||
"MeetingData",
|
|
||||||
"get_platform_client",
|
|
||||||
"register_platform",
|
|
||||||
]
|
|
||||||
@@ -1,82 +0,0 @@
|
|||||||
from abc import ABC, abstractmethod
|
|
||||||
from datetime import datetime
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
from reflector.db.rooms import Room
|
|
||||||
|
|
||||||
|
|
||||||
class MeetingData(BaseModel):
|
|
||||||
"""Standardized meeting data returned by all platforms."""
|
|
||||||
|
|
||||||
meeting_id: str
|
|
||||||
room_name: str
|
|
||||||
room_url: str
|
|
||||||
host_room_url: str
|
|
||||||
platform: str
|
|
||||||
extra_data: Dict[str, Any] = {} # Platform-specific data
|
|
||||||
|
|
||||||
|
|
||||||
class VideoPlatformConfig(BaseModel):
|
|
||||||
"""Configuration for a video platform."""
|
|
||||||
|
|
||||||
api_key: str
|
|
||||||
webhook_secret: str
|
|
||||||
api_url: Optional[str] = None
|
|
||||||
subdomain: Optional[str] = None
|
|
||||||
s3_bucket: Optional[str] = None
|
|
||||||
s3_region: Optional[str] = None
|
|
||||||
aws_role_arn: Optional[str] = None
|
|
||||||
aws_access_key_id: Optional[str] = None
|
|
||||||
aws_access_key_secret: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
class VideoPlatformClient(ABC):
|
|
||||||
"""Abstract base class for video platform integrations."""
|
|
||||||
|
|
||||||
PLATFORM_NAME: str = ""
|
|
||||||
|
|
||||||
def __init__(self, config: VideoPlatformConfig):
|
|
||||||
self.config = config
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
async def create_meeting(
|
|
||||||
self, room_name_prefix: str, end_date: datetime, room: Room
|
|
||||||
) -> MeetingData:
|
|
||||||
"""Create a new meeting room."""
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
async def get_room_sessions(self, room_name: str) -> Dict[str, Any]:
|
|
||||||
"""Get session information for a room."""
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
async def delete_room(self, room_name: str) -> bool:
|
|
||||||
"""Delete a room. Returns True if successful."""
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
async def upload_logo(self, room_name: str, logo_path: str) -> bool:
|
|
||||||
"""Upload a logo to the room. Returns True if successful."""
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def verify_webhook_signature(
|
|
||||||
self, body: bytes, signature: str, timestamp: Optional[str] = None
|
|
||||||
) -> bool:
|
|
||||||
"""Verify webhook signature for security."""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def format_recording_config(self, room: Room) -> Dict[str, Any]:
|
|
||||||
"""Format recording configuration for the platform.
|
|
||||||
Can be overridden by specific implementations."""
|
|
||||||
if room.recording_type == "cloud" and self.config.s3_bucket:
|
|
||||||
return {
|
|
||||||
"type": room.recording_type,
|
|
||||||
"bucket": self.config.s3_bucket,
|
|
||||||
"region": self.config.s3_region,
|
|
||||||
"trigger": room.recording_trigger,
|
|
||||||
}
|
|
||||||
return {"type": room.recording_type}
|
|
||||||
@@ -1,127 +0,0 @@
|
|||||||
import hmac
|
|
||||||
from datetime import datetime
|
|
||||||
from hashlib import sha256
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
|
|
||||||
import httpx
|
|
||||||
|
|
||||||
from reflector.db.rooms import Room
|
|
||||||
|
|
||||||
from .base import MeetingData, VideoPlatformClient, VideoPlatformConfig
|
|
||||||
|
|
||||||
|
|
||||||
class DailyClient(VideoPlatformClient):
|
|
||||||
"""Daily.co video platform implementation."""
|
|
||||||
|
|
||||||
PLATFORM_NAME = "daily"
|
|
||||||
TIMEOUT = 10 # seconds
|
|
||||||
BASE_URL = "https://api.daily.co/v1"
|
|
||||||
|
|
||||||
def __init__(self, config: VideoPlatformConfig):
|
|
||||||
super().__init__(config)
|
|
||||||
self.headers = {
|
|
||||||
"Authorization": f"Bearer {config.api_key}",
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
|
|
||||||
async def create_meeting(
|
|
||||||
self, room_name_prefix: str, end_date: datetime, room: Room
|
|
||||||
) -> MeetingData:
|
|
||||||
"""Create a Daily.co room."""
|
|
||||||
room_name = f"{room_name_prefix}-{datetime.now().strftime('%Y%m%d%H%M%S')}"
|
|
||||||
|
|
||||||
data = {
|
|
||||||
"name": room_name,
|
|
||||||
"privacy": "private" if room.is_locked else "public",
|
|
||||||
"properties": {
|
|
||||||
"enable_recording": room.recording_type
|
|
||||||
if room.recording_type != "none"
|
|
||||||
else False,
|
|
||||||
"enable_chat": True,
|
|
||||||
"enable_screenshare": True,
|
|
||||||
"start_video_off": False,
|
|
||||||
"start_audio_off": False,
|
|
||||||
"exp": int(end_date.timestamp()),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
# Configure S3 bucket for cloud recordings
|
|
||||||
if room.recording_type == "cloud" and self.config.s3_bucket:
|
|
||||||
data["properties"]["recordings_bucket"] = {
|
|
||||||
"bucket_name": self.config.s3_bucket,
|
|
||||||
"bucket_region": self.config.s3_region,
|
|
||||||
"assume_role_arn": self.config.aws_role_arn,
|
|
||||||
"allow_api_access": True,
|
|
||||||
}
|
|
||||||
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.post(
|
|
||||||
f"{self.BASE_URL}/rooms",
|
|
||||||
headers=self.headers,
|
|
||||||
json=data,
|
|
||||||
timeout=self.TIMEOUT,
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
result = response.json()
|
|
||||||
|
|
||||||
# Format response to match our standard
|
|
||||||
room_url = result["url"]
|
|
||||||
|
|
||||||
return MeetingData(
|
|
||||||
meeting_id=result["id"],
|
|
||||||
room_name=result["name"],
|
|
||||||
room_url=room_url,
|
|
||||||
host_room_url=room_url,
|
|
||||||
platform=self.PLATFORM_NAME,
|
|
||||||
extra_data=result,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def get_room_sessions(self, room_name: str) -> Dict[str, Any]:
|
|
||||||
"""Get Daily.co room information."""
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.get(
|
|
||||||
f"{self.BASE_URL}/rooms/{room_name}",
|
|
||||||
headers=self.headers,
|
|
||||||
timeout=self.TIMEOUT,
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
|
|
||||||
async def get_room_presence(self, room_name: str) -> Dict[str, Any]:
|
|
||||||
"""Get real-time participant data - Daily.co specific feature."""
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.get(
|
|
||||||
f"{self.BASE_URL}/rooms/{room_name}/presence",
|
|
||||||
headers=self.headers,
|
|
||||||
timeout=self.TIMEOUT,
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
|
|
||||||
async def delete_room(self, room_name: str) -> bool:
|
|
||||||
"""Delete a Daily.co room."""
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.delete(
|
|
||||||
f"{self.BASE_URL}/rooms/{room_name}",
|
|
||||||
headers=self.headers,
|
|
||||||
timeout=self.TIMEOUT,
|
|
||||||
)
|
|
||||||
# Daily.co returns 200 for success, 404 if room doesn't exist
|
|
||||||
return response.status_code in (200, 404)
|
|
||||||
|
|
||||||
async def upload_logo(self, room_name: str, logo_path: str) -> bool:
|
|
||||||
"""Daily.co doesn't support custom logos per room - this is a no-op."""
|
|
||||||
return True
|
|
||||||
|
|
||||||
def verify_webhook_signature(
|
|
||||||
self, body: bytes, signature: str, timestamp: Optional[str] = None
|
|
||||||
) -> bool:
|
|
||||||
"""Verify Daily.co webhook signature."""
|
|
||||||
expected = hmac.new(
|
|
||||||
self.config.webhook_secret.encode(), body, sha256
|
|
||||||
).hexdigest()
|
|
||||||
|
|
||||||
try:
|
|
||||||
return hmac.compare_digest(expected, signature)
|
|
||||||
except Exception:
|
|
||||||
return False
|
|
||||||
@@ -1,52 +0,0 @@
|
|||||||
"""Factory for creating video platform clients based on configuration."""
|
|
||||||
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
from reflector.settings import settings
|
|
||||||
|
|
||||||
from .base import VideoPlatformClient, VideoPlatformConfig
|
|
||||||
from .registry import get_platform_client
|
|
||||||
|
|
||||||
|
|
||||||
def get_platform_config(platform: str) -> VideoPlatformConfig:
|
|
||||||
"""Get configuration for a specific platform."""
|
|
||||||
if platform == "whereby":
|
|
||||||
return VideoPlatformConfig(
|
|
||||||
api_key=settings.WHEREBY_API_KEY or "",
|
|
||||||
webhook_secret=settings.WHEREBY_WEBHOOK_SECRET or "",
|
|
||||||
api_url=settings.WHEREBY_API_URL,
|
|
||||||
s3_bucket=settings.AWS_WHEREBY_S3_BUCKET,
|
|
||||||
aws_access_key_id=settings.AWS_WHEREBY_ACCESS_KEY_ID,
|
|
||||||
aws_access_key_secret=settings.AWS_WHEREBY_ACCESS_KEY_SECRET,
|
|
||||||
)
|
|
||||||
elif platform == "daily":
|
|
||||||
return VideoPlatformConfig(
|
|
||||||
api_key=settings.DAILY_API_KEY or "",
|
|
||||||
webhook_secret=settings.DAILY_WEBHOOK_SECRET or "",
|
|
||||||
subdomain=settings.DAILY_SUBDOMAIN,
|
|
||||||
s3_bucket=settings.AWS_DAILY_S3_BUCKET,
|
|
||||||
s3_region=settings.AWS_DAILY_S3_REGION,
|
|
||||||
aws_role_arn=settings.AWS_DAILY_ROLE_ARN,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown platform: {platform}")
|
|
||||||
|
|
||||||
|
|
||||||
def create_platform_client(platform: str) -> VideoPlatformClient:
|
|
||||||
"""Create a video platform client instance."""
|
|
||||||
config = get_platform_config(platform)
|
|
||||||
return get_platform_client(platform, config)
|
|
||||||
|
|
||||||
|
|
||||||
def get_platform_for_room(room_id: Optional[str] = None) -> str:
|
|
||||||
"""Determine which platform to use for a room based on feature flags."""
|
|
||||||
# If Daily migration is disabled, always use Whereby
|
|
||||||
if not settings.DAILY_MIGRATION_ENABLED:
|
|
||||||
return "whereby"
|
|
||||||
|
|
||||||
# If a specific room is in the migration list, use Daily
|
|
||||||
if room_id and room_id in settings.DAILY_MIGRATION_ROOM_IDS:
|
|
||||||
return "daily"
|
|
||||||
|
|
||||||
# Otherwise use the default platform
|
|
||||||
return settings.DEFAULT_VIDEO_PLATFORM
|
|
||||||
@@ -1,124 +0,0 @@
|
|||||||
"""Mock video platform client for testing."""
|
|
||||||
|
|
||||||
import uuid
|
|
||||||
from datetime import datetime
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
|
|
||||||
from reflector.db.rooms import Room
|
|
||||||
|
|
||||||
from .base import MeetingData, VideoPlatformClient, VideoPlatformConfig
|
|
||||||
|
|
||||||
|
|
||||||
class MockPlatformClient(VideoPlatformClient):
|
|
||||||
"""Mock video platform implementation for testing."""
|
|
||||||
|
|
||||||
PLATFORM_NAME = "mock"
|
|
||||||
|
|
||||||
def __init__(self, config: VideoPlatformConfig):
|
|
||||||
super().__init__(config)
|
|
||||||
# Store created rooms for testing
|
|
||||||
self._rooms: Dict[str, Dict[str, Any]] = {}
|
|
||||||
self._webhook_calls: list[Dict[str, Any]] = []
|
|
||||||
|
|
||||||
async def create_meeting(
|
|
||||||
self, room_name_prefix: str, end_date: datetime, room: Room
|
|
||||||
) -> MeetingData:
|
|
||||||
"""Create a mock meeting."""
|
|
||||||
meeting_id = str(uuid.uuid4())
|
|
||||||
room_name = f"{room_name_prefix}-{meeting_id[:8]}"
|
|
||||||
room_url = f"https://mock.video/{room_name}"
|
|
||||||
host_room_url = f"{room_url}?host=true"
|
|
||||||
|
|
||||||
# Store room data for later retrieval
|
|
||||||
self._rooms[room_name] = {
|
|
||||||
"id": meeting_id,
|
|
||||||
"name": room_name,
|
|
||||||
"url": room_url,
|
|
||||||
"host_url": host_room_url,
|
|
||||||
"end_date": end_date,
|
|
||||||
"room": room,
|
|
||||||
"participants": [],
|
|
||||||
"is_active": True,
|
|
||||||
}
|
|
||||||
|
|
||||||
return MeetingData(
|
|
||||||
meeting_id=meeting_id,
|
|
||||||
room_name=room_name,
|
|
||||||
room_url=room_url,
|
|
||||||
host_room_url=host_room_url,
|
|
||||||
platform=self.PLATFORM_NAME,
|
|
||||||
extra_data={"mock": True},
|
|
||||||
)
|
|
||||||
|
|
||||||
async def get_room_sessions(self, room_name: str) -> Dict[str, Any]:
|
|
||||||
"""Get mock room session information."""
|
|
||||||
if room_name not in self._rooms:
|
|
||||||
return {"error": "Room not found"}
|
|
||||||
|
|
||||||
room_data = self._rooms[room_name]
|
|
||||||
return {
|
|
||||||
"roomName": room_name,
|
|
||||||
"sessions": [
|
|
||||||
{
|
|
||||||
"sessionId": room_data["id"],
|
|
||||||
"startTime": datetime.utcnow().isoformat(),
|
|
||||||
"participants": room_data["participants"],
|
|
||||||
"isActive": room_data["is_active"],
|
|
||||||
}
|
|
||||||
],
|
|
||||||
}
|
|
||||||
|
|
||||||
async def delete_room(self, room_name: str) -> bool:
|
|
||||||
"""Delete a mock room."""
|
|
||||||
if room_name in self._rooms:
|
|
||||||
self._rooms[room_name]["is_active"] = False
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
async def upload_logo(self, room_name: str, logo_path: str) -> bool:
|
|
||||||
"""Mock logo upload."""
|
|
||||||
if room_name in self._rooms:
|
|
||||||
self._rooms[room_name]["logo_path"] = logo_path
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
def verify_webhook_signature(
|
|
||||||
self, body: bytes, signature: str, timestamp: Optional[str] = None
|
|
||||||
) -> bool:
|
|
||||||
"""Mock webhook signature verification."""
|
|
||||||
# For testing, accept signature == "valid"
|
|
||||||
return signature == "valid"
|
|
||||||
|
|
||||||
# Mock-specific methods for testing
|
|
||||||
|
|
||||||
def add_participant(
|
|
||||||
self, room_name: str, participant_id: str, participant_name: str
|
|
||||||
):
|
|
||||||
"""Add a participant to a mock room (for testing)."""
|
|
||||||
if room_name in self._rooms:
|
|
||||||
self._rooms[room_name]["participants"].append(
|
|
||||||
{
|
|
||||||
"id": participant_id,
|
|
||||||
"name": participant_name,
|
|
||||||
"joined_at": datetime.utcnow().isoformat(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
def trigger_webhook(self, event_type: str, data: Dict[str, Any]):
|
|
||||||
"""Trigger a mock webhook event (for testing)."""
|
|
||||||
self._webhook_calls.append(
|
|
||||||
{
|
|
||||||
"type": event_type,
|
|
||||||
"data": data,
|
|
||||||
"timestamp": datetime.utcnow().isoformat(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_webhook_calls(self) -> list[Dict[str, Any]]:
|
|
||||||
"""Get all webhook calls made (for testing)."""
|
|
||||||
return self._webhook_calls.copy()
|
|
||||||
|
|
||||||
def clear_data(self):
|
|
||||||
"""Clear all mock data (for testing)."""
|
|
||||||
self._rooms.clear()
|
|
||||||
self._webhook_calls.clear()
|
|
||||||
@@ -1,42 +0,0 @@
|
|||||||
from typing import Dict, Type
|
|
||||||
|
|
||||||
from .base import VideoPlatformClient, VideoPlatformConfig
|
|
||||||
|
|
||||||
# Registry of available video platforms
|
|
||||||
_PLATFORMS: Dict[str, Type[VideoPlatformClient]] = {}
|
|
||||||
|
|
||||||
|
|
||||||
def register_platform(name: str, client_class: Type[VideoPlatformClient]):
|
|
||||||
"""Register a video platform implementation."""
|
|
||||||
_PLATFORMS[name.lower()] = client_class
|
|
||||||
|
|
||||||
|
|
||||||
def get_platform_client(
|
|
||||||
platform: str, config: VideoPlatformConfig
|
|
||||||
) -> VideoPlatformClient:
|
|
||||||
"""Get a video platform client instance."""
|
|
||||||
platform_lower = platform.lower()
|
|
||||||
if platform_lower not in _PLATFORMS:
|
|
||||||
raise ValueError(f"Unknown video platform: {platform}")
|
|
||||||
|
|
||||||
client_class = _PLATFORMS[platform_lower]
|
|
||||||
return client_class(config)
|
|
||||||
|
|
||||||
|
|
||||||
def get_available_platforms() -> list[str]:
|
|
||||||
"""Get list of available platform names."""
|
|
||||||
return list(_PLATFORMS.keys())
|
|
||||||
|
|
||||||
|
|
||||||
# Auto-register built-in platforms
|
|
||||||
def _register_builtin_platforms():
|
|
||||||
from .daily import DailyClient
|
|
||||||
from .mock import MockPlatformClient
|
|
||||||
from .whereby import WherebyClient
|
|
||||||
|
|
||||||
register_platform("whereby", WherebyClient)
|
|
||||||
register_platform("daily", DailyClient)
|
|
||||||
register_platform("mock", MockPlatformClient)
|
|
||||||
|
|
||||||
|
|
||||||
_register_builtin_platforms()
|
|
||||||
@@ -1,140 +0,0 @@
|
|||||||
import hmac
|
|
||||||
import json
|
|
||||||
import re
|
|
||||||
import time
|
|
||||||
from datetime import datetime
|
|
||||||
from hashlib import sha256
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
|
|
||||||
import httpx
|
|
||||||
|
|
||||||
from reflector.db.rooms import Room
|
|
||||||
|
|
||||||
from .base import MeetingData, VideoPlatformClient, VideoPlatformConfig
|
|
||||||
|
|
||||||
|
|
||||||
class WherebyClient(VideoPlatformClient):
|
|
||||||
"""Whereby video platform implementation."""
|
|
||||||
|
|
||||||
PLATFORM_NAME = "whereby"
|
|
||||||
TIMEOUT = 10 # seconds
|
|
||||||
MAX_ELAPSED_TIME = 60 * 1000 # 1 minute in milliseconds
|
|
||||||
|
|
||||||
def __init__(self, config: VideoPlatformConfig):
|
|
||||||
super().__init__(config)
|
|
||||||
self.headers = {
|
|
||||||
"Content-Type": "application/json; charset=utf-8",
|
|
||||||
"Authorization": f"Bearer {config.api_key}",
|
|
||||||
}
|
|
||||||
|
|
||||||
async def create_meeting(
|
|
||||||
self, room_name_prefix: str, end_date: datetime, room: Room
|
|
||||||
) -> MeetingData:
|
|
||||||
"""Create a Whereby meeting."""
|
|
||||||
data = {
|
|
||||||
"isLocked": room.is_locked,
|
|
||||||
"roomNamePrefix": room_name_prefix,
|
|
||||||
"roomNamePattern": "uuid",
|
|
||||||
"roomMode": room.room_mode,
|
|
||||||
"endDate": end_date.isoformat(),
|
|
||||||
"fields": ["hostRoomUrl"],
|
|
||||||
}
|
|
||||||
|
|
||||||
# Add recording configuration if cloud recording is enabled
|
|
||||||
if room.recording_type == "cloud":
|
|
||||||
data["recording"] = {
|
|
||||||
"type": room.recording_type,
|
|
||||||
"destination": {
|
|
||||||
"provider": "s3",
|
|
||||||
"bucket": self.config.s3_bucket,
|
|
||||||
"accessKeyId": self.config.aws_access_key_id,
|
|
||||||
"accessKeySecret": self.config.aws_access_key_secret,
|
|
||||||
"fileFormat": "mp4",
|
|
||||||
},
|
|
||||||
"startTrigger": room.recording_trigger,
|
|
||||||
}
|
|
||||||
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.post(
|
|
||||||
f"{self.config.api_url}/meetings",
|
|
||||||
headers=self.headers,
|
|
||||||
json=data,
|
|
||||||
timeout=self.TIMEOUT,
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
result = response.json()
|
|
||||||
|
|
||||||
return MeetingData(
|
|
||||||
meeting_id=result["meetingId"],
|
|
||||||
room_name=result["roomName"],
|
|
||||||
room_url=result["roomUrl"],
|
|
||||||
host_room_url=result["hostRoomUrl"],
|
|
||||||
platform=self.PLATFORM_NAME,
|
|
||||||
extra_data=result,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def get_room_sessions(self, room_name: str) -> Dict[str, Any]:
|
|
||||||
"""Get Whereby room session information."""
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.get(
|
|
||||||
f"{self.config.api_url}/insights/room-sessions?roomName={room_name}",
|
|
||||||
headers=self.headers,
|
|
||||||
timeout=self.TIMEOUT,
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response.json()
|
|
||||||
|
|
||||||
async def delete_room(self, room_name: str) -> bool:
|
|
||||||
"""Whereby doesn't support room deletion - meetings expire automatically."""
|
|
||||||
return True
|
|
||||||
|
|
||||||
async def upload_logo(self, room_name: str, logo_path: str) -> bool:
|
|
||||||
"""Upload logo to Whereby room."""
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
with open(logo_path, "rb") as f:
|
|
||||||
response = await client.put(
|
|
||||||
f"{self.config.api_url}/rooms/{room_name}/theme/logo",
|
|
||||||
headers={
|
|
||||||
"Authorization": f"Bearer {self.config.api_key}",
|
|
||||||
},
|
|
||||||
timeout=self.TIMEOUT,
|
|
||||||
files={"image": f},
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
return True
|
|
||||||
|
|
||||||
def verify_webhook_signature(
|
|
||||||
self, body: bytes, signature: str, timestamp: Optional[str] = None
|
|
||||||
) -> bool:
|
|
||||||
"""Verify Whereby webhook signature."""
|
|
||||||
if not signature:
|
|
||||||
return False
|
|
||||||
|
|
||||||
matches = re.match(r"t=(.*),v1=(.*)", signature)
|
|
||||||
if not matches:
|
|
||||||
return False
|
|
||||||
|
|
||||||
ts, sig = matches.groups()
|
|
||||||
|
|
||||||
# Check timestamp to prevent replay attacks
|
|
||||||
current_time = int(time.time() * 1000)
|
|
||||||
diff_time = current_time - int(ts) * 1000
|
|
||||||
if diff_time >= self.MAX_ELAPSED_TIME:
|
|
||||||
return False
|
|
||||||
|
|
||||||
# Verify signature
|
|
||||||
body_dict = json.loads(body)
|
|
||||||
signed_payload = f"{ts}.{json.dumps(body_dict, separators=(',', ':'))}"
|
|
||||||
hmac_obj = hmac.new(
|
|
||||||
self.config.webhook_secret.encode("utf-8"),
|
|
||||||
signed_payload.encode("utf-8"),
|
|
||||||
sha256,
|
|
||||||
)
|
|
||||||
expected_signature = hmac_obj.hexdigest()
|
|
||||||
|
|
||||||
try:
|
|
||||||
return hmac.compare_digest(
|
|
||||||
expected_signature.encode("utf-8"), sig.encode("utf-8")
|
|
||||||
)
|
|
||||||
except Exception:
|
|
||||||
return False
|
|
||||||
@@ -44,8 +44,6 @@ def range_requests_response(
|
|||||||
"""Returns StreamingResponse using Range Requests of a given file"""
|
"""Returns StreamingResponse using Range Requests of a given file"""
|
||||||
|
|
||||||
if not os.path.exists(file_path):
|
if not os.path.exists(file_path):
|
||||||
from fastapi import HTTPException
|
|
||||||
|
|
||||||
raise HTTPException(status_code=404, detail="File not found")
|
raise HTTPException(status_code=404, detail="File not found")
|
||||||
|
|
||||||
file_size = os.stat(file_path).st_size
|
file_size = os.stat(file_path).st_size
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user