Compare commits

..

85 Commits

Author SHA1 Message Date
Igor Loskutov
1bf73c8199 sync with parent 2025-10-21 11:59:26 -04:00
d82abf65ba Emit multriack pipeline events 2025-10-21 16:31:31 +02:00
Igor Loskutov
7d239fe380 dailico track merge vibe 2025-10-21 10:30:19 -04:00
acb6e90f28 Generate waveforms for the mixed audio 2025-10-21 13:33:31 +02:00
Igor Loskutov
f844b9fc1f Merge branch 'igor/dailico-2' of github-monadical:Monadical-SAS/reflector into igor/dailico-2 2025-10-17 10:00:40 -04:00
96f05020cc Align tracks of a multitrack recording 2025-10-17 15:27:27 +02:00
fc79ff3114 Use explicit track keys for processing 2025-10-17 14:42:07 +02:00
Igor Loskutov
3641e2e599 apply platform from envs in priority: non-dry 2025-10-16 15:08:19 -04:00
c23518d2e3 Trigger multitrack processing for daily recordings 2025-10-16 20:05:26 +02:00
23edffe2a2 Mixdown with pyav filter graph 2025-10-16 17:14:55 +02:00
e59770ecc9 Mixdown audio tracks 2025-10-16 17:14:55 +02:00
6301f2afa6 Add multitrack pipeline 2025-10-16 17:14:55 +02:00
9ac7f0e8e2 chore(main): release 0.14.0 (#670) 2025-10-16 17:14:55 +02:00
Igor Loskutov
0a84a9351a stub processor (vibe) self-review 2025-10-10 20:41:08 -04:00
Igor Loskutov
ca22084845 stub processor (vibe) self-review 2025-10-10 18:45:19 -04:00
Igor Loskutov
f945f84be9 stub processor (vibe) 2025-10-10 18:05:31 -04:00
Igor Loskutov
4c523c8eec dont show recording ui on call 2025-10-10 12:45:10 -04:00
Igor Loskutov
0fcf8b6875 doc update (vibe) 2025-10-10 10:57:35 -04:00
Igor Loskutov
446cb748ae vibe dailyco 2025-10-09 17:04:16 -04:00
Igor Loskutov
3e1339a8ea vibe dailyco 2025-10-09 15:52:23 -04:00
Igor Loskutov
807819bb2f llm instructions 2025-10-08 13:06:04 -04:00
5f6910e513 feat: Add calendar event data to transcript webhook payload (#689)
* feat: add calendar event data to transcript webhook payload and implement get_by_id method

* Update server/reflector/worker/webhook.py

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* Update server/reflector/worker/webhook.py

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* style: format conditional time fields with line breaks for better readability

* docs: add calendar event fields to transcript.completed webhook payload schema

---------

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-10-08 11:11:57 -05:00
9a71af145e fix: update transcript list on reprocess (#676)
* Update transcript list on reprocess

* Fix transcript create

* Fix multiple sockets issue

* Pass token in sec websocket protocol

* userEvent parse example

* transcript list invalidation non-abstraction

* Emit only relevant events to the user room

* Add ws close code const

* Refactor user websocket endpoint

* Refactor user events provider

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-10-07 19:11:30 +02:00
eef6dc3903 fix: upgrade nemo toolkit (#678) 2025-10-07 16:45:02 +02:00
Igor Monadical
1dee255fed parakeet endpoint doc (#679)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-10-07 10:41:01 -04:00
5d98754305 fix: security review (#656)
* Add security review doc

* Add tests to reproduce security issues

* Fix security issues

* Fix tests

* Set auth auth backend for tests

* Fix ics api tests

* Fix transcript mutate check

* Update frontent env var names

* Remove permissions doc
2025-09-29 23:07:49 +02:00
Igor Monadical
969bd84fcc feat: container build for www / github (#672)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-24 12:27:45 -04:00
Igor Monadical
36608849ec fix: restore feature boolean logic (#671)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-24 11:57:49 -04:00
Igor Monadical
5bf64b5a41 feat: docker-compose for production frontend (#664)
* docker-compose for production frontend

* fix: Remove external Redis port mapping for Coolify compatibility

Redis should only be accessible within the internal Docker network in Coolify deployments to avoid port conflicts with other applications.

* fix: Remove external port mapping for web service in Coolify

Coolify handles port exposure through its proxy (Traefik), so services should not expose ports directly in the docker-compose file.

* server side client envs

* missing vars

* nextjs experimental

* fix claude 'fix'

* remove build env vars compose

* docker

* remove ports for coolify

* review

* cleanup

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-24 11:15:27 -04:00
0aaa42528a chore(main): release 0.13.1 (#668) 2025-09-22 16:47:44 -06:00
565a62900f fix: TypeError on not all arguments converted during string formatting in logger (#667) 2025-09-22 16:45:28 -06:00
Igor Monadical
27016e6051 minimum release age for npm (#665)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-22 13:38:23 -04:00
6ddfee0b4e chore(main): release 0.13.0 (#661) 2025-09-21 20:50:47 -06:00
Igor Monadical
47716f6e5d feat: room form edit with enter (#662)
* room form edit with enter

* mobile form enter do nothing

* restore overwritten older change

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-19 15:14:40 -04:00
0abcebfc94 fix: invalid cleanup call (#660) 2025-09-18 10:02:30 -06:00
Igor Monadical
2b723da08b rooms-page-calendar-ics-room-name-fix (#659)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-17 20:02:17 -04:00
6566e04300 chore(main): release 0.12.1 (#658) 2025-09-17 17:17:22 -06:00
870e860517 fix: production blocked because having existing meeting with room_id null (#657) 2025-09-17 17:09:54 -06:00
396a95d5ce chore(main): release 0.12.0 (#654) 2025-09-17 16:44:11 -06:00
6f680b5795 feat: calendar integration (#608)
* feat: calendar integration

* feat: add ICS calendar API endpoints for room configuration and sync

* feat: add Celery background tasks for ICS sync

* feat: implement Phase 2 - Multiple active meetings per room with grace period

This commit adds support for multiple concurrent meetings per room, implementing
grace period logic and improved meeting lifecycle management for calendar integration.

## Database Changes
- Remove unique constraint preventing multiple active meetings per room
- Add last_participant_left_at field to track when meeting becomes empty
- Add grace_period_minutes field (default: 15) for configurable grace period

## Meeting Controller Enhancements
- Add get_all_active_for_room() to retrieve all active meetings for a room
- Add get_active_by_calendar_event() to find meetings by calendar event ID
- Maintain backward compatibility with existing get_active() method

## New API Endpoints
- GET /rooms/{room_name}/meetings/active - List all active meetings
- POST /rooms/{room_name}/meetings/{meeting_id}/join - Join specific meeting

## Meeting Lifecycle Improvements
- 15-minute grace period after last participant leaves
- Automatic reactivation when participant rejoins during grace period
- Force close calendar meetings 30 minutes after scheduled end time
- Update process_meetings task to handle multiple active meetings

## Whereby Integration
- Clear grace period when participants join via webhook events
- Track participant count for grace period management

## Testing
- Add comprehensive tests for multiple active meetings
- Test grace period behavior and participant rejoin scenarios
- Test calendar meeting force closure logic
- All 5 new tests passing

This enables proper calendar integration with overlapping meetings while
preventing accidental meeting closures through the grace period mechanism.

* feat: implement frontend for calendar integration (Phase 3 & 4)

- Created MeetingSelection component for choosing between multiple active meetings
- Shows both active meetings and upcoming calendar events (30 min ahead)
- Displays meeting metadata with privacy controls (owner-only details)
- Supports creation of unscheduled meetings alongside calendar meetings

- Added waiting page for users joining before scheduled start time
- Shows countdown timer until meeting begins
- Auto-transitions to meeting when calendar event becomes active
- Handles early joining with proper routing

- Created collapsible info panel showing meeting details
- Displays calendar metadata (title, description, attendees)
- Shows participant count and duration
- Privacy-aware: sensitive info only visible to room owners

- Integrated ICS settings into room configuration dialog
- Test connection functionality with immediate feedback
- Manual sync trigger with detailed results
- Shows last sync time and ETag for monitoring
- Configurable sync intervals (1 min to 1 hour)

- New /room/{roomName} route for meeting selection
- Waiting room at /room/{roomName}/wait?eventId={id}
- Classic room page at /{roomName} with meeting info
- Uses sessionStorage to pass selected meeting between pages

- Added new endpoints for active/upcoming meetings
- Regenerated TypeScript client with latest OpenAPI spec
- Proper error handling and loading states
- Auto-refresh every 30 seconds for live updates

- Color-coded badges for meeting status
- Attendee status indicators (accepted/declined/tentative)
- Responsive design with Chakra UI components
- Clear visual hierarchy between active and upcoming meetings
- Smart truncation for long attendee lists

This completes the frontend implementation for calendar integration,
enabling users to seamlessly join scheduled meetings from their
calendar applications.

* WIP: Migrate calendar integration frontend to React Query

- Migrate all calendar components from useApi to React Query hooks
- Fix Chakra UI v3 compatibility issues (Card, Progress, spacing props, leftIcon)
- Update backend Meeting model to include calendar fields
- Replace imperative API calls with declarative React Query patterns
- Remove old OpenAPI generated files that conflict with new structure

* fix: alembic migrations

* feat: add calendar migration

* feat: update ics, first version working

* feat: implement tabbed interface for room edit dialog

- Add General, Calendar, and Share tabs to organize room settings
- Move ICS settings to dedicated Calendar tab
- Move Zulip configuration to Share tab
- Keep basic room settings and webhooks in General tab
- Remove redundant migration file
- Fix Chakra UI v3 compatibility issues in calendar components

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: infinite loop

* feat: improve ICS calendar sync UX and fix room URL matching

- Replace "Test Connection" button with "Force Sync" button (Edit Room only)
- Show detailed sync results: total events downloaded vs room matches
- Remove emoticons and auto-hide timeout for cleaner UX
- Fix room URL matching to use UI_BASE_URL instead of BASE_URL
- Replace FaSync icon with LuRefreshCw for consistency
- Clear sync results when dialog closes or Force Sync pressed
- Update tests to reflect UI_BASE_URL change and exact URL matching

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: reorganize room edit dialog and fix Force Sync button

- Move WebHook configuration from General to dedicated WebHook tab
- Add WebHook tab after Share tab in room edit dialog
- Fix Force Sync button not appearing by adding missing isEditing prop
- Fix indentation issues in MeetingSelection component

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: complete calendar integration with UI improvements and code cleanup

Calendar Integration Tasks:
- Update upcoming meetings window from 30 to 120 minutes
- Include currently happening events in upcoming meetings API
- Create shared time utility functions (formatDateTime, formatCountdown, formatStartedAgo)
- Improve ongoing meetings UI logic with proper time detection
- Fix backend code organization and remove excessive documentation

UI/UX Improvements:
- Restructure room page layout using MinimalHeader pattern
- Remove borders from header and footer elements
- Change button text from "Leave Meeting" to "Leave Room"
- Remove "Back to Reflector" footer for cleaner design
- Extract WaitPageClient component for better separation

Backend Changes:
- calendar_events.py: Fix import organization and extend timing window
- rooms.py: Update API default from 30 to 120 minutes
- Enhanced test coverage for ongoing meeting scenarios

Frontend Changes:
- MinimalHeader: Add onLeave prop for custom navigation
- MeetingSelection: Complete layout restructure with shared utilities
- timeUtils: New shared utility file for consistent time formatting

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: remove wait page and simplify Join button with 5-minute disable logic

- Remove entire wait page directory and associated files
- Update handleJoinUpcoming to create unscheduled meeting directly
- Simplify Join button to single state:
  - Always shows "Join" text
  - Blue when meeting can be joined (ongoing or within 5 minutes)
  - Gray/disabled when more than 5 minutes away
- Remove confusing "Join Now", "Join Early" text variations

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: improve calendar integration and meeting UI

- Refactor ICS sync tasks to use @asynctask decorator for cleaner async handling
- Extract meeting creation logic into reusable function
- Improve meeting selection UI with distinct current/upcoming sections
- Add early join functionality for upcoming meetings within 5-minute window
- Simplify non-ICS room workflow with direct Whereby embed
- Fix import paths and component organization

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: restore original recording consent functionality

- Remove custom ConsentDialogButton and WherebyEmbed components
- Merge RoomClient logic back into main room page
- Restore original consent UI: blue button with toast modal
- Maintain calendar integration features for ICS-enabled rooms
- Add consent-handler.md documentation of original functionality
- Preserve focus management and accessibility features

* fix: redirect Join Now button to local meeting page

- Change handleJoinDirect to use onMeetingSelect instead of opening external URL
- Join Now button now navigates to /{roomName}/{meetingId} instead of whereby.com
- Maintains proper routing within the application

* feat: remove restrictive message for non-owners in private rooms

- Remove confusing message about room owner permissions
- Cleaner UI for all users regardless of ownership status
- Users will only see available meetings and join options

* feat: improve meeting selection UI for better readability

- Limit page content to max 800px width for better 4K display readability
- Remove LIVE tag badge for cleaner interface
- Remove shadow from main live meeting box
- Remove blue border and hover effects for minimal design
- Change background to neutral gray for less visual noise

* feat: add room by name endpoint for non-authenticated access

- Add GET /rooms/name/{room_name} backend endpoint
- Endpoint supports non-authenticated access for public rooms
- Returns RoomDetails with webhook fields hidden for non-owners
- Update useRoomGetByName hook to use new direct endpoint
- Remove authentication requirement from frontend hook
- Regenerate API client types

Fixes: Non-authenticated users can now access room lobbies

* feat: add friendly message when no meetings are ongoing

- Show centered message with calendar icon when no meetings are active
- Message text: 'No meetings right now' with helpful description
- Contextual text for owners/shared rooms mentioning quick meeting option
- Consistent gray styling matching the rest of the interface
- Only displays when both currentMeetings and upcomingMeetings are empty

* style: center no meetings message and remove background

- Change from Box to Flex with flex=1 for vertical centering
- Remove gray background, border radius, and padding
- Message now appears cleanly centered in available space
- Maintains horizontal and vertical centering

* feat: move Create Meeting button to header

- Remove 'Start a Quick Meeting' box from main content area
- Add showCreateButton and onCreateMeeting props to MinimalHeader
- Create Meeting button now appears in header left of Leave Room
- Only shows for room owners or shared room users
- Update no meetings message to remove reference to quick meeting below
- Cleaner, more accessible UI with actions in the header

* style: change room title and no meetings text to pure black

- Update room title in MinimalHeader from gray.700 to black
- Update 'No meetings right now' text from gray.700 to black
- Improves visual hierarchy and readability
- Consistent with other pages' styling

* style: linting

* fix: remove plan files

* fix: alembic migration with named foreign keys

* feat: add SyncStatus enum and refactor ICS sync to use rooms controller

- Add SyncStatus enum to replace string literals in ICS sync status
- Replace direct SQL queries in worker with rooms_controller.get_ics_enabled()
- Improve type safety and maintainability of ICS sync code
- Enum values: SUCCESS, UNCHANGED, ERROR, SKIPPED maintain backward compatibility

* refactor: remove unnecessary docstring from get_ics_enabled method

The function name is self-explanatory

* fix: import top level

* feat: use Literal type for ICSStatus.status field

- Changed ICSStatus.status from str to Literal['enabled', 'disabled']
- Improves type safety and API documentation

* feat: update TypeScript definitions for ICSStatus Literal type

- OpenAPI generation now properly reflects Literal['enabled', 'disabled'] type
- Improves type safety for frontend consumers of the API
- Applied automatic formatting via pre-commit hooks

* refactor: replace loguru with structlog in ics_sync service

- Replace loguru import with structlog in services/ics_sync.py
- Update logging calls to use structlog's structured format with keyword args
- Maintains consistency with other services using structlog
- Changes: logger.info(f'...') -> logger.info('...', key=value) format

* chore: remove loguru dependency and improve type annotations

- Remove loguru from dependencies in pyproject.toml (replaced with structlog)
- Update meeting controller methods to properly return Optional types
- Update dependency lock file after loguru removal

* fix: resolve pyflakes warnings in ics_sync and meetings modules

Remove unused imports and variables to clean up code quality

* Remove grace period logic and improve meeting deactivation

- Removed grace_period_minutes and last_participant_left_at fields
- Simplified deactivation logic based on actual usage patterns:
  * Active sessions: Keep meeting active regardless of scheduled time
  * Calendar meetings: Wait until scheduled end if unused, deactivate immediately once used and empty
  * On-the-fly meetings: Deactivate immediately when empty
- Created migration to drop unused database columns
- Updated tests to remove grace period test cases

* Update test to match new deactivation logic for calendar meetings

* fix: remove unwanted file

* fix: incompleted changes from EVENT_WINDOW*

* fix: update room ICS API tests to include required webhook fields and correct URL

- Add webhook_url and webhook_secret fields to room creation tests
- Fix room URL matching in ICS sync test to use UI_BASE_URL instead of BASE_URL
- Aligns test with actual API requirements and ICS sync service implementation

* fix: add Redis distributed locking to prevent race conditions in process_meetings

- Implement per-meeting locks using Redis to prevent concurrent processing
- Add lock extension after slow API calls (Whereby) to handle long-running operations
- Use redis-py's built-in lock.extend() with replace_ttl=True for simple TTL refresh
- Track and log skipped meetings when locked by other workers
- Document SSRF analysis showing it's low-risk due to async worker isolation

This prevents multiple workers from processing the same meeting simultaneously,
which could cause state corruption or duplicate deactivations.

* refactor: rename MinimalHeader to MeetingMinimalHeader for clarity

* fix: minor code quality improvements - add emoji constants, fix type safety, cleanup comments

* fix: database migration

* self-pr review

* self-pr review

* self-pr review treeshake

* fix: local fixes

* fix: creation of meeting

* fix: meeting selection create button

* compile fix

* fix: meeting selection responsive

* fix: rework process logic for meeting

* fix: meeting useEffect frontend-only dedupe (#647)

* meeting useEffect frontend-only dedupe

* format

* also get room by name backend fix

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>

* invalidate meeting list on new meeting

* test fix

* room url copy button for ics

* calendar refresh quick action icon

* remove work.md

* meeting page frontend fixes

* hide number of meeting participants

* Revert "hide number of meeting participants"

This reverts commit 38906c5d1a.

* ui bits

* ui bits

* remove log

* room name typing stricten

* feat: protect atomic operation involving external service with redlock

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Igor Monadical <igor@monadical.com>
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-17 16:43:20 -06:00
ab859d65a6 feat: self-hosted gpu api (#636)
* Self-hosted gpu api

* Refactor self-hosted api

* Rename model api tests

* Use lifespan instead of startup event

* Fix self hosted imports

* Add newlines

* Add response models

* Move gpu dir to the root

* Add project description

* Refactor lifespan

* Update env var names for model api tests

* Preload diarizarion service

* Refactor uploaded file paths
2025-09-17 18:52:03 +02:00
fa049e8d06 fix: ignore player hotkeys for text inputs (#646)
* Ignore player hotkeys for text inputs

* Fix event listener effect
2025-09-16 10:57:35 +02:00
2ce7479967 chore(main): release 0.11.0 (#648) 2025-09-15 22:42:53 -06:00
b42f7cfc60 feat: remove profanity filter that was there for conference (#652) 2025-09-15 18:19:19 -06:00
c546e69739 fix: zulip stream and topic selection in share dialog (#644)
* fix: zulip stream and topic selection in share dialog

Replace useListCollection with createListCollection to match the working
room edit implementation. This ensures collections update when data loads,
fixing the issue where streams and topics wouldn't appear until navigation.

* fix: wrap createListCollection in useMemo to prevent recreation on every render

Both streamCollection and topicCollection are now memoized to improve performance
and prevent unnecessary re-renders of Combobox components
2025-09-15 12:34:51 -06:00
Igor Monadical
3f1fe8c9bf chore: remove timeout-based auth session logic (#649)
* remove timeout-based auth session logic

* remove timeout-based auth session logic

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-15 14:19:10 -04:00
5f143fe364 fix: zulip and consent handler on the file pipeline (#645) 2025-09-15 10:49:20 -06:00
Igor Monadical
79f161436e chore: meeting user id removal and room id requirement (#635)
* chore: remove meeting user id and make meeting room id required

* meeting room_id optional

* orphaned meeting room ids DATA migration

* ci fix

* fix meeting_room_id_fkey downgrade

* fix migration rollback

* fix: put index back (meeting room id)

* fix: put index back (meeting room id)

* fix: put index back (meeting room id)

* remove noop migrations

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-12 13:07:58 -04:00
Igor Monadical
5cba5d310d chore: sentry and nextjs major bumps (#633)
* chore: remove nextjs-config

* build fix

* sentry update

* nextjs update

* feature flags doc

* update readme

* explicit nextjs env vars + remove feature-unrelated things and obsolete vars from config

* full config removal

* remove force-dynamic from pages

* compile fix

* restore claude-deleted tests

* no sentry backward compat

* better .env.example

* AUTHENTIK_REFRESH_TOKEN_URL not so required

* accommodate auth system to requiredLogin feature

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-12 12:41:44 -04:00
43ea9349f5 chore(main): release 0.10.0 (#616) 2025-09-11 20:57:19 -06:00
Igor Monadical
b3a8e9739d chore: whereby & s3 settings env error reporting (#637)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-11 17:52:34 -04:00
Igor Monadical
369ecdff13 feat: replace nextjs-config with environment variables (#632)
* chore: remove nextjs-config

* build fix

* update readme

* explicit nextjs env vars + remove feature-unrelated things and obsolete vars from config

* full config removal

* remove force-dynamic from pages

* compile fix

* restore claude-deleted tests

* better .env.example

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-11 11:20:41 -04:00
fc363bd49b fix: missing follow_redirects=True on modal endpoint (#630) 2025-09-10 08:15:47 -06:00
Igor Monadical
962038ee3f fix: auth post (#627)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-09 16:46:57 -04:00
Igor Monadical
3b85ff3bdf fix: auth post (#626)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-09 16:27:46 -04:00
Igor Monadical
cde99ca271 fix: auth post (#624)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-09 15:48:07 -04:00
Igor Monadical
f81fe9948a fix: anonymous users transcript permissions (#621)
* fix: public transcript visibility

* fix: transcript permissions frontend

* dead code removal

* chore: remove unused code

* fix search tests

* fix search tests

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-09 10:50:29 -04:00
Igor Monadical
5a5b323382 fix: sync backend and frontend token refresh logic (#614)
* sync backend and frontend token refresh logic

* return react strict mode

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-08 10:40:18 -04:00
02a3938822 chore(main): release 0.9.0 (#603) 2025-09-05 22:50:10 -06:00
Igor Monadical
7f5a4c9ddc fix: token refresh locking (#613)
* fix: kv use tls explicit

* fix: token refresh locking

* remove logs

* compile fix

* compile fix

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-05 23:03:24 -04:00
Igor Monadical
08d88ec349 fix: kv use tls explicit (#610)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-05 18:39:32 -04:00
Igor Monadical
c4d2825c81 feat: frontend openapi react query (#606)
* refactor: migrate from @hey-api/openapi-ts to openapi-react-query

- Replace @hey-api/openapi-ts with openapi-typescript and openapi-react-query
- Generate TypeScript types from OpenAPI spec
- Set up React Query infrastructure with QueryClientProvider
- Migrate all API hooks to use React Query patterns
- Maintain backward compatibility for existing components
- Remove old API infrastructure and dependencies

* fix: resolve import errors and add missing api hooks

- Create constants.ts for RECORD_A_MEETING_URL
- Add api-types.ts for backward compatible type exports
- Update all imports from deleted api folder to new locations
- Add missing React Query hooks for rooms and zulip operations
- Create useApi compatibility layer for unmigrated components

* feat: migrate components to React Query hooks

- Add comprehensive API hooks for all operations
- Migrate rooms page to use React Query mutations
- Update transcript title component to use mutation hook
- Refactor share/privacy component with proper error handling
- Remove direct API client usage in favor of hooks

* feat: complete migration from @hey-api/openapi-ts to openapi-react-query

- Migrated all components from useApi compatibility layer to direct React Query hooks
- Added new hooks for participant operations, room meetings, and speaker operations
- Updated all imports from old api module to api-types
- Fixed TypeScript types and API endpoint signatures
- Removed deprecated useApi.ts compatibility layer
- Fixed SourceKind enum values to match OpenAPI spec
- Added @ts-ignore for Zulip endpoints not in OpenAPI spec yet
- Fixed all compilation errors and type issues

* fix: authentication flow with React Query migration

- Fix middleware management in apiClient to properly handle auth tokens
- Update ApiAuthProvider to correctly configure base URL and auth
- Add missing NextAuth API route handler at app/api/auth/[...nextauth]/route.ts
- Remove middleware ejection attempts (not supported by openapi-fetch)
- Use global variables to store current auth token and API URL
- Setup middleware once on initialization instead of repeatedly adding

This fixes the login/logout flow that was broken after migrating from
the useApi compatibility layer to native React Query hooks.

* fix: prevent unauthorized API calls before authentication

- Add global AuthGuard component to handle authentication at layout level
- Make all API query hooks conditional on authentication status
- Define public routes (like /transcripts/new) that don't require auth
- Fix login flow to use NextAuth signIn instead of non-existent /login route
- Prevent 401 errors by waiting for auth token before making API calls

Previously, all routes under (app) were publicly accessible with each page
handling auth individually. Now authentication is enforced globally while
still allowing specific routes to remain public.

* refactor: remove redundant client-side AuthGuard

The authentication is already properly handled by Next.js middleware
in middleware.ts with LOGIN_REQUIRED_PAGES. The middleware approach is
superior as it:
- Provides server-side protection before page loads
- Prevents flash of unauthorized content
- Centralizes auth logic in one place
- Better performance (no client-side JS needed)

Keep the API hooks conditional to prevent 401 errors before token is ready.

* fix: use direct status check for API query authentication

Changed all query hooks to use direct `status === "authenticated"` check
instead of derived `isAuthenticated && !isLoading` to avoid race conditions
where queries might fire before the authentication token is properly set.

This prevents the brief 401 errors that occur on page refresh when the
session is being restored.

* fix: correct content-type header for FormData uploads

Previously, the API client was setting a default Content-Type of application/json
for all requests, which broke file uploads that need multipart/form-data.

Now the client only sets application/json when the body is not FormData,
allowing FormData to automatically set the correct multipart boundary.

* fix: resolve authentication race condition with React Query

Previously, API calls were being made before the auth token was configured,
causing initial 401 errors that would retry with 200 after token setup.

Changes:
- Add global auth readiness tracking in apiClient
- Create useAuthReady hook that checks both session and token state
- Update all API hooks to use isAuthReady instead of just session status
- Add AuthWrapper component at layout level for consistent loading UX
- Show spinner while authentication initializes across all pages

This ensures API calls only fire after authentication is fully configured,
eliminating the 401/retry pattern and improving user experience.

* refactor: clean up api-hooks.ts comments and improve search invalidation

- Remove redundant function category comments (exports are self-explanatory)
- Remove obvious inline comments for query invalidation
- Fix search endpoint invalidation to clear all queries regardless of parameters

* refactor: remove api-types.ts compatibility layer

- Migrated all 29 files from api-types.ts to use reflector-api.d.ts directly
- Removed $SourceKind manual enum in favor of OpenAPI-generated types
- Fixed unrelated Spinner component TypeScript error in AuthWrapper.tsx
- All imports now use: import type { components } from "path/to/reflector-api"
- Deleted api-types.ts file completely

* refactor: rename api-hooks.ts to apiHooks.ts for consistency

- Renamed api-hooks.ts to apiHooks.ts to follow camelCase convention
- Updated all 21 import statements across the codebase
- Maintains consistency with other non-component files (apiClient.tsx, useAuthReady.ts, etc.)
- Follows established naming pattern: PascalCase for components, camelCase for utilities/hooks

* chore: add .playwright-mcp to .gitignore

* refactor: remove SK helper object and use inline type casting in FilterSidebar

Replace the SK (SourceKind) helper object with direct inline type casting
to simplify the code and reduce unnecessary abstraction.

* chore: clean up migration comments from React Query refactoring

- Remove temporary "// Use new React Query hooks" comments
- Remove "// React Query hooks" comments from browse and rooms pages
- Update package.json script name from codegen to openapi for consistency

* refactor: remove Redis dependencies from frontend authentication

- Replace Redis/Redlock with in-memory cache for token management
- Remove @vercel/kv, ioredis, and redlock dependencies from package.json
- Implement simple lock mechanism for concurrent token refresh prevention
- Use Map-based cache with TTL for token storage
- Maintain same authentication flow without external dependencies

This simplifies the infrastructure requirements and removes the need for
Redis while maintaining the same functionality through in-memory caching.

* fix: add staleTime to prevent cross-tab staled data

* fix: remove infinite re-render loop in useSessionAccessToken

The hook was maintaining redundant local state that caused re-renders
on every update, which triggered NextAuth to continuously refetch the
session, resulting in hundreds of POST requests to /api/auth/session.

Simplified the hook to directly return session values without
unnecessary state duplication.

* fix: handle undefined access tokens in auth.ts

Added fallback to empty string for potentially undefined access_token
and refresh_token from NextAuth account object to satisfy
JWTWithAccessToken type requirements.

* Igor/mathieu/frontend openapi react query (#597)

* small typing

* typing fixes

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>

* self-review-fix

* authReady callback simplify

* fix auth

* fix compose

* room detail page fix

* compile fix

* room edit fix

* normalize auth provider

* room edition state granular management

* cover TODOs + cross-tab cache

* session auto refresh blink

* schema generator error type doc

* protect from zombie auth

* clarify access token refresh logic a bit

* remove react-query tab sharing cache

* remove react-query tab sharing cache

* websocket dupe react devmode protection

* invalidate room on room update

* redis cache

* test ts server

* ci randomness

* less edgy config (ci)

* less edgy config (ci)

* less edgy config (ci)

* ci randomness

* ci randomness

* ci randomness

* ci randomness

* less edgy config (ci)

* added vs edited room state cleanup

* file upload real-time state management fix

* prettier auth state ternary

* prettier auth state ternary

* proper api address from env

* INTERVAL_REFRESH_MS

* node version 20 for tests

* github debug

* github debug

* github debug

* github debug

* github debug

* github debug

* github debug

* github debug

* github debug

* github debug

* github debug

* CI debug

* CI debug

* nextjs magic

* nextjs magic

* doc

* client-side stale auth soft safety net

---------

Co-authored-by: Mathieu Virbel <mat@meltingrocks.com>
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-09-05 16:01:31 -06:00
0663700a61 fix: align whisper transcriber api with parakeet (#602)
* Documents transcriber api

* Update whisper transcriber api to match parakeet

* Update api transcription spec

* Return 400 for unsupported file type

* Add params to api spec

* Update whisper transcriber implementation to match parakeet
2025-09-05 10:52:14 +02:00
dc82f8bb3b fix: source kind for file processing (#601) 2025-09-04 08:42:21 -06:00
457823e1c1 chore(main): release 0.8.2 (#595) 2025-09-01 19:09:09 -06:00
Igor Monadical
695d1a957d fix: search-logspam (#593)
* fix: search-logspam

* llm comment

* fix tests

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-08-29 18:55:51 -04:00
ccffdba75b chore(main): release 0.8.1 (#591) 2025-08-29 11:56:11 -06:00
84a381220b fix: make webhook secret/url allowing null (#590) 2025-08-29 11:55:18 -06:00
5f2f0e9317 chore(main): release 0.8.0 (#579) 2025-08-29 11:34:24 -06:00
88ed7cfa78 feat(rooms): add webhook for transcript completion (#578)
* feat(rooms): add webhook notifications for transcript completion

- Add webhook_url and webhook_secret fields to rooms table
- Create Celery task with 24-hour retry window using exponential backoff
- Send transcript metadata, diarized text, topics, and summaries via webhook
- Add HMAC signature verification for webhook security
- Add test endpoint POST /v1/rooms/{room_id}/webhook/test
- Update frontend with webhook configuration UI and test button
- Auto-generate webhook secret if not provided
- Trigger webhook after successful file pipeline processing for room recordings

* style: linting

* fix: remove unwanted files

* fix: update openapi gen

* fix: self-review

* docs: add comprehensive webhook documentation

- Document webhook configuration, events, and payloads
- Include transcript.completed and test event examples
- Add security considerations and best practices
- Provide example webhook receiver implementation
- Document retry policy and signature verification

* fix: remove audio_mp3_url from webhook payload

- Remove audio download URL generation from webhook
- Update documentation to reflect the change
- Keep only frontend_url for accessing transcripts

* docs: remove unwanted section

* fix: correct API method name and type imports for rooms

- Fix v1RoomsRetrieve to v1RoomsGet
- Update Room type to RoomDetails throughout frontend
- Fix type imports in useRoomList, RoomList, RoomTable, and RoomCards

* feat: add show/hide toggle for webhook secret field

- Add eye icon button to reveal/hide webhook secret when editing
- Show password dots when webhook secret is hidden
- Reset visibility state when opening/closing dialog
- Only show toggle button when editing existing room with secret

* fix: resolve event loop conflict in webhook test endpoint

- Extract webhook test logic into shared async function
- Call async function directly from FastAPI endpoint
- Keep Celery task wrapper for background processing
- Fixes RuntimeError: event loop already running

* refactor: remove unnecessary Celery task for webhook testing

- Webhook testing is synchronous and provides immediate feedback
- No need for background processing via Celery
- Keep only the async function called directly from API endpoint

* feat: improve webhook test error messages and display

- Show HTTP status code in error messages
- Parse JSON error responses to extract meaningful messages
- Improved UI layout for webhook test results
- Added colored background for success/error states
- Better text wrapping for long error messages

* docs: adjust doc

* fix: review

* fix: update attempts to match close 24h

* fix: add event_id

* fix: changed to uuid, to have new event_id when reprocess.

* style: linting

* fix: alembic revision
2025-08-29 10:07:49 -06:00
6f0c7c1a5e feat(cleanup): add automatic data retention for public instances (#574)
* feat(cleanup): add automatic data retention for public instances

- Add Celery task to clean up anonymous data after configurable retention period
- Delete transcripts, meetings, and orphaned recordings older than retention days
- Only runs when PUBLIC_MODE is enabled to prevent accidental data loss
- Properly removes all associated files (local and S3 storage)
- Add manual cleanup tool for testing and intervention
- Configure retention via PUBLIC_DATA_RETENTION_DAYS setting (default: 7 days)

Fixes #571

* fix: apply pre-commit formatting fixes

* fix: properly delete recording files from storage during cleanup

- Add storage deletion for orphaned recordings in both cleanup task and manual tool
- Delete from storage before removing database records
- Log warnings if storage deletion fails but continue with database cleanup

* Apply suggestion from @pr-agent-monadical[bot]

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* Apply suggestion from @pr-agent-monadical[bot]

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* refactor: cleanup_old_data for better logging

* fix: linting

* test: fix meeting cleanup test to not require room controller

- Simplify test by directly inserting meetings into database
- Remove dependency on non-existent rooms_controller.create method
- Tests now pass successfully

* fix: linting

* refactor: simplify cleanup tool to use worker implementation

- Remove duplicate cleanup logic from manual tool
- Use the same _cleanup_old_public_data function from worker
- Remove dry-run feature as requested
- Prevent code duplication and ensure consistency
- Update documentation to reflect changes

* refactor: split cleanup worker into smaller functions

- Move all imports to the top of the file
- Extract cleanup logic into separate functions:
  - cleanup_old_transcripts()
  - cleanup_old_meetings()
  - cleanup_orphaned_recordings()
  - log_cleanup_results()
- Make code more maintainable and testable
- Add days parameter support to Celery task
- Update manual tool to work with refactored code

* feat: add TypedDict typing for cleanup stats

- Add CleanupStats TypedDict for better type safety
- Update all function signatures to use proper typing
- Add return type annotations to _cleanup_old_public_data
- Improves code maintainability and IDE support

* feat: add CASCADE DELETE to meeting_consent foreign key

- Add ondelete="CASCADE" to meeting_consent.meeting_id foreign key
- Generate and apply migration to update existing constraint
- Remove manual consent deletion from cleanup code
- Add unit test to verify CASCADE DELETE behavior

* style: linting

* fix: alembic migration branchpoint

* fix: correct downgrade constraint name in CASCADE DELETE migration

* fix: regenerate CASCADE DELETE migration with proper constraint names

- Delete problematic migration and regenerate with correct names
- Use explicit constraint name in both upgrade and downgrade
- Ensure migration works bidirectionally
- All tests passing including CASCADE DELETE test

* style: linting

* refactor: simplify cleanup to use transcripts as entry point

- Remove orphaned_recordings cleanup (not part of this PR scope)
- Remove separate old_meetings cleanup
- Transcripts are now the main entry point for cleanup
- Associated meetings and recordings are deleted with their transcript
- Use single database connection for all operations
- Update tests to reflect new approach

* refactor: cleanup and rename functions for clarity

- Rename _cleanup_old_public_data to cleanup_old_public_data (make public)
- Rename celery task to cleanup_old_public_data_task for clarity
- Update docstrings and improve code organization
- Remove unnecessary comments and simplify deletion logic
- Update tests to use new function names
- All tests passing

* style: linting\

* style: typing and review

* fix: add transaction on cleanup_single_transcript

* fix: naming

---------

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-08-29 08:47:14 -06:00
9dfd76996f fix: file pipeline status reporting and websocket updates (#589)
* feat: use file pipeline for upload and reprocess action

* fix: make file pipeline correctly report status events

* fix: duplication of transcripts_controller

* fix: tests

* test: fix file upload test

* test: fix reprocess

* fix: also patch from main_file_pipeline

(how patch is done is dependent of file import unfortunately)
2025-08-29 00:58:14 -06:00
55cc8637c6 ci: restrict workflow execution to main branch and add concurrency (#586)
* ci: try adding concurrency

* ci: restrict push on main branch

* ci: fix concurrency key

* ci: fix build concurrency

* refactor: apply suggestion from @pr-agent-monadical[bot]

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

---------

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-08-28 16:43:17 -06:00
f5331a2107 style: more type annotations to parakeet transcriber (#581)
* feat: add comprehensive type annotations to Parakeet transcriber

- Add TypedDict for WordTiming with word, start, end fields
- Add NamedTuple for TimeSegment, AudioSegment, and TranscriptResult
- Add type hints to all generator functions (vad_segment_generator, batch_speech_segments, etc.)
- Add enforce_word_timing_constraints function to prevent word timing overlaps
- Refactor batch_segment_to_audio_segment to reuse pad_audio function

* doc: add note about space
2025-08-28 12:22:07 -06:00
Igor Loskutov
124ce03bf8 fix: Igor/evaluation (#575)
* fix: impossible import error (#563)

* evaluation cli - database events experiment

* hallucinations

* evaluation - unhallucinate

* evaluation - unhallucinate

* roll back reliability link

* self reviewio

* lint

* self review

* add file pipeline to cli

* add file pipeline to cli + sorting

* remove cli tests

* remove ai comments

* comments
2025-08-28 12:07:34 -04:00
7030e0f236 fix: optimize parakeet transcription batching algorithm (#577)
* refactor: optimize transcription batching to accumulate speech segments

- Changed VAD segment generator to return full audio array instead of segments
- Removed segment filtering step
- Modified batch_segments to accumulate maximum speech including silence
- Transcribe larger continuous chunks instead of individual speech segments

* fix: correct transcribe_batch call to use list and fix batch unpacking

* fix: simplify

* fix: remove unused variables

* fix: add typing
2025-08-27 10:32:04 -06:00
37f0110892 doc: update local model readme 2025-08-22 17:50:24 -06:00
cf2896a7f4 doc: update readme about installation instructions
Add a note about installation instructions being inaccurate.
2025-08-22 17:48:35 -06:00
aabf2c2572 chore(main): release 0.7.3 (#565) 2025-08-22 16:35:52 -06:00
6a7b08f016 doc: change readme intro 2025-08-22 16:26:25 -06:00
e2736563d9 doc: update readme with new images 2025-08-22 16:15:54 -06:00
0f54b7782d chore: ignore www/.env.[development,production] 2025-08-22 14:41:09 -06:00
359280dd34 fix: cleaned repo, and get git-leaks clean 2025-08-22 11:51:34 -06:00
9265d201b5 fix: restore previous behavior on live pipeline + audio downscaler (#561)
This commit restore the original behavior with frame cutting. While
silero is used on our gpu for files, look like it's not working great on
the live pipeline. To be investigated, but at the moment, what we keep
is:

- refactored to extract the downscale for further processing in the
pipeline
- remove any downscale implementation from audio_chunker and audio_merge
- removed batching from audio_merge too for now
2025-08-22 10:49:26 -06:00
52f9f533d7 chore(main): release 0.7.2 (#559) 2025-08-21 21:00:05 -06:00
283 changed files with 34906 additions and 11615 deletions

View File

@@ -2,6 +2,8 @@ name: Test Database Migrations
on:
push:
branches:
- main
paths:
- "server/migrations/**"
- "server/reflector/db/**"
@@ -17,6 +19,9 @@ on:
jobs:
test-migrations:
runs-on: ubuntu-latest
concurrency:
group: db-ubuntu-latest-${{ github.ref }}
cancel-in-progress: true
services:
postgres:
image: postgres:17

57
.github/workflows/docker-frontend.yml vendored Normal file
View File

@@ -0,0 +1,57 @@
name: Build and Push Frontend Docker Image
on:
push:
branches:
- main
paths:
- 'www/**'
- '.github/workflows/docker-frontend.yml'
workflow_dispatch:
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}-frontend
jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to GitHub Container Registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=sha,prefix={{branch}}-
type=raw,value=latest,enable={{is_default_branch}}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: ./www
file: ./www/Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64

45
.github/workflows/test_next_server.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Test Next Server
on:
pull_request:
paths:
- "www/**"
push:
branches:
- main
paths:
- "www/**"
jobs:
test-next-server:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./www
steps:
- uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
- name: Install pnpm
uses: pnpm/action-setup@v4
with:
version: 8
- name: Setup Node.js cache
uses: actions/setup-node@v4
with:
node-version: '20'
cache: 'pnpm'
cache-dependency-path: './www/pnpm-lock.yaml'
- name: Install dependencies
run: pnpm install
- name: Run tests
run: pnpm test

View File

@@ -5,12 +5,17 @@ on:
paths:
- "server/**"
push:
branches:
- main
paths:
- "server/**"
jobs:
pytest:
runs-on: ubuntu-latest
concurrency:
group: pytest-${{ github.ref }}
cancel-in-progress: true
services:
redis:
image: redis:6
@@ -30,6 +35,9 @@ jobs:
docker-amd64:
runs-on: linux-amd64
concurrency:
group: docker-amd64-${{ github.ref }}
cancel-in-progress: true
steps:
- uses: actions/checkout@v4
- name: Set up Docker Buildx
@@ -45,6 +53,9 @@ jobs:
docker-arm64:
runs-on: linux-arm64
concurrency:
group: docker-arm64-${{ github.ref }}
cancel-in-progress: true
steps:
- uses: actions/checkout@v4
- name: Set up Docker Buildx

5
.gitignore vendored
View File

@@ -14,4 +14,7 @@ data/
www/REFACTOR.md
www/reload-frontend
server/test.sqlite
CLAUDE.local.md
CLAUDE.local.md
www/.env.development
www/.env.production
.playwright-mcp

1
.gitleaksignore Normal file
View File

@@ -0,0 +1 @@
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15

View File

@@ -27,3 +27,8 @@ repos:
files: ^server/
- id: ruff-format
files: ^server/
- repo: https://github.com/gitleaks/gitleaks
rev: v8.28.0
hooks:
- id: gitleaks

View File

@@ -1,5 +1,151 @@
# Changelog
## [0.14.0](https://github.com/Monadical-SAS/reflector/compare/v0.13.1...v0.14.0) (2025-10-08)
### Features
* Add calendar event data to transcript webhook payload ([#689](https://github.com/Monadical-SAS/reflector/issues/689)) ([5f6910e](https://github.com/Monadical-SAS/reflector/commit/5f6910e5131b7f28f86c9ecdcc57fed8412ee3cd))
* container build for www / github ([#672](https://github.com/Monadical-SAS/reflector/issues/672)) ([969bd84](https://github.com/Monadical-SAS/reflector/commit/969bd84fcc14851d1a101412a0ba115f1b7cde82))
* docker-compose for production frontend ([#664](https://github.com/Monadical-SAS/reflector/issues/664)) ([5bf64b5](https://github.com/Monadical-SAS/reflector/commit/5bf64b5a41f64535e22849b4bb11734d4dbb4aae))
### Bug Fixes
* restore feature boolean logic ([#671](https://github.com/Monadical-SAS/reflector/issues/671)) ([3660884](https://github.com/Monadical-SAS/reflector/commit/36608849ec64e953e3be456172502762e3c33df9))
* security review ([#656](https://github.com/Monadical-SAS/reflector/issues/656)) ([5d98754](https://github.com/Monadical-SAS/reflector/commit/5d98754305c6c540dd194dda268544f6d88bfaf8))
* update transcript list on reprocess ([#676](https://github.com/Monadical-SAS/reflector/issues/676)) ([9a71af1](https://github.com/Monadical-SAS/reflector/commit/9a71af145ee9b833078c78d0c684590ab12e9f0e))
* upgrade nemo toolkit ([#678](https://github.com/Monadical-SAS/reflector/issues/678)) ([eef6dc3](https://github.com/Monadical-SAS/reflector/commit/eef6dc39037329b65804297786d852dddb0557f9))
## [0.13.1](https://github.com/Monadical-SAS/reflector/compare/v0.13.0...v0.13.1) (2025-09-22)
### Bug Fixes
* TypeError on not all arguments converted during string formatting in logger ([#667](https://github.com/Monadical-SAS/reflector/issues/667)) ([565a629](https://github.com/Monadical-SAS/reflector/commit/565a62900f5a02fc946b68f9269a42190ed70ab6))
## [0.13.0](https://github.com/Monadical-SAS/reflector/compare/v0.12.1...v0.13.0) (2025-09-19)
### Features
* room form edit with enter ([#662](https://github.com/Monadical-SAS/reflector/issues/662)) ([47716f6](https://github.com/Monadical-SAS/reflector/commit/47716f6e5ddee952609d2fa0ffabdfa865286796))
### Bug Fixes
* invalid cleanup call ([#660](https://github.com/Monadical-SAS/reflector/issues/660)) ([0abcebf](https://github.com/Monadical-SAS/reflector/commit/0abcebfc9491f87f605f21faa3e53996fafedd9a))
## [0.12.1](https://github.com/Monadical-SAS/reflector/compare/v0.12.0...v0.12.1) (2025-09-17)
### Bug Fixes
* production blocked because having existing meeting with room_id null ([#657](https://github.com/Monadical-SAS/reflector/issues/657)) ([870e860](https://github.com/Monadical-SAS/reflector/commit/870e8605171a27155a9cbee215eeccb9a8d6c0a2))
## [0.12.0](https://github.com/Monadical-SAS/reflector/compare/v0.11.0...v0.12.0) (2025-09-17)
### Features
* calendar integration ([#608](https://github.com/Monadical-SAS/reflector/issues/608)) ([6f680b5](https://github.com/Monadical-SAS/reflector/commit/6f680b57954c688882c4ed49f40f161c52a00a24))
* self-hosted gpu api ([#636](https://github.com/Monadical-SAS/reflector/issues/636)) ([ab859d6](https://github.com/Monadical-SAS/reflector/commit/ab859d65a6bded904133a163a081a651b3938d42))
### Bug Fixes
* ignore player hotkeys for text inputs ([#646](https://github.com/Monadical-SAS/reflector/issues/646)) ([fa049e8](https://github.com/Monadical-SAS/reflector/commit/fa049e8d068190ce7ea015fd9fcccb8543f54a3f))
## [0.11.0](https://github.com/Monadical-SAS/reflector/compare/v0.10.0...v0.11.0) (2025-09-16)
### Features
* remove profanity filter that was there for conference ([#652](https://github.com/Monadical-SAS/reflector/issues/652)) ([b42f7cf](https://github.com/Monadical-SAS/reflector/commit/b42f7cfc606783afcee792590efcc78b507468ab))
### Bug Fixes
* zulip and consent handler on the file pipeline ([#645](https://github.com/Monadical-SAS/reflector/issues/645)) ([5f143fe](https://github.com/Monadical-SAS/reflector/commit/5f143fe3640875dcb56c26694254a93189281d17))
* zulip stream and topic selection in share dialog ([#644](https://github.com/Monadical-SAS/reflector/issues/644)) ([c546e69](https://github.com/Monadical-SAS/reflector/commit/c546e69739e68bb74fbc877eb62609928e5b8de6))
## [0.10.0](https://github.com/Monadical-SAS/reflector/compare/v0.9.0...v0.10.0) (2025-09-11)
### Features
* replace nextjs-config with environment variables ([#632](https://github.com/Monadical-SAS/reflector/issues/632)) ([369ecdf](https://github.com/Monadical-SAS/reflector/commit/369ecdff13f3862d926a9c0b87df52c9d94c4dde))
### Bug Fixes
* anonymous users transcript permissions ([#621](https://github.com/Monadical-SAS/reflector/issues/621)) ([f81fe99](https://github.com/Monadical-SAS/reflector/commit/f81fe9948a9237b3e0001b2d8ca84f54d76878f9))
* auth post ([#624](https://github.com/Monadical-SAS/reflector/issues/624)) ([cde99ca](https://github.com/Monadical-SAS/reflector/commit/cde99ca2716f84ba26798f289047732f0448742e))
* auth post ([#626](https://github.com/Monadical-SAS/reflector/issues/626)) ([3b85ff3](https://github.com/Monadical-SAS/reflector/commit/3b85ff3bdf4fb053b103070646811bc990c0e70a))
* auth post ([#627](https://github.com/Monadical-SAS/reflector/issues/627)) ([962038e](https://github.com/Monadical-SAS/reflector/commit/962038ee3f2a555dc3c03856be0e4409456e0996))
* missing follow_redirects=True on modal endpoint ([#630](https://github.com/Monadical-SAS/reflector/issues/630)) ([fc363bd](https://github.com/Monadical-SAS/reflector/commit/fc363bd49b17b075e64f9186e5e0185abc325ea7))
* sync backend and frontend token refresh logic ([#614](https://github.com/Monadical-SAS/reflector/issues/614)) ([5a5b323](https://github.com/Monadical-SAS/reflector/commit/5a5b3233820df9536da75e87ce6184a983d4713a))
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
### Features
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
### Bug Fixes
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
### Bug Fixes
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
### Bug Fixes
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
### Features
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
### Bug Fixes
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
### Bug Fixes
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
### Bug Fixes
* docker image not loading libgomp.so.1 for torch ([#560](https://github.com/Monadical-SAS/reflector/issues/560)) ([773fccd](https://github.com/Monadical-SAS/reflector/commit/773fccd93e887c3493abc2e4a4864dddce610177))
* include shared rooms to search ([#558](https://github.com/Monadical-SAS/reflector/issues/558)) ([499eced](https://github.com/Monadical-SAS/reflector/commit/499eced3360b84fb3a90e1c8a3b554290d21adc2))
## [0.7.1](https://github.com/Monadical-SAS/reflector/compare/v0.7.0...v0.7.1) (2025-08-21)

View File

@@ -66,7 +66,6 @@ pnpm install
# Copy configuration templates
cp .env_template .env
cp config-template.ts config.ts
```
**Development:**
@@ -152,7 +151,7 @@ All endpoints prefixed `/v1/`:
**Frontend** (`www/.env`):
- `NEXTAUTH_URL`, `NEXTAUTH_SECRET` - Authentication configuration
- `NEXT_PUBLIC_REFLECTOR_API_URL` - Backend API endpoint
- `REFLECTOR_API_URL` - Backend API endpoint
- `REFLECTOR_DOMAIN_CONFIG` - Feature flags and domain settings
## Testing Strategy

345
CODER_BRIEFING.md Normal file
View File

@@ -0,0 +1,345 @@
# Multi-Provider Video Platform Implementation - Coder Briefing
## Your Mission
Implement multi-provider video platform support in Reflector, allowing the system to work with both Whereby and Daily.co video conferencing providers. The goal is to abstract the current Whereby-only implementation and add Daily.co as a second provider, with the ability to switch between them via environment variables.
**Branch:** `igor/dailico-2` (you're already on it)
**Estimated Time:** 12-16 hours (senior engineer)
**Complexity:** Medium-High (requires careful integration with existing codebase)
---
## What You Have
### 1. **PLAN.md** - Your Technical Specification (2,452 lines)
- Complete step-by-step implementation guide
- All code examples you need
- Architecture diagrams and design rationale
- Testing strategy and success metrics
- **Read this first** to understand the overall approach
### 2. **IMPLEMENTATION_GUIDE.md** - Your Practical Guide
- What to copy vs. adapt vs. rewrite
- Common pitfalls and how to avoid them
- Verification checklists for each phase
- Decision trees for implementation choices
- **Use this as your day-to-day reference**
### 3. **Reference Implementation** - `./reflector-dailyco-reference/`
- Working implementation from 2.5 months ago
- Good architecture and patterns
- **BUT:** 91 commits behind current main, DO NOT merge directly
- Use for inspiration and code patterns only
---
## Critical Context: Why Not Just Merge?
The reference branch (`origin/igor/feat-dailyco`) was started on August 1, 2025 and is now severely diverged from main:
- **91 commits behind main**
- Main has 12x more changes (45,840 insertions vs 3,689)
- Main added: calendar integration, webhooks, full-text search, React Query migration, security fixes
- Reference removed: features that main still has and needs
**Merging would be a disaster.** We're implementing fresh on current main, using the reference for validated patterns.
---
## High-Level Approach
### Phase 1: Analysis (2 hours)
- Study current Whereby integration
- Define abstraction requirements
- Create standard data models
### Phase 2: Abstraction Layer (4-5 hours)
- Build platform abstraction (base class, registry, factory)
- Extract Whereby into the abstraction
- Update database schema (add `platform` field)
- Integrate into rooms.py **without breaking calendar/webhooks**
### Phase 3: Daily.co Implementation (4-5 hours)
- Implement Daily.co client
- Add webhook handler
- Create frontend components (rewrite API calls for React Query)
- Add recording processing
### Phase 4: Testing (2-3 hours)
- Unit tests for platform abstraction
- Integration tests for webhooks
- Manual testing with both providers
---
## Key Files You'll Touch
### Backend (New)
```
server/reflector/video_platforms/
├── __init__.py
├── base.py ← Abstract base class
├── models.py ← Platform, MeetingData, VideoPlatformConfig
├── registry.py ← Platform registration system
├── factory.py ← Client creation and config
├── whereby.py ← Whereby client wrapper
├── daily.py ← Daily.co client
└── mock.py ← Mock client for testing
server/reflector/views/daily.py ← Daily.co webhooks
server/tests/test_video_platforms.py ← Platform tests
server/tests/test_daily_webhook.py ← Webhook tests
```
### Backend (Modified - Careful!)
```
server/reflector/settings.py ← Add Daily.co settings
server/reflector/db/rooms.py ← Add platform field, PRESERVE calendar fields
server/reflector/db/meetings.py ← Add platform field
server/reflector/views/rooms.py ← Integrate abstraction, PRESERVE calendar/webhooks
server/reflector/worker/process.py ← Add process_recording_from_url task
server/reflector/app.py ← Register daily router
server/env.example ← Document new env vars
```
### Frontend (New)
```
www/app/[roomName]/components/
├── RoomContainer.tsx ← Platform router
├── DailyRoom.tsx ← Daily.co component (rewrite API calls!)
└── WherebyRoom.tsx ← Extract existing logic
```
### Frontend (Modified)
```
www/app/[roomName]/page.tsx ← Use RoomContainer
www/package.json ← Add @daily-co/daily-js
```
### Database
```
server/migrations/versions/XXXXXX_add_platform_support.py ← Generate fresh migration
```
---
## Critical Warnings ⚠️
### 1. **DO NOT Copy Database Migrations**
The reference migration has the wrong `down_revision` and is based on old schema.
```bash
# Instead:
cd server
uv run alembic revision -m "add_platform_support"
# Then edit the generated file
```
### 2. **DO NOT Remove Main's Features**
Main has calendar integration, webhooks, ICS sync that reference doesn't have.
When modifying `rooms.py`, only change meeting creation logic, preserve everything else.
### 3. **DO NOT Copy Frontend API Calls**
Reference uses old OpenAPI client. Main uses React Query.
Check how main currently makes API calls and replicate that pattern.
### 4. **DO NOT Copy package.json/migrations**
These files are severely outdated in reference.
### 5. **Preserve Type Safety**
Use `TYPE_CHECKING` imports to avoid circular dependencies:
```python
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from reflector.db.rooms import Room
```
---
## How to Start
### Day 1 Morning: Setup & Understanding (2-3 hours)
```bash
# 1. Verify you're on the right branch
git branch
# Should show: igor/dailico-2
# 2. Read the docs (in order)
# - PLAN.md (skim to understand scope, read Phase 1 carefully)
# - IMPLEMENTATION_GUIDE.md (read fully, bookmark it)
# 3. Study current Whereby integration
cat server/reflector/views/rooms.py | grep -A 20 "whereby"
cat www/app/[roomName]/page.tsx
# 4. Check reference implementation structure
ls -la reflector-dailyco-reference/server/reflector/video_platforms/
```
### Day 1 Afternoon: Phase 1 Execution (2-3 hours)
```bash
# 5. Copy video_platforms directory from reference
cp -r reflector-dailyco-reference/server/reflector/video_platforms/ \
server/reflector/
# 6. Review and fix imports
cd server
uv run ruff check reflector/video_platforms/
# 7. Add settings to settings.py (see PLAN.md Phase 2.7)
# 8. Test imports work
uv run python -c "from reflector.video_platforms import create_platform_client; print('OK')"
```
### Day 2: Phase 2 - Database & Integration (4-5 hours)
```bash
# 9. Generate migration
uv run alembic revision -m "add_platform_support"
# Edit the file following PLAN.md Phase 2.8
# 10. Update Room/Meeting models
# Add platform field, PRESERVE all existing fields
# 11. Integrate into rooms.py
# Carefully modify meeting creation, preserve calendar/webhooks
# 12. Add Daily.co webhook handler
cp reflector-dailyco-reference/server/reflector/views/daily.py \
server/reflector/views/
# Register in app.py
```
### Day 3: Phase 3 - Frontend & Testing (4-5 hours)
```bash
# 13. Create frontend components
mkdir -p www/app/[roomName]/components
# 14. Add Daily.co dependency
cd www
pnpm add @daily-co/daily-js@^0.81.0
# 15. Create RoomContainer, DailyRoom, WherebyRoom
# IMPORTANT: Rewrite API calls using React Query patterns
# 16. Regenerate types
pnpm openapi
# 17. Copy and adapt tests
cp reflector-dailyco-reference/server/tests/test_*.py server/tests/
# 18. Run tests
cd server
REDIS_HOST=localhost \
CELERY_BROKER_URL=redis://localhost:6379/1 \
uv run pytest tests/test_video_platforms.py -v
```
---
## Verification Checklist
After implementation, all of these must pass:
**Backend:**
- [ ] `cd server && uv run ruff check .` passes
- [ ] `uv run alembic upgrade head` works cleanly
- [ ] `uv run pytest tests/test_video_platforms.py` passes
- [ ] Can import: `from reflector.video_platforms import create_platform_client`
- [ ] Settings has all Daily.co variables
**Frontend:**
- [ ] `cd www && pnpm lint` passes
- [ ] No TypeScript errors
- [ ] `pnpm openapi` generates platform field
- [ ] No `@ts-ignore` for platform field
**Integration:**
- [ ] Whereby meetings still work (existing flow unchanged)
- [ ] Calendar/webhook features still work in rooms.py
- [ ] env.example documents all new variables
---
## When You're Stuck
### Check These Resources:
1. **PLAN.md** - Detailed code examples for your exact scenario
2. **IMPLEMENTATION_GUIDE.md** - Common pitfalls section
3. **Reference code** - See how it was solved before
4. **Git diff** - Compare reference to your implementation
### Compare Files:
```bash
# See what reference did
diff reflector-dailyco-reference/server/reflector/views/rooms.py \
server/reflector/views/rooms.py
# See what changed in main since reference branch
git log --oneline --since="2025-08-01" -- server/reflector/views/rooms.py
```
### Common Issues:
- **Circular imports:** Use `TYPE_CHECKING` pattern
- **Tests fail with postgres error:** Use `REDIS_HOST=localhost` env vars
- **Frontend API calls broken:** Check current React Query patterns in main
- **Migrations fail:** Ensure you generated fresh, not copied
---
## Success Looks Like
When you're done:
- ✅ All tests pass
- ✅ Linting passes
- ✅ Can create Whereby meetings (unchanged behavior)
- ✅ Can create Daily.co meetings (with env vars)
- ✅ Calendar/webhooks still work
- ✅ Frontend has no TypeScript errors
- ✅ Platform selection via environment variables works
---
## Communication
If you need clarification on requirements, have questions about architecture decisions, or find issues with the spec, document them clearly with:
- What you expected
- What you found
- Your proposed solution
The PLAN.md document is comprehensive but you may find edge cases. Use your engineering judgment and document decisions.
---
## Final Notes
**This is not a simple copy-paste job.** You're doing careful integration work where you need to:
- Understand the abstraction pattern (PLAN.md)
- Preserve all of main's features
- Adapt reference code to current patterns
- Think about edge cases and testing
Take your time with Phase 2 (rooms.py integration) - that's where most bugs will come from if you accidentally break calendar/webhook features.
**Good luck! You've got comprehensive specs, working reference code, and a clean starting point. You can do this.**
---
## Quick Reference
```bash
# Your workspace
├── PLAN.md ← Complete technical spec (read first)
├── IMPLEMENTATION_GUIDE.md ← Practical guide (bookmark this)
├── CODER_BRIEFING.md ← This file
└── reflector-dailyco-reference/ ← Reference implementation (inspiration only)
# Key commands
cd server && uv run ruff check . # Lint backend
cd www && pnpm lint # Lint frontend
cd server && uv run alembic revision -m "..." # Create migration
cd www && pnpm openapi # Regenerate types
cd server && uv run pytest -v # Run tests
```

489
IMPLEMENTATION_GUIDE.md Normal file
View File

@@ -0,0 +1,489 @@
# Daily.co Implementation Guide
## Overview
Implement multi-provider video platform support (Whereby + Daily.co) following PLAN.md.
## Reference Code Location
- **Reference branch:** `origin/igor/feat-dailyco` (on remote)
- **Worktree location:** `./reflector-dailyco-reference/`
- **Status:** Reference only - DO NOT merge or copy directly
## What Exists in Reference Branch (For Inspiration)
### ✅ Can Use As Reference (Well-Implemented)
```
server/reflector/video_platforms/
├── base.py ← Platform abstraction (good design, copy-safe)
├── models.py ← Data models (copy-safe)
├── registry.py ← Registry pattern (copy-safe)
├── factory.py ← Factory pattern (needs settings updates)
├── whereby.py ← Whereby client (needs adaptation)
├── daily.py ← Daily.co client (needs adaptation)
└── mock.py ← Mock client (copy-safe for tests)
server/reflector/views/daily.py ← Webhook handler (needs adaptation)
server/tests/test_video_platforms.py ← Tests (good reference)
server/tests/test_daily_webhook.py ← Tests (good reference)
www/app/[roomName]/components/
├── RoomContainer.tsx ← Platform router (needs React Query)
├── DailyRoom.tsx ← Daily component (needs React Query)
└── WherebyRoom.tsx ← Whereby extraction (needs React Query)
```
### ⚠️ Needs Significant Changes (Use Logic Only)
- `server/reflector/db/rooms.py` - Reference removed calendar/webhook fields that main has
- `server/reflector/db/meetings.py` - Same issue (missing user_id handling differences)
- `server/reflector/views/rooms.py` - Main has calendar integration, webhooks, ICS sync
- `server/reflector/worker/process.py` - Main has different recording flow
- Migration files - Must regenerate against current main schema
### ❌ Do NOT Use (Outdated/Incompatible)
- `package.json`/`pnpm-lock.yaml` - Main uses different dependency versions
- Frontend API client calls - Main uses React Query (reference uses old OpenAPI client)
- Database migrations - Must create new ones from scratch
- Any files that delete features present in main (search, calendar, webhooks)
## Key Differences: Reference vs Current Main
| Aspect | Reference Branch | Current Main | Action Required |
|--------|------------------|--------------|-----------------|
| **API client** | Old OpenAPI generated | React Query hooks | Rewrite all API calls |
| **Database schema** | Simplified (removed features) | Has calendar, webhooks, full-text search | Merge carefully, preserve main features |
| **Settings** | Aug 2025 structure | Current structure | Adapt carefully |
| **Migrations** | Branched from Aug 1 | Current main (91+ commits ahead) | Regenerate from scratch |
| **Frontend deps** | `@daily-co/daily-js@0.81.0` | Check current versions | Update to compatible versions |
| **Package manager** | yarn | pnpm (maybe both?) | Use what main uses |
## Branch Divergence Analysis
**The reference branch is 91 commits behind main and severely diverged:**
- Reference: 8 commits, 3,689 insertions, 425 deletions
- Main since divergence: 320 files changed, 45,840 insertions, 16,827 deletions
- **Main has 12x more changes**
**Major features in main that reference lacks:**
1. Calendar integration (ICS sync with rooms)
2. Self-hosted GPU API infrastructure
3. Frontend OpenAPI React Query migration
4. Full-text search (backend + frontend)
5. Webhook system for room events
6. Environment variable migration
7. Security fixes and auth improvements
8. Docker production frontend
9. Meeting user ID removal (schema change)
10. NextJS version upgrades
**High conflict risk files:**
- `server/reflector/views/rooms.py` - 12x more changes in main
- `server/reflector/db/rooms.py` - Main added 7+ fields
- `www/package.json` - NextJS major version bump
- Database migrations - 20+ new migrations in main
## Implementation Approach
### Phase 1: Copy Clean Abstractions (1-2 hours)
**Files to copy directly from reference:**
```bash
# Core abstraction (review but mostly safe to copy)
cp -r reflector-dailyco-reference/server/reflector/video_platforms/ \
server/reflector/
# BUT review each file for:
# - Import paths (make sure they match current main)
# - Settings references (adapt to current settings.py)
# - Type imports (ensure no circular dependencies)
```
**After copying, immediately:**
```bash
cd server
# Check for issues
uv run ruff check reflector/video_platforms/
# Fix any import errors or type issues
```
### Phase 2: Adapt to Current Main (2-3 hours)
**2.1 Settings Integration**
File: `server/reflector/settings.py`
Add at the appropriate location (near existing Whereby settings):
```python
# Daily.co API Integration (NEW)
DAILY_API_KEY: str | None = None
DAILY_WEBHOOK_SECRET: str | None = None
DAILY_SUBDOMAIN: str | None = None
AWS_DAILY_S3_BUCKET: str | None = None
AWS_DAILY_S3_REGION: str = "us-west-2"
AWS_DAILY_ROLE_ARN: str | None = None
# Platform Migration Feature Flags (NEW)
DAILY_MIGRATION_ENABLED: bool = False # Conservative default
DAILY_MIGRATION_ROOM_IDS: list[str] = []
DEFAULT_VIDEO_PLATFORM: Literal["whereby", "daily"] = "whereby"
```
**2.2 Database Migration**
⚠️ **CRITICAL: Do NOT copy migration from reference**
Generate new migration:
```bash
cd server
uv run alembic revision -m "add_platform_support"
```
Edit the generated migration file to add `platform` column:
```python
def upgrade():
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(
sa.Column("platform", sa.String(), nullable=False, server_default="whereby")
)
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.add_column(
sa.Column("platform", sa.String(), nullable=False, server_default="whereby")
)
```
**2.3 Update Database Models**
File: `server/reflector/db/rooms.py`
Add platform field (preserve all existing fields from main):
```python
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from reflector.video_platforms.models import Platform
class Room:
# ... ALL existing fields from main (calendar, webhooks, etc.) ...
# NEW: Platform field
platform: "Platform" = sqlalchemy.Column(
sqlalchemy.String,
nullable=False,
server_default="whereby",
)
```
File: `server/reflector/db/meetings.py`
Same approach - add platform field, preserve everything from main.
**2.4 Integrate Platform Abstraction into rooms.py**
⚠️ **This is the most delicate part - main has calendar/webhook features**
File: `server/reflector/views/rooms.py`
Strategy:
1. Add imports at top
2. Modify meeting creation logic only
3. Preserve all calendar/webhook/ICS logic from main
```python
# Add imports
from reflector.video_platforms import (
create_platform_client,
get_platform_for_room,
)
# In create_meeting endpoint:
# OLD: Direct Whereby API calls
# NEW: Platform abstraction
# Find the meeting creation section and replace:
platform = get_platform_for_room(room.id)
client = create_platform_client(platform)
meeting_data = await client.create_meeting(
room_name_prefix=room.name,
end_date=meeting_data.end_date,
room=room,
)
# Then create Meeting record with meeting_data.platform, meeting_data.meeting_id, etc.
```
**2.5 Add Daily.co Webhook Handler**
Copy from reference, minimal changes needed:
```bash
cp reflector-dailyco-reference/server/reflector/views/daily.py \
server/reflector/views/
```
Register in `server/reflector/app.py`:
```python
from reflector.views import daily
app.include_router(daily.router, prefix="/v1/daily", tags=["daily"])
```
**2.6 Add Recording Processing Task**
File: `server/reflector/worker/process.py`
Add the `process_recording_from_url` task from reference (copy the function).
### Phase 3: Frontend Adaptation (3-4 hours)
**3.1 Determine Current API Client Pattern**
First, check how main currently makes API calls:
```bash
cd www
grep -r "api\." app/ | head -20
# Look for patterns like: api.v1Something()
```
**3.2 Create Components**
Copy component structure from reference but **rewrite all API calls**:
```bash
mkdir -p www/app/[roomName]/components
```
Files to create:
- `RoomContainer.tsx` - Platform router (mostly copy-safe, just fix imports)
- `DailyRoom.tsx` - Needs React Query API calls
- `WherebyRoom.tsx` - Extract current room page logic
**Example React Query pattern** (adapt to your actual API):
```typescript
import { api } from '@/app/api/client'
// In DailyRoom.tsx
const handleConsent = async () => {
try {
await api.v1MeetingAudioConsent({
path: { meeting_id: meeting.id },
body: { consent: true },
})
// ...
} catch (error) {
// ...
}
}
```
**3.3 Add Daily.co Dependency**
Check current package manager:
```bash
cd www
ls package-lock.json yarn.lock pnpm-lock.yaml
```
Then install:
```bash
# If using pnpm
pnpm add @daily-co/daily-js@^0.81.0
# If using yarn
yarn add @daily-co/daily-js@^0.81.0
```
**3.4 Update TypeScript Types**
After backend changes, regenerate types:
```bash
cd www
pnpm openapi # or yarn openapi
```
This should pick up the new `platform` field on Meeting type.
### Phase 4: Testing (2-3 hours)
**4.1 Copy Test Structure**
```bash
cp reflector-dailyco-reference/server/tests/test_video_platforms.py \
server/tests/
cp reflector-dailyco-reference/server/tests/test_daily_webhook.py \
server/tests/
```
**4.2 Fix Test Imports and Fixtures**
Update imports to match current test infrastructure:
- Check `server/tests/conftest.py` for fixture patterns
- Update database access patterns if changed
- Fix any import errors
**4.3 Run Tests**
```bash
cd server
# Run with environment variables for Mac
REDIS_HOST=localhost \
CELERY_BROKER_URL=redis://localhost:6379/1 \
CELERY_RESULT_BACKEND=redis://localhost:6379/1 \
uv run pytest tests/test_video_platforms.py -v
```
### Phase 5: Environment Configuration
**Update `server/env.example`:**
Add at the end:
```bash
# Daily.co API Integration
DAILY_API_KEY=your-daily-api-key
DAILY_WEBHOOK_SECRET=your-daily-webhook-secret
DAILY_SUBDOMAIN=your-subdomain
AWS_DAILY_S3_BUCKET=your-daily-bucket
AWS_DAILY_S3_REGION=us-west-2
AWS_DAILY_ROLE_ARN=arn:aws:iam::ACCOUNT:role/DailyRecording
# Platform Selection
DAILY_MIGRATION_ENABLED=false # Master switch
DAILY_MIGRATION_ROOM_IDS=[] # Specific room IDs
DEFAULT_VIDEO_PLATFORM=whereby # Default platform
```
## Decision Tree: Copy vs Adapt vs Rewrite
```
┌─ Is it pure abstraction logic? (base.py, registry.py, models.py)
│ YES → Copy directly, review imports
│ NO → Continue ↓
├─ Does it touch database models?
│ YES → Adapt carefully, preserve main's fields
│ NO → Continue ↓
├─ Does it make API calls on frontend?
│ YES → Rewrite using React Query
│ NO → Continue ↓
├─ Is it a database migration?
│ YES → Generate fresh from current schema
│ NO → Continue ↓
└─ Does it touch rooms.py or core business logic?
YES → Merge carefully, preserve calendar/webhooks
NO → Safe to adapt from reference
```
## Verification Checklist
After each phase, verify:
**Phase 1 (Abstraction Layer):**
- [ ] `uv run ruff check server/reflector/video_platforms/` passes
- [ ] No circular import errors
- [ ] Can import `from reflector.video_platforms import create_platform_client`
**Phase 2 (Backend Integration):**
- [ ] `uv run ruff check server/` passes
- [ ] Migration file generated (not copied)
- [ ] Room and Meeting models have platform field
- [ ] rooms.py still has calendar/webhook features
**Phase 3 (Frontend):**
- [ ] `pnpm lint` passes
- [ ] No TypeScript errors
- [ ] No `@ts-ignore` for platform field
- [ ] API calls use React Query patterns
**Phase 4 (Testing):**
- [ ] Tests can be collected: `pytest tests/test_video_platforms.py --collect-only`
- [ ] Database fixtures work
- [ ] Mock platform works
**Phase 5 (Config):**
- [ ] env.example has Daily.co variables
- [ ] settings.py has all new variables
- [ ] No duplicate variable definitions
## Common Pitfalls
### 1. Database Schema Conflicts
**Problem:** Reference removed fields that main has (calendar, webhooks)
**Solution:** Always preserve main's fields, only add platform field
### 2. Migration Conflicts
**Problem:** Reference migration has wrong `down_revision`
**Solution:** Always generate fresh migration from current main
### 3. Frontend API Calls
**Problem:** Reference uses old API client patterns
**Solution:** Check current main's API usage, replicate that pattern
### 4. Import Errors
**Problem:** Circular imports with TYPE_CHECKING
**Solution:** Use `if TYPE_CHECKING:` for Room/Meeting imports in video_platforms
### 5. Test Database Issues
**Problem:** Tests fail with "could not translate host name 'postgres'"
**Solution:** Use environment variables: `REDIS_HOST=localhost DATABASE_URL=...`
### 6. Preserved Features Broken
**Problem:** Calendar/webhook features stop working
**Solution:** Carefully review rooms.py diff, only change meeting creation, not calendar logic
## File Modification Summary
**New files (can copy):**
- `server/reflector/video_platforms/*.py` (entire directory)
- `server/reflector/views/daily.py`
- `server/tests/test_video_platforms.py`
- `server/tests/test_daily_webhook.py`
- `www/app/[roomName]/components/RoomContainer.tsx`
- `www/app/[roomName]/components/DailyRoom.tsx`
- `www/app/[roomName]/components/WherebyRoom.tsx`
**Modified files (careful merging):**
- `server/reflector/settings.py` - Add Daily.co settings
- `server/reflector/db/rooms.py` - Add platform field
- `server/reflector/db/meetings.py` - Add platform field
- `server/reflector/views/rooms.py` - Integrate platform abstraction
- `server/reflector/worker/process.py` - Add process_recording_from_url
- `server/reflector/app.py` - Register daily router
- `server/env.example` - Add Daily.co variables
- `www/app/[roomName]/page.tsx` - Use RoomContainer
- `www/package.json` - Add @daily-co/daily-js
**Generated files (do not copy):**
- `server/migrations/versions/XXXXXX_add_platform_support.py` - Generate fresh
## Success Metrics
Implementation is complete when:
- [ ] All tests pass (including new platform tests)
- [ ] Linting passes (ruff, pnpm lint)
- [ ] Migration applies cleanly: `uv run alembic upgrade head`
- [ ] Can create Whereby meeting (existing flow unchanged)
- [ ] Can create Daily.co meeting (with env vars set)
- [ ] Frontend loads without TypeScript errors
- [ ] No features from main were accidentally removed
## Getting Help
**Reference documentation locations:**
- Implementation plan: `PLAN.md`
- Reference implementation: `./reflector-dailyco-reference/`
- Current main codebase: `./ ` (current directory)
**Compare implementations:**
```bash
# Compare specific files
diff reflector-dailyco-reference/server/reflector/video_platforms/base.py \
server/reflector/video_platforms/base.py
# See what changed in rooms.py between reference branch point and now
git log --oneline --since="2025-08-01" -- server/reflector/views/rooms.py
```
**Key insight:** The reference branch validates the approach and provides working code patterns, but you're implementing fresh against current main to avoid merge conflicts and preserve all new features.

2517
PLAN.md Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,43 +1,60 @@
<div align="center">
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
# Reflector
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
[![Tests](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml/badge.svg?branch=main&event=push)](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
[![Tests](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml/badge.svg?branch=main&event=push)](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
[![License: MIT](https://img.shields.io/badge/license-MIT-green.svg)](https://opensource.org/licenses/MIT)
</div>
## Screenshots
</div>
<table>
<tr>
<td>
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
</a>
</td>
<td>
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
</a>
</td>
<td>
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
</a>
</td>
<td>
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
</a>
</td>
</tr>
</table>
## What is Reflector?
Reflector is a web application that utilizes local models to process audio content, providing:
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
## Background
The project architecture consists of three primary components:
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
It also uses authentik for authentication if activated.
## Contribution Guidelines
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
## Installation
*Note: we're working toward better installation, theses instructions are not accurate for now*
### Frontend
Start with `cd www`.
@@ -80,11 +99,10 @@ Start with `cd www`.
```bash
pnpm install
cp .env_template .env
cp config-template.ts config.ts
cp .env.example .env
```
Then, fill in the environment variables in `.env` and the configuration in `config.ts` as needed. If you are unsure on how to proceed, ask in Zulip.
Then, fill in the environment variables in `.env` as needed. If you are unsure on how to proceed, ask in Zulip.
**Run in development mode**
@@ -149,3 +167,41 @@ You can manually process an audio file by calling the process tool:
```bash
uv run python -m reflector.tools.process path/to/audio.wav
```
## Build-time env variables
Next.js projects are more used to NEXT_PUBLIC_ prefixed buildtime vars. We don't have those for the reason we need to serve a ccustomizable prebuild docker container.
Instead, all the variables are runtime. Variables needed to the frontend are served to the frontend app at initial render.
It also means there's no static prebuild and no static files to serve for js/html.
## Feature Flags
Reflector uses environment variable-based feature flags to control application functionality. These flags allow you to enable or disable features without code changes.
### Available Feature Flags
| Feature Flag | Environment Variable |
|-------------|---------------------|
| `requireLogin` | `FEATURE_REQUIRE_LOGIN` |
| `privacy` | `FEATURE_PRIVACY` |
| `browse` | `FEATURE_BROWSE` |
| `sendToZulip` | `FEATURE_SEND_TO_ZULIP` |
| `rooms` | `FEATURE_ROOMS` |
### Setting Feature Flags
Feature flags are controlled via environment variables using the pattern `FEATURE_{FEATURE_NAME}` where `{FEATURE_NAME}` is the SCREAMING_SNAKE_CASE version of the feature name.
**Examples:**
```bash
# Enable user authentication requirement
FEATURE_REQUIRE_LOGIN=true
# Disable browse functionality
FEATURE_BROWSE=false
# Enable Zulip integration
FEATURE_SEND_TO_ZULIP=true
```

39
docker-compose.prod.yml Normal file
View File

@@ -0,0 +1,39 @@
# Production Docker Compose configuration for Frontend
# Usage: docker compose -f docker-compose.prod.yml up -d
services:
web:
build:
context: ./www
dockerfile: Dockerfile
image: reflector-frontend:latest
environment:
- KV_URL=${KV_URL:-redis://redis:6379}
- SITE_URL=${SITE_URL}
- API_URL=${API_URL}
- WEBSOCKET_URL=${WEBSOCKET_URL}
- NEXTAUTH_URL=${NEXTAUTH_URL:-http://localhost:3000}
- NEXTAUTH_SECRET=${NEXTAUTH_SECRET:-changeme-in-production}
- AUTHENTIK_ISSUER=${AUTHENTIK_ISSUER}
- AUTHENTIK_CLIENT_ID=${AUTHENTIK_CLIENT_ID}
- AUTHENTIK_CLIENT_SECRET=${AUTHENTIK_CLIENT_SECRET}
- AUTHENTIK_REFRESH_TOKEN_URL=${AUTHENTIK_REFRESH_TOKEN_URL}
- SENTRY_DSN=${SENTRY_DSN}
- SENTRY_IGNORE_API_RESOLUTION_ERROR=${SENTRY_IGNORE_API_RESOLUTION_ERROR:-1}
depends_on:
- redis
restart: unless-stopped
redis:
image: redis:7.2-alpine
restart: unless-stopped
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 30s
timeout: 3s
retries: 3
volumes:
- redis_data:/data
volumes:
redis_data:

View File

@@ -6,6 +6,7 @@ services:
- 1250:1250
volumes:
- ./server/:/app/
- /app/.venv
env_file:
- ./server/.env
environment:
@@ -16,6 +17,7 @@ services:
context: server
volumes:
- ./server/:/app/
- /app/.venv
env_file:
- ./server/.env
environment:
@@ -26,6 +28,7 @@ services:
context: server
volumes:
- ./server/:/app/
- /app/.venv
env_file:
- ./server/.env
environment:
@@ -36,7 +39,7 @@ services:
ports:
- 6379:6379
web:
image: node:18
image: node:22-alpine
ports:
- "3000:3000"
command: sh -c "corepack enable && pnpm install && pnpm dev"
@@ -47,6 +50,8 @@ services:
- /app/node_modules
env_file:
- ./www/.env.local
environment:
- NODE_ENV=development
postgres:
image: postgres:17

33
gpu/modal_deployments/.gitignore vendored Normal file
View File

@@ -0,0 +1,33 @@
# OS / Editor
.DS_Store
.vscode/
.idea/
# Python
__pycache__/
*.py[cod]
*$py.class
# Logs
*.log
# Env and secrets
.env
.env.*
*.env
*.secret
# Build / dist
build/
dist/
.eggs/
*.egg-info/
# Coverage / test
.pytest_cache/
.coverage*
htmlcov/
# Modal local state (if any)
modal_mounts/
.modal_cache/

View File

@@ -0,0 +1,608 @@
import os
import sys
import threading
import uuid
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
from urllib.parse import urlparse
import modal
MODEL_NAME = "large-v2"
MODEL_COMPUTE_TYPE: str = "float16"
MODEL_NUM_WORKERS: int = 1
MINUTES = 60 # seconds
SAMPLERATE = 16000
UPLOADS_PATH = "/uploads"
CACHE_PATH = "/models"
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
VAD_CONFIG = {
"batch_max_duration": 30.0,
"silence_padding": 0.5,
"window_size": 512,
}
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
AudioFileExtension = NewType("AudioFileExtension", str)
app = modal.App("reflector-transcriber")
model_cache = modal.Volume.from_name("models", create_if_missing=True)
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
class TimeSegment(NamedTuple):
"""Represents a time segment with start and end times."""
start: float
end: float
class AudioSegment(NamedTuple):
"""Represents an audio segment with timing and audio data."""
start: float
end: float
audio: any
class TranscriptResult(NamedTuple):
"""Represents a transcription result with text and word timings."""
text: str
words: list["WordTiming"]
class WordTiming(TypedDict):
"""Represents a word with its timing information."""
word: str
start: float
end: float
def download_model():
from faster_whisper import download_model
model_cache.reload()
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
model_cache.commit()
image = (
modal.Image.debian_slim(python_version="3.12")
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1",
"LD_LIBRARY_PATH": (
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
),
}
)
.apt_install("ffmpeg")
.pip_install(
"huggingface_hub==0.27.1",
"hf-transfer==0.1.9",
"torch==2.5.1",
"faster-whisper==1.1.1",
"fastapi==0.115.12",
"requests",
"librosa==0.10.1",
"numpy<2",
"silero-vad==5.1.0",
)
.run_function(download_model, volumes={CACHE_PATH: model_cache})
)
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
parsed_url = urlparse(url)
url_path = parsed_url.path
for ext in SUPPORTED_FILE_EXTENSIONS:
if url_path.lower().endswith(f".{ext}"):
return AudioFileExtension(ext)
content_type = headers.get("content-type", "").lower()
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
return AudioFileExtension("mp3")
if "audio/wav" in content_type:
return AudioFileExtension("wav")
if "audio/mp4" in content_type:
return AudioFileExtension("mp4")
raise ValueError(
f"Unsupported audio format for URL: {url}. "
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
)
def download_audio_to_volume(
audio_file_url: str,
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
import requests
from fastapi import HTTPException
response = requests.head(audio_file_url, allow_redirects=True)
if response.status_code == 404:
raise HTTPException(status_code=404, detail="Audio file not found")
response = requests.get(audio_file_url, allow_redirects=True)
response.raise_for_status()
audio_suffix = detect_audio_format(audio_file_url, response.headers)
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
file_path = f"{UPLOADS_PATH}/{unique_filename}"
with open(file_path, "wb") as f:
f.write(response.content)
upload_volume.commit()
return unique_filename, audio_suffix
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
Whisper does not require this strictly, but aligning behavior with Parakeet
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
"""
import numpy as np
audio_duration = len(audio_array) / sample_rate
if audio_duration < VAD_CONFIG["silence_padding"]:
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
silence = np.zeros(silence_samples, dtype=np.float32)
return np.concatenate([audio_array, silence])
return audio_array
@app.cls(
gpu="A10G",
timeout=5 * MINUTES,
scaledown_window=5 * MINUTES,
image=image,
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
)
@modal.concurrent(max_inputs=10)
class TranscriberWhisperLive:
"""Live transcriber class for small audio segments (A10G).
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
"""
@modal.enter()
def enter(self):
import faster_whisper
import torch
self.lock = threading.Lock()
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
self.model = faster_whisper.WhisperModel(
MODEL_NAME,
device=self.device,
compute_type=MODEL_COMPUTE_TYPE,
num_workers=MODEL_NUM_WORKERS,
download_root=CACHE_PATH,
local_files_only=True,
)
print(f"Model is on device: {self.device}")
@modal.method()
def transcribe_segment(
self,
filename: str,
language: str = "en",
):
"""Transcribe a single uploaded audio file by filename."""
upload_volume.reload()
file_path = f"{UPLOADS_PATH}/{filename}"
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
with self.lock:
with NoStdStreams():
segments, _ = self.model.transcribe(
file_path,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(segment.text for segment in segments).strip()
words = [
{
"word": word.word,
"start": round(float(word.start), 2),
"end": round(float(word.end), 2),
}
for segment in segments
for word in segment.words
]
return {"text": text, "words": words}
@modal.method()
def transcribe_batch(
self,
filenames: list[str],
language: str = "en",
):
"""Transcribe multiple uploaded audio files and return per-file results."""
upload_volume.reload()
results = []
for filename in filenames:
file_path = f"{UPLOADS_PATH}/{filename}"
if not os.path.exists(file_path):
raise FileNotFoundError(f"Batch file not found: {file_path}")
with self.lock:
with NoStdStreams():
segments, _ = self.model.transcribe(
file_path,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(seg.text for seg in segments).strip()
words = [
{
"word": w.word,
"start": round(float(w.start), 2),
"end": round(float(w.end), 2),
}
for seg in segments
for w in seg.words
]
results.append(
{
"filename": filename,
"text": text,
"words": words,
}
)
return results
@app.cls(
gpu="L40S",
timeout=15 * MINUTES,
image=image,
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
)
class TranscriberWhisperFile:
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
@modal.enter()
def enter(self):
import faster_whisper
import torch
from silero_vad import load_silero_vad
self.lock = threading.Lock()
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
self.model = faster_whisper.WhisperModel(
MODEL_NAME,
device=self.device,
compute_type=MODEL_COMPUTE_TYPE,
num_workers=MODEL_NUM_WORKERS,
download_root=CACHE_PATH,
local_files_only=True,
)
self.vad_model = load_silero_vad(onnx=False)
@modal.method()
def transcribe_segment(
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
):
import librosa
import numpy as np
from silero_vad import VADIterator
def vad_segments(
audio_array,
sample_rate: int = SAMPLERATE,
window_size: int = VAD_CONFIG["window_size"],
) -> Generator[TimeSegment, None, None]:
"""Generate speech segments as TimeSegment using Silero VAD."""
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
start = None
for i in range(0, len(audio_array), window_size):
chunk = audio_array[i : i + window_size]
if len(chunk) < window_size:
chunk = np.pad(
chunk, (0, window_size - len(chunk)), mode="constant"
)
speech = iterator(chunk)
if not speech:
continue
if "start" in speech:
start = speech["start"]
continue
if "end" in speech and start is not None:
end = speech["end"]
yield TimeSegment(
start / float(SAMPLERATE), end / float(SAMPLERATE)
)
start = None
iterator.reset_states()
upload_volume.reload()
file_path = f"{UPLOADS_PATH}/{filename}"
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
# Batch segments up to ~30s windows by merging contiguous VAD segments
merged_batches: list[TimeSegment] = []
batch_start = None
batch_end = None
max_duration = VAD_CONFIG["batch_max_duration"]
for segment in vad_segments(audio_array):
seg_start, seg_end = segment.start, segment.end
if batch_start is None:
batch_start, batch_end = seg_start, seg_end
continue
if seg_end - batch_start <= max_duration:
batch_end = seg_end
else:
merged_batches.append(TimeSegment(batch_start, batch_end))
batch_start, batch_end = seg_start, seg_end
if batch_start is not None and batch_end is not None:
merged_batches.append(TimeSegment(batch_start, batch_end))
all_text = []
all_words = []
for segment in merged_batches:
start_time, end_time = segment.start, segment.end
s_idx = int(start_time * SAMPLERATE)
e_idx = int(end_time * SAMPLERATE)
segment = audio_array[s_idx:e_idx]
segment = pad_audio(segment, SAMPLERATE)
with self.lock:
segments, _ = self.model.transcribe(
segment,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(seg.text for seg in segments).strip()
words = [
{
"word": w.word,
"start": round(float(w.start) + start_time + timestamp_offset, 2),
"end": round(float(w.end) + start_time + timestamp_offset, 2),
}
for seg in segments
for w in seg.words
]
if text:
all_text.append(text)
all_words.extend(words)
return {"text": " ".join(all_text), "words": all_words}
def detect_audio_format(url: str, headers: dict) -> str:
from urllib.parse import urlparse
from fastapi import HTTPException
url_path = urlparse(url).path
for ext in SUPPORTED_FILE_EXTENSIONS:
if url_path.lower().endswith(f".{ext}"):
return ext
content_type = headers.get("content-type", "").lower()
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
return "mp3"
if "audio/wav" in content_type:
return "wav"
if "audio/mp4" in content_type:
return "mp4"
raise HTTPException(
status_code=400,
detail=(
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
),
)
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
import requests
from fastapi import HTTPException
response = requests.head(audio_file_url, allow_redirects=True)
if response.status_code == 404:
raise HTTPException(status_code=404, detail="Audio file not found")
response = requests.get(audio_file_url, allow_redirects=True)
response.raise_for_status()
audio_suffix = detect_audio_format(audio_file_url, response.headers)
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
file_path = f"{UPLOADS_PATH}/{unique_filename}"
with open(file_path, "wb") as f:
f.write(response.content)
upload_volume.commit()
return unique_filename, audio_suffix
@app.function(
scaledown_window=60,
timeout=600,
secrets=[
modal.Secret.from_name("reflector-gpu"),
],
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
image=image,
)
@modal.concurrent(max_inputs=40)
@modal.asgi_app()
def web():
from fastapi import (
Body,
Depends,
FastAPI,
Form,
HTTPException,
UploadFile,
status,
)
from fastapi.security import OAuth2PasswordBearer
transcriber_live = TranscriberWhisperLive()
transcriber_file = TranscriberWhisperFile()
app = FastAPI()
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
return
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
class TranscriptResponse(dict):
pass
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
def transcribe(
file: UploadFile = None,
files: list[UploadFile] | None = None,
model: str = Form(MODEL_NAME),
language: str = Form("en"),
batch: bool = Form(False),
):
if not file and not files:
raise HTTPException(
status_code=400, detail="Either 'file' or 'files' parameter is required"
)
if batch and not files:
raise HTTPException(
status_code=400, detail="Batch transcription requires 'files'"
)
upload_files = [file] if file else files
uploaded_filenames: list[str] = []
for upload_file in upload_files:
audio_suffix = upload_file.filename.split(".")[-1]
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
raise HTTPException(
status_code=400,
detail=(
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
),
)
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
file_path = f"{UPLOADS_PATH}/{unique_filename}"
with open(file_path, "wb") as f:
content = upload_file.file.read()
f.write(content)
uploaded_filenames.append(unique_filename)
upload_volume.commit()
try:
if batch and len(upload_files) > 1:
func = transcriber_live.transcribe_batch.spawn(
filenames=uploaded_filenames,
language=language,
)
results = func.get()
return {"results": results}
results = []
for filename in uploaded_filenames:
func = transcriber_live.transcribe_segment.spawn(
filename=filename,
language=language,
)
result = func.get()
result["filename"] = filename
results.append(result)
return {"results": results} if len(results) > 1 else results[0]
finally:
for filename in uploaded_filenames:
try:
file_path = f"{UPLOADS_PATH}/{filename}"
os.remove(file_path)
except Exception:
pass
upload_volume.commit()
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
def transcribe_from_url(
audio_file_url: str = Body(
..., description="URL of the audio file to transcribe"
),
model: str = Body(MODEL_NAME),
language: str = Body("en"),
timestamp_offset: float = Body(0.0),
):
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
try:
func = transcriber_file.transcribe_segment.spawn(
filename=unique_filename,
timestamp_offset=timestamp_offset,
language=language,
)
result = func.get()
return result
finally:
try:
file_path = f"{UPLOADS_PATH}/{unique_filename}"
os.remove(file_path)
upload_volume.commit()
except Exception:
pass
return app
class NoStdStreams:
def __init__(self):
self.devnull = open(os.devnull, "w")
def __enter__(self):
self._stdout, self._stderr = sys.stdout, sys.stderr
self._stdout.flush()
self._stderr.flush()
sys.stdout, sys.stderr = self.devnull, self.devnull
def __exit__(self, exc_type, exc_value, traceback):
sys.stdout, sys.stderr = self._stdout, self._stderr
self.devnull.close()

View File

@@ -3,7 +3,7 @@ import os
import sys
import threading
import uuid
from typing import Mapping, NewType
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
from urllib.parse import urlparse
import modal
@@ -14,10 +14,7 @@ SAMPLERATE = 16000
UPLOADS_PATH = "/uploads"
CACHE_PATH = "/cache"
VAD_CONFIG = {
"max_segment_duration": 30.0,
"batch_max_files": 10,
"batch_max_duration": 5.0,
"min_segment_duration": 0.02,
"batch_max_duration": 30.0,
"silence_padding": 0.5,
"window_size": 512,
}
@@ -25,6 +22,37 @@ VAD_CONFIG = {
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
AudioFileExtension = NewType("AudioFileExtension", str)
class TimeSegment(NamedTuple):
"""Represents a time segment with start and end times."""
start: float
end: float
class AudioSegment(NamedTuple):
"""Represents an audio segment with timing and audio data."""
start: float
end: float
audio: any
class TranscriptResult(NamedTuple):
"""Represents a transcription result with text and word timings."""
text: str
words: list["WordTiming"]
class WordTiming(TypedDict):
"""Represents a word with its timing information."""
word: str
start: float
end: float
app = modal.App("reflector-transcriber-parakeet")
# Volume for caching model weights
@@ -49,7 +77,7 @@ image = (
.pip_install(
"hf_transfer==0.1.9",
"huggingface_hub[hf-xet]==0.31.2",
"nemo_toolkit[asr]==2.3.0",
"nemo_toolkit[asr]==2.5.0",
"cuda-python==12.8.0",
"fastapi==0.115.12",
"numpy<2",
@@ -170,12 +198,14 @@ class TranscriberParakeetLive:
(output,) = self.model.transcribe([padded_audio], timestamps=True)
text = output.text.strip()
words = [
{
"word": word_info["word"],
"start": round(word_info["start"], 2),
"end": round(word_info["end"], 2),
}
words: list[WordTiming] = [
WordTiming(
# XXX the space added here is to match the output of whisper
# whisper add space to each words, while parakeet don't
word=word_info["word"] + " ",
start=round(word_info["start"], 2),
end=round(word_info["end"], 2),
)
for word_info in output.timestamp["word"]
]
@@ -211,12 +241,12 @@ class TranscriberParakeetLive:
for i, (filename, output) in enumerate(zip(filenames, outputs)):
text = output.text.strip()
words = [
{
"word": word_info["word"],
"start": round(word_info["start"], 2),
"end": round(word_info["end"], 2),
}
words: list[WordTiming] = [
WordTiming(
word=word_info["word"] + " ",
start=round(word_info["start"], 2),
end=round(word_info["end"], 2),
)
for word_info in output.timestamp["word"]
]
@@ -271,7 +301,9 @@ class TranscriberParakeetFile:
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
return audio_array
def vad_segment_generator(audio_array):
def vad_segment_generator(
audio_array,
) -> Generator[TimeSegment, None, None]:
"""Generate speech segments using VAD with start/end sample indices"""
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
window_size = VAD_CONFIG["window_size"]
@@ -297,107 +329,121 @@ class TranscriberParakeetFile:
start_time = start / float(SAMPLERATE)
end_time = end / float(SAMPLERATE)
# Extract the actual audio segment
audio_segment = audio_array[start:end]
yield (start_time, end_time, audio_segment)
yield TimeSegment(start_time, end_time)
start = None
vad_iterator.reset_states()
def vad_segment_filter(segments):
"""Filter VAD segments by duration and chunk large segments"""
min_dur = VAD_CONFIG["min_segment_duration"]
max_dur = VAD_CONFIG["max_segment_duration"]
def batch_speech_segments(
segments: Generator[TimeSegment, None, None], max_duration: int
) -> Generator[TimeSegment, None, None]:
"""
Input segments:
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
for start_time, end_time, audio_segment in segments:
segment_duration = end_time - start_time
(max_duration=10)
# Skip very small segments
if segment_duration < min_dur:
Output batches:
[0-8] [10-19] [20-22]
Note: silences are kept for better transcription, previous implementation was
passing segments separatly, but the output was less accurate.
"""
batch_start_time = None
batch_end_time = None
for segment in segments:
start_time, end_time = segment.start, segment.end
if batch_start_time is None or batch_end_time is None:
batch_start_time = start_time
batch_end_time = end_time
continue
# If segment is within max duration, yield as-is
if segment_duration <= max_dur:
yield (start_time, end_time, audio_segment)
total_duration = end_time - batch_start_time
if total_duration <= max_duration:
batch_end_time = end_time
continue
# Chunk large segments into smaller pieces
chunk_samples = int(max_dur * SAMPLERATE)
current_start = start_time
yield TimeSegment(batch_start_time, batch_end_time)
batch_start_time = start_time
batch_end_time = end_time
for chunk_offset in range(0, len(audio_segment), chunk_samples):
chunk_audio = audio_segment[
chunk_offset : chunk_offset + chunk_samples
]
if len(chunk_audio) == 0:
break
if batch_start_time is None or batch_end_time is None:
return
chunk_duration = len(chunk_audio) / float(SAMPLERATE)
chunk_end = current_start + chunk_duration
yield TimeSegment(batch_start_time, batch_end_time)
# Only yield chunks that meet minimum duration
if chunk_duration >= min_dur:
yield (current_start, chunk_end, chunk_audio)
def batch_segment_to_audio_segment(
segments: Generator[TimeSegment, None, None],
audio_array,
) -> Generator[AudioSegment, None, None]:
"""Extract audio segments and apply padding for Parakeet compatibility.
current_start = chunk_end
Uses pad_audio to ensure segments are at least 0.5s long, preventing
Parakeet crashes. This padding may cause slight timing overlaps between
segments, which are corrected by enforce_word_timing_constraints.
"""
for segment in segments:
start_time, end_time = segment.start, segment.end
start_sample = int(start_time * SAMPLERATE)
end_sample = int(end_time * SAMPLERATE)
audio_segment = audio_array[start_sample:end_sample]
def batch_segments(segments, max_files=10, max_duration=5.0):
batch = []
batch_duration = 0.0
padded_segment = pad_audio(audio_segment, SAMPLERATE)
for start_time, end_time, audio_segment in segments:
segment_duration = end_time - start_time
yield AudioSegment(start_time, end_time, padded_segment)
if segment_duration < VAD_CONFIG["silence_padding"]:
silence_samples = int(
(VAD_CONFIG["silence_padding"] - segment_duration) * SAMPLERATE
)
padding = np.zeros(silence_samples, dtype=np.float32)
audio_segment = np.concatenate([audio_segment, padding])
segment_duration = VAD_CONFIG["silence_padding"]
batch.append((start_time, end_time, audio_segment))
batch_duration += segment_duration
if len(batch) >= max_files or batch_duration >= max_duration:
yield batch
batch = []
batch_duration = 0.0
if batch:
yield batch
def transcribe_batch(model, audio_segments):
def transcribe_batch(model, audio_segments: list) -> list:
with NoStdStreams():
outputs = model.transcribe(audio_segments, timestamps=True)
return outputs
def enforce_word_timing_constraints(
words: list[WordTiming],
) -> list[WordTiming]:
"""Enforce that word end times don't exceed the start time of the next word.
Due to silence padding added in batch_segment_to_audio_segment for better
transcription accuracy, word timings from different segments may overlap.
This function ensures there are no overlaps by adjusting end times.
"""
if len(words) <= 1:
return words
enforced_words = []
for i, word in enumerate(words):
enforced_word = word.copy()
if i < len(words) - 1:
next_start = words[i + 1]["start"]
if enforced_word["end"] > next_start:
enforced_word["end"] = next_start
enforced_words.append(enforced_word)
return enforced_words
def emit_results(
results,
segments_info,
batch_index,
total_batches,
):
results: list,
segments_info: list[AudioSegment],
) -> Generator[TranscriptResult, None, None]:
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
for i, (output, (start_time, end_time, _)) in enumerate(
zip(results, segments_info)
):
for i, (output, segment) in enumerate(zip(results, segments_info)):
start_time, end_time = segment.start, segment.end
text = output.text.strip()
words = [
{
"word": word_info["word"],
"start": round(
words: list[WordTiming] = [
WordTiming(
word=word_info["word"] + " ",
start=round(
word_info["start"] + start_time + timestamp_offset, 2
),
"end": round(
word_info["end"] + start_time + timestamp_offset, 2
),
}
end=round(word_info["end"] + start_time + timestamp_offset, 2),
)
for word_info in output.timestamp["word"]
]
yield text, words
yield TranscriptResult(text, words)
upload_volume.reload()
@@ -407,41 +453,31 @@ class TranscriberParakeetFile:
audio_array = load_and_convert_audio(file_path)
total_duration = len(audio_array) / float(SAMPLERATE)
processed_duration = 0.0
all_text_parts = []
all_words = []
all_text_parts: list[str] = []
all_words: list[WordTiming] = []
raw_segments = vad_segment_generator(audio_array)
filtered_segments = vad_segment_filter(raw_segments)
batches = batch_segments(
filtered_segments,
VAD_CONFIG["batch_max_files"],
speech_segments = batch_speech_segments(
raw_segments,
VAD_CONFIG["batch_max_duration"],
)
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
batch_index = 0
total_batches = max(
1, int(total_duration / VAD_CONFIG["batch_max_duration"]) + 1
)
for batch in audio_segments:
audio_segment = batch.audio
results = transcribe_batch(self.model, [audio_segment])
for batch in batches:
batch_index += 1
audio_segments = [seg[2] for seg in batch]
results = transcribe_batch(self.model, audio_segments)
for text, words in emit_results(
for result in emit_results(
results,
batch,
batch_index,
total_batches,
[batch],
):
if not text:
if not result.text:
continue
all_text_parts.append(text)
all_words.extend(words)
all_text_parts.append(result.text)
all_words.extend(result.words)
processed_duration += sum(len(seg[2]) / float(SAMPLERATE) for seg in batch)
all_words = enforce_word_timing_constraints(all_words)
combined_text = " ".join(all_text_parts)
return {"text": combined_text, "words": all_words}

View File

@@ -0,0 +1,2 @@
REFLECTOR_GPU_APIKEY=
HF_TOKEN=

38
gpu/self_hosted/.gitignore vendored Normal file
View File

@@ -0,0 +1,38 @@
cache/
# OS / Editor
.DS_Store
.vscode/
.idea/
# Python
__pycache__/
*.py[cod]
*$py.class
# Env and secrets
.env
*.env
*.secret
HF_TOKEN
REFLECTOR_GPU_APIKEY
# Virtual env / uv
.venv/
venv/
ENV/
uv/
# Build / dist
build/
dist/
.eggs/
*.egg-info/
# Coverage / test
.pytest_cache/
.coverage*
htmlcov/
# Logs
*.log

View File

@@ -0,0 +1,46 @@
FROM python:3.12-slim
ENV PYTHONUNBUFFERED=1 \
UV_LINK_MODE=copy \
UV_NO_CACHE=1
WORKDIR /tmp
RUN apt-get update \
&& apt-get install -y \
ffmpeg \
curl \
ca-certificates \
gnupg \
wget \
&& apt-get clean
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
RUN dpkg -i /cuda-keyring.deb \
&& rm /cuda-keyring.deb \
&& apt-get update \
&& apt-get install -y --no-install-recommends \
cuda-cudart-12-6 \
libcublas-12-6 \
libcudnn9-cuda-12 \
libcudnn9-dev-cuda-12 \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
ADD https://astral.sh/uv/install.sh /uv-installer.sh
RUN sh /uv-installer.sh && rm /uv-installer.sh
ENV PATH="/root/.local/bin/:$PATH"
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
RUN mkdir -p /app
WORKDIR /app
COPY pyproject.toml uv.lock /app/
COPY ./app /app/app
COPY ./main.py /app/
COPY ./runserver.sh /app/
EXPOSE 8000
CMD ["sh", "/app/runserver.sh"]

73
gpu/self_hosted/README.md Normal file
View File

@@ -0,0 +1,73 @@
# Self-hosted Model API
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
Environment variables
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
Requirements
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
- Python 3.12+
- NVIDIA GPU optional. If available, it will be used automatically
Local run
Set env vars in self_hosted/.env file
uv sync
uv run uvicorn main:app --host 0.0.0.0 --port 8000
Authentication
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
Endpoints
- POST /v1/audio/transcriptions
- multipart/form-data
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
- response: single { text, words, filename } or { results: [ ... ] }
- POST /v1/audio/transcriptions-from-url
- application/json
- body: { audio_file_url, language, timestamp_offset }
- response: { text, words }
- POST /translate
- text: query parameter
- body (application/json): { source_language, target_language }
- response: { text: { <src>: original, <tgt>: translated } }
- POST /diarize
- query parameters: audio_file_url, timestamp (optional)
- requires HF_TOKEN to be set (for pyannote)
- response: { diarization: [ { start, end, speaker } ] }
OpenAPI docs
- Visit /docs when the server is running
Docker
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
Conformance tests
# From this directory
TRANSCRIPT_URL=http://localhost:8000 \
TRANSCRIPT_API_KEY=dev-key \
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
TRANSLATION_URL=http://localhost:8000 \
TRANSLATION_API_KEY=dev-key \
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
DIARIZATION_URL=http://localhost:8000 \
DIARIZATION_API_KEY=dev-key \
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py

View File

@@ -0,0 +1,19 @@
import os
from fastapi import Depends, HTTPException, status
from fastapi.security import OAuth2PasswordBearer
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
if not required_key:
return
if apikey == required_key:
return
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)

View File

@@ -0,0 +1,12 @@
from pathlib import Path
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
SAMPLE_RATE = 16000
VAD_CONFIG = {
"batch_max_duration": 30.0,
"silence_padding": 0.5,
"window_size": 512,
}
# App-level paths
UPLOADS_PATH = Path("/tmp/whisper-uploads")

View File

@@ -0,0 +1,30 @@
from contextlib import asynccontextmanager
from fastapi import FastAPI
from .routers.diarization import router as diarization_router
from .routers.transcription import router as transcription_router
from .routers.translation import router as translation_router
from .services.transcriber import WhisperService
from .services.diarizer import PyannoteDiarizationService
from .utils import ensure_dirs
@asynccontextmanager
async def lifespan(app: FastAPI):
ensure_dirs()
whisper_service = WhisperService()
whisper_service.load()
app.state.whisper = whisper_service
diarization_service = PyannoteDiarizationService()
diarization_service.load()
app.state.diarizer = diarization_service
yield
def create_app() -> FastAPI:
app = FastAPI(lifespan=lifespan)
app.include_router(transcription_router)
app.include_router(translation_router)
app.include_router(diarization_router)
return app

View File

@@ -0,0 +1,30 @@
from typing import List
from fastapi import APIRouter, Depends, Request
from pydantic import BaseModel
from ..auth import apikey_auth
from ..services.diarizer import PyannoteDiarizationService
from ..utils import download_audio_file
router = APIRouter(tags=["diarization"])
class DiarizationSegment(BaseModel):
start: float
end: float
speaker: int
class DiarizationResponse(BaseModel):
diarization: List[DiarizationSegment]
@router.post(
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
)
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
with download_audio_file(audio_file_url) as (file_path, _ext):
file_path = str(file_path)
diarizer: PyannoteDiarizationService = request.app.state.diarizer
return diarizer.diarize_file(file_path, timestamp=timestamp)

View File

@@ -0,0 +1,109 @@
import uuid
from typing import Optional, Union
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
from pydantic import BaseModel
from pathlib import Path
from ..auth import apikey_auth
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
from ..services.transcriber import MODEL_NAME
from ..utils import cleanup_uploaded_files, download_audio_file
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
class WordTiming(BaseModel):
word: str
start: float
end: float
class TranscriptResult(BaseModel):
text: str
words: list[WordTiming]
filename: Optional[str] = None
class TranscriptBatchResponse(BaseModel):
results: list[TranscriptResult]
@router.post(
"/transcriptions",
dependencies=[Depends(apikey_auth)],
response_model=Union[TranscriptResult, TranscriptBatchResponse],
)
def transcribe(
request: Request,
file: UploadFile = None,
files: list[UploadFile] | None = None,
model: str = Form(MODEL_NAME),
language: str = Form("en"),
batch: bool = Form(False),
):
service = request.app.state.whisper
if not file and not files:
raise HTTPException(
status_code=400, detail="Either 'file' or 'files' parameter is required"
)
if batch and not files:
raise HTTPException(
status_code=400, detail="Batch transcription requires 'files'"
)
upload_files = [file] if file else files
uploaded_paths: list[Path] = []
with cleanup_uploaded_files(uploaded_paths):
for upload_file in upload_files:
audio_suffix = upload_file.filename.split(".")[-1].lower()
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
raise HTTPException(
status_code=400,
detail=(
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
),
)
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
file_path = UPLOADS_PATH / unique_filename
with open(file_path, "wb") as f:
content = upload_file.file.read()
f.write(content)
uploaded_paths.append(file_path)
if batch and len(upload_files) > 1:
results = []
for path in uploaded_paths:
result = service.transcribe_file(str(path), language=language)
result["filename"] = path.name
results.append(result)
return {"results": results}
results = []
for path in uploaded_paths:
result = service.transcribe_file(str(path), language=language)
result["filename"] = path.name
results.append(result)
return {"results": results} if len(results) > 1 else results[0]
@router.post(
"/transcriptions-from-url",
dependencies=[Depends(apikey_auth)],
response_model=TranscriptResult,
)
def transcribe_from_url(
request: Request,
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
model: str = Body(MODEL_NAME),
language: str = Body("en"),
timestamp_offset: float = Body(0.0),
):
service = request.app.state.whisper
with download_audio_file(audio_file_url) as (file_path, _ext):
file_path = str(file_path)
result = service.transcribe_vad_url_segment(
file_path=file_path, timestamp_offset=timestamp_offset, language=language
)
return result

View File

@@ -0,0 +1,28 @@
from typing import Dict
from fastapi import APIRouter, Body, Depends
from pydantic import BaseModel
from ..auth import apikey_auth
from ..services.translator import TextTranslatorService
router = APIRouter(tags=["translation"])
translator = TextTranslatorService()
class TranslationResponse(BaseModel):
text: Dict[str, str]
@router.post(
"/translate",
dependencies=[Depends(apikey_auth)],
response_model=TranslationResponse,
)
def translate(
text: str,
source_language: str = Body("en"),
target_language: str = Body("fr"),
):
return translator.translate(text, source_language, target_language)

View File

@@ -0,0 +1,42 @@
import os
import threading
import torch
import torchaudio
from pyannote.audio import Pipeline
class PyannoteDiarizationService:
def __init__(self):
self._pipeline = None
self._device = "cpu"
self._lock = threading.Lock()
def load(self):
self._device = "cuda" if torch.cuda.is_available() else "cpu"
self._pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.environ.get("HF_TOKEN"),
)
self._pipeline.to(torch.device(self._device))
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
if self._pipeline is None:
self.load()
waveform, sample_rate = torchaudio.load(file_path)
with self._lock:
diarization = self._pipeline(
{"waveform": waveform, "sample_rate": sample_rate}
)
words = []
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
words.append(
{
"start": round(timestamp + diarization_segment.start, 3),
"end": round(timestamp + diarization_segment.end, 3),
"speaker": int(speaker[-2:])
if speaker and speaker[-2:].isdigit()
else 0,
}
)
return {"diarization": words}

View File

@@ -0,0 +1,208 @@
import os
import shutil
import subprocess
import threading
from typing import Generator
import faster_whisper
import librosa
import numpy as np
import torch
from fastapi import HTTPException
from silero_vad import VADIterator, load_silero_vad
from ..config import SAMPLE_RATE, VAD_CONFIG
# Whisper configuration (service-local defaults)
MODEL_NAME = "large-v2"
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
MODEL_COMPUTE_TYPE = None
MODEL_NUM_WORKERS = 1
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
from ..utils import NoStdStreams
class WhisperService:
def __init__(self):
self.model = None
self.device = "cpu"
self.lock = threading.Lock()
def load(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = MODEL_COMPUTE_TYPE or (
"float16" if self.device == "cuda" else "int8"
)
self.model = faster_whisper.WhisperModel(
MODEL_NAME,
device=self.device,
compute_type=compute_type,
num_workers=MODEL_NUM_WORKERS,
download_root=CACHE_PATH,
)
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
audio_duration = len(audio_array) / sample_rate
if audio_duration < VAD_CONFIG["silence_padding"]:
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
silence = np.zeros(silence_samples, dtype=np.float32)
return np.concatenate([audio_array, silence])
return audio_array
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
if len(words) <= 1:
return words
enforced: list[dict] = []
for i, word in enumerate(words):
current = dict(word)
if i < len(words) - 1:
next_start = words[i + 1]["start"]
if current["end"] > next_start:
current["end"] = next_start
enforced.append(current)
return enforced
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
input_for_model: str | "object" = file_path
try:
audio_array, _sample_rate = librosa.load(
file_path, sr=SAMPLE_RATE, mono=True
)
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
except Exception:
pass
with self.lock:
with NoStdStreams():
segments, _ = self.model.transcribe(
input_for_model,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(segment.text for segment in segments).strip()
words = [
{
"word": word.word,
"start": round(float(word.start), 2),
"end": round(float(word.end), 2),
}
for segment in segments
for word in segment.words
]
words = self.enforce_word_timing_constraints(words)
return {"text": text, "words": words}
def transcribe_vad_url_segment(
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
) -> dict:
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
cmd = [
ffmpeg_bin,
"-nostdin",
"-threads",
"1",
"-i",
input_path,
"-f",
"f32le",
"-acodec",
"pcm_f32le",
"-ac",
"1",
"-ar",
str(sample_rate),
"pipe:1",
]
try:
proc = subprocess.run(
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
)
except Exception as e:
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
audio = np.frombuffer(proc.stdout, dtype=np.float32)
return audio
def vad_segments(
audio_array,
sample_rate: int = SAMPLE_RATE,
window_size: int = VAD_CONFIG["window_size"],
) -> Generator[tuple[float, float], None, None]:
vad_model = load_silero_vad(onnx=False)
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
start = None
for i in range(0, len(audio_array), window_size):
chunk = audio_array[i : i + window_size]
if len(chunk) < window_size:
chunk = np.pad(
chunk, (0, window_size - len(chunk)), mode="constant"
)
speech = iterator(chunk)
if not speech:
continue
if "start" in speech:
start = speech["start"]
continue
if "end" in speech and start is not None:
end = speech["end"]
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
start = None
iterator.reset_states()
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
merged_batches: list[tuple[float, float]] = []
batch_start = None
batch_end = None
max_duration = VAD_CONFIG["batch_max_duration"]
for seg_start, seg_end in vad_segments(audio_array):
if batch_start is None:
batch_start, batch_end = seg_start, seg_end
continue
if seg_end - batch_start <= max_duration:
batch_end = seg_end
else:
merged_batches.append((batch_start, batch_end))
batch_start, batch_end = seg_start, seg_end
if batch_start is not None and batch_end is not None:
merged_batches.append((batch_start, batch_end))
all_text = []
all_words = []
for start_time, end_time in merged_batches:
s_idx = int(start_time * SAMPLE_RATE)
e_idx = int(end_time * SAMPLE_RATE)
segment = audio_array[s_idx:e_idx]
segment = self.pad_audio(segment, SAMPLE_RATE)
with self.lock:
segments, _ = self.model.transcribe(
segment,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(seg.text for seg in segments).strip()
words = [
{
"word": w.word,
"start": round(float(w.start) + start_time + timestamp_offset, 2),
"end": round(float(w.end) + start_time + timestamp_offset, 2),
}
for seg in segments
for w in seg.words
]
if text:
all_text.append(text)
all_words.extend(words)
all_words = self.enforce_word_timing_constraints(all_words)
return {"text": " ".join(all_text), "words": all_words}

View File

@@ -0,0 +1,44 @@
import threading
from transformers import MarianMTModel, MarianTokenizer, pipeline
class TextTranslatorService:
"""Simple text-to-text translator using HuggingFace MarianMT models.
This mirrors the modal translator API shape but uses text translation only.
"""
def __init__(self):
self._pipeline = None
self._lock = threading.Lock()
def load(self, source_language: str = "en", target_language: str = "fr"):
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
model_name = self._resolve_model_name(source_language, target_language)
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
def _resolve_model_name(self, src: str, tgt: str) -> str:
# Minimal mapping; extend as needed
pair = (src.lower(), tgt.lower())
mapping = {
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
}
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
def translate(self, text: str, source_language: str, target_language: str) -> dict:
if self._pipeline is None:
self.load(source_language, target_language)
with self._lock:
results = self._pipeline(
text, src_lang=source_language, tgt_lang=target_language
)
translated = results[0]["translation_text"] if results else ""
return {"text": {source_language: text, target_language: translated}}

View File

@@ -0,0 +1,107 @@
import logging
import os
import sys
import uuid
from contextlib import contextmanager
from typing import Mapping
from urllib.parse import urlparse
from pathlib import Path
import requests
from fastapi import HTTPException
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
logger = logging.getLogger(__name__)
class NoStdStreams:
def __init__(self):
self.devnull = open(os.devnull, "w")
def __enter__(self):
self._stdout, self._stderr = sys.stdout, sys.stderr
self._stdout.flush()
self._stderr.flush()
sys.stdout, sys.stderr = self.devnull, self.devnull
def __exit__(self, exc_type, exc_value, traceback):
sys.stdout, sys.stderr = self._stdout, self._stderr
self.devnull.close()
def ensure_dirs():
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
url_path = urlparse(url).path
for ext in SUPPORTED_FILE_EXTENSIONS:
if url_path.lower().endswith(f".{ext}"):
return ext
content_type = headers.get("content-type", "").lower()
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
return "mp3"
if "audio/wav" in content_type:
return "wav"
if "audio/mp4" in content_type:
return "mp4"
raise HTTPException(
status_code=400,
detail=(
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
),
)
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
response = requests.head(audio_file_url, allow_redirects=True)
if response.status_code == 404:
raise HTTPException(status_code=404, detail="Audio file not found")
response = requests.get(audio_file_url, allow_redirects=True)
response.raise_for_status()
audio_suffix = detect_audio_format(audio_file_url, response.headers)
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
file_path: Path = UPLOADS_PATH / unique_filename
with open(file_path, "wb") as f:
f.write(response.content)
return file_path, audio_suffix
@contextmanager
def download_audio_file(audio_file_url: str):
"""Download an audio file to UPLOADS_PATH and remove it after use.
Yields (file_path: Path, audio_suffix: str).
"""
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
try:
yield file_path, audio_suffix
finally:
try:
file_path.unlink(missing_ok=True)
except Exception as e:
logger.error("Error deleting temporary file %s: %s", file_path, e)
@contextmanager
def cleanup_uploaded_files(file_paths: list[Path]):
"""Ensure provided file paths are removed after use.
The provided list can be populated inside the context; all present entries
at exit will be deleted.
"""
try:
yield file_paths
finally:
for path in list(file_paths):
try:
path.unlink(missing_ok=True)
except Exception as e:
logger.error("Error deleting temporary file %s: %s", path, e)

View File

@@ -0,0 +1,10 @@
services:
reflector_gpu:
build:
context: .
ports:
- "8000:8000"
env_file:
- .env
volumes:
- ./cache:/root/.cache

3
gpu/self_hosted/main.py Normal file
View File

@@ -0,0 +1,3 @@
from app.factory import create_app
app = create_app()

View File

@@ -0,0 +1,19 @@
[project]
name = "reflector-gpu"
version = "0.1.0"
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"fastapi[standard]>=0.116.1",
"uvicorn[standard]>=0.30.0",
"torch>=2.3.0",
"faster-whisper>=1.1.0",
"librosa==0.10.1",
"numpy<2",
"silero-vad==5.1.0",
"transformers>=4.35.0",
"sentencepiece",
"pyannote.audio==3.1.0",
"torchaudio>=2.3.0",
]

View File

@@ -0,0 +1,17 @@
#!/bin/sh
set -e
export PATH="/root/.local/bin:$PATH"
cd /app
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
echo "[startup] Installing Python dependencies with uv..."
uv sync --compile-bytecode --locked
else
echo "[startup] Using existing virtual environment at /app/.venv"
fi
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000

3013
gpu/self_hosted/uv.lock generated Normal file

File diff suppressed because it is too large Load Diff

613
server/DAILYCO_TEST.md Normal file
View File

@@ -0,0 +1,613 @@
# Daily.co Integration Test Plan
## ✅ IMPLEMENTATION STATUS: Real Transcription Active
**This test validates Daily.co multitrack recording integration with REAL transcription/diarization.**
The implementation includes complete audio processing pipeline:
- **Multitrack recordings** from Daily.co S3 (separate audio stream per participant)
- **PyAV-based audio mixdown** with PTS-based track alignment
- **Real transcription** via Modal GPU backend (Whisper)
- **Real diarization** via Modal GPU backend (speaker identification)
- **Per-track transcription** with timestamp synchronization
- **Complete database entities** (recording, transcript, topics, participants, words)
**Processing pipeline** (`PipelineMainMultitrack`):
1. Download all audio tracks from Daily.co S3
2. Align tracks by PTS (presentation timestamp) to handle late joiners
3. Mix tracks into single audio file for unified playback
4. Transcribe each track individually with proper offset handling
5. Perform diarization on mixed audio
6. Generate topics, summaries, and word-level timestamps
7. Convert audio to MP3 and generate waveform visualization
**Note:** A stub processor (`process_daily_recording`) exists for testing webhook flow without GPU costs, but the production code path uses `process_multitrack_recording` with full ML pipeline.
---
## Prerequisites
**1. Environment Variables** (check in `.env.development.local`):
```bash
# Daily.co API Configuration
DAILY_API_KEY=<key>
DAILY_SUBDOMAIN=monadical
DAILY_WEBHOOK_SECRET=<base64-encoded-secret>
AWS_DAILY_S3_BUCKET=reflector-dailyco-local
AWS_DAILY_S3_REGION=us-east-1
AWS_DAILY_ROLE_ARN=arn:aws:iam::950402358378:role/DailyCo
DAILY_MIGRATION_ENABLED=true
DAILY_MIGRATION_ROOM_IDS=["552640fd-16f2-4162-9526-8cf40cd2357e"]
# Transcription/Diarization Backend (Required for real processing)
DIARIZATION_BACKEND=modal
DIARIZATION_MODAL_API_KEY=<modal-api-key>
# TRANSCRIPTION_BACKEND is not explicitly set (uses default/modal)
```
**2. Services Running:**
```bash
docker compose ps # server, postgres, redis, worker, beat should be UP
```
**IMPORTANT:** Worker and beat services MUST be running for transcription processing:
```bash
docker compose up -d worker beat
```
**3. ngrok Tunnel for Webhooks:**
```bash
# Start ngrok (if not already running)
ngrok http 1250 --log=stdout > /tmp/ngrok.log 2>&1 &
# Get public URL
curl -s http://localhost:4040/api/tunnels | python3 -c "import sys, json; data=json.load(sys.stdin); print(data['tunnels'][0]['public_url'])"
```
**Current ngrok URL:** `https://0503947384a3.ngrok-free.app` (as of last registration)
**4. Webhook Created:**
```bash
cd server
uv run python scripts/recreate_daily_webhook.py https://0503947384a3.ngrok-free.app/v1/daily/webhook
# Verify: "Created webhook <uuid> (state: ACTIVE)"
```
**Current webhook status:** ✅ ACTIVE (webhook ID: dad5ad16-ceca-488e-8fc5-dae8650b51d0)
---
## Test 1: Database Configuration
**Check room platform:**
```bash
docker-compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT id, name, platform, recording_type FROM room WHERE name = 'test2';"
```
**Expected:**
```
id: 552640fd-16f2-4162-9526-8cf40cd2357e
name: test2
platform: whereby # DB value (overridden by env var DAILY_MIGRATION_ROOM_IDS)
recording_type: cloud
```
**Clear old meetings:**
```bash
docker-compose exec -T postgres psql -U reflector -d reflector -c \
"UPDATE meeting SET is_active = false WHERE room_id = '552640fd-16f2-4162-9526-8cf40cd2357e';"
```
---
## Test 2: Meeting Creation with Auto-Recording
**Create meeting:**
```bash
curl -s -X POST http://localhost:1250/v1/rooms/test2/meeting \
-H "Content-Type: application/json" \
-d '{"allow_duplicated":false}' | python3 -m json.tool
```
**Expected Response:**
```json
{
"room_name": "test2-YYYYMMDDHHMMSS", // Includes "test2" prefix!
"room_url": "https://monadical.daily.co/test2-...?t=<JWT_TOKEN>", // Has token!
"platform": "daily",
"recording_type": "cloud" // DB value (Whereby-specific)
}
```
**Decode token to verify auto-recording:**
```bash
# Extract token from room_url, decode JWT payload
echo "<token>" | python3 -c "
import sys, json, base64
token = sys.stdin.read().strip()
payload = token.split('.')[1] + '=' * (4 - len(token.split('.')[1]) % 4)
print(json.dumps(json.loads(base64.b64decode(payload)), indent=2))
"
```
**Expected token payload:**
```json
{
"r": "test2-YYYYMMDDHHMMSS", // Room name
"sr": true, // start_recording: true ✅
"d": "...", // Domain ID
"iat": 1234567890
}
```
---
## Test 3: Daily.co API Verification
**Check room configuration:**
```bash
ROOM_NAME="<from previous step>"
curl -s -X GET "https://api.daily.co/v1/rooms/$ROOM_NAME" \
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -m json.tool
```
**Expected config:**
```json
{
"config": {
"enable_recording": "raw-tracks", // ✅
"recordings_bucket": {
"bucket_name": "reflector-dailyco-local",
"bucket_region": "us-east-1",
"assume_role_arn": "arn:aws:iam::950402358378:role/DailyCo"
}
}
}
```
---
## Test 4: Browser UI Test (Playwright MCP)
**Using Claude Code MCP tools:**
**Load room:**
```
Use: mcp__playwright__browser_navigate
Input: {"url": "http://localhost:3000/test2"}
Then wait 12 seconds for iframe to load
```
**Verify Daily.co iframe loaded:**
```
Use: mcp__playwright__browser_snapshot
Expected in snapshot:
- iframe element with src containing "monadical.daily.co"
- Daily.co pre-call UI visible
```
**Take screenshot:**
```
Use: mcp__playwright__browser_take_screenshot
Input: {"filename": "test2-before-join.png"}
Expected: Daily.co pre-call UI with "Join" button visible
```
**Join meeting:**
```
Note: Daily.co iframe interaction requires clicking inside iframe.
Use: mcp__playwright__browser_click
Input: {"element": "Join button in Daily.co iframe", "ref": "<ref-from-snapshot>"}
Then wait 5 seconds for call to connect
```
**Verify in-call:**
```
Use: mcp__playwright__browser_take_screenshot
Input: {"filename": "test2-in-call.png"}
Expected: "Waiting for others to join" or participant video visible
```
**Leave meeting:**
```
Use: mcp__playwright__browser_click
Input: {"element": "Leave button in Daily.co iframe", "ref": "<ref-from-snapshot>"}
```
---
**Alternative: JavaScript snippets (for manual testing):**
```javascript
await page.goto('http://localhost:3000/test2');
await new Promise(f => setTimeout(f, 12000)); // Wait for load
// Verify iframe
const iframes = document.querySelectorAll('iframe');
// Expected: 1 iframe with src containing "monadical.daily.co"
// Screenshot
await page.screenshot({ path: 'test2-before-join.png' });
// Join
await page.locator('iframe').contentFrame().getByRole('button', { name: 'Join' }).click();
await new Promise(f => setTimeout(f, 5000));
// In-call screenshot
await page.screenshot({ path: 'test2-in-call.png' });
// Leave
await page.locator('iframe').contentFrame().getByRole('button', { name: 'Leave' }).click();
```
---
## Test 5: Webhook Verification
**Check server logs for webhooks:**
```bash
docker-compose logs --since 15m server 2>&1 | grep -i "participant joined\|recording started"
```
**Expected logs:**
```
[info] Participant joined | meeting_id=... | num_clients=1 | recording_type=cloud | recording_trigger=automatic-2nd-participant
[info] Recording started | meeting_id=... | recording_id=... | platform=daily
```
**Check Daily.co webhook delivery logs:**
```bash
curl -s -X GET "https://api.daily.co/v1/logs/webhooks?limit=20" \
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -c "
import sys, json
logs = json.load(sys.stdin)
for log in logs[:10]:
req = json.loads(log['request'])
room = req.get('payload', {}).get('room') or req.get('payload', {}).get('room_name', 'N/A')
print(f\"{req['type']:30s} | room: {room:30s} | status: {log['status']}\")
"
```
**Expected output:**
```
participant.joined | room: test2-YYYYMMDDHHMMSS | status: 200
recording.started | room: test2-YYYYMMDDHHMMSS | status: 200
participant.left | room: test2-YYYYMMDDHHMMSS | status: 200
recording.ready-to-download | room: test2-YYYYMMDDHHMMSS | status: 200
```
**Check database updated:**
```bash
docker-compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT room_name, num_clients FROM meeting WHERE room_name LIKE 'test2-%' ORDER BY end_date DESC LIMIT 1;"
```
**Expected:**
```
room_name: test2-YYYYMMDDHHMMSS
num_clients: 0 // After participant left
```
---
## Test 6: Recording in S3
**List recent recordings:**
```bash
curl -s -X GET "https://api.daily.co/v1/recordings" \
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -c "
import sys, json
data = json.load(sys.stdin)
for rec in data.get('data', [])[:5]:
if 'test2-' in rec.get('room_name', ''):
print(f\"Room: {rec['room_name']}\")
print(f\"Status: {rec['status']}\")
print(f\"Duration: {rec.get('duration', 0)}s\")
print(f\"S3 key: {rec.get('s3key', 'N/A')}\")
print(f\"Tracks: {len(rec.get('tracks', []))} files\")
for track in rec.get('tracks', []):
print(f\" - {track['type']}: {track['s3Key'].split('/')[-1]} ({track['size']} bytes)\")
print()
"
```
**Expected output:**
```
Room: test2-20251009192341
Status: finished
Duration: ~30-120s
S3 key: monadical/test2-20251009192341/1760037914930
Tracks: 2 files
- audio: 1760037914930-<uuid>-cam-audio-1760037915265 (~400 KB)
- video: 1760037914930-<uuid>-cam-video-1760037915269 (~10-30 MB)
```
**Verify S3 path structure:**
- `monadical/` - Daily.co subdomain
- `test2-20251009192341/` - Reflector room name + timestamp
- `<timestamp>-<participant-uuid>-<media-type>-<track-start>.webm` - Individual track files
---
## Test 7: Database Check - Recording and Transcript
**Check recording created:**
```bash
docker-compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT id, bucket_name, object_key, status, meeting_id, recorded_at
FROM recording
ORDER BY recorded_at DESC LIMIT 1;"
```
**Expected:**
```
id: <recording-id-from-webhook>
bucket_name: reflector-dailyco-local
object_key: monadical/test2-<timestamp>/<recording-timestamp>-<uuid>-cam-audio-<track-start>.webm
status: completed
meeting_id: <meeting-id>
recorded_at: <recent-timestamp>
```
**Check transcript created:**
```bash
docker compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT id, title, status, duration, recording_id, meeting_id, room_id
FROM transcript
ORDER BY created_at DESC LIMIT 1;"
```
**Expected (REAL transcription):**
```
id: <transcript-id>
title: <AI-generated title based on actual conversation content>
status: uploaded (audio file processed and available)
duration: <actual meeting duration in seconds>
recording_id: <same-as-recording-id-above>
meeting_id: <meeting-id>
room_id: 552640fd-16f2-4162-9526-8cf40cd2357e
```
**Note:** Title and content will reflect the ACTUAL conversation, not mock data. Processing time depends on recording length and GPU backend availability (Modal).
**Verify audio file exists:**
```bash
ls -lh data/<transcript-id>/upload.webm
```
**Expected:**
```
-rw-r--r-- 1 user staff ~100-200K Oct 10 18:48 upload.webm
```
**Check transcript topics (REAL transcription):**
```bash
TRANSCRIPT_ID=$(docker compose exec -T postgres psql -U reflector -d reflector -t -c \
"SELECT id FROM transcript ORDER BY created_at DESC LIMIT 1;")
docker compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT
jsonb_array_length(topics) as num_topics,
jsonb_array_length(participants) as num_participants,
short_summary,
title
FROM transcript
WHERE id = '$TRANSCRIPT_ID';"
```
**Expected (REAL data):**
```
num_topics: <varies based on conversation>
num_participants: <actual number of participants who spoke>
short_summary: <AI-generated summary of actual conversation>
title: <AI-generated title based on content>
```
**Check topics contain actual transcription:**
```bash
docker compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT topics->0->'title', topics->0->'summary', topics->0->'transcript'
FROM transcript
ORDER BY created_at DESC LIMIT 1;" | head -20
```
**Expected output:** Will contain the ACTUAL transcribed conversation from the Daily.co meeting, not mock data.
**Check participants:**
```bash
docker compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT participants FROM transcript ORDER BY created_at DESC LIMIT 1;" \
| python3 -c "import sys, json; data=json.loads(sys.stdin.read()); print(json.dumps(data, indent=2))"
```
**Expected (REAL diarization):**
```json
[
{
"id": "<uuid>",
"speaker": 0,
"name": "Speaker 1"
},
{
"id": "<uuid>",
"speaker": 1,
"name": "Speaker 2"
}
]
```
**Note:** Speaker names will be generic ("Speaker 1", "Speaker 2", etc.) as determined by the diarization backend. Number of participants depends on how many actually spoke during the meeting.
**Check word-level data:**
```bash
docker compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT jsonb_array_length(topics->0->'words') as num_words_first_topic
FROM transcript
ORDER BY created_at DESC LIMIT 1;"
```
**Expected:**
```
num_words_first_topic: <varies based on actual conversation length and topic chunking>
```
**Verify speaker diarization in words:**
```bash
docker compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT
topics->0->'words'->0->>'text' as first_word,
topics->0->'words'->0->>'speaker' as speaker,
topics->0->'words'->0->>'start' as start_time,
topics->0->'words'->0->>'end' as end_time
FROM transcript
ORDER BY created_at DESC LIMIT 1;"
```
**Expected (REAL transcription):**
```
first_word: <actual first word from transcription>
speaker: 0, 1, 2, ... (actual speaker ID from diarization)
start_time: <actual timestamp in seconds>
end_time: <actual end timestamp>
```
**Note:** All timestamps and speaker IDs are from real transcription/diarization, synchronized across tracks.
---
## Test 8: Recording Type Verification
**Check what Daily.co received:**
```bash
curl -s -X GET "https://api.daily.co/v1/rooms/test2-<timestamp>" \
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -m json.tool | grep "enable_recording"
```
**Expected:**
```json
"enable_recording": "raw-tracks"
```
**NOT:** `"enable_recording": "cloud"` (that would be wrong - we want raw tracks)
---
## Troubleshooting
### Issue: No webhooks received
**Check webhook state:**
```bash
curl -s -X GET "https://api.daily.co/v1/webhooks" \
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -m json.tool
```
**If state is FAILED:**
```bash
cd server
uv run python scripts/recreate_daily_webhook.py https://<ngrok-url>/v1/daily/webhook
```
### Issue: Webhooks return 422
**Check server logs:**
```bash
docker-compose logs --tail=50 server | grep "Failed to parse webhook event"
```
**Common cause:** Event structure mismatch. Daily.co events use:
```json
{
"version": "1.0.0",
"type": "participant.joined",
"payload": {...}, // NOT "data"
"event_ts": 123.456 // NOT "ts"
}
```
### Issue: Recording not starting
1. **Check token has `sr: true`:**
- Decode JWT token from room_url query param
- Should contain `"sr": true`
2. **Check Daily.co room config:**
- `enable_recording` must be set (not false)
- For raw-tracks: must be exactly `"raw-tracks"`
3. **Check participant actually joined:**
- Logs should show "Participant joined"
- Must click "Join" button, not just pre-call screen
### Issue: Recording in S3 but wrong format
**Daily.co recording types:**
- `"cloud"` → Single MP4 file (`download_link` in webhook)
- `"raw-tracks"` → Multiple WebM files (`tracks` array in webhook)
- `"raw-tracks-audio-only"` → Only audio WebM files
**Current implementation:** Always uses `"raw-tracks"` (better for transcription)
---
## Quick Validation Commands
**One-liner to verify everything:**
```bash
# 1. Check room exists
docker-compose exec -T postgres psql -U reflector -d reflector -c \
"SELECT name, platform FROM room WHERE name = 'test2';" && \
# 2. Create meeting
MEETING=$(curl -s -X POST http://localhost:1250/v1/rooms/test2/meeting \
-H "Content-Type: application/json" -d '{"allow_duplicated":false}') && \
echo "$MEETING" | python3 -c "import sys,json; m=json.load(sys.stdin); print(f'Room: {m[\"room_name\"]}\nURL: {m[\"room_url\"][:80]}...')" && \
# 3. Check Daily.co config
ROOM_NAME=$(echo "$MEETING" | python3 -c "import sys,json; print(json.load(sys.stdin)['room_name'])") && \
curl -s -X GET "https://api.daily.co/v1/rooms/$ROOM_NAME" \
-H "Authorization: Bearer $DAILY_API_KEY" | python3 -c "import sys,json; print(f'Recording: {json.load(sys.stdin)[\"config\"][\"enable_recording\"]}')"
```
**Expected output:**
```
name: test2, platform: whereby
Room: test2-20251009192341
URL: https://monadical.daily.co/test2-20251009192341?t=eyJhbGc...
Recording: raw-tracks
```
---
## Success Criteria Checklist
- [x] Room name includes Reflector room prefix (`test2-...`)
- [x] Meeting URL contains JWT token (`?t=...`)
- [x] Token has `sr: true` (auto-recording enabled)
- [x] Daily.co room config: `enable_recording: "raw-tracks"`
- [x] Browser loads Daily.co interface (not Whereby)
- [x] Recording auto-starts when participant joins
- [x] Webhooks received: participant.joined, recording.started, participant.left, recording.ready-to-download
- [x] Recording status: `finished`
- [x] S3 contains 2 files: audio (.webm) and video (.webm)
- [x] S3 path: `monadical/test2-{timestamp}/{recording-start-ts}-{participant-uuid}-cam-{audio|video}-{track-start-ts}`
- [x] Database `num_clients` increments/decrements correctly
- [x] **Database recording entry created** with correct S3 path and status `completed`
- [ ] **Database transcript entry created** with status `uploaded`
- [ ] **Audio file downloaded** to `data/{transcript_id}/upload.webm`
- [ ] **Transcript has REAL data**: AI-generated title based on conversation
- [ ] **Transcript has topics** generated from actual content
- [ ] **Transcript has participants** with proper speaker diarization
- [ ] **Topics contain word-level data** with accurate timestamps and speaker IDs
- [ ] **Total duration** matches actual meeting length
- [ ] **MP3 and waveform files generated** by file processing pipeline
- [ ] **Frontend transcript page loads** without "Failed to load audio" error
- [ ] **Audio player functional** with working playback and waveform visualization
- [ ] **Multitrack processing completed** without errors in worker logs
- [ ] **Modal GPU backends accessible** (transcription and diarization)

View File

@@ -6,7 +6,7 @@ ENV PYTHONUNBUFFERED=1 \
# builder install base dependencies
WORKDIR /tmp
RUN apt-get update && apt-get install -y curl && apt-get clean
RUN apt-get update && apt-get install -y curl ffmpeg && apt-get clean
ADD https://astral.sh/uv/install.sh /uv-installer.sh
RUN sh /uv-installer.sh && rm /uv-installer.sh
ENV PATH="/root/.local/bin/:$PATH"

View File

@@ -0,0 +1,95 @@
# Data Retention and Cleanup
## Overview
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
## Configuration
### Environment Variables
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
### What Gets Deleted
When data reaches the retention period, the following items are automatically removed:
1. **Transcripts** from anonymous users (where `user_id` is NULL):
- Database records
- Local files (audio.wav, audio.mp3, audio.json waveform)
- Storage files (cloud storage if configured)
## Automatic Cleanup
### Celery Beat Schedule
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
```python
# Automatically scheduled when PUBLIC_MODE=true
"cleanup_old_public_data": {
"task": "reflector.worker.cleanup.cleanup_old_public_data",
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
}
```
### Running the Worker
Ensure both Celery worker and beat scheduler are running:
```bash
# Start Celery worker
uv run celery -A reflector.worker.app worker --loglevel=info
# Start Celery beat scheduler (in another terminal)
uv run celery -A reflector.worker.app beat
```
## Manual Cleanup
For testing or manual intervention, use the cleanup tool:
```bash
# Delete data older than 7 days (default)
uv run python -m reflector.tools.cleanup_old_data
# Delete data older than 30 days
uv run python -m reflector.tools.cleanup_old_data --days 30
```
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
## Important Notes
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
## Testing
Run the cleanup tests:
```bash
uv run pytest tests/test_cleanup.py -v
```
## Monitoring
Check Celery logs for cleanup task execution:
```bash
# Look for cleanup task logs
grep "cleanup_old_public_data" celery.log
grep "Starting cleanup of old public data" celery.log
```
Task statistics are logged after each run:
- Number of transcripts deleted
- Number of meetings deleted
- Number of orphaned recordings deleted
- Any errors encountered

View File

@@ -0,0 +1,194 @@
## Reflector GPU Transcription API (Specification)
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
### Base URL and Authentication
- Example base URLs (Modal web endpoints):
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
- All endpoints are served under `/v1` and require a Bearer token:
```
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
```
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
### Supported file types
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
### Models and languages
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
- Language support: only `en`. Other languages return HTTP 400.
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
- Language support: multilingual (per Whisper model capabilities).
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
### Endpoints
#### POST /v1/audio/transcriptions
Transcribe one or more uploaded audio files.
Request: multipart/form-data
- `file` (File) — optional. Single file to transcribe.
- `files` (File[]) — optional. One or more files to transcribe.
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
- `language` (string) — optional, defaults to `en`.
- Parakeet: only `en` is accepted; other values return HTTP 400
- Whisper: model-dependent; typically multilingual
- `batch` (boolean) — optional, defaults to `false`.
Notes:
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
- Response shape for multiple files is the same regardless of `batch`.
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
Responses
Single file response:
```json
{
"text": "transcribed text",
"words": [
{ "word": "hello", "start": 0.0, "end": 0.5 },
{ "word": "world", "start": 0.5, "end": 1.0 }
],
"filename": "audio.mp3"
}
```
Multiple files response:
```json
{
"results": [
{"filename": "a1.mp3", "text": "...", "words": [...]},
{"filename": "a2.mp3", "text": "...", "words": [...]}]
}
```
Notes:
- Word objects always include keys: `word`, `start`, `end`.
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
Example curl (single file):
```bash
curl -X POST \
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
-F "file=@/path/to/audio.mp3" \
-F "language=en" \
"$BASE_URL/v1/audio/transcriptions"
```
Example curl (multiple files, batch):
```bash
curl -X POST \
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
-F "batch=true" -F "language=en" \
"$BASE_URL/v1/audio/transcriptions"
```
#### POST /v1/audio/transcriptions-from-url
Transcribe a single remote audio file by URL.
Request: application/json
Body parameters:
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
```json
{
"audio_file_url": "https://example.com/audio.mp3",
"model": "nvidia/parakeet-tdt-0.6b-v2",
"language": "en",
"timestamp_offset": 0.0
}
```
Response:
```json
{
"text": "transcribed text",
"words": [
{ "word": "hello", "start": 10.0, "end": 10.5 },
{ "word": "world", "start": 10.5, "end": 11.0 }
]
}
```
Notes:
- `timestamp_offset` is added to each words `start`/`end` in the response.
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
Example curl:
```bash
curl -X POST \
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
-H "Content-Type: application/json" \
-d '{
"audio_file_url": "https://example.com/audio.mp3",
"language": "en",
"timestamp_offset": 0
}' \
"$BASE_URL/v1/audio/transcriptions-from-url"
```
### Error handling
- 400 Bad Request
- Parakeet: `language` other than `en`
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
- Unsupported file extension
- 401 Unauthorized
- Missing or invalid Bearer token
- 404 Not Found
- `audio_file_url` does not exist
### Implementation details
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
### Server configuration (Reflector API)
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
```
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
```
### Conformance tests
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
```
TRANSCRIPT_URL=https://<your-deployment-base> \
TRANSCRIPT_MODAL_API_KEY=your-api-key \
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
```

233
server/docs/webhook.md Normal file
View File

@@ -0,0 +1,233 @@
# Reflector Webhook Documentation
## Overview
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
## Configuration
Webhooks are configured at the room level with two fields:
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
## Events
### `transcript.completed`
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, topic detection and calendar event integration.
### `test`
A test event that can be triggered manually to verify webhook configuration.
## Webhook Request Format
### Headers
All webhook requests include the following headers:
| Header | Description | Example |
|--------|-------------|---------|
| `Content-Type` | Always `application/json` | `application/json` |
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
### Signature Verification
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
The signature format is: `t={timestamp},v1={signature}`
To verify the signature:
1. Extract the timestamp and signature from the header
2. Create the signed payload: `{timestamp}.{request_body}`
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
4. Compare the computed signature with the received signature
Example verification (Python):
```python
import hmac
import hashlib
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
# Parse header: "t=1735306800,v1=abc123..."
parts = dict(part.split("=") for part in signature_header.split(","))
timestamp = parts["t"]
received_signature = parts["v1"]
# Create signed payload
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
# Compute expected signature
expected_signature = hmac.new(
secret.encode("utf-8"),
signed_payload.encode("utf-8"),
hashlib.sha256
).hexdigest()
# Compare signatures
return hmac.compare_digest(expected_signature, received_signature)
```
## Event Payloads
### `transcript.completed` Event
This event includes a convenient URL for accessing the transcript:
- `frontend_url`: Direct link to view the transcript in the web interface
```json
{
"event": "transcript.completed",
"event_id": "transcript.completed-abc-123-def-456",
"timestamp": "2025-08-27T12:34:56.789012Z",
"transcript": {
"id": "abc-123-def-456",
"room_id": "room-789",
"created_at": "2025-08-27T12:00:00Z",
"duration": 1800.5,
"title": "Q3 Product Planning Meeting",
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
"topics": [
{
"title": "Introduction and Agenda",
"summary": "Meeting kickoff with agenda review",
"timestamp": 0.0,
"duration": 120.0,
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
},
{
"title": "Mobile App Features Discussion",
"summary": "Team reviewed proposed mobile app features for Q3",
"timestamp": 120.0,
"duration": 600.0,
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
}
],
"participants": [
{
"id": "participant-1",
"name": "John Doe",
"speaker": "Speaker 1"
},
{
"id": "participant-2",
"name": "Jane Smith",
"speaker": "Speaker 2"
}
],
"source_language": "en",
"target_language": "en",
"status": "completed",
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
},
"room": {
"id": "room-789",
"name": "Product Team Room"
},
"calendar_event": {
"id": "calendar-event-123",
"ics_uid": "event-123",
"title": "Q3 Product Planning Meeting",
"start_time": "2025-08-27T12:00:00Z",
"end_time": "2025-08-27T12:30:00Z",
"description": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
"location": "Conference Room 1",
"attendees": [
{
"id": "participant-1",
"name": "John Doe",
"speaker": "Speaker 1"
},
{
"id": "participant-2",
"name": "Jane Smith",
"speaker": "Speaker 2"
}
]
}
}
```
### `test` Event
```json
{
"event": "test",
"event_id": "test.2025-08-27T12:34:56.789012Z",
"timestamp": "2025-08-27T12:34:56.789012Z",
"message": "This is a test webhook from Reflector",
"room": {
"id": "room-789",
"name": "Product Team Room"
}
}
```
## Retry Policy
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
### Retry Mechanism
Reflector implements an exponential backoff strategy for webhook retries:
- **Initial retry delay**: 60 seconds after the first failure
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
- **Maximum retry attempts**: 30 attempts total
- **Total retry duration**: Retries continue for approximately 24 hours
### How Retries Work
When a webhook fails, Reflector will:
1. Wait 60 seconds, then retry (attempt #1)
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
### Retry Behavior by HTTP Status Code
| Status Code | Behavior |
|-------------|----------|
| 2xx (Success) | No retry, webhook marked as delivered |
| 4xx (Client Error) | No retry, request is considered permanently failed |
| 5xx (Server Error) | Automatic retry with exponential backoff |
| Network/Timeout Error | Automatic retry with exponential backoff |
**Important Notes:**
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
- There is no mechanism to manually retry failed webhooks after the retry period expires.
## Testing Webhooks
You can test your webhook configuration before processing transcripts:
```http
POST /v1/rooms/{room_id}/webhook/test
```
Response:
```json
{
"success": true,
"status_code": 200,
"message": "Webhook test successful",
"response_preview": "OK"
}
```
Or in case of failure:
```json
{
"success": false,
"error": "Webhook request timed out (10 seconds)"
}
```

View File

@@ -27,7 +27,7 @@ AUTH_JWT_AUDIENCE=
#TRANSCRIPT_MODAL_API_KEY=xxxxx
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-parakeet-web.modal.run
TRANSCRIPT_MODAL_API_KEY=
## =======================================================
@@ -71,3 +71,27 @@ DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
## Sentry DSN configuration
#SENTRY_DSN=
## =======================================================
## Video Platform Configuration
## =======================================================
## Whereby
#WHEREBY_API_KEY=your-whereby-api-key
#WHEREBY_WEBHOOK_SECRET=your-whereby-webhook-secret
#AWS_WHEREBY_ACCESS_KEY_ID=your-aws-key
#AWS_WHEREBY_ACCESS_KEY_SECRET=your-aws-secret
#AWS_PROCESS_RECORDING_QUEUE_URL=https://sqs.us-west-2.amazonaws.com/...
## Daily.co
#DAILY_API_KEY=your-daily-api-key
#DAILY_WEBHOOK_SECRET=your-daily-webhook-secret
#DAILY_SUBDOMAIN=your-subdomain
#AWS_DAILY_S3_BUCKET=your-daily-bucket
#AWS_DAILY_S3_REGION=us-west-2
#AWS_DAILY_ROLE_ARN=arn:aws:iam::ACCOUNT:role/DailyRecording
## Platform Selection
#DAILY_MIGRATION_ENABLED=false # Enable Daily.co support
#DAILY_MIGRATION_ROOM_IDS=[] # Specific rooms to use Daily
#DEFAULT_VIDEO_PLATFORM=whereby # Default platform for new rooms

View File

@@ -1,161 +0,0 @@
import os
import tempfile
import threading
import modal
from pydantic import BaseModel
MODELS_DIR = "/models"
MODEL_NAME = "large-v2"
MODEL_COMPUTE_TYPE: str = "float16"
MODEL_NUM_WORKERS: int = 1
MINUTES = 60 # seconds
volume = modal.Volume.from_name("models", create_if_missing=True)
app = modal.App("reflector-transcriber")
def download_model():
from faster_whisper import download_model
volume.reload()
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
volume.commit()
image = (
modal.Image.debian_slim(python_version="3.12")
.pip_install(
"huggingface_hub==0.27.1",
"hf-transfer==0.1.9",
"torch==2.5.1",
"faster-whisper==1.1.1",
)
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1",
"LD_LIBRARY_PATH": (
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
),
}
)
.run_function(download_model, volumes={MODELS_DIR: volume})
)
@app.cls(
gpu="A10G",
timeout=5 * MINUTES,
scaledown_window=5 * MINUTES,
allow_concurrent_inputs=6,
image=image,
volumes={MODELS_DIR: volume},
)
class Transcriber:
@modal.enter()
def enter(self):
import faster_whisper
import torch
self.lock = threading.Lock()
self.use_gpu = torch.cuda.is_available()
self.device = "cuda" if self.use_gpu else "cpu"
self.model = faster_whisper.WhisperModel(
MODEL_NAME,
device=self.device,
compute_type=MODEL_COMPUTE_TYPE,
num_workers=MODEL_NUM_WORKERS,
download_root=MODELS_DIR,
local_files_only=True,
)
@modal.method()
def transcribe_segment(
self,
audio_data: str,
audio_suffix: str,
language: str,
):
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
fp.write(audio_data)
with self.lock:
segments, _ = self.model.transcribe(
fp.name,
language=language,
beam_size=5,
word_timestamps=True,
vad_filter=True,
vad_parameters={"min_silence_duration_ms": 500},
)
segments = list(segments)
text = "".join(segment.text for segment in segments)
words = [
{"word": word.word, "start": word.start, "end": word.end}
for segment in segments
for word in segment.words
]
return {"text": text, "words": words}
@app.function(
scaledown_window=60,
timeout=60,
allow_concurrent_inputs=40,
secrets=[
modal.Secret.from_name("reflector-gpu"),
],
volumes={MODELS_DIR: volume},
)
@modal.asgi_app()
def web():
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
from fastapi.security import OAuth2PasswordBearer
from typing_extensions import Annotated
transcriber = Transcriber()
app = FastAPI()
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
class TranscriptResponse(BaseModel):
result: dict
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
def transcribe(
file: UploadFile,
model: str = "whisper-1",
language: Annotated[str, Body(...)] = "en",
) -> TranscriptResponse:
audio_data = file.file.read()
audio_suffix = file.filename.split(".")[-1]
assert audio_suffix in supported_file_types
func = transcriber.transcribe_segment.spawn(
audio_data=audio_data,
audio_suffix=audio_suffix,
language=language,
)
result = func.get()
return result
return app

View File

@@ -1,622 +0,0 @@
import logging
import os
import sys
import threading
import uuid
from typing import Mapping, NewType
from urllib.parse import urlparse
import modal
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v3"
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
SAMPLERATE = 16000
UPLOADS_PATH = "/uploads"
CACHE_PATH = "/cache"
VAD_CONFIG = {
"max_segment_duration": 30.0,
"batch_max_files": 10,
"batch_max_duration": 5.0,
"min_segment_duration": 0.02,
"silence_padding": 0.5,
"window_size": 512,
}
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
AudioFileExtension = NewType("AudioFileExtension", str)
app = modal.App("reflector-transcriber-parakeet-v3")
# Volume for caching model weights
model_cache = modal.Volume.from_name("parakeet-model-cache", create_if_missing=True)
# Volume for temporary file uploads
upload_volume = modal.Volume.from_name("parakeet-uploads", create_if_missing=True)
image = (
modal.Image.from_registry(
"nvidia/cuda:12.8.0-cudnn-devel-ubuntu22.04", add_python="3.12"
)
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1",
"HF_HOME": "/cache",
"DEBIAN_FRONTEND": "noninteractive",
"CXX": "g++",
"CC": "g++",
}
)
.apt_install("ffmpeg")
.pip_install(
"hf_transfer==0.1.9",
"huggingface_hub[hf-xet]==0.31.2",
"nemo_toolkit[asr]==2.3.0",
"cuda-python==12.8.0",
"fastapi==0.115.12",
"numpy<2",
"librosa==0.10.1",
"requests",
"silero-vad==5.1.0",
"torch",
)
.entrypoint([]) # silence chatty logs by container on start
)
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
parsed_url = urlparse(url)
url_path = parsed_url.path
for ext in SUPPORTED_FILE_EXTENSIONS:
if url_path.lower().endswith(f".{ext}"):
return AudioFileExtension(ext)
content_type = headers.get("content-type", "").lower()
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
return AudioFileExtension("mp3")
if "audio/wav" in content_type:
return AudioFileExtension("wav")
if "audio/mp4" in content_type:
return AudioFileExtension("mp4")
raise ValueError(
f"Unsupported audio format for URL: {url}. "
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
)
def download_audio_to_volume(
audio_file_url: str,
) -> tuple[ParakeetUniqFilename, AudioFileExtension]:
import requests
from fastapi import HTTPException
response = requests.head(audio_file_url, allow_redirects=True)
if response.status_code == 404:
raise HTTPException(status_code=404, detail="Audio file not found")
response = requests.get(audio_file_url, allow_redirects=True)
response.raise_for_status()
audio_suffix = detect_audio_format(audio_file_url, response.headers)
unique_filename = ParakeetUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
file_path = f"{UPLOADS_PATH}/{unique_filename}"
with open(file_path, "wb") as f:
f.write(response.content)
upload_volume.commit()
return unique_filename, audio_suffix
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
"""Add 0.5 seconds of silence if audio is less than 500ms.
This is a workaround for a Parakeet bug where very short audio (<500ms) causes:
ValueError: `char_offsets`: [] and `processed_tokens`: [157, 834, 834, 841]
have to be of the same length
See: https://github.com/NVIDIA/NeMo/issues/8451
"""
import numpy as np
audio_duration = len(audio_array) / sample_rate
if audio_duration < 0.5:
silence_samples = int(sample_rate * 0.5)
silence = np.zeros(silence_samples, dtype=np.float32)
return np.concatenate([audio_array, silence])
return audio_array
@app.cls(
gpu="A10G",
timeout=600,
scaledown_window=300,
image=image,
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
enable_memory_snapshot=True,
experimental_options={"enable_gpu_snapshot": True},
)
@modal.concurrent(max_inputs=10)
class TranscriberParakeetLive:
@modal.enter(snap=True)
def enter(self):
import nemo.collections.asr as nemo_asr
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
self.lock = threading.Lock()
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
device = next(self.model.parameters()).device
print(f"Model is on device: {device}")
@modal.method()
def transcribe_segment(
self,
filename: str,
):
import librosa
upload_volume.reload()
file_path = f"{UPLOADS_PATH}/{filename}"
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
padded_audio = pad_audio(audio_array, sample_rate)
with self.lock:
with NoStdStreams():
(output,) = self.model.transcribe([padded_audio], timestamps=True)
text = output.text.strip()
words = [
{
"word": word_info["word"] + " ",
"start": round(word_info["start"], 2),
"end": round(word_info["end"], 2),
}
for word_info in output.timestamp["word"]
]
return {"text": text, "words": words}
@modal.method()
def transcribe_batch(
self,
filenames: list[str],
):
import librosa
upload_volume.reload()
results = []
audio_arrays = []
# Load all audio files with padding
for filename in filenames:
file_path = f"{UPLOADS_PATH}/{filename}"
if not os.path.exists(file_path):
raise FileNotFoundError(f"Batch file not found: {file_path}")
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
padded_audio = pad_audio(audio_array, sample_rate)
audio_arrays.append(padded_audio)
with self.lock:
with NoStdStreams():
outputs = self.model.transcribe(audio_arrays, timestamps=True)
# Process results for each file
for i, (filename, output) in enumerate(zip(filenames, outputs)):
text = output.text.strip()
words = [
{
"word": word_info["word"] + " ",
"start": round(word_info["start"], 2),
"end": round(word_info["end"], 2),
}
for word_info in output.timestamp["word"]
]
results.append(
{
"filename": filename,
"text": text,
"words": words,
}
)
return results
# L40S class for file transcription (bigger files)
@app.cls(
gpu="L40S",
timeout=900,
image=image,
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
enable_memory_snapshot=True,
experimental_options={"enable_gpu_snapshot": True},
)
class TranscriberParakeetFile:
@modal.enter(snap=True)
def enter(self):
import nemo.collections.asr as nemo_asr
import torch
from silero_vad import load_silero_vad
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
device = next(self.model.parameters()).device
print(f"Model is on device: {device}")
torch.set_num_threads(1)
self.vad_model = load_silero_vad(onnx=False)
print("Silero VAD initialized")
@modal.method()
def transcribe_segment(
self,
filename: str,
timestamp_offset: float = 0.0,
):
import librosa
import numpy as np
from silero_vad import VADIterator
def load_and_convert_audio(file_path):
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
return audio_array
def vad_segment_generator(audio_array):
"""Generate speech segments using VAD with start/end sample indices"""
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
window_size = VAD_CONFIG["window_size"]
start = None
for i in range(0, len(audio_array), window_size):
chunk = audio_array[i : i + window_size]
if len(chunk) < window_size:
chunk = np.pad(
chunk, (0, window_size - len(chunk)), mode="constant"
)
speech_dict = vad_iterator(chunk)
if not speech_dict:
continue
if "start" in speech_dict:
start = speech_dict["start"]
continue
if "end" in speech_dict and start is not None:
end = speech_dict["end"]
start_time = start / float(SAMPLERATE)
end_time = end / float(SAMPLERATE)
# Extract the actual audio segment
audio_segment = audio_array[start:end]
yield (start_time, end_time, audio_segment)
start = None
vad_iterator.reset_states()
def vad_segment_filter(segments):
"""Filter VAD segments by duration and chunk large segments"""
min_dur = VAD_CONFIG["min_segment_duration"]
max_dur = VAD_CONFIG["max_segment_duration"]
for start_time, end_time, audio_segment in segments:
segment_duration = end_time - start_time
# Skip very small segments
if segment_duration < min_dur:
continue
# If segment is within max duration, yield as-is
if segment_duration <= max_dur:
yield (start_time, end_time, audio_segment)
continue
# Chunk large segments into smaller pieces
chunk_samples = int(max_dur * SAMPLERATE)
current_start = start_time
for chunk_offset in range(0, len(audio_segment), chunk_samples):
chunk_audio = audio_segment[
chunk_offset : chunk_offset + chunk_samples
]
if len(chunk_audio) == 0:
break
chunk_duration = len(chunk_audio) / float(SAMPLERATE)
chunk_end = current_start + chunk_duration
# Only yield chunks that meet minimum duration
if chunk_duration >= min_dur:
yield (current_start, chunk_end, chunk_audio)
current_start = chunk_end
def batch_segments(segments, max_files=10, max_duration=5.0):
batch = []
batch_duration = 0.0
for start_time, end_time, audio_segment in segments:
segment_duration = end_time - start_time
if segment_duration < VAD_CONFIG["silence_padding"]:
silence_samples = int(
(VAD_CONFIG["silence_padding"] - segment_duration) * SAMPLERATE
)
padding = np.zeros(silence_samples, dtype=np.float32)
audio_segment = np.concatenate([audio_segment, padding])
segment_duration = VAD_CONFIG["silence_padding"]
batch.append((start_time, end_time, audio_segment))
batch_duration += segment_duration
if len(batch) >= max_files or batch_duration >= max_duration:
yield batch
batch = []
batch_duration = 0.0
if batch:
yield batch
def transcribe_batch(model, audio_segments):
with NoStdStreams():
outputs = model.transcribe(audio_segments, timestamps=True)
return outputs
def emit_results(
results,
segments_info,
batch_index,
total_batches,
):
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
for i, (output, (start_time, end_time, _)) in enumerate(
zip(results, segments_info)
):
text = output.text.strip()
words = [
{
"word": word_info["word"],
"start": round(
word_info["start"] + start_time + timestamp_offset, 2
),
"end": round(
word_info["end"] + start_time + timestamp_offset, 2
),
}
for word_info in output.timestamp["word"]
]
yield text, words
upload_volume.reload()
file_path = f"{UPLOADS_PATH}/{filename}"
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
audio_array = load_and_convert_audio(file_path)
total_duration = len(audio_array) / float(SAMPLERATE)
processed_duration = 0.0
all_text_parts = []
all_words = []
raw_segments = vad_segment_generator(audio_array)
filtered_segments = vad_segment_filter(raw_segments)
batches = batch_segments(
filtered_segments,
VAD_CONFIG["batch_max_files"],
VAD_CONFIG["batch_max_duration"],
)
batch_index = 0
total_batches = max(
1, int(total_duration / VAD_CONFIG["batch_max_duration"]) + 1
)
for batch in batches:
batch_index += 1
audio_segments = [seg[2] for seg in batch]
results = transcribe_batch(self.model, audio_segments)
for text, words in emit_results(
results,
batch,
batch_index,
total_batches,
):
if not text:
continue
all_text_parts.append(text)
all_words.extend(words)
processed_duration += sum(len(seg[2]) / float(SAMPLERATE) for seg in batch)
combined_text = " ".join(all_text_parts)
return {"text": combined_text, "words": all_words}
@app.function(
scaledown_window=60,
timeout=600,
secrets=[
modal.Secret.from_name("reflector-gpu"),
],
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
image=image,
)
@modal.concurrent(max_inputs=40)
@modal.asgi_app()
def web():
import os
import uuid
from fastapi import (
Body,
Depends,
FastAPI,
Form,
HTTPException,
UploadFile,
status,
)
from fastapi.security import OAuth2PasswordBearer
from pydantic import BaseModel
transcriber_live = TranscriberParakeetLive()
transcriber_file = TranscriberParakeetFile()
app = FastAPI()
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
return
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
class TranscriptResponse(BaseModel):
result: dict
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
def transcribe(
file: UploadFile = None,
files: list[UploadFile] | None = None,
model: str = Form(MODEL_NAME),
language: str = Form("en"),
batch: bool = Form(False),
):
# Parakeet only supports English
if language != "en":
raise HTTPException(
status_code=400,
detail=f"Parakeet model only supports English. Got language='{language}'",
)
# Handle both single file and multiple files
if not file and not files:
raise HTTPException(
status_code=400, detail="Either 'file' or 'files' parameter is required"
)
if batch and not files:
raise HTTPException(
status_code=400, detail="Batch transcription requires 'files'"
)
upload_files = [file] if file else files
# Upload files to volume
uploaded_filenames = []
for upload_file in upload_files:
audio_suffix = upload_file.filename.split(".")[-1]
assert audio_suffix in SUPPORTED_FILE_EXTENSIONS
# Generate unique filename
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
file_path = f"{UPLOADS_PATH}/{unique_filename}"
print(f"Writing file to: {file_path}")
with open(file_path, "wb") as f:
content = upload_file.file.read()
f.write(content)
uploaded_filenames.append(unique_filename)
upload_volume.commit()
try:
# Use A10G live transcriber for per-file transcription
if batch and len(upload_files) > 1:
# Use batch transcription
func = transcriber_live.transcribe_batch.spawn(
filenames=uploaded_filenames,
)
results = func.get()
return {"results": results}
# Per-file transcription
results = []
for filename in uploaded_filenames:
func = transcriber_live.transcribe_segment.spawn(
filename=filename,
)
result = func.get()
result["filename"] = filename
results.append(result)
return {"results": results} if len(results) > 1 else results[0]
finally:
for filename in uploaded_filenames:
try:
file_path = f"{UPLOADS_PATH}/{filename}"
print(f"Deleting file: {file_path}")
os.remove(file_path)
except Exception as e:
print(f"Error deleting {filename}: {e}")
upload_volume.commit()
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
def transcribe_from_url(
audio_file_url: str = Body(
..., description="URL of the audio file to transcribe"
),
model: str = Body(MODEL_NAME),
language: str = Body("en", description="Language code (only 'en' supported)"),
timestamp_offset: float = Body(0.0),
):
# Parakeet only supports English
if language != "en":
raise HTTPException(
status_code=400,
detail=f"Parakeet model only supports English. Got language='{language}'",
)
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
try:
func = transcriber_file.transcribe_segment.spawn(
filename=unique_filename,
timestamp_offset=timestamp_offset,
)
result = func.get()
return result
finally:
try:
file_path = f"{UPLOADS_PATH}/{unique_filename}"
print(f"Deleting file: {file_path}")
os.remove(file_path)
upload_volume.commit()
except Exception as e:
print(f"Error cleaning up {unique_filename}: {e}")
return app
class NoStdStreams:
def __init__(self):
self.devnull = open(os.devnull, "w")
def __enter__(self):
self._stdout, self._stderr = sys.stdout, sys.stderr
self._stdout.flush()
self._stderr.flush()
sys.stdout, sys.stderr = self.devnull, self.devnull
def __exit__(self, exc_type, exc_value, traceback):
sys.stdout, sys.stderr = self._stdout, self._stderr
self.devnull.close()

View File

@@ -0,0 +1,36 @@
"""Add webhook fields to rooms
Revision ID: 0194f65cd6d3
Revises: 5a8907fd1d78
Create Date: 2025-08-27 09:03:19.610995
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "0194f65cd6d3"
down_revision: Union[str, None] = "5a8907fd1d78"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.drop_column("webhook_secret")
batch_op.drop_column("webhook_url")
# ### end Alembic commands ###

View File

@@ -0,0 +1,36 @@
"""remove user_id from meeting table
Revision ID: 0ce521cda2ee
Revises: 6dec9fb5b46c
Create Date: 2025-09-10 12:40:55.688899
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "0ce521cda2ee"
down_revision: Union[str, None] = "6dec9fb5b46c"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.drop_column("user_id")
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.add_column(
sa.Column("user_id", sa.VARCHAR(), autoincrement=False, nullable=True)
)
# ### end Alembic commands ###

View File

@@ -0,0 +1,50 @@
"""add_platform_support
Revision ID: 1e49625677e4
Revises: dc035ff72fd5
Create Date: 2025-10-08 13:17:29.943612
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "1e49625677e4"
down_revision: Union[str, None] = "dc035ff72fd5"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
"""Add platform field with default 'whereby' for backward compatibility."""
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(
sa.Column(
"platform",
sa.String(),
nullable=False,
server_default="whereby",
)
)
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.add_column(
sa.Column(
"platform",
sa.String(),
nullable=False,
server_default="whereby",
)
)
def downgrade() -> None:
"""Remove platform field."""
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.drop_column("platform")
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.drop_column("platform")

View File

@@ -0,0 +1,32 @@
"""clean up orphaned room_id references in meeting table
Revision ID: 2ae3db106d4e
Revises: def1b5867d4c
Create Date: 2025-09-11 10:35:15.759967
"""
from typing import Sequence, Union
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "2ae3db106d4e"
down_revision: Union[str, None] = "def1b5867d4c"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# Set room_id to NULL for meetings that reference non-existent rooms
op.execute("""
UPDATE meeting
SET room_id = NULL
WHERE room_id IS NOT NULL
AND room_id NOT IN (SELECT id FROM room WHERE id IS NOT NULL)
""")
def downgrade() -> None:
# Cannot restore orphaned references - no operation needed
pass

View File

@@ -0,0 +1,50 @@
"""add cascade delete to meeting consent foreign key
Revision ID: 5a8907fd1d78
Revises: 0ab2d7ffaa16
Create Date: 2025-08-26 17:26:50.945491
"""
from typing import Sequence, Union
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "5a8907fd1d78"
down_revision: Union[str, None] = "0ab2d7ffaa16"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
batch_op.drop_constraint(
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
)
batch_op.create_foreign_key(
batch_op.f("meeting_consent_meeting_id_fkey"),
"meeting",
["meeting_id"],
["id"],
ondelete="CASCADE",
)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
batch_op.drop_constraint(
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
)
batch_op.create_foreign_key(
batch_op.f("meeting_consent_meeting_id_fkey"),
"meeting",
["meeting_id"],
["id"],
)
# ### end Alembic commands ###

View File

@@ -0,0 +1,53 @@
"""remove_one_active_meeting_per_room_constraint
Revision ID: 6025e9b2bef2
Revises: 2ae3db106d4e
Create Date: 2025-08-18 18:45:44.418392
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "6025e9b2bef2"
down_revision: Union[str, None] = "2ae3db106d4e"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# Remove the unique constraint that prevents multiple active meetings per room
# This is needed to support calendar integration with overlapping meetings
# Check if index exists before trying to drop it
from alembic import context
if context.get_context().dialect.name == "postgresql":
conn = op.get_bind()
result = conn.execute(
sa.text(
"SELECT 1 FROM pg_indexes WHERE indexname = 'idx_one_active_meeting_per_room'"
)
)
if result.fetchone():
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
else:
# For SQLite, just try to drop it
try:
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
except:
pass
def downgrade() -> None:
# Restore the unique constraint
op.create_index(
"idx_one_active_meeting_per_room",
"meeting",
["room_id"],
unique=True,
postgresql_where=sa.text("is_active = true"),
sqlite_where=sa.text("is_active = 1"),
)

View File

@@ -0,0 +1,28 @@
"""webhook url and secret null by default
Revision ID: 61882a919591
Revises: 0194f65cd6d3
Create Date: 2025-08-29 11:46:36.738091
"""
from typing import Sequence, Union
# revision identifiers, used by Alembic.
revision: str = "61882a919591"
down_revision: Union[str, None] = "0194f65cd6d3"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
pass
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
pass
# ### end Alembic commands ###

View File

@@ -0,0 +1,35 @@
"""make meeting room_id required and add foreign key
Revision ID: 6dec9fb5b46c
Revises: 61882a919591
Create Date: 2025-09-10 10:47:06.006819
"""
from typing import Sequence, Union
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "6dec9fb5b46c"
down_revision: Union[str, None] = "61882a919591"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.create_foreign_key(
None, "room", ["room_id"], ["id"], ondelete="CASCADE"
)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.drop_constraint("meeting_room_id_fkey", type_="foreignkey")
# ### end Alembic commands ###

View File

@@ -0,0 +1,34 @@
"""add_grace_period_fields_to_meeting
Revision ID: d4a1c446458c
Revises: 6025e9b2bef2
Create Date: 2025-08-18 18:50:37.768052
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "d4a1c446458c"
down_revision: Union[str, None] = "6025e9b2bef2"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# Add fields to track when participants left for grace period logic
op.add_column(
"meeting", sa.Column("last_participant_left_at", sa.DateTime(timezone=True))
)
op.add_column(
"meeting",
sa.Column("grace_period_minutes", sa.Integer, server_default=sa.text("15")),
)
def downgrade() -> None:
op.drop_column("meeting", "grace_period_minutes")
op.drop_column("meeting", "last_participant_left_at")

View File

@@ -0,0 +1,129 @@
"""add calendar
Revision ID: d8e204bbf615
Revises: d4a1c446458c
Create Date: 2025-09-10 19:56:22.295756
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision: str = "d8e204bbf615"
down_revision: Union[str, None] = "d4a1c446458c"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.create_table(
"calendar_event",
sa.Column("id", sa.String(), nullable=False),
sa.Column("room_id", sa.String(), nullable=False),
sa.Column("ics_uid", sa.Text(), nullable=False),
sa.Column("title", sa.Text(), nullable=True),
sa.Column("description", sa.Text(), nullable=True),
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
sa.Column("attendees", postgresql.JSONB(astext_type=sa.Text()), nullable=True),
sa.Column("location", sa.Text(), nullable=True),
sa.Column("ics_raw_data", sa.Text(), nullable=True),
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
sa.Column(
"is_deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False
),
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
sa.ForeignKeyConstraint(
["room_id"],
["room.id"],
name="fk_calendar_event_room_id",
ondelete="CASCADE",
),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
)
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
batch_op.create_index(
"idx_calendar_event_deleted",
["is_deleted"],
unique=False,
postgresql_where=sa.text("NOT is_deleted"),
)
batch_op.create_index(
"idx_calendar_event_room_start", ["room_id", "start_time"], unique=False
)
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.add_column(sa.Column("calendar_event_id", sa.String(), nullable=True))
batch_op.add_column(
sa.Column(
"calendar_metadata",
postgresql.JSONB(astext_type=sa.Text()),
nullable=True,
)
)
batch_op.create_index(
"idx_meeting_calendar_event", ["calendar_event_id"], unique=False
)
batch_op.create_foreign_key(
"fk_meeting_calendar_event_id",
"calendar_event",
["calendar_event_id"],
["id"],
ondelete="SET NULL",
)
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(sa.Column("ics_url", sa.Text(), nullable=True))
batch_op.add_column(
sa.Column(
"ics_fetch_interval", sa.Integer(), server_default="300", nullable=True
)
)
batch_op.add_column(
sa.Column(
"ics_enabled",
sa.Boolean(),
server_default=sa.text("false"),
nullable=False,
)
)
batch_op.add_column(
sa.Column("ics_last_sync", sa.DateTime(timezone=True), nullable=True)
)
batch_op.add_column(sa.Column("ics_last_etag", sa.Text(), nullable=True))
batch_op.create_index("idx_room_ics_enabled", ["ics_enabled"], unique=False)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.drop_index("idx_room_ics_enabled")
batch_op.drop_column("ics_last_etag")
batch_op.drop_column("ics_last_sync")
batch_op.drop_column("ics_enabled")
batch_op.drop_column("ics_fetch_interval")
batch_op.drop_column("ics_url")
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.drop_constraint("fk_meeting_calendar_event_id", type_="foreignkey")
batch_op.drop_index("idx_meeting_calendar_event")
batch_op.drop_column("calendar_metadata")
batch_op.drop_column("calendar_event_id")
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
batch_op.drop_index("idx_calendar_event_room_start")
batch_op.drop_index(
"idx_calendar_event_deleted", postgresql_where=sa.text("NOT is_deleted")
)
op.drop_table("calendar_event")
# ### end Alembic commands ###

View File

@@ -0,0 +1,43 @@
"""remove_grace_period_fields
Revision ID: dc035ff72fd5
Revises: d8e204bbf615
Create Date: 2025-09-11 10:36:45.197588
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "dc035ff72fd5"
down_revision: Union[str, None] = "d8e204bbf615"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# Remove grace period columns from meeting table
op.drop_column("meeting", "last_participant_left_at")
op.drop_column("meeting", "grace_period_minutes")
def downgrade() -> None:
# Add back grace period columns to meeting table
op.add_column(
"meeting",
sa.Column(
"last_participant_left_at", sa.DateTime(timezone=True), nullable=True
),
)
op.add_column(
"meeting",
sa.Column(
"grace_period_minutes",
sa.Integer(),
server_default=sa.text("15"),
nullable=True,
),
)

View File

@@ -0,0 +1,34 @@
"""make meeting room_id nullable but keep foreign key
Revision ID: def1b5867d4c
Revises: 0ce521cda2ee
Create Date: 2025-09-11 09:42:18.697264
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "def1b5867d4c"
down_revision: Union[str, None] = "0ce521cda2ee"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table("meeting", schema=None) as batch_op:
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
# ### end Alembic commands ###

View File

@@ -12,7 +12,6 @@ dependencies = [
"requests>=2.31.0",
"aiortc>=1.5.0",
"sortedcontainers>=2.4.0",
"loguru>=0.7.0",
"pydantic-settings>=2.0.2",
"structlog>=23.1.0",
"uvicorn[standard]>=0.23.1",
@@ -27,7 +26,6 @@ dependencies = [
"prometheus-fastapi-instrumentator>=6.1.0",
"sentencepiece>=0.1.99",
"protobuf>=4.24.3",
"profanityfilter>=2.0.6",
"celery>=5.3.4",
"redis>=5.0.1",
"python-jose[cryptography]>=3.3.0",
@@ -40,6 +38,7 @@ dependencies = [
"llama-index-llms-openai-like>=0.4.0",
"pytest-env>=1.1.5",
"webvtt-py>=0.5.0",
"icalendar>=6.0.0",
]
[dependency-groups]
@@ -113,13 +112,14 @@ source = ["reflector"]
[tool.pytest_env]
ENVIRONMENT = "pytest"
DATABASE_URL = "postgresql://test_user:test_password@localhost:15432/reflector_test"
AUTH_BACKEND = "jwt"
[tool.pytest.ini_options]
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
testpaths = ["tests"]
asyncio_mode = "auto"
markers = [
"gpu_modal: mark test to run only with GPU Modal endpoints (deselect with '-m \"not gpu_modal\"')",
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
]
[tool.ruff.lint]
@@ -131,7 +131,7 @@ select = [
[tool.ruff.lint.per-file-ignores]
"reflector/processors/summary/summary_builder.py" = ["E501"]
"gpu/**.py" = ["PLC0415"]
"gpu/modal_deployments/**.py" = ["PLC0415"]
"reflector/tools/**.py" = ["PLC0415"]
"migrations/versions/**.py" = ["PLC0415"]
"tests/**.py" = ["PLC0415"]

View File

@@ -12,6 +12,7 @@ from reflector.events import subscribers_shutdown, subscribers_startup
from reflector.logger import logger
from reflector.metrics import metrics_init
from reflector.settings import settings
from reflector.views.daily import router as daily_router
from reflector.views.meetings import router as meetings_router
from reflector.views.rooms import router as rooms_router
from reflector.views.rtc_offer import router as rtc_offer_router
@@ -26,6 +27,7 @@ from reflector.views.transcripts_upload import router as transcripts_upload_rout
from reflector.views.transcripts_webrtc import router as transcripts_webrtc_router
from reflector.views.transcripts_websocket import router as transcripts_websocket_router
from reflector.views.user import router as user_router
from reflector.views.user_websocket import router as user_ws_router
from reflector.views.whereby import router as whereby_router
from reflector.views.zulip import router as zulip_router
@@ -65,6 +67,12 @@ app.add_middleware(
allow_headers=["*"],
)
@app.get("/health")
async def health():
return {"status": "healthy"}
# metrics
instrumentator = Instrumentator(
excluded_handlers=["/docs", "/metrics"],
@@ -84,8 +92,10 @@ app.include_router(transcripts_websocket_router, prefix="/v1")
app.include_router(transcripts_webrtc_router, prefix="/v1")
app.include_router(transcripts_process_router, prefix="/v1")
app.include_router(user_router, prefix="/v1")
app.include_router(user_ws_router, prefix="/v1")
app.include_router(zulip_router, prefix="/v1")
app.include_router(whereby_router, prefix="/v1")
app.include_router(daily_router, prefix="/v1/daily")
add_pagination(app)
# prepare celery

View File

@@ -0,0 +1,27 @@
import asyncio
import functools
from reflector.db import get_database
def asynctask(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
async def run_with_db():
database = get_database()
await database.connect()
try:
return await f(*args, **kwargs)
finally:
await database.disconnect()
coro = run_with_db()
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = None
if loop and loop.is_running():
return loop.run_until_complete(coro)
return asyncio.run(coro)
return wrapper

View File

@@ -67,7 +67,8 @@ def current_user(
try:
payload = jwtauth.verify_token(token)
sub = payload["sub"]
return UserInfo(sub=sub)
email = payload["email"]
return UserInfo(sub=sub, email=email)
except JWTError as e:
logger.error(f"JWT error: {e}")
raise HTTPException(status_code=401, detail="Invalid authentication")

View File

@@ -24,6 +24,7 @@ def get_database() -> databases.Database:
# import models
import reflector.db.calendar_events # noqa
import reflector.db.meetings # noqa
import reflector.db.recordings # noqa
import reflector.db.rooms # noqa

View File

@@ -0,0 +1,187 @@
from datetime import datetime, timedelta, timezone
from typing import Any
import sqlalchemy as sa
from pydantic import BaseModel, Field
from sqlalchemy.dialects.postgresql import JSONB
from reflector.db import get_database, metadata
from reflector.utils import generate_uuid4
calendar_events = sa.Table(
"calendar_event",
metadata,
sa.Column("id", sa.String, primary_key=True),
sa.Column(
"room_id",
sa.String,
sa.ForeignKey("room.id", ondelete="CASCADE", name="fk_calendar_event_room_id"),
nullable=False,
),
sa.Column("ics_uid", sa.Text, nullable=False),
sa.Column("title", sa.Text),
sa.Column("description", sa.Text),
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
sa.Column("attendees", JSONB),
sa.Column("location", sa.Text),
sa.Column("ics_raw_data", sa.Text),
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
sa.Column("is_deleted", sa.Boolean, nullable=False, server_default=sa.false()),
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
sa.Index("idx_calendar_event_room_start", "room_id", "start_time"),
sa.Index(
"idx_calendar_event_deleted",
"is_deleted",
postgresql_where=sa.text("NOT is_deleted"),
),
)
class CalendarEvent(BaseModel):
id: str = Field(default_factory=generate_uuid4)
room_id: str
ics_uid: str
title: str | None = None
description: str | None = None
start_time: datetime
end_time: datetime
attendees: list[dict[str, Any]] | None = None
location: str | None = None
ics_raw_data: str | None = None
last_synced: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
is_deleted: bool = False
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
class CalendarEventController:
async def get_by_room(
self,
room_id: str,
include_deleted: bool = False,
start_after: datetime | None = None,
end_before: datetime | None = None,
) -> list[CalendarEvent]:
query = calendar_events.select().where(calendar_events.c.room_id == room_id)
if not include_deleted:
query = query.where(calendar_events.c.is_deleted == False)
if start_after:
query = query.where(calendar_events.c.start_time >= start_after)
if end_before:
query = query.where(calendar_events.c.end_time <= end_before)
query = query.order_by(calendar_events.c.start_time.asc())
results = await get_database().fetch_all(query)
return [CalendarEvent(**result) for result in results]
async def get_upcoming(
self, room_id: str, minutes_ahead: int = 120
) -> list[CalendarEvent]:
"""Get upcoming events for a room within the specified minutes, including currently happening events."""
now = datetime.now(timezone.utc)
future_time = now + timedelta(minutes=minutes_ahead)
query = (
calendar_events.select()
.where(
sa.and_(
calendar_events.c.room_id == room_id,
calendar_events.c.is_deleted == False,
calendar_events.c.start_time <= future_time,
calendar_events.c.end_time >= now,
)
)
.order_by(calendar_events.c.start_time.asc())
)
results = await get_database().fetch_all(query)
return [CalendarEvent(**result) for result in results]
async def get_by_id(self, event_id: str) -> CalendarEvent | None:
query = calendar_events.select().where(calendar_events.c.id == event_id)
result = await get_database().fetch_one(query)
return CalendarEvent(**result) if result else None
async def get_by_ics_uid(self, room_id: str, ics_uid: str) -> CalendarEvent | None:
query = calendar_events.select().where(
sa.and_(
calendar_events.c.room_id == room_id,
calendar_events.c.ics_uid == ics_uid,
)
)
result = await get_database().fetch_one(query)
return CalendarEvent(**result) if result else None
async def upsert(self, event: CalendarEvent) -> CalendarEvent:
existing = await self.get_by_ics_uid(event.room_id, event.ics_uid)
if existing:
event.id = existing.id
event.created_at = existing.created_at
event.updated_at = datetime.now(timezone.utc)
query = (
calendar_events.update()
.where(calendar_events.c.id == existing.id)
.values(**event.model_dump())
)
else:
query = calendar_events.insert().values(**event.model_dump())
await get_database().execute(query)
return event
async def soft_delete_missing(
self, room_id: str, current_ics_uids: list[str]
) -> int:
"""Soft delete future events that are no longer in the calendar."""
now = datetime.now(timezone.utc)
select_query = calendar_events.select().where(
sa.and_(
calendar_events.c.room_id == room_id,
calendar_events.c.start_time > now,
calendar_events.c.is_deleted == False,
calendar_events.c.ics_uid.notin_(current_ics_uids)
if current_ics_uids
else True,
)
)
to_delete = await get_database().fetch_all(select_query)
delete_count = len(to_delete)
if delete_count > 0:
update_query = (
calendar_events.update()
.where(
sa.and_(
calendar_events.c.room_id == room_id,
calendar_events.c.start_time > now,
calendar_events.c.is_deleted == False,
calendar_events.c.ics_uid.notin_(current_ics_uids)
if current_ics_uids
else True,
)
)
.values(is_deleted=True, updated_at=now)
)
await get_database().execute(update_query)
return delete_count
async def delete_by_room(self, room_id: str) -> int:
query = calendar_events.delete().where(calendar_events.c.room_id == room_id)
result = await get_database().execute(query)
return result.rowcount
calendar_events_controller = CalendarEventController()

View File

@@ -1,12 +1,13 @@
from datetime import datetime
from typing import Literal
from typing import Any, Literal
import sqlalchemy as sa
from fastapi import HTTPException
from pydantic import BaseModel, Field
from sqlalchemy.dialects.postgresql import JSONB
from reflector.db import get_database, metadata
from reflector.db.rooms import Room
from reflector.platform_types import Platform
from reflector.utils import generate_uuid4
meetings = sa.Table(
@@ -18,8 +19,12 @@ meetings = sa.Table(
sa.Column("host_room_url", sa.String),
sa.Column("start_date", sa.DateTime(timezone=True)),
sa.Column("end_date", sa.DateTime(timezone=True)),
sa.Column("user_id", sa.String),
sa.Column("room_id", sa.String),
sa.Column(
"room_id",
sa.String,
sa.ForeignKey("room.id", ondelete="CASCADE"),
nullable=True,
),
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
@@ -41,20 +46,36 @@ meetings = sa.Table(
nullable=False,
server_default=sa.true(),
),
sa.Index("idx_meeting_room_id", "room_id"),
sa.Index(
"idx_one_active_meeting_per_room",
"room_id",
unique=True,
postgresql_where=sa.text("is_active = true"),
sa.Column(
"calendar_event_id",
sa.String,
sa.ForeignKey(
"calendar_event.id",
ondelete="SET NULL",
name="fk_meeting_calendar_event_id",
),
),
sa.Column("calendar_metadata", JSONB),
sa.Column(
"platform",
sa.String,
nullable=False,
server_default="whereby",
),
sa.Index("idx_meeting_room_id", "room_id"),
sa.Index("idx_meeting_calendar_event", "calendar_event_id"),
)
meeting_consent = sa.Table(
"meeting_consent",
metadata,
sa.Column("id", sa.String, primary_key=True),
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
sa.Column(
"meeting_id",
sa.String,
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
nullable=False,
),
sa.Column("user_id", sa.String),
sa.Column("consent_given", sa.Boolean, nullable=False),
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
@@ -76,15 +97,18 @@ class Meeting(BaseModel):
host_room_url: str
start_date: datetime
end_date: datetime
user_id: str | None = None
room_id: str | None = None
room_id: str | None
is_locked: bool = False
room_mode: Literal["normal", "group"] = "normal"
recording_type: Literal["none", "local", "cloud"] = "cloud"
recording_trigger: Literal[
recording_trigger: Literal[ # whereby-specific
"none", "prompt", "automatic", "automatic-2nd-participant"
] = "automatic-2nd-participant"
num_clients: int = 0
is_active: bool = True
calendar_event_id: str | None = None
calendar_metadata: dict[str, Any] | None = None
platform: Platform = "whereby"
class MeetingController:
@@ -96,12 +120,11 @@ class MeetingController:
host_room_url: str,
start_date: datetime,
end_date: datetime,
user_id: str,
room: Room,
calendar_event_id: str | None = None,
calendar_metadata: dict[str, Any] | None = None,
platform: Platform = "whereby",
):
"""
Create a new meeting
"""
meeting = Meeting(
id=id,
room_name=room_name,
@@ -109,41 +132,47 @@ class MeetingController:
host_room_url=host_room_url,
start_date=start_date,
end_date=end_date,
user_id=user_id,
room_id=room.id,
is_locked=room.is_locked,
room_mode=room.room_mode,
recording_type=room.recording_type,
recording_trigger=room.recording_trigger,
calendar_event_id=calendar_event_id,
calendar_metadata=calendar_metadata,
platform=platform,
)
query = meetings.insert().values(**meeting.model_dump())
await get_database().execute(query)
return meeting
async def get_all_active(self) -> list[Meeting]:
"""
Get active meetings.
"""
query = meetings.select().where(meetings.c.is_active)
return await get_database().fetch_all(query)
async def get_by_room_name(
self,
room_name: str,
) -> Meeting:
) -> Meeting | None:
"""
Get a meeting by room name.
For backward compatibility, returns the most recent meeting.
"""
query = meetings.select().where(meetings.c.room_name == room_name)
end_date = getattr(meetings.c, "end_date")
query = (
meetings.select()
.where(meetings.c.room_name == room_name)
.order_by(end_date.desc())
)
result = await get_database().fetch_one(query)
if not result:
return None
return Meeting(**result)
async def get_active(self, room: Room, current_time: datetime) -> Meeting:
async def get_active(self, room: Room, current_time: datetime) -> Meeting | None:
"""
Get latest active meeting for a room.
For backward compatibility, returns the most recent active meeting.
"""
end_date = getattr(meetings.c, "end_date")
query = (
@@ -163,37 +192,85 @@ class MeetingController:
return Meeting(**result)
async def get_all_active_for_room(
self, room: Room, current_time: datetime
) -> list[Meeting]:
end_date = getattr(meetings.c, "end_date")
query = (
meetings.select()
.where(
sa.and_(
meetings.c.room_id == room.id,
meetings.c.end_date > current_time,
meetings.c.is_active,
)
)
.order_by(end_date.desc())
)
results = await get_database().fetch_all(query)
return [Meeting(**result) for result in results]
async def get_active_by_calendar_event(
self, room: Room, calendar_event_id: str, current_time: datetime
) -> Meeting | None:
"""
Get active meeting for a specific calendar event.
"""
query = meetings.select().where(
sa.and_(
meetings.c.room_id == room.id,
meetings.c.calendar_event_id == calendar_event_id,
meetings.c.end_date > current_time,
meetings.c.is_active,
)
)
result = await get_database().fetch_one(query)
if not result:
return None
return Meeting(**result)
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
"""
Get a meeting by id
"""
query = meetings.select().where(meetings.c.id == meeting_id)
result = await get_database().fetch_one(query)
if not result:
return None
return Meeting(**result)
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Meeting:
"""
Get a meeting by ID for HTTP request.
If not found, it will raise a 404 error.
"""
query = meetings.select().where(meetings.c.id == meeting_id)
async def get_by_calendar_event(self, calendar_event_id: str) -> Meeting | None:
query = meetings.select().where(
meetings.c.calendar_event_id == calendar_event_id
)
result = await get_database().fetch_one(query)
if not result:
raise HTTPException(status_code=404, detail="Meeting not found")
meeting = Meeting(**result)
if result["user_id"] != user_id:
meeting.host_room_url = ""
return meeting
return None
return Meeting(**result)
async def update_meeting(self, meeting_id: str, **kwargs):
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
await get_database().execute(query)
async def increment_num_clients(self, meeting_id: str):
"""Atomically increment participant count."""
query = (
meetings.update()
.where(meetings.c.id == meeting_id)
.values(num_clients=meetings.c.num_clients + 1)
)
await get_database().execute(query)
async def decrement_num_clients(self, meeting_id: str):
"""Atomically decrement participant count (min 0)."""
query = (
meetings.update()
.where(meetings.c.id == meeting_id)
.values(
num_clients=sa.case(
(meetings.c.num_clients > 0, meetings.c.num_clients - 1), else_=0
)
)
)
await get_database().execute(query)
class MeetingConsentController:
async def get_by_meeting_id(self, meeting_id: str) -> list[MeetingConsent]:
@@ -214,10 +291,9 @@ class MeetingConsentController:
result = await get_database().fetch_one(query)
if result is None:
return None
return MeetingConsent(**result) if result else None
return MeetingConsent(**result)
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
"""Create new consent or update existing one for authenticated users"""
if consent.user_id:
# For authenticated users, check if consent already exists
# not transactional but we're ok with that; the consents ain't deleted anyways

View File

@@ -1,6 +1,7 @@
import secrets
from datetime import datetime, timezone
from sqlite3 import IntegrityError
from typing import Literal
from typing import Literal, Optional
import sqlalchemy
from fastapi import HTTPException
@@ -8,6 +9,7 @@ from pydantic import BaseModel, Field
from sqlalchemy.sql import false, or_
from reflector.db import get_database, metadata
from reflector.platform_types import Platform
from reflector.utils import generate_uuid4
rooms = sqlalchemy.Table(
@@ -40,7 +42,23 @@ rooms = sqlalchemy.Table(
sqlalchemy.Column(
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
),
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
sqlalchemy.Column("ics_url", sqlalchemy.Text),
sqlalchemy.Column("ics_fetch_interval", sqlalchemy.Integer, server_default="300"),
sqlalchemy.Column(
"ics_enabled", sqlalchemy.Boolean, nullable=False, server_default=false()
),
sqlalchemy.Column("ics_last_sync", sqlalchemy.DateTime(timezone=True)),
sqlalchemy.Column("ics_last_etag", sqlalchemy.Text),
sqlalchemy.Column(
"platform",
sqlalchemy.String,
nullable=False,
server_default="whereby",
),
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
)
@@ -55,10 +73,18 @@ class Room(BaseModel):
is_locked: bool = False
room_mode: Literal["normal", "group"] = "normal"
recording_type: Literal["none", "local", "cloud"] = "cloud"
recording_trigger: Literal[
recording_trigger: Literal[ # whereby-specific
"none", "prompt", "automatic", "automatic-2nd-participant"
] = "automatic-2nd-participant"
is_shared: bool = False
webhook_url: str | None = None
webhook_secret: str | None = None
ics_url: str | None = None
ics_fetch_interval: int = 300
ics_enabled: bool = False
ics_last_sync: datetime | None = None
ics_last_etag: str | None = None
platform: Platform = "whereby"
class RoomController:
@@ -107,10 +133,19 @@ class RoomController:
recording_type: str,
recording_trigger: str,
is_shared: bool,
webhook_url: str = "",
webhook_secret: str = "",
ics_url: str | None = None,
ics_fetch_interval: int = 300,
ics_enabled: bool = False,
platform: Optional[Platform] = None,
):
"""
Add a new room
"""
if webhook_url and not webhook_secret:
webhook_secret = secrets.token_urlsafe(32)
room = Room(
name=name,
user_id=user_id,
@@ -122,6 +157,12 @@ class RoomController:
recording_type=recording_type,
recording_trigger=recording_trigger,
is_shared=is_shared,
webhook_url=webhook_url,
webhook_secret=webhook_secret,
ics_url=ics_url,
ics_fetch_interval=ics_fetch_interval,
ics_enabled=ics_enabled,
platform=platform or "whereby",
)
query = rooms.insert().values(**room.model_dump())
try:
@@ -134,6 +175,9 @@ class RoomController:
"""
Update a room fields with key/values in values
"""
if values.get("webhook_url") and not values.get("webhook_secret"):
values["webhook_secret"] = secrets.token_urlsafe(32)
query = rooms.update().where(rooms.c.id == room.id).values(**values)
try:
await get_database().execute(query)
@@ -183,6 +227,13 @@ class RoomController:
return room
async def get_ics_enabled(self) -> list[Room]:
query = rooms.select().where(
rooms.c.ics_enabled == True, rooms.c.ics_url != None
)
results = await get_database().fetch_all(query)
return [Room(**result) for result in results]
async def remove_by_id(
self,
room_id: str,

View File

@@ -8,12 +8,14 @@ from typing import Annotated, Any, Dict, Iterator
import sqlalchemy
import webvtt
from databases.interfaces import Record as DbRecord
from fastapi import HTTPException
from pydantic import (
BaseModel,
Field,
NonNegativeFloat,
NonNegativeInt,
TypeAdapter,
ValidationError,
constr,
field_serializer,
@@ -21,9 +23,10 @@ from pydantic import (
from reflector.db import get_database
from reflector.db.rooms import rooms
from reflector.db.transcripts import SourceKind, transcripts
from reflector.db.transcripts import SourceKind, TranscriptStatus, transcripts
from reflector.db.utils import is_postgresql
from reflector.logger import logger
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
DEFAULT_SEARCH_LIMIT = 20
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
@@ -31,12 +34,13 @@ DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
LONG_SUMMARY_MAX_SNIPPETS = 2
SearchQueryBase = constr(min_length=0, strip_whitespace=True)
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
SearchOffsetBase = Annotated[int, Field(ge=0)]
SearchTotalBase = Annotated[int, Field(ge=0)]
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
search_query_adapter = TypeAdapter(SearchQuery)
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
SearchOffset = Annotated[
SearchOffsetBase, Field(description="Number of results to skip")
@@ -88,7 +92,7 @@ class WebVTTProcessor:
@staticmethod
def generate_snippets(
webvtt_content: WebVTTContent,
query: str,
query: SearchQuery,
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
) -> list[str]:
"""Generate snippets from WebVTT content."""
@@ -125,7 +129,7 @@ class SnippetCandidate:
class SearchParameters(BaseModel):
"""Validated search parameters for full-text search."""
query_text: SearchQuery
query_text: SearchQuery | None = None
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
offset: SearchOffset = 0
user_id: str | None = None
@@ -157,7 +161,7 @@ class SearchResult(BaseModel):
room_name: str | None = None
source_kind: SourceKind
created_at: datetime
status: str = Field(..., min_length=1)
status: TranscriptStatus = Field(..., min_length=1)
rank: float = Field(..., ge=0, le=1)
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
search_snippets: list[str] = Field(
@@ -199,15 +203,13 @@ class SnippetGenerator:
prev_start = start
@staticmethod
def count_matches(text: str, query: str) -> NonNegativeInt:
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
"""Count total number of matches for a query in text."""
ZERO = NonNegativeInt(0)
if not text:
logger.warning("Empty text for search query in count_matches")
return ZERO
if not query:
logger.warning("Empty query for search text in count_matches")
return ZERO
assert query is not None
return NonNegativeInt(
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
)
@@ -243,13 +245,14 @@ class SnippetGenerator:
@staticmethod
def generate(
text: str,
query: str,
query: SearchQuery,
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
) -> list[str]:
"""Generate snippets from text."""
if not text or not query:
logger.warning("Empty text or query for generate_snippets")
assert query is not None
if not text:
logger.warning("Empty text for generate_snippets")
return []
candidates = (
@@ -270,7 +273,7 @@ class SnippetGenerator:
@staticmethod
def from_summary(
summary: str,
query: str,
query: SearchQuery,
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
) -> list[str]:
"""Generate snippets from summary text."""
@@ -278,9 +281,9 @@ class SnippetGenerator:
@staticmethod
def combine_sources(
summary: str | None,
summary: NonEmptyString | None,
webvtt: WebVTTContent | None,
query: str,
query: SearchQuery,
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
) -> tuple[list[str], NonNegativeInt]:
"""Combine snippets from multiple sources and return total match count.
@@ -289,6 +292,11 @@ class SnippetGenerator:
snippets can be empty for real in case of e.g. title match
"""
assert (
summary is not None or webvtt is not None
), "At least one source must be present"
webvtt_matches = 0
summary_matches = 0
@@ -355,8 +363,8 @@ class SearchController:
else_=rooms.c.name,
).label("room_name"),
]
if params.query_text:
search_query = None
if params.query_text is not None:
search_query = sqlalchemy.func.websearch_to_tsquery(
"english", params.query_text
)
@@ -373,7 +381,9 @@ class SearchController:
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
)
if params.query_text:
if params.query_text is not None:
# because already initialized based on params.query_text presence above
assert search_query is not None
base_query = base_query.where(
transcripts.c.search_vector_en.op("@@")(search_query)
)
@@ -393,7 +403,7 @@ class SearchController:
transcripts.c.source_kind == params.source_kind
)
if params.query_text:
if params.query_text is not None:
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
else:
order_by = sqlalchemy.desc(transcripts.c.created_at)
@@ -407,19 +417,29 @@ class SearchController:
)
total = await get_database().fetch_val(count_query)
def _process_result(r) -> SearchResult:
def _process_result(r: DbRecord) -> SearchResult:
r_dict: Dict[str, Any] = dict(r)
webvtt_raw: str | None = r_dict.pop("webvtt", None)
webvtt: WebVTTContent | None
if webvtt_raw:
webvtt = WebVTTProcessor.parse(webvtt_raw)
else:
webvtt = None
long_summary: str | None = r_dict.pop("long_summary", None)
long_summary_r: str | None = r_dict.pop("long_summary", None)
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
room_name: str | None = r_dict.pop("room_name", None)
db_result = SearchResultDB.model_validate(r_dict)
snippets, total_match_count = SnippetGenerator.combine_sources(
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
at_least_one_source = webvtt is not None or long_summary is not None
has_query = params.query_text is not None
snippets, total_match_count = (
SnippetGenerator.combine_sources(
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
)
if has_query and at_least_one_source
else ([], 0)
)
return SearchResult(

View File

@@ -122,6 +122,15 @@ def generate_transcript_name() -> str:
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
TranscriptStatus = Literal[
"idle", "uploaded", "recording", "processing", "error", "ended"
]
class StrValue(BaseModel):
value: str
class AudioWaveform(BaseModel):
data: list[float]
@@ -185,7 +194,7 @@ class Transcript(BaseModel):
id: str = Field(default_factory=generate_uuid4)
user_id: str | None = None
name: str = Field(default_factory=generate_transcript_name)
status: str = "idle"
status: TranscriptStatus = "idle"
duration: float = 0
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
title: str | None = None
@@ -638,6 +647,19 @@ class TranscriptController:
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
await get_database().execute(query)
@staticmethod
def user_can_mutate(transcript: Transcript, user_id: str | None) -> bool:
"""
Returns True if the given user is allowed to modify the transcript.
Policy:
- Anonymous transcripts (user_id is None) cannot be modified via API
- Only the owner (matching user_id) can modify their transcript
"""
if transcript.user_id is None:
return False
return user_id and transcript.user_id == user_id
@asynccontextmanager
async def transaction(self):
"""
@@ -732,5 +754,27 @@ class TranscriptController:
transcript.delete_participant(participant_id)
await self.update(transcript, {"participants": transcript.participants_dump()})
async def set_status(
self, transcript_id: str, status: TranscriptStatus
) -> TranscriptEvent | None:
"""
Update the status of a transcript
Will add an event STATUS + update the status field of transcript
"""
async with self.transaction():
transcript = await self.get_by_id(transcript_id)
if not transcript:
raise Exception(f"Transcript {transcript_id} not found")
if transcript.status == status:
return
resp = await self.append_event(
transcript=transcript,
event="STATUS",
data=StrValue(value=status),
)
await self.update(transcript, {"status": status})
return resp
transcripts_controller = TranscriptController()

View File

@@ -0,0 +1,84 @@
# Multitrack Pipeline Fix Summary
## Problem
Whisper timestamps were incorrect because it ignores leading silence in audio files. Daily.co tracks can have arbitrary amounts of silence before speech starts.
## Solution
**Pad tracks BEFORE transcription using stream metadata `start_time`**
This makes Whisper timestamps automatically correct relative to recording start.
## Key Changes in `main_multitrack_pipeline_fixed.py`
### 1. Added `pad_track_for_transcription()` method (lines 55-172)
```python
async def pad_track_for_transcription(
self,
track_data: bytes,
track_idx: int,
storage,
) -> tuple[bytes, str]:
```
- Extracts stream metadata `start_time` using PyAV
- Creates PyAV filter graph with `adelay` filter to add padding
- Stores padded track to S3 and returns URL
- Uses same audio processing library (PyAV) already in the pipeline
### 2. Modified `process()` method
#### REMOVED (lines 255-302):
- Entire filename parsing for offsets - NOT NEEDED ANYMORE
- The complex regex parsing of Daily.co filenames
- Offset adjustment after transcription
#### ADDED (lines 371-382):
- Padding step BEFORE transcription:
```python
# PAD TRACKS BEFORE TRANSCRIPTION - THIS IS THE KEY FIX!
padded_track_urls: list[str] = []
for idx, data in enumerate(track_datas):
if not data:
padded_track_urls.append("")
continue
_, padded_url = await self.pad_track_for_transcription(
data, idx, storage
)
padded_track_urls.append(padded_url)
```
#### MODIFIED (lines 385-435):
- Transcribe PADDED tracks instead of raw tracks
- Removed all timestamp offset adjustment code
- Just set speaker ID - timestamps already correct!
```python
# NO OFFSET ADJUSTMENT NEEDED!
# Timestamps are already correct because we transcribed padded tracks
# Just set speaker ID
for w in t.words:
w.speaker = idx
```
## Why This Works
1. **Stream metadata is authoritative**: Daily.co sets `start_time` in the WebM container
2. **PyAV respects metadata**: `audio_stream.start_time * audio_stream.time_base` gives seconds
3. **Padding before transcription**: Whisper sees continuous audio from time 0
4. **Automatic alignment**: Word at 51s in padded track = 51s in recording
## Testing
Process the test recording (daily-20251020193458) and verify:
- Participant 0 words appear at ~2s
- Participant 1 words appear at ~51s
- No word interleaving
- Correct chronological order
## Files
- **Original**: `main_multitrack_pipeline.py`
- **Fixed**: `main_multitrack_pipeline_fixed.py`
- **Test data**: `/Users/firfi/work/clients/monadical/reflector/1760988935484-*.webm`

View File

@@ -7,18 +7,28 @@ Uses parallel processing for transcription, diarization, and waveform generation
"""
import asyncio
import uuid
from pathlib import Path
import av
import structlog
from celery import shared_task
from celery import chain, shared_task
from reflector.asynctask import asynctask
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import (
SourceKind,
Transcript,
TranscriptStatus,
transcripts_controller,
)
from reflector.logger import logger
from reflector.pipelines.main_live_pipeline import PipelineMainBase, asynctask
from reflector.pipelines.main_live_pipeline import (
PipelineMainBase,
broadcast_to_sockets,
task_cleanup_consent,
task_pipeline_post_to_zulip,
)
from reflector.processors import (
AudioFileWriterProcessor,
TranscriptFinalSummaryProcessor,
@@ -43,6 +53,7 @@ from reflector.processors.types import (
)
from reflector.settings import settings
from reflector.storage import get_transcripts_storage
from reflector.worker.webhook import send_transcript_webhook
class EmptyPipeline:
@@ -83,12 +94,27 @@ class PipelineMainFile(PipelineMainBase):
exc_info=result,
)
@broadcast_to_sockets
async def set_status(self, transcript_id: str, status: TranscriptStatus):
async with self.lock_transaction():
return await transcripts_controller.set_status(transcript_id, status)
async def process(self, file_path: Path):
"""Main entry point for file processing"""
self.logger.info(f"Starting file pipeline for {file_path}")
transcript = await self.get_transcript()
# Clear transcript as we're going to regenerate everything
async with self.transaction():
await transcripts_controller.update(
transcript,
{
"events": [],
"topics": [],
},
)
# Extract audio and write to transcript location
audio_path = await self.extract_and_write_audio(file_path, transcript)
@@ -105,6 +131,8 @@ class PipelineMainFile(PipelineMainBase):
self.logger.info("File pipeline complete")
await self.set_status(transcript.id, "ended")
async def extract_and_write_audio(
self, file_path: Path, transcript: Transcript
) -> Path:
@@ -353,6 +381,28 @@ class PipelineMainFile(PipelineMainBase):
await processor.flush()
@shared_task
@asynctask
async def task_send_webhook_if_needed(*, transcript_id: str):
"""Send webhook if this is a room recording with webhook configured"""
transcript = await transcripts_controller.get_by_id(transcript_id)
if not transcript:
return
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
room = await rooms_controller.get_by_id(transcript.room_id)
if room and room.webhook_url:
logger.info(
"Dispatching webhook",
transcript_id=transcript_id,
room_id=room.id,
webhook_url=room.webhook_url,
)
send_transcript_webhook.delay(
transcript_id, room.id, event_id=uuid.uuid4().hex
)
@shared_task
@asynctask
async def task_pipeline_file_process(*, transcript_id: str):
@@ -362,14 +412,28 @@ async def task_pipeline_file_process(*, transcript_id: str):
if not transcript:
raise Exception(f"Transcript {transcript_id} not found")
# Find the file to process
audio_file = next(transcript.data_path.glob("upload.*"), None)
if not audio_file:
audio_file = next(transcript.data_path.glob("audio.*"), None)
if not audio_file:
raise Exception("No audio file found to process")
# Run file pipeline
pipeline = PipelineMainFile(transcript_id=transcript_id)
await pipeline.process(audio_file)
try:
await pipeline.set_status(transcript_id, "processing")
# Find the file to process
audio_file = next(transcript.data_path.glob("upload.*"), None)
if not audio_file:
audio_file = next(transcript.data_path.glob("audio.*"), None)
if not audio_file:
raise Exception("No audio file found to process")
await pipeline.process(audio_file)
except Exception:
await pipeline.set_status(transcript_id, "error")
raise
# Run post-processing chain: consent cleanup -> zulip -> webhook
post_chain = chain(
task_cleanup_consent.si(transcript_id=transcript_id),
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
task_send_webhook_if_needed.si(transcript_id=transcript_id),
)
post_chain.delay()

View File

@@ -22,7 +22,7 @@ from celery import chord, current_task, group, shared_task
from pydantic import BaseModel
from structlog import BoundLogger as Logger
from reflector.db import get_database
from reflector.asynctask import asynctask
from reflector.db.meetings import meeting_consent_controller, meetings_controller
from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
@@ -32,6 +32,7 @@ from reflector.db.transcripts import (
TranscriptFinalLongSummary,
TranscriptFinalShortSummary,
TranscriptFinalTitle,
TranscriptStatus,
TranscriptText,
TranscriptTopic,
TranscriptWaveform,
@@ -40,8 +41,9 @@ from reflector.db.transcripts import (
from reflector.logger import logger
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
from reflector.processors import (
AudioChunkerProcessor,
AudioChunkerAutoProcessor,
AudioDiarizationAutoProcessor,
AudioDownscaleProcessor,
AudioFileWriterProcessor,
AudioMergeProcessor,
AudioTranscriptAutoProcessor,
@@ -68,29 +70,6 @@ from reflector.zulip import (
)
def asynctask(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
async def run_with_db():
database = get_database()
await database.connect()
try:
return await f(*args, **kwargs)
finally:
await database.disconnect()
coro = run_with_db()
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = None
if loop and loop.is_running():
return loop.run_until_complete(coro)
return asyncio.run(coro)
return wrapper
def broadcast_to_sockets(func):
"""
Decorator to broadcast transcript event to websockets
@@ -106,6 +85,20 @@ def broadcast_to_sockets(func):
message=resp.model_dump(mode="json"),
)
transcript = await transcripts_controller.get_by_id(self.transcript_id)
if transcript and transcript.user_id:
# Emit only relevant events to the user room to avoid noisy updates.
# Allowed: STATUS, FINAL_TITLE, DURATION. All are prefixed with TRANSCRIPT_
allowed_user_events = {"STATUS", "FINAL_TITLE", "DURATION"}
if resp.event in allowed_user_events:
await self.ws_manager.send_json(
room_id=f"user:{transcript.user_id}",
message={
"event": f"TRANSCRIPT_{resp.event}",
"data": {"id": self.transcript_id, **resp.data},
},
)
return wrapper
@@ -187,8 +180,15 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
]
@asynccontextmanager
async def transaction(self):
async def lock_transaction(self):
# This lock is to prevent multiple processor starting adding
# into event array at the same time
async with self._lock:
yield
@asynccontextmanager
async def transaction(self):
async with self.lock_transaction():
async with transcripts_controller.transaction():
yield
@@ -197,14 +197,14 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
# if it's the first part, update the status of the transcript
# but do not set the ended status yet.
if isinstance(self, PipelineMainLive):
status_mapping = {
status_mapping: dict[str, TranscriptStatus] = {
"started": "recording",
"push": "recording",
"flush": "processing",
"error": "error",
}
elif isinstance(self, PipelineMainFinalSummaries):
status_mapping = {
status_mapping: dict[str, TranscriptStatus] = {
"push": "processing",
"flush": "processing",
"error": "error",
@@ -220,22 +220,8 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
return
# when the status of the pipeline changes, update the transcript
async with self.transaction():
transcript = await self.get_transcript()
if status == transcript.status:
return
resp = await transcripts_controller.append_event(
transcript=transcript,
event="STATUS",
data=StrValue(value=status),
)
await transcripts_controller.update(
transcript,
{
"status": status,
},
)
return resp
async with self._lock:
return await transcripts_controller.set_status(self.transcript_id, status)
@broadcast_to_sockets
async def on_transcript(self, data):
@@ -365,7 +351,8 @@ class PipelineMainLive(PipelineMainBase):
path=transcript.audio_wav_filename,
on_duration=self.on_duration,
),
AudioChunkerProcessor(),
AudioDownscaleProcessor(),
AudioChunkerAutoProcessor(),
AudioMergeProcessor(),
AudioTranscriptAutoProcessor.as_threaded(),
TranscriptLinerProcessor(),
@@ -792,7 +779,7 @@ def pipeline_post(*, transcript_id: str):
chain_final_summaries,
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
chain.delay()
return chain.delay()
@get_transcript

View File

@@ -0,0 +1,510 @@
import asyncio
import io
from fractions import Fraction
import av
import boto3
import structlog
from av.audio.resampler import AudioResampler
from celery import chain, shared_task
from reflector.asynctask import asynctask
from reflector.db.transcripts import (
TranscriptStatus,
TranscriptText,
transcripts_controller,
)
from reflector.logger import logger
from reflector.pipelines.main_file_pipeline import task_send_webhook_if_needed
from reflector.pipelines.main_live_pipeline import (
PipelineMainBase,
task_cleanup_consent,
task_pipeline_post_to_zulip,
)
from reflector.processors import (
AudioFileWriterProcessor,
TranscriptFinalSummaryProcessor,
TranscriptFinalTitleProcessor,
TranscriptTopicDetectorProcessor,
)
from reflector.processors.file_transcript import FileTranscriptInput
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
from reflector.processors.types import TitleSummary
from reflector.processors.types import (
Transcript as TranscriptType,
)
from reflector.settings import settings
from reflector.storage import get_transcripts_storage
class EmptyPipeline:
def __init__(self, logger: structlog.BoundLogger):
self.logger = logger
def get_pref(self, k, d=None):
return d
async def emit(self, event):
pass
class PipelineMainMultitrack(PipelineMainBase):
"""Process multiple participant tracks for a transcript without mixing audio."""
def __init__(self, transcript_id: str):
super().__init__(transcript_id=transcript_id)
self.logger = logger.bind(transcript_id=self.transcript_id)
self.empty_pipeline = EmptyPipeline(logger=self.logger)
async def mixdown_tracks(
self,
track_datas: list[bytes],
writer: AudioFileWriterProcessor,
offsets_seconds: list[float] | None = None,
) -> None:
"""
Minimal multi-track mixdown using a PyAV filter graph (amix), no resampling.
"""
# Discover target sample rate from first decodable frame
target_sample_rate: int | None = None
for data in track_datas:
if not data:
continue
try:
container = av.open(io.BytesIO(data))
try:
for frame in container.decode(audio=0):
target_sample_rate = frame.sample_rate
break
finally:
container.close()
except Exception:
continue
if target_sample_rate:
break
if not target_sample_rate:
self.logger.warning("Mixdown skipped - no decodable audio frames found")
return
# Build PyAV filter graph:
# N abuffer (s32/stereo)
# -> optional adelay per input (for alignment)
# -> amix (s32)
# -> aformat(s16)
# -> sink
graph = av.filter.Graph()
inputs = []
valid_track_datas = [d for d in track_datas if d]
# Align offsets list with the filtered inputs (skip empties)
input_offsets_seconds = None
if offsets_seconds is not None:
input_offsets_seconds = [
offsets_seconds[i] for i, d in enumerate(track_datas) if d
]
for idx, data in enumerate(valid_track_datas):
args = (
f"time_base=1/{target_sample_rate}:"
f"sample_rate={target_sample_rate}:"
f"sample_fmt=s32:"
f"channel_layout=stereo"
)
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
inputs.append(in_ctx)
if not inputs:
self.logger.warning("Mixdown skipped - no valid inputs for graph")
return
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
fmt = graph.add(
"aformat",
args=(
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
),
name="fmt",
)
sink = graph.add("abuffersink", name="out")
# Optional per-input delay before mixing
delays_ms: list[int] = []
if input_offsets_seconds is not None:
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
delays_ms = [
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
]
else:
delays_ms = [0 for _ in inputs]
for idx, in_ctx in enumerate(inputs):
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
if delay_ms > 0:
# adelay requires one value per channel; use same for stereo
adelay = graph.add(
"adelay",
args=f"delays={delay_ms}|{delay_ms}:all=1",
name=f"delay{idx}",
)
in_ctx.link_to(adelay)
adelay.link_to(mixer, 0, idx)
else:
in_ctx.link_to(mixer, 0, idx)
mixer.link_to(fmt)
fmt.link_to(sink)
graph.configure()
# Open containers for decoding
containers = []
for i, d in enumerate(valid_track_datas):
try:
c = av.open(io.BytesIO(d))
containers.append(c)
except Exception as e:
self.logger.warning(
"Mixdown: failed to open container", input=i, error=str(e)
)
containers.append(None)
# Filter out Nones for decoders
containers = [c for c in containers if c is not None]
decoders = [c.decode(audio=0) for c in containers]
active = [True] * len(decoders)
# Per-input resamplers to enforce s32/stereo at the same rate (no resample of rate)
resamplers = [
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
for _ in decoders
]
try:
# Round-robin feed frames into graph, pull mixed frames as they become available
while any(active):
for i, (dec, is_active) in enumerate(zip(decoders, active)):
if not is_active:
continue
try:
frame = next(dec)
except StopIteration:
active[i] = False
continue
# Enforce same sample rate; convert format/layout to s16/stereo (no resample)
if frame.sample_rate != target_sample_rate:
# Skip frames with differing rate
continue
out_frames = resamplers[i].resample(frame) or []
for rf in out_frames:
rf.sample_rate = target_sample_rate
rf.time_base = Fraction(1, target_sample_rate)
inputs[i].push(rf)
# Drain available mixed frames
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
# Signal EOF to inputs and drain remaining
for in_ctx in inputs:
in_ctx.push(None)
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
finally:
for c in containers:
c.close()
async def set_status(self, transcript_id: str, status: TranscriptStatus):
async with self.lock_transaction():
return await transcripts_controller.set_status(transcript_id, status)
async def process(self, bucket_name: str, track_keys: list[str]):
transcript = await self.get_transcript()
s3 = boto3.client(
"s3",
region_name=settings.RECORDING_STORAGE_AWS_REGION,
aws_access_key_id=settings.RECORDING_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.RECORDING_STORAGE_AWS_SECRET_ACCESS_KEY,
)
storage = get_transcripts_storage()
# Pre-download bytes for all tracks for mixing and transcription
track_datas: list[bytes] = []
for key in track_keys:
try:
obj = s3.get_object(Bucket=bucket_name, Key=key)
track_datas.append(obj["Body"].read())
except Exception as e:
self.logger.warning(
"Skipping track - cannot read S3 object", key=key, error=str(e)
)
track_datas.append(b"")
# Extract offsets from Daily.co filename timestamps
# Format: {rec_start_ts}-{uuid}-{media_type}-{track_start_ts}.{ext}
# Example: 1760988935484-uuid-cam-audio-1760988935922
import re
offsets_seconds: list[float] = []
recording_start_ts: int | None = None
for key in track_keys:
# Parse Daily.co raw-tracks filename pattern
match = re.search(r"(\d+)-([0-9a-f-]{36})-(cam-audio)-(\d+)", key)
if not match:
self.logger.warning(
"Track key doesn't match Daily.co pattern, using 0.0 offset",
key=key,
)
offsets_seconds.append(0.0)
continue
rec_start_ts = int(match.group(1))
track_start_ts = int(match.group(4))
# Validate all tracks belong to same recording
if recording_start_ts is None:
recording_start_ts = rec_start_ts
elif rec_start_ts != recording_start_ts:
self.logger.error(
"Track belongs to different recording",
key=key,
expected_start=recording_start_ts,
got_start=rec_start_ts,
)
offsets_seconds.append(0.0)
continue
# Calculate offset in seconds
offset_ms = track_start_ts - rec_start_ts
offset_s = offset_ms / 1000.0
self.logger.info(
"Parsed track offset from filename",
key=key,
recording_start=rec_start_ts,
track_start=track_start_ts,
offset_seconds=offset_s,
)
offsets_seconds.append(max(0.0, offset_s))
# Mixdown all available tracks into transcript.audio_mp3_filename, preserving sample rate
try:
mp3_writer = AudioFileWriterProcessor(
path=str(transcript.audio_mp3_filename)
)
await self.mixdown_tracks(track_datas, mp3_writer, offsets_seconds)
await mp3_writer.flush()
except Exception as e:
self.logger.error("Mixdown failed", error=str(e))
speaker_transcripts: list[TranscriptType] = []
for idx, key in enumerate(track_keys):
ext = ".mp4"
try:
obj = s3.get_object(Bucket=bucket_name, Key=key)
data = obj["Body"].read()
except Exception as e:
self.logger.error(
"Skipping track - cannot read S3 object", key=key, error=str(e)
)
continue
storage_path = f"file_pipeline/{transcript.id}/tracks/track_{idx}{ext}"
try:
await storage.put_file(storage_path, data)
audio_url = await storage.get_file_url(storage_path)
except Exception as e:
self.logger.error(
"Skipping track - cannot upload to storage", key=key, error=str(e)
)
continue
try:
t = await self.transcribe_file(audio_url, transcript.source_language)
except Exception as e:
self.logger.error(
"Transcription via default backend failed, trying local whisper",
key=key,
url=audio_url,
error=str(e),
)
try:
fallback = FileTranscriptAutoProcessor(name="whisper")
result = None
async def capture_result(r):
nonlocal result
result = r
fallback.on(capture_result)
await fallback.push(
FileTranscriptInput(
audio_url=audio_url, language=transcript.source_language
)
)
await fallback.flush()
if not result:
raise Exception("No transcript captured in fallback")
t = result
except Exception as e2:
self.logger.error(
"Skipping track - transcription failed after fallback",
key=key,
url=audio_url,
error=str(e2),
)
continue
if not t.words:
continue
# Shift word timestamps by the track's offset so all are relative to 00:00
track_offset = offsets_seconds[idx] if idx < len(offsets_seconds) else 0.0
for w in t.words:
try:
if hasattr(w, "start") and w.start is not None:
w.start = float(w.start) + track_offset
if hasattr(w, "end") and w.end is not None:
w.end = float(w.end) + track_offset
except Exception:
pass
w.speaker = idx
speaker_transcripts.append(t)
if not speaker_transcripts:
raise Exception("No valid track transcriptions")
merged_words = []
for t in speaker_transcripts:
merged_words.extend(t.words)
merged_words.sort(key=lambda w: w.start)
merged_transcript = TranscriptType(words=merged_words, translation=None)
await transcripts_controller.append_event(
transcript,
event="TRANSCRIPT",
data=TranscriptText(
text=merged_transcript.text, translation=merged_transcript.translation
),
)
topics = await self.detect_topics(merged_transcript, transcript.target_language)
await asyncio.gather(
self.generate_title(topics),
self.generate_summaries(topics),
return_exceptions=False,
)
await self.set_status(transcript.id, "ended")
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
processor = FileTranscriptAutoProcessor()
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
result: TranscriptType | None = None
async def capture_result(transcript):
nonlocal result
result = transcript
processor.on(capture_result)
await processor.push(input_data)
await processor.flush()
if not result:
raise ValueError("No transcript captured")
return result
async def detect_topics(
self, transcript: TranscriptType, target_language: str
) -> list[TitleSummary]:
chunk_size = 300
topics: list[TitleSummary] = []
async def on_topic(topic: TitleSummary):
topics.append(topic)
return await self.on_topic(topic)
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
topic_detector.set_pipeline(self.empty_pipeline)
for i in range(0, len(transcript.words), chunk_size):
chunk_words = transcript.words[i : i + chunk_size]
if not chunk_words:
continue
chunk_transcript = TranscriptType(
words=chunk_words, translation=transcript.translation
)
await topic_detector.push(chunk_transcript)
await topic_detector.flush()
return topics
async def generate_title(self, topics: list[TitleSummary]):
if not topics:
self.logger.warning("No topics for title generation")
return
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
processor.set_pipeline(self.empty_pipeline)
for topic in topics:
await processor.push(topic)
await processor.flush()
async def generate_summaries(self, topics: list[TitleSummary]):
if not topics:
self.logger.warning("No topics for summary generation")
return
transcript = await self.get_transcript()
processor = TranscriptFinalSummaryProcessor(
transcript=transcript,
callback=self.on_long_summary,
on_short_summary=self.on_short_summary,
)
processor.set_pipeline(self.empty_pipeline)
for topic in topics:
await processor.push(topic)
await processor.flush()
@shared_task
@asynctask
async def task_pipeline_multitrack_process(
*, transcript_id: str, bucket_name: str, track_keys: list[str]
):
pipeline = PipelineMainMultitrack(transcript_id=transcript_id)
try:
await pipeline.set_status(transcript_id, "processing")
await pipeline.process(bucket_name, track_keys)
except Exception:
await pipeline.set_status(transcript_id, "error")
raise
post_chain = chain(
task_cleanup_consent.si(transcript_id=transcript_id),
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
task_send_webhook_if_needed.si(transcript_id=transcript_id),
)
post_chain.delay()

View File

@@ -0,0 +1,654 @@
import asyncio
import io
from fractions import Fraction
import av
import boto3
import structlog
from av.audio.resampler import AudioResampler
from celery import chain, shared_task
from reflector.asynctask import asynctask
from reflector.db.transcripts import (
TranscriptStatus,
TranscriptWaveform,
transcripts_controller,
)
from reflector.logger import logger
from reflector.pipelines.main_file_pipeline import task_send_webhook_if_needed
from reflector.pipelines.main_live_pipeline import (
PipelineMainBase,
broadcast_to_sockets,
task_cleanup_consent,
task_pipeline_post_to_zulip,
)
from reflector.processors import (
AudioFileWriterProcessor,
TranscriptFinalSummaryProcessor,
TranscriptFinalTitleProcessor,
TranscriptTopicDetectorProcessor,
)
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
from reflector.processors.file_transcript import FileTranscriptInput
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
from reflector.processors.types import TitleSummary
from reflector.processors.types import (
Transcript as TranscriptType,
)
from reflector.settings import settings
from reflector.storage import get_transcripts_storage
class EmptyPipeline:
def __init__(self, logger: structlog.BoundLogger):
self.logger = logger
def get_pref(self, k, d=None):
return d
async def emit(self, event):
pass
class PipelineMainMultitrack(PipelineMainBase):
"""Process multiple participant tracks for a transcript without mixing audio."""
def __init__(self, transcript_id: str):
super().__init__(transcript_id=transcript_id)
self.logger = logger.bind(transcript_id=self.transcript_id)
self.empty_pipeline = EmptyPipeline(logger=self.logger)
async def pad_track_for_transcription(
self,
track_data: bytes,
track_idx: int,
storage,
) -> tuple[bytes, str]:
"""
Pad a single track with silence based on stream metadata start_time.
This ensures Whisper timestamps will be relative to recording start.
Uses ffmpeg subprocess approach proven to work with python-raw-tracks-align.
Returns: (padded_data, storage_url)
"""
import json
import math
import subprocess
import tempfile
if not track_data:
return b"", ""
transcript = await self.get_transcript()
# Create temp files for ffmpeg processing
with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as input_file:
input_file.write(track_data)
input_file_path = input_file.name
output_file_path = input_file_path.replace(".webm", "_padded.webm")
try:
# Get stream metadata using ffprobe
ffprobe_cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"stream=start_time",
"-of",
"json",
input_file_path,
]
result = subprocess.run(
ffprobe_cmd, capture_output=True, text=True, check=True
)
metadata = json.loads(result.stdout)
# Extract start_time from stream metadata
start_time_seconds = 0.0
if metadata.get("streams") and len(metadata["streams"]) > 0:
start_time_str = metadata["streams"][0].get("start_time", "0")
start_time_seconds = float(start_time_str)
self.logger.info(
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s",
track_idx=track_idx,
)
# If no padding needed, use original
if start_time_seconds <= 0:
storage_path = f"file_pipeline/{transcript.id}/tracks/original_track_{track_idx}.webm"
await storage.put_file(storage_path, track_data)
url = await storage.get_file_url(storage_path)
return track_data, url
# Calculate delay in milliseconds
delay_ms = math.floor(start_time_seconds * 1000)
# Run ffmpeg to pad the audio while maintaining WebM/Opus format for Modal compatibility
# ffmpeg quirk: aresample needs to come before adelay in the filter chain
ffmpeg_cmd = [
"ffmpeg",
"-hide_banner",
"-loglevel",
"error",
"-y", # overwrite output
"-i",
input_file_path,
"-af",
f"aresample=async=1,adelay={delay_ms}:all=true",
"-c:a",
"libopus", # Keep Opus codec for Modal compatibility
"-b:a",
"128k", # Standard bitrate for Opus
output_file_path,
]
self.logger.info(
f"Padding track {track_idx} with {delay_ms}ms delay using ffmpeg",
track_idx=track_idx,
delay_ms=delay_ms,
command=" ".join(ffmpeg_cmd),
)
result = subprocess.run(ffmpeg_cmd, capture_output=True, text=True)
if result.returncode != 0:
self.logger.error(
f"ffmpeg padding failed for track {track_idx}",
track_idx=track_idx,
stderr=result.stderr,
returncode=result.returncode,
)
raise Exception(f"ffmpeg padding failed: {result.stderr}")
# Read the padded output
with open(output_file_path, "rb") as f:
padded_data = f.read()
# Store padded track
storage_path = (
f"file_pipeline/{transcript.id}/tracks/padded_track_{track_idx}.webm"
)
await storage.put_file(storage_path, padded_data)
padded_url = await storage.get_file_url(storage_path)
self.logger.info(
f"Successfully padded track {track_idx} with {start_time_seconds:.3f}s offset, stored at {storage_path}",
track_idx=track_idx,
delay_ms=delay_ms,
padded_url=padded_url,
padded_size=len(padded_data),
)
return padded_data, padded_url
finally:
# Clean up temp files
import os
try:
os.unlink(input_file_path)
except:
pass
try:
os.unlink(output_file_path)
except:
pass
async def mixdown_tracks(
self,
track_datas: list[bytes],
writer: AudioFileWriterProcessor,
offsets_seconds: list[float] | None = None,
) -> None:
"""
Minimal multi-track mixdown using a PyAV filter graph (amix), no resampling.
"""
# Discover target sample rate from first decodable frame
target_sample_rate: int | None = None
for data in track_datas:
if not data:
continue
try:
container = av.open(io.BytesIO(data))
try:
for frame in container.decode(audio=0):
target_sample_rate = frame.sample_rate
break
finally:
container.close()
except Exception:
continue
if target_sample_rate:
break
if not target_sample_rate:
self.logger.warning("Mixdown skipped - no decodable audio frames found")
return
# Build PyAV filter graph:
# N abuffer (s32/stereo)
# -> optional adelay per input (for alignment)
# -> amix (s32)
# -> aformat(s16)
# -> sink
graph = av.filter.Graph()
inputs = []
valid_track_datas = [d for d in track_datas if d]
# Align offsets list with the filtered inputs (skip empties)
input_offsets_seconds = None
if offsets_seconds is not None:
input_offsets_seconds = [
offsets_seconds[i] for i, d in enumerate(track_datas) if d
]
for idx, data in enumerate(valid_track_datas):
args = (
f"time_base=1/{target_sample_rate}:"
f"sample_rate={target_sample_rate}:"
f"sample_fmt=s32:"
f"channel_layout=stereo"
)
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
inputs.append(in_ctx)
if not inputs:
self.logger.warning("Mixdown skipped - no valid inputs for graph")
return
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
fmt = graph.add(
"aformat",
args=(
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
),
name="fmt",
)
sink = graph.add("abuffersink", name="out")
# Optional per-input delay before mixing
delays_ms: list[int] = []
if input_offsets_seconds is not None:
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
delays_ms = [
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
]
else:
delays_ms = [0 for _ in inputs]
for idx, in_ctx in enumerate(inputs):
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
if delay_ms > 0:
# adelay requires one value per channel; use same for stereo
adelay = graph.add(
"adelay",
args=f"delays={delay_ms}|{delay_ms}:all=1",
name=f"delay{idx}",
)
in_ctx.link_to(adelay)
adelay.link_to(mixer, 0, idx)
else:
in_ctx.link_to(mixer, 0, idx)
mixer.link_to(fmt)
fmt.link_to(sink)
graph.configure()
# Open containers for decoding
containers = []
for i, d in enumerate(valid_track_datas):
try:
c = av.open(io.BytesIO(d))
containers.append(c)
except Exception as e:
self.logger.warning(
"Mixdown: failed to open container", input=i, error=str(e)
)
containers.append(None)
# Filter out Nones for decoders
containers = [c for c in containers if c is not None]
decoders = [c.decode(audio=0) for c in containers]
active = [True] * len(decoders)
# Per-input resamplers to enforce s32/stereo at the same rate (no resample of rate)
resamplers = [
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
for _ in decoders
]
try:
# Round-robin feed frames into graph, pull mixed frames as they become available
while any(active):
for i, (dec, is_active) in enumerate(zip(decoders, active)):
if not is_active:
continue
try:
frame = next(dec)
except StopIteration:
active[i] = False
continue
# Enforce same sample rate; convert format/layout to s16/stereo (no resample)
if frame.sample_rate != target_sample_rate:
# Skip frames with differing rate
continue
out_frames = resamplers[i].resample(frame) or []
for rf in out_frames:
rf.sample_rate = target_sample_rate
rf.time_base = Fraction(1, target_sample_rate)
inputs[i].push(rf)
# Drain available mixed frames
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
# Signal EOF to inputs and drain remaining
for in_ctx in inputs:
in_ctx.push(None)
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
finally:
for c in containers:
c.close()
@broadcast_to_sockets
async def set_status(self, transcript_id: str, status: TranscriptStatus):
async with self.lock_transaction():
return await transcripts_controller.set_status(transcript_id, status)
async def on_waveform(self, data):
async with self.transaction():
waveform = TranscriptWaveform(waveform=data)
transcript = await self.get_transcript()
return await transcripts_controller.append_event(
transcript=transcript, event="WAVEFORM", data=waveform
)
async def process(self, bucket_name: str, track_keys: list[str]):
transcript = await self.get_transcript()
s3 = boto3.client(
"s3",
region_name=settings.RECORDING_STORAGE_AWS_REGION,
aws_access_key_id=settings.RECORDING_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.RECORDING_STORAGE_AWS_SECRET_ACCESS_KEY,
)
storage = get_transcripts_storage()
# Pre-download bytes for all tracks for mixing and transcription
track_datas: list[bytes] = []
for key in track_keys:
try:
obj = s3.get_object(Bucket=bucket_name, Key=key)
track_datas.append(obj["Body"].read())
except Exception as e:
self.logger.warning(
"Skipping track - cannot read S3 object", key=key, error=str(e)
)
track_datas.append(b"")
# PAD TRACKS FIRST - this creates full-length tracks with correct timeline
padded_track_datas: list[bytes] = []
padded_track_urls: list[str] = []
for idx, data in enumerate(track_datas):
if not data:
padded_track_datas.append(b"")
padded_track_urls.append("")
continue
padded_data, padded_url = await self.pad_track_for_transcription(
data, idx, storage
)
padded_track_datas.append(padded_data)
padded_track_urls.append(padded_url)
self.logger.info(f"Padded track {idx} for transcription: {padded_url}")
# Mixdown PADDED tracks (already aligned with timeline) into transcript.audio_mp3_filename
try:
# Ensure data directory exists
transcript.data_path.mkdir(parents=True, exist_ok=True)
mp3_writer = AudioFileWriterProcessor(
path=str(transcript.audio_mp3_filename),
on_duration=self.on_duration,
)
# Use PADDED tracks with NO additional offsets (already aligned by padding)
await self.mixdown_tracks(
padded_track_datas, mp3_writer, offsets_seconds=None
)
await mp3_writer.flush()
# Upload the mixed audio to S3 for web playback
if transcript.audio_mp3_filename.exists():
mp3_data = transcript.audio_mp3_filename.read_bytes()
storage_path = f"{transcript.id}/audio.mp3"
await storage.put_file(storage_path, mp3_data)
mp3_url = await storage.get_file_url(storage_path)
# Update transcript to indicate audio is in storage
await transcripts_controller.update(
transcript, {"audio_location": "storage"}
)
self.logger.info(
f"Uploaded mixed audio to storage",
storage_path=storage_path,
size=len(mp3_data),
url=mp3_url,
)
else:
self.logger.warning("Mixdown file does not exist after processing")
except Exception as e:
self.logger.error("Mixdown failed", error=str(e), exc_info=True)
# Generate waveform from the mixed audio file
if transcript.audio_mp3_filename.exists():
try:
self.logger.info("Generating waveform from mixed audio")
waveform_processor = AudioWaveformProcessor(
audio_path=transcript.audio_mp3_filename,
waveform_path=transcript.audio_waveform_filename,
on_waveform=self.on_waveform,
)
waveform_processor.set_pipeline(self.empty_pipeline)
await waveform_processor.flush()
self.logger.info("Waveform generated successfully")
except Exception as e:
self.logger.error(
"Waveform generation failed", error=str(e), exc_info=True
)
# Transcribe PADDED tracks - timestamps will be automatically correct!
speaker_transcripts: list[TranscriptType] = []
for idx, padded_url in enumerate(padded_track_urls):
if not padded_url:
continue
try:
# Transcribe the PADDED track
t = await self.transcribe_file(padded_url, transcript.source_language)
except Exception as e:
self.logger.error(
"Transcription via default backend failed, trying local whisper",
track_idx=idx,
url=padded_url,
error=str(e),
)
try:
fallback = FileTranscriptAutoProcessor(name="whisper")
result = None
async def capture_result(r):
nonlocal result
result = r
fallback.on(capture_result)
await fallback.push(
FileTranscriptInput(
audio_url=padded_url, language=transcript.source_language
)
)
await fallback.flush()
if not result:
raise Exception("No transcript captured in fallback")
t = result
except Exception as e2:
self.logger.error(
"Skipping track - transcription failed after fallback",
track_idx=idx,
url=padded_url,
error=str(e2),
)
continue
if not t.words:
continue
# NO OFFSET ADJUSTMENT NEEDED!
# Timestamps are already correct because we transcribed padded tracks
# Just set speaker ID
for w in t.words:
w.speaker = idx
speaker_transcripts.append(t)
self.logger.info(
f"Track {idx} transcribed successfully with {len(t.words)} words",
track_idx=idx,
)
if not speaker_transcripts:
raise Exception("No valid track transcriptions")
# Merge all words and sort by timestamp
merged_words = []
for t in speaker_transcripts:
merged_words.extend(t.words)
merged_words.sort(
key=lambda w: w.start if hasattr(w, "start") and w.start is not None else 0
)
merged_transcript = TranscriptType(words=merged_words, translation=None)
# Emit TRANSCRIPT event through the shared handler (persists and broadcasts)
await self.on_transcript(merged_transcript)
topics = await self.detect_topics(merged_transcript, transcript.target_language)
await asyncio.gather(
self.generate_title(topics),
self.generate_summaries(topics),
return_exceptions=False,
)
await self.set_status(transcript.id, "ended")
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
processor = FileTranscriptAutoProcessor()
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
result: TranscriptType | None = None
async def capture_result(transcript):
nonlocal result
result = transcript
processor.on(capture_result)
await processor.push(input_data)
await processor.flush()
if not result:
raise ValueError("No transcript captured")
return result
async def detect_topics(
self, transcript: TranscriptType, target_language: str
) -> list[TitleSummary]:
chunk_size = 300
topics: list[TitleSummary] = []
async def on_topic(topic: TitleSummary):
topics.append(topic)
return await self.on_topic(topic)
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
topic_detector.set_pipeline(self.empty_pipeline)
for i in range(0, len(transcript.words), chunk_size):
chunk_words = transcript.words[i : i + chunk_size]
if not chunk_words:
continue
chunk_transcript = TranscriptType(
words=chunk_words, translation=transcript.translation
)
await topic_detector.push(chunk_transcript)
await topic_detector.flush()
return topics
async def generate_title(self, topics: list[TitleSummary]):
if not topics:
self.logger.warning("No topics for title generation")
return
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
processor.set_pipeline(self.empty_pipeline)
for topic in topics:
await processor.push(topic)
await processor.flush()
async def generate_summaries(self, topics: list[TitleSummary]):
if not topics:
self.logger.warning("No topics for summary generation")
return
transcript = await self.get_transcript()
processor = TranscriptFinalSummaryProcessor(
transcript=transcript,
callback=self.on_long_summary,
on_short_summary=self.on_short_summary,
)
processor.set_pipeline(self.empty_pipeline)
for topic in topics:
await processor.push(topic)
await processor.flush()
@shared_task
@asynctask
async def task_pipeline_multitrack_process(
*, transcript_id: str, bucket_name: str, track_keys: list[str]
):
pipeline = PipelineMainMultitrack(transcript_id=transcript_id)
try:
await pipeline.set_status(transcript_id, "processing")
await pipeline.process(bucket_name, track_keys)
except Exception:
await pipeline.set_status(transcript_id, "error")
raise
post_chain = chain(
task_cleanup_consent.si(transcript_id=transcript_id),
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
task_send_webhook_if_needed.si(transcript_id=transcript_id),
)
post_chain.delay()

View File

@@ -0,0 +1,629 @@
import asyncio
import io
from fractions import Fraction
import av
import boto3
import structlog
from av.audio.resampler import AudioResampler
from celery import chain, shared_task
from reflector.asynctask import asynctask
from reflector.db.transcripts import (
TranscriptStatus,
TranscriptText,
transcripts_controller,
)
from reflector.logger import logger
from reflector.pipelines.main_file_pipeline import task_send_webhook_if_needed
from reflector.pipelines.main_live_pipeline import (
PipelineMainBase,
task_cleanup_consent,
task_pipeline_post_to_zulip,
)
from reflector.processors import (
AudioFileWriterProcessor,
TranscriptFinalSummaryProcessor,
TranscriptFinalTitleProcessor,
TranscriptTopicDetectorProcessor,
)
from reflector.processors.file_transcript import FileTranscriptInput
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
from reflector.processors.types import TitleSummary
from reflector.processors.types import (
Transcript as TranscriptType,
)
from reflector.settings import settings
from reflector.storage import get_transcripts_storage
class EmptyPipeline:
def __init__(self, logger: structlog.BoundLogger):
self.logger = logger
def get_pref(self, k, d=None):
return d
async def emit(self, event):
pass
class PipelineMainMultitrack(PipelineMainBase):
"""Process multiple participant tracks for a transcript without mixing audio."""
def __init__(self, transcript_id: str):
super().__init__(transcript_id=transcript_id)
self.logger = logger.bind(transcript_id=self.transcript_id)
self.empty_pipeline = EmptyPipeline(logger=self.logger)
async def pad_track_for_transcription(
self,
track_data: bytes,
track_idx: int,
storage,
) -> tuple[bytes, str]:
"""
Pad a single track with silence based on stream metadata start_time.
This ensures Whisper timestamps will be relative to recording start.
Returns: (padded_data, storage_url)
"""
if not track_data:
return b"", ""
transcript = await self.get_transcript()
# Get stream metadata start_time using PyAV
container = av.open(io.BytesIO(track_data))
try:
audio_stream = container.streams.audio[0]
# Extract start_time from stream metadata
if (
audio_stream.start_time is not None
and audio_stream.time_base is not None
):
start_time_seconds = float(
audio_stream.start_time * audio_stream.time_base
)
else:
start_time_seconds = 0.0
sample_rate = audio_stream.sample_rate
codec_name = audio_stream.codec.name
finally:
container.close()
self.logger.info(
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s, sample_rate={sample_rate}",
track_idx=track_idx,
)
# If no padding needed, use original
if start_time_seconds <= 0:
storage_path = (
f"file_pipeline/{transcript.id}/tracks/original_track_{track_idx}.webm"
)
await storage.put_file(storage_path, track_data)
url = await storage.get_file_url(storage_path)
return track_data, url
# Create PyAV filter graph for padding
graph = av.filter.Graph()
# Input buffer
in_args = (
f"time_base=1/{sample_rate}:"
f"sample_rate={sample_rate}:"
f"sample_fmt=s16:"
f"channel_layout=stereo"
)
input_buffer = graph.add("abuffer", args=in_args, name="in")
# Add delay filter for padding
delay_ms = int(start_time_seconds * 1000)
delay_filter = graph.add(
"adelay", args=f"delays={delay_ms}|{delay_ms}:all=1", name="delay"
)
# Output sink
sink = graph.add("abuffersink", name="out")
# Link filters
input_buffer.link_to(delay_filter)
delay_filter.link_to(sink)
graph.configure()
# Process audio through filter
output_bytes = io.BytesIO()
output_container = av.open(output_bytes, "w", format="webm")
output_stream = output_container.add_stream("libopus", rate=sample_rate)
output_stream.channels = 2
# Reopen input for processing
input_container = av.open(io.BytesIO(track_data))
resampler = AudioResampler(format="s16", layout="stereo", rate=sample_rate)
try:
# Process frames
for frame in input_container.decode(audio=0):
# Resample to match filter requirements
resampled_frames = resampler.resample(frame)
for resampled_frame in resampled_frames:
resampled_frame.pts = frame.pts
resampled_frame.time_base = Fraction(1, sample_rate)
input_buffer.push(resampled_frame)
# Pull from filter and encode
while True:
try:
out_frame = sink.pull()
out_frame.pts = out_frame.pts if out_frame.pts else 0
out_frame.time_base = Fraction(1, sample_rate)
for packet in output_stream.encode(out_frame):
output_container.mux(packet)
except av.BlockingIOError:
break
# Flush
input_buffer.push(None)
while True:
try:
out_frame = sink.pull()
for packet in output_stream.encode(out_frame):
output_container.mux(packet)
except (av.BlockingIOError, av.EOFError):
break
# Flush encoder
for packet in output_stream.encode(None):
output_container.mux(packet)
finally:
input_container.close()
output_container.close()
padded_data = output_bytes.getvalue()
# Store padded track
storage_path = (
f"file_pipeline/{transcript.id}/tracks/padded_track_{track_idx}.webm"
)
await storage.put_file(storage_path, padded_data)
padded_url = await storage.get_file_url(storage_path)
self.logger.info(
f"Padded track {track_idx} with {start_time_seconds:.3f}s offset, stored at {storage_path}",
track_idx=track_idx,
delay_ms=delay_ms,
padded_url=padded_url,
)
return padded_data, padded_url
async def mixdown_tracks(
self,
track_datas: list[bytes],
writer: AudioFileWriterProcessor,
offsets_seconds: list[float] | None = None,
) -> None:
"""
Minimal multi-track mixdown using a PyAV filter graph (amix), no resampling.
"""
# Discover target sample rate from first decodable frame
target_sample_rate: int | None = None
for data in track_datas:
if not data:
continue
try:
container = av.open(io.BytesIO(data))
try:
for frame in container.decode(audio=0):
target_sample_rate = frame.sample_rate
break
finally:
container.close()
except Exception:
continue
if target_sample_rate:
break
if not target_sample_rate:
self.logger.warning("Mixdown skipped - no decodable audio frames found")
return
# Build PyAV filter graph:
# N abuffer (s32/stereo)
# -> optional adelay per input (for alignment)
# -> amix (s32)
# -> aformat(s16)
# -> sink
graph = av.filter.Graph()
inputs = []
valid_track_datas = [d for d in track_datas if d]
# Align offsets list with the filtered inputs (skip empties)
input_offsets_seconds = None
if offsets_seconds is not None:
input_offsets_seconds = [
offsets_seconds[i] for i, d in enumerate(track_datas) if d
]
for idx, data in enumerate(valid_track_datas):
args = (
f"time_base=1/{target_sample_rate}:"
f"sample_rate={target_sample_rate}:"
f"sample_fmt=s32:"
f"channel_layout=stereo"
)
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
inputs.append(in_ctx)
if not inputs:
self.logger.warning("Mixdown skipped - no valid inputs for graph")
return
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
fmt = graph.add(
"aformat",
args=(
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
),
name="fmt",
)
sink = graph.add("abuffersink", name="out")
# Optional per-input delay before mixing
delays_ms: list[int] = []
if input_offsets_seconds is not None:
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
delays_ms = [
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
]
else:
delays_ms = [0 for _ in inputs]
for idx, in_ctx in enumerate(inputs):
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
if delay_ms > 0:
# adelay requires one value per channel; use same for stereo
adelay = graph.add(
"adelay",
args=f"delays={delay_ms}|{delay_ms}:all=1",
name=f"delay{idx}",
)
in_ctx.link_to(adelay)
adelay.link_to(mixer, 0, idx)
else:
in_ctx.link_to(mixer, 0, idx)
mixer.link_to(fmt)
fmt.link_to(sink)
graph.configure()
# Open containers for decoding
containers = []
for i, d in enumerate(valid_track_datas):
try:
c = av.open(io.BytesIO(d))
containers.append(c)
except Exception as e:
self.logger.warning(
"Mixdown: failed to open container", input=i, error=str(e)
)
containers.append(None)
# Filter out Nones for decoders
containers = [c for c in containers if c is not None]
decoders = [c.decode(audio=0) for c in containers]
active = [True] * len(decoders)
# Per-input resamplers to enforce s32/stereo at the same rate (no resample of rate)
resamplers = [
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
for _ in decoders
]
try:
# Round-robin feed frames into graph, pull mixed frames as they become available
while any(active):
for i, (dec, is_active) in enumerate(zip(decoders, active)):
if not is_active:
continue
try:
frame = next(dec)
except StopIteration:
active[i] = False
continue
# Enforce same sample rate; convert format/layout to s16/stereo (no resample)
if frame.sample_rate != target_sample_rate:
# Skip frames with differing rate
continue
out_frames = resamplers[i].resample(frame) or []
for rf in out_frames:
rf.sample_rate = target_sample_rate
rf.time_base = Fraction(1, target_sample_rate)
inputs[i].push(rf)
# Drain available mixed frames
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
# Signal EOF to inputs and drain remaining
for in_ctx in inputs:
in_ctx.push(None)
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
finally:
for c in containers:
c.close()
async def set_status(self, transcript_id: str, status: TranscriptStatus):
async with self.lock_transaction():
return await transcripts_controller.set_status(transcript_id, status)
async def process(self, bucket_name: str, track_keys: list[str]):
transcript = await self.get_transcript()
s3 = boto3.client(
"s3",
region_name=settings.RECORDING_STORAGE_AWS_REGION,
aws_access_key_id=settings.RECORDING_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.RECORDING_STORAGE_AWS_SECRET_ACCESS_KEY,
)
storage = get_transcripts_storage()
# Pre-download bytes for all tracks for mixing and transcription
track_datas: list[bytes] = []
for key in track_keys:
try:
obj = s3.get_object(Bucket=bucket_name, Key=key)
track_datas.append(obj["Body"].read())
except Exception as e:
self.logger.warning(
"Skipping track - cannot read S3 object", key=key, error=str(e)
)
track_datas.append(b"")
# REMOVED: Filename offset extraction - not needed anymore!
# We use stream metadata start_time for padding instead
# Get stream metadata start_times for mixing (still useful for mixdown)
stream_start_times: list[float] = []
for data in track_datas:
if not data:
stream_start_times.append(0.0)
continue
container = av.open(io.BytesIO(data))
try:
audio_stream = container.streams.audio[0]
if (
audio_stream.start_time is not None
and audio_stream.time_base is not None
):
start_time = float(audio_stream.start_time * audio_stream.time_base)
else:
start_time = 0.0
stream_start_times.append(start_time)
finally:
container.close()
# Mixdown all available tracks into transcript.audio_mp3_filename, using stream metadata offsets
try:
mp3_writer = AudioFileWriterProcessor(
path=str(transcript.audio_mp3_filename)
)
await self.mixdown_tracks(track_datas, mp3_writer, stream_start_times)
await mp3_writer.flush()
except Exception as e:
self.logger.error("Mixdown failed", error=str(e))
# PAD TRACKS BEFORE TRANSCRIPTION - THIS IS THE KEY FIX!
padded_track_urls: list[str] = []
for idx, data in enumerate(track_datas):
if not data:
padded_track_urls.append("")
continue
_, padded_url = await self.pad_track_for_transcription(data, idx, storage)
padded_track_urls.append(padded_url)
self.logger.info(f"Padded track {idx} for transcription: {padded_url}")
# Transcribe PADDED tracks - timestamps will be automatically correct!
speaker_transcripts: list[TranscriptType] = []
for idx, padded_url in enumerate(padded_track_urls):
if not padded_url:
continue
try:
# Transcribe the PADDED track
t = await self.transcribe_file(padded_url, transcript.source_language)
except Exception as e:
self.logger.error(
"Transcription via default backend failed, trying local whisper",
track_idx=idx,
url=padded_url,
error=str(e),
)
try:
fallback = FileTranscriptAutoProcessor(name="whisper")
result = None
async def capture_result(r):
nonlocal result
result = r
fallback.on(capture_result)
await fallback.push(
FileTranscriptInput(
audio_url=padded_url, language=transcript.source_language
)
)
await fallback.flush()
if not result:
raise Exception("No transcript captured in fallback")
t = result
except Exception as e2:
self.logger.error(
"Skipping track - transcription failed after fallback",
track_idx=idx,
url=padded_url,
error=str(e2),
)
continue
if not t.words:
continue
# NO OFFSET ADJUSTMENT NEEDED!
# Timestamps are already correct because we transcribed padded tracks
# Just set speaker ID
for w in t.words:
w.speaker = idx
speaker_transcripts.append(t)
self.logger.info(
f"Track {idx} transcribed successfully with {len(t.words)} words",
track_idx=idx,
)
if not speaker_transcripts:
raise Exception("No valid track transcriptions")
# Merge all words and sort by timestamp
merged_words = []
for t in speaker_transcripts:
merged_words.extend(t.words)
merged_words.sort(
key=lambda w: w.start if hasattr(w, "start") and w.start is not None else 0
)
merged_transcript = TranscriptType(words=merged_words, translation=None)
await transcripts_controller.append_event(
transcript,
event="TRANSCRIPT",
data=TranscriptText(
text=merged_transcript.text, translation=merged_transcript.translation
),
)
topics = await self.detect_topics(merged_transcript, transcript.target_language)
await asyncio.gather(
self.generate_title(topics),
self.generate_summaries(topics),
return_exceptions=False,
)
await self.set_status(transcript.id, "ended")
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
processor = FileTranscriptAutoProcessor()
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
result: TranscriptType | None = None
async def capture_result(transcript):
nonlocal result
result = transcript
processor.on(capture_result)
await processor.push(input_data)
await processor.flush()
if not result:
raise ValueError("No transcript captured")
return result
async def detect_topics(
self, transcript: TranscriptType, target_language: str
) -> list[TitleSummary]:
chunk_size = 300
topics: list[TitleSummary] = []
async def on_topic(topic: TitleSummary):
topics.append(topic)
return await self.on_topic(topic)
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
topic_detector.set_pipeline(self.empty_pipeline)
for i in range(0, len(transcript.words), chunk_size):
chunk_words = transcript.words[i : i + chunk_size]
if not chunk_words:
continue
chunk_transcript = TranscriptType(
words=chunk_words, translation=transcript.translation
)
await topic_detector.push(chunk_transcript)
await topic_detector.flush()
return topics
async def generate_title(self, topics: list[TitleSummary]):
if not topics:
self.logger.warning("No topics for title generation")
return
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
processor.set_pipeline(self.empty_pipeline)
for topic in topics:
await processor.push(topic)
await processor.flush()
async def generate_summaries(self, topics: list[TitleSummary]):
if not topics:
self.logger.warning("No topics for summary generation")
return
transcript = await self.get_transcript()
processor = TranscriptFinalSummaryProcessor(
transcript=transcript,
callback=self.on_long_summary,
on_short_summary=self.on_short_summary,
)
processor.set_pipeline(self.empty_pipeline)
for topic in topics:
await processor.push(topic)
await processor.flush()
@shared_task
@asynctask
async def task_pipeline_multitrack_process(
*, transcript_id: str, bucket_name: str, track_keys: list[str]
):
pipeline = PipelineMainMultitrack(transcript_id=transcript_id)
try:
await pipeline.set_status(transcript_id, "processing")
await pipeline.process(bucket_name, track_keys)
except Exception:
await pipeline.set_status(transcript_id, "error")
raise
post_chain = chain(
task_cleanup_consent.si(transcript_id=transcript_id),
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
task_send_webhook_if_needed.si(transcript_id=transcript_id),
)
post_chain.delay()

View File

@@ -0,0 +1,9 @@
"""Platform type definitions.
This module exists solely to define the Platform literal type without any imports,
preventing circular import issues when used across the codebase.
"""
from typing import Literal
Platform = Literal["whereby", "daily"]

View File

@@ -1,5 +1,7 @@
from .audio_chunker import AudioChunkerProcessor # noqa: F401
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
from .audio_merge import AudioMergeProcessor # noqa: F401
from .audio_transcript import AudioTranscriptProcessor # noqa: F401

View File

@@ -1,340 +1,78 @@
from typing import Optional
import av
import numpy as np
import torch
from silero_vad import VADIterator, load_silero_vad
from prometheus_client import Counter, Histogram
from reflector.processors.base import Processor
class AudioChunkerProcessor(Processor):
"""
Assemble audio frames into chunks with VAD-based speech detection
Base class for assembling audio frames into chunks
"""
INPUT_TYPE = av.AudioFrame
OUTPUT_TYPE = list[av.AudioFrame]
def __init__(
self,
block_frames=256,
max_frames=1024,
vad_threshold=0.5,
use_onnx=False,
min_frames=2,
):
super().__init__()
m_chunk = Histogram(
"audio_chunker",
"Time spent in AudioChunker.chunk",
["backend"],
)
m_chunk_call = Counter(
"audio_chunker_call",
"Number of calls to AudioChunker.chunk",
["backend"],
)
m_chunk_success = Counter(
"audio_chunker_success",
"Number of successful calls to AudioChunker.chunk",
["backend"],
)
m_chunk_failure = Counter(
"audio_chunker_failure",
"Number of failed calls to AudioChunker.chunk",
["backend"],
)
def __init__(self, *args, **kwargs):
name = self.__class__.__name__
self.m_chunk = self.m_chunk.labels(name)
self.m_chunk_call = self.m_chunk_call.labels(name)
self.m_chunk_success = self.m_chunk_success.labels(name)
self.m_chunk_failure = self.m_chunk_failure.labels(name)
super().__init__(*args, **kwargs)
self.frames: list[av.AudioFrame] = []
self.block_frames = block_frames
self.max_frames = max_frames
self.vad_threshold = vad_threshold
self.min_frames = min_frames
# Initialize Silero VAD
self._init_vad(use_onnx)
def _init_vad(self, use_onnx=False):
"""Initialize Silero VAD model"""
try:
torch.set_num_threads(1)
self.vad_model = load_silero_vad(onnx=use_onnx)
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
self.logger.info("Silero VAD initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize Silero VAD: {e}")
self.vad_model = None
self.vad_iterator = None
async def _push(self, data: av.AudioFrame):
self.frames.append(data)
# print("timestamp", data.pts * data.time_base * 1000)
# Check for speech segments every 32 frames (~1 second)
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
await self._process_block()
# Safety fallback - emit if we hit max frames
elif len(self.frames) >= self.max_frames:
self.logger.warning(
f"AudioChunkerProcessor: Reached max frames ({self.max_frames}), "
f"emitting first {self.max_frames // 2} frames"
)
frames_to_emit = self.frames[: self.max_frames // 2]
self.frames = self.frames[self.max_frames // 2 :]
if len(frames_to_emit) >= self.min_frames:
await self.emit(frames_to_emit)
else:
self.logger.debug(
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
"""Process incoming audio frame"""
# Validate audio format on first frame
if len(self.frames) == 0:
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
raise ValueError(
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
f"with {len(data.layout.channels)} channel(s). "
f"Use AudioDownscaleProcessor before this processor."
)
async def _process_block(self):
# Need at least 32 frames for VAD detection (~1 second)
if len(self.frames) < 32 or self.vad_iterator is None:
return
# Processing block with current buffer size
# print(f"Processing block: {len(self.frames)} frames in buffer")
try:
# Convert frames to numpy array for VAD
audio_array = self._frames_to_numpy(self.frames)
self.m_chunk_call.inc()
with self.m_chunk.time():
result = await self._chunk(data)
self.m_chunk_success.inc()
if result:
await self.emit(result)
except Exception:
self.m_chunk_failure.inc()
raise
if audio_array is None:
# Fallback: emit all frames if conversion failed
frames_to_emit = self.frames[:]
self.frames = []
if len(frames_to_emit) >= self.min_frames:
await self.emit(frames_to_emit)
else:
self.logger.debug(
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
)
return
# Find complete speech segments in the buffer
speech_end_frame = self._find_speech_segment_end(audio_array)
if speech_end_frame is None or speech_end_frame <= 0:
# No speech found but buffer is getting large
if len(self.frames) > 512:
# Check if it's all silence and can be discarded
# No speech segment found, buffer at {len(self.frames)} frames
# Could emit silence or discard old frames here
# For now, keep first 256 frames and discard older silence
if len(self.frames) > 768:
self.logger.debug(
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
)
self.frames = self.frames[-256:]
return
# Calculate segment timing information
frames_to_emit = self.frames[:speech_end_frame]
# Get timing from av.AudioFrame
if frames_to_emit:
first_frame = frames_to_emit[0]
last_frame = frames_to_emit[-1]
sample_rate = first_frame.sample_rate
# Calculate duration
total_samples = sum(f.samples for f in frames_to_emit)
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
# Get timestamps if available
start_time = (
first_frame.pts * first_frame.time_base if first_frame.pts else 0
)
end_time = (
last_frame.pts * last_frame.time_base if last_frame.pts else 0
)
# Convert to HH:MM:SS format for logging
def format_time(seconds):
if not seconds:
return "00:00:00"
total_seconds = int(float(seconds))
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
secs = total_seconds % 60
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
start_formatted = format_time(start_time)
end_formatted = format_time(end_time)
# Keep remaining frames for next processing
remaining_after = len(self.frames) - speech_end_frame
# Single structured log line
self.logger.info(
"Speech segment found",
start=start_formatted,
end=end_formatted,
frames=speech_end_frame,
duration=round(duration_seconds, 2),
buffer_before=len(self.frames),
remaining=remaining_after,
)
# Keep remaining frames for next processing
self.frames = self.frames[speech_end_frame:]
# Filter out segments with too few frames
if len(frames_to_emit) >= self.min_frames:
await self.emit(frames_to_emit)
else:
self.logger.debug(
f"Ignoring segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
)
except Exception as e:
self.logger.error(f"Error in VAD processing: {e}")
# Fallback to simple chunking
if len(self.frames) >= self.block_frames:
frames_to_emit = self.frames[: self.block_frames]
self.frames = self.frames[self.block_frames :]
if len(frames_to_emit) >= self.min_frames:
await self.emit(frames_to_emit)
else:
self.logger.debug(
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
)
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
"""Convert av.AudioFrame list to numpy array for VAD processing"""
if not frames:
return None
try:
first_frame = frames[0]
original_sample_rate = first_frame.sample_rate
audio_data = []
for frame in frames:
frame_array = frame.to_ndarray()
# Handle stereo -> mono conversion
if len(frame_array.shape) == 2 and frame_array.shape[0] > 1:
frame_array = np.mean(frame_array, axis=0)
elif len(frame_array.shape) == 2:
frame_array = frame_array.flatten()
audio_data.append(frame_array)
if not audio_data:
return None
combined_audio = np.concatenate(audio_data)
# Resample from 48kHz to 16kHz if needed
if original_sample_rate != 16000:
combined_audio = self._resample_audio(
combined_audio, original_sample_rate, 16000
)
# Ensure float32 format
if combined_audio.dtype == np.int16:
# Normalize int16 audio to float32 in range [-1.0, 1.0]
combined_audio = combined_audio.astype(np.float32) / 32768.0
elif combined_audio.dtype != np.float32:
combined_audio = combined_audio.astype(np.float32)
return combined_audio
except Exception as e:
self.logger.error(f"Error converting frames to numpy: {e}")
return None
def _resample_audio(
self, audio: np.ndarray, from_sr: int, to_sr: int
) -> np.ndarray:
"""Simple linear resampling from from_sr to to_sr"""
if from_sr == to_sr:
return audio
try:
# Simple linear interpolation resampling
ratio = to_sr / from_sr
new_length = int(len(audio) * ratio)
# Create indices for interpolation
old_indices = np.linspace(0, len(audio) - 1, new_length)
resampled = np.interp(old_indices, np.arange(len(audio)), audio)
return resampled.astype(np.float32)
except Exception as e:
self.logger.error("Resampling error", exc_info=e)
# Fallback: simple decimation/repetition
if from_sr > to_sr:
# Downsample by taking every nth sample
step = from_sr // to_sr
return audio[::step]
else:
# Upsample by repeating samples
repeat = to_sr // from_sr
return np.repeat(audio, repeat)
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
"""Find complete speech segments and return frame index at segment end"""
if self.vad_iterator is None or len(audio_array) == 0:
return None
try:
# Process audio in 512-sample windows for VAD
window_size = 512
min_silence_windows = 3 # Require 3 windows of silence after speech
# Track speech state
in_speech = False
speech_start = None
speech_end = None
silence_count = 0
for i in range(0, len(audio_array), window_size):
chunk = audio_array[i : i + window_size]
if len(chunk) < window_size:
chunk = np.pad(chunk, (0, window_size - len(chunk)))
# Detect if this window has speech
speech_dict = self.vad_iterator(chunk, return_seconds=True)
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
if speech_dict:
if not in_speech:
# Speech started
speech_start = i
in_speech = True
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
silence_count = 0 # Reset silence counter
continue
if not in_speech:
continue
# We're in speech but found silence
silence_count += 1
if silence_count < min_silence_windows:
continue
# Found end of speech segment
speech_end = i - (min_silence_windows - 1) * window_size
# Debug: print(f"Speech END at sample {speech_end}")
# Convert sample position to frame index
samples_per_frame = self.frames[0].samples if self.frames else 1024
# Account for resampling: we process at 16kHz but frames might be 48kHz
resample_ratio = 48000 / 16000 # 3x
actual_sample_pos = int(speech_end * resample_ratio)
frame_index = actual_sample_pos // samples_per_frame
# Ensure we don't exceed buffer
frame_index = min(frame_index, len(self.frames))
return frame_index
return None
except Exception as e:
self.logger.error(f"Error finding speech segment: {e}")
return None
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
"""
Process audio frame and return chunk when ready.
Subclasses should implement their chunking logic here.
"""
raise NotImplementedError
async def _flush(self):
frames = self.frames[:]
self.frames = []
if frames:
if len(frames) >= self.min_frames:
await self.emit(frames)
else:
self.logger.debug(
f"Ignoring flush segment with {len(frames)} frames "
f"(< {self.min_frames} minimum)"
)
"""Flush any remaining frames when processing ends"""
raise NotImplementedError

View File

@@ -0,0 +1,32 @@
import importlib
from reflector.processors.audio_chunker import AudioChunkerProcessor
from reflector.settings import settings
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
_registry = {}
@classmethod
def register(cls, name, kclass):
cls._registry[name] = kclass
def __new__(cls, name: str | None = None, **kwargs):
if name is None:
name = settings.AUDIO_CHUNKER_BACKEND
if name not in cls._registry:
module_name = f"reflector.processors.audio_chunker_{name}"
importlib.import_module(module_name)
# gather specific configuration for the processor
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
config = {}
name_upper = name.upper()
settings_prefix = "AUDIO_CHUNKER_"
config_prefix = f"{settings_prefix}{name_upper}_"
for key, value in settings:
if key.startswith(config_prefix):
config_name = key[len(settings_prefix) :].lower()
config[config_name] = value
return cls._registry[name](**config | kwargs)

View File

@@ -0,0 +1,34 @@
from typing import Optional
import av
from reflector.processors.audio_chunker import AudioChunkerProcessor
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
"""
Simple frame-based audio chunker that emits chunks after a fixed number of frames
"""
def __init__(self, max_frames=256, **kwargs):
super().__init__(**kwargs)
self.max_frames = max_frames
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
self.frames.append(data)
if len(self.frames) >= self.max_frames:
frames_to_emit = self.frames[:]
self.frames = []
return frames_to_emit
return None
async def _flush(self):
frames = self.frames[:]
self.frames = []
if frames:
await self.emit(frames)
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)

View File

@@ -0,0 +1,298 @@
from typing import Optional
import av
import numpy as np
import torch
from silero_vad import VADIterator, load_silero_vad
from reflector.processors.audio_chunker import AudioChunkerProcessor
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
"""
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
"""
def __init__(
self,
block_frames=256,
max_frames=1024,
use_onnx=True,
min_frames=2,
**kwargs,
):
super().__init__(**kwargs)
self.block_frames = block_frames
self.max_frames = max_frames
self.min_frames = min_frames
# Initialize Silero VAD
self._init_vad(use_onnx)
def _init_vad(self, use_onnx=False):
"""Initialize Silero VAD model"""
try:
torch.set_num_threads(1)
self.vad_model = load_silero_vad(onnx=use_onnx)
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
self.logger.info("Silero VAD initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize Silero VAD: {e}")
self.vad_model = None
self.vad_iterator = None
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
"""Process audio frame and return chunk when ready"""
self.frames.append(data)
# Check for speech segments every 32 frames (~1 second)
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
return await self._process_block()
# Safety fallback - emit if we hit max frames
elif len(self.frames) >= self.max_frames:
self.logger.warning(
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
f"emitting first {self.max_frames // 2} frames"
)
frames_to_emit = self.frames[: self.max_frames // 2]
self.frames = self.frames[self.max_frames // 2 :]
if len(frames_to_emit) >= self.min_frames:
return frames_to_emit
else:
self.logger.debug(
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
)
return None
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
# Need at least 32 frames for VAD detection (~1 second)
if len(self.frames) < 32 or self.vad_iterator is None:
return None
# Processing block with current buffer size
print(f"Processing block: {len(self.frames)} frames in buffer")
try:
# Convert frames to numpy array for VAD
audio_array = self._frames_to_numpy(self.frames)
if audio_array is None:
# Fallback: emit all frames if conversion failed
frames_to_emit = self.frames[:]
self.frames = []
if len(frames_to_emit) >= self.min_frames:
return frames_to_emit
else:
self.logger.debug(
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
)
return None
# Find complete speech segments in the buffer
speech_end_frame = self._find_speech_segment_end(audio_array)
if speech_end_frame is None or speech_end_frame <= 0:
# No speech found but buffer is getting large
if len(self.frames) > 512:
# Check if it's all silence and can be discarded
# No speech segment found, buffer at {len(self.frames)} frames
# Could emit silence or discard old frames here
# For now, keep first 256 frames and discard older silence
if len(self.frames) > 768:
self.logger.debug(
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
)
self.frames = self.frames[-256:]
return None
# Calculate segment timing information
frames_to_emit = self.frames[:speech_end_frame]
# Get timing from av.AudioFrame
if frames_to_emit:
first_frame = frames_to_emit[0]
last_frame = frames_to_emit[-1]
sample_rate = first_frame.sample_rate
# Calculate duration
total_samples = sum(f.samples for f in frames_to_emit)
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
# Get timestamps if available
start_time = (
first_frame.pts * first_frame.time_base if first_frame.pts else 0
)
end_time = (
last_frame.pts * last_frame.time_base if last_frame.pts else 0
)
# Convert to HH:MM:SS format for logging
def format_time(seconds):
if not seconds:
return "00:00:00"
total_seconds = int(float(seconds))
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
secs = total_seconds % 60
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
start_formatted = format_time(start_time)
end_formatted = format_time(end_time)
# Keep remaining frames for next processing
remaining_after = len(self.frames) - speech_end_frame
# Single structured log line
self.logger.info(
"Speech segment found",
start=start_formatted,
end=end_formatted,
frames=speech_end_frame,
duration=round(duration_seconds, 2),
buffer_before=len(self.frames),
remaining=remaining_after,
)
# Keep remaining frames for next processing
self.frames = self.frames[speech_end_frame:]
# Filter out segments with too few frames
if len(frames_to_emit) >= self.min_frames:
return frames_to_emit
else:
self.logger.debug(
f"Ignoring segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
)
except Exception as e:
self.logger.error(f"Error in VAD processing: {e}")
# Fallback to simple chunking
if len(self.frames) >= self.block_frames:
frames_to_emit = self.frames[: self.block_frames]
self.frames = self.frames[self.block_frames :]
if len(frames_to_emit) >= self.min_frames:
return frames_to_emit
else:
self.logger.debug(
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
f"(< {self.min_frames} minimum)"
)
return None
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
"""Convert av.AudioFrame list to numpy array for VAD processing"""
if not frames:
return None
try:
audio_data = []
for frame in frames:
frame_array = frame.to_ndarray()
if len(frame_array.shape) == 2:
frame_array = frame_array.flatten()
audio_data.append(frame_array)
if not audio_data:
return None
combined_audio = np.concatenate(audio_data)
# Ensure float32 format
if combined_audio.dtype == np.int16:
# Normalize int16 audio to float32 in range [-1.0, 1.0]
combined_audio = combined_audio.astype(np.float32) / 32768.0
elif combined_audio.dtype != np.float32:
combined_audio = combined_audio.astype(np.float32)
return combined_audio
except Exception as e:
self.logger.error(f"Error converting frames to numpy: {e}")
return None
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
"""Find complete speech segments and return frame index at segment end"""
if self.vad_iterator is None or len(audio_array) == 0:
return None
try:
# Process audio in 512-sample windows for VAD
window_size = 512
min_silence_windows = 3 # Require 3 windows of silence after speech
# Track speech state
in_speech = False
speech_start = None
speech_end = None
silence_count = 0
for i in range(0, len(audio_array), window_size):
chunk = audio_array[i : i + window_size]
if len(chunk) < window_size:
chunk = np.pad(chunk, (0, window_size - len(chunk)))
# Detect if this window has speech
speech_dict = self.vad_iterator(chunk, return_seconds=True)
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
if speech_dict:
if not in_speech:
# Speech started
speech_start = i
in_speech = True
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
silence_count = 0 # Reset silence counter
continue
if not in_speech:
continue
# We're in speech but found silence
silence_count += 1
if silence_count < min_silence_windows:
continue
# Found end of speech segment
speech_end = i - (min_silence_windows - 1) * window_size
# Debug: print(f"Speech END at sample {speech_end}")
# Convert sample position to frame index
samples_per_frame = self.frames[0].samples if self.frames else 1024
frame_index = speech_end // samples_per_frame
# Ensure we don't exceed buffer
frame_index = min(frame_index, len(self.frames))
return frame_index
return None
except Exception as e:
self.logger.error(f"Error finding speech segment: {e}")
return None
async def _flush(self):
frames = self.frames[:]
self.frames = []
if frames:
if len(frames) >= self.min_frames:
await self.emit(frames)
else:
self.logger.debug(
f"Ignoring flush segment with {len(frames)} frames "
f"(< {self.min_frames} minimum)"
)
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)

View File

@@ -0,0 +1,60 @@
from typing import Optional
import av
from av.audio.resampler import AudioResampler
from reflector.processors.base import Processor
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
frame_copy = frame.from_ndarray(
frame.to_ndarray(),
format=frame.format.name,
layout=frame.layout.name,
)
frame_copy.sample_rate = frame.sample_rate
frame_copy.pts = frame.pts
frame_copy.time_base = frame.time_base
return frame_copy
class AudioDownscaleProcessor(Processor):
"""
Downscale audio frames to 16kHz mono format
"""
INPUT_TYPE = av.AudioFrame
OUTPUT_TYPE = av.AudioFrame
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
super().__init__(**kwargs)
self.target_rate = target_rate
self.target_layout = target_layout
self.resampler: Optional[AudioResampler] = None
self.needs_resampling: Optional[bool] = None
async def _push(self, data: av.AudioFrame):
if self.needs_resampling is None:
self.needs_resampling = (
data.sample_rate != self.target_rate
or data.layout.name != self.target_layout
)
if self.needs_resampling:
self.resampler = AudioResampler(
format="s16", layout=self.target_layout, rate=self.target_rate
)
if not self.needs_resampling or not self.resampler:
await self.emit(data)
return
resampled_frames = self.resampler.resample(copy_frame(data))
for resampled_frame in resampled_frames:
await self.emit(resampled_frame)
async def _flush(self):
if self.needs_resampling and self.resampler:
final_frames = self.resampler.resample(None)
for frame in final_frames:
await self.emit(frame)

View File

@@ -3,24 +3,11 @@ from time import monotonic_ns
from uuid import uuid4
import av
from av.audio.resampler import AudioResampler
from reflector.processors.base import Processor
from reflector.processors.types import AudioFile
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
frame_copy = frame.from_ndarray(
frame.to_ndarray(),
format=frame.format.name,
layout=frame.layout.name,
)
frame_copy.sample_rate = frame.sample_rate
frame_copy.pts = frame.pts
frame_copy.time_base = frame.time_base
return frame_copy
class AudioMergeProcessor(Processor):
"""
Merge audio frame into a single file
@@ -29,9 +16,8 @@ class AudioMergeProcessor(Processor):
INPUT_TYPE = list[av.AudioFrame]
OUTPUT_TYPE = AudioFile
def __init__(self, downsample_to_16k_mono: bool = True, **kwargs):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.downsample_to_16k_mono = downsample_to_16k_mono
async def _push(self, data: list[av.AudioFrame]):
if not data:
@@ -39,72 +25,27 @@ class AudioMergeProcessor(Processor):
# get audio information from first frame
frame = data[0]
original_channels = len(frame.layout.channels)
original_sample_rate = frame.sample_rate
original_sample_width = frame.format.bytes
# determine if we need processing
needs_processing = self.downsample_to_16k_mono and (
original_sample_rate != 16000 or original_channels != 1
)
# determine output parameters
if self.downsample_to_16k_mono:
output_sample_rate = 16000
output_channels = 1
output_sample_width = 2 # 16-bit = 2 bytes
else:
output_sample_rate = original_sample_rate
output_channels = original_channels
output_sample_width = original_sample_width
output_channels = len(frame.layout.channels)
output_sample_rate = frame.sample_rate
output_sample_width = frame.format.bytes
# create audio file
uu = uuid4().hex
fd = io.BytesIO()
if needs_processing:
# Process with PyAV resampler
out_container = av.open(fd, "w", format="wav")
out_stream = out_container.add_stream("pcm_s16le", rate=16000)
out_stream.layout = "mono"
# Use PyAV to write frames
out_container = av.open(fd, "w", format="wav")
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
out_stream.layout = frame.layout.name
# Create resampler if needed
resampler = None
if original_sample_rate != 16000 or original_channels != 1:
resampler = AudioResampler(format="s16", layout="mono", rate=16000)
for frame in data:
if resampler:
# Resample and convert to mono
# XXX for an unknown reason, if we don't use a copy of the frame, we get
# Invalid Argumment from resample. Debugging indicate that when a previous processor
# already used the frame (like AudioFileWriter), it make it invalid argument here.
resampled_frames = resampler.resample(copy_frame(frame))
for resampled_frame in resampled_frames:
for packet in out_stream.encode(resampled_frame):
out_container.mux(packet)
else:
# Direct encoding without resampling
for packet in out_stream.encode(frame):
out_container.mux(packet)
# Flush the encoder
for packet in out_stream.encode(None):
for frame in data:
for packet in out_stream.encode(frame):
out_container.mux(packet)
out_container.close()
else:
# Use PyAV for original frames (no processing needed)
out_container = av.open(fd, "w", format="wav")
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
out_stream.layout = "mono" if output_channels == 1 else frame.layout
for frame in data:
for packet in out_stream.encode(frame):
out_container.mux(packet)
for packet in out_stream.encode(None):
out_container.mux(packet)
out_container.close()
# Flush the encoder
for packet in out_stream.encode(None):
out_container.mux(packet)
out_container.close()
fd.seek(0)

View File

@@ -12,9 +12,6 @@ API will be a POST request to TRANSCRIPT_URL:
"""
from typing import List
import aiohttp
from openai import AsyncOpenAI
from reflector.processors.audio_transcript import AudioTranscriptProcessor
@@ -25,7 +22,9 @@ from reflector.settings import settings
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
def __init__(
self, modal_api_key: str | None = None, batch_enabled: bool = True, **kwargs
self,
modal_api_key: str | None = None,
**kwargs,
):
super().__init__()
if not settings.TRANSCRIPT_URL:
@@ -35,126 +34,6 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
self.transcript_url = settings.TRANSCRIPT_URL + "/v1"
self.timeout = settings.TRANSCRIPT_TIMEOUT
self.modal_api_key = modal_api_key
self.max_batch_duration = 10.0
self.max_batch_files = 15
self.batch_enabled = batch_enabled
self.pending_files: List[AudioFile] = [] # Files waiting to be processed
@classmethod
def _calculate_duration(cls, audio_file: AudioFile) -> float:
"""Calculate audio duration in seconds from AudioFile metadata"""
# Duration = total_samples / sample_rate
# We need to estimate total samples from the file data
import wave
try:
# Try to read as WAV file to get duration
audio_file.fd.seek(0)
with wave.open(audio_file.fd, "rb") as wav_file:
frames = wav_file.getnframes()
sample_rate = wav_file.getframerate()
duration = frames / sample_rate
return duration
except Exception:
# Fallback: estimate from file size and audio parameters
audio_file.fd.seek(0, 2) # Seek to end
file_size = audio_file.fd.tell()
audio_file.fd.seek(0) # Reset to beginning
# Estimate: file_size / (sample_rate * channels * sample_width)
bytes_per_second = (
audio_file.sample_rate
* audio_file.channels
* (audio_file.sample_width // 8)
)
estimated_duration = (
file_size / bytes_per_second if bytes_per_second > 0 else 0
)
return max(0, estimated_duration)
def _create_batches(self, audio_files: List[AudioFile]) -> List[List[AudioFile]]:
"""Group audio files into batches with maximum 30s total duration"""
batches = []
current_batch = []
current_duration = 0.0
for audio_file in audio_files:
duration = self._calculate_duration(audio_file)
# If adding this file exceeds max duration, start a new batch
if current_duration + duration > self.max_batch_duration and current_batch:
batches.append(current_batch)
current_batch = [audio_file]
current_duration = duration
else:
current_batch.append(audio_file)
current_duration += duration
# Add the last batch if not empty
if current_batch:
batches.append(current_batch)
return batches
async def _transcript_batch(self, audio_files: List[AudioFile]) -> List[Transcript]:
"""Transcribe a batch of audio files using the parakeet backend"""
if not audio_files:
return []
self.logger.debug(f"Batch transcribing {len(audio_files)} files")
# Prepare form data for batch request
data = aiohttp.FormData()
data.add_field("language", self.get_pref("audio:source_language", "en"))
data.add_field("batch", "true")
for i, audio_file in enumerate(audio_files):
audio_file.fd.seek(0)
data.add_field(
"files",
audio_file.fd,
filename=f"{audio_file.name}",
content_type="audio/wav",
)
# Make batch request
headers = {"Authorization": f"Bearer {self.modal_api_key}"}
async with aiohttp.ClientSession(
timeout=aiohttp.ClientTimeout(total=self.timeout)
) as session:
async with session.post(
f"{self.transcript_url}/audio/transcriptions",
data=data,
headers=headers,
) as response:
if response.status != 200:
error_text = await response.text()
raise Exception(
f"Batch transcription failed: {response.status} {error_text}"
)
result = await response.json()
# Process batch results
transcripts = []
results = result.get("results", [])
for i, (audio_file, file_result) in enumerate(zip(audio_files, results)):
transcript = Transcript(
words=[
Word(
text=word_info["word"],
start=word_info["start"],
end=word_info["end"],
)
for word_info in file_result.get("words", [])
]
)
transcript.add_offset(audio_file.timestamp)
transcripts.append(transcript)
return transcripts
async def _transcript(self, data: AudioFile):
async with AsyncOpenAI(
@@ -187,96 +66,5 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
return transcript
async def transcript_multiple(
self, audio_files: List[AudioFile]
) -> List[Transcript]:
"""Transcribe multiple audio files using batching"""
if len(audio_files) == 1:
# Single file, use existing method
return [await self._transcript(audio_files[0])]
# Create batches with max 30s duration each
batches = self._create_batches(audio_files)
self.logger.debug(
f"Processing {len(audio_files)} files in {len(batches)} batches"
)
# Process all batches concurrently
all_transcripts = []
for batch in batches:
batch_transcripts = await self._transcript_batch(batch)
all_transcripts.extend(batch_transcripts)
return all_transcripts
async def _push(self, data: AudioFile):
"""Override _push to support batching"""
if not self.batch_enabled:
# Use parent implementation for single file processing
return await super()._push(data)
# Add file to pending batch
self.pending_files.append(data)
self.logger.debug(
f"Added file to batch: {data.name}, batch size: {len(self.pending_files)}"
)
# Calculate total duration of pending files
total_duration = sum(self._calculate_duration(f) for f in self.pending_files)
# Process batch if it reaches max duration or has multiple files ready for optimization
should_process_batch = (
total_duration >= self.max_batch_duration
or len(self.pending_files) >= self.max_batch_files
)
if should_process_batch:
await self._process_pending_batch()
async def _process_pending_batch(self):
"""Process all pending files as batches"""
if not self.pending_files:
return
self.logger.debug(f"Processing batch of {len(self.pending_files)} files")
try:
# Create batches respecting duration limit
batches = self._create_batches(self.pending_files)
# Process each batch
for batch in batches:
self.m_transcript_call.inc()
try:
with self.m_transcript.time():
# Use batch transcription
transcripts = await self._transcript_batch(batch)
self.m_transcript_success.inc()
# Emit each transcript
for transcript in transcripts:
if transcript:
await self.emit(transcript)
except Exception:
self.m_transcript_failure.inc()
raise
finally:
# Release audio files
for audio_file in batch:
audio_file.release()
finally:
# Clear pending files
self.pending_files.clear()
async def _flush(self):
"""Process any remaining files when flushing"""
await self._process_pending_batch()
await super()._flush()
AudioTranscriptAutoProcessor.register("modal", AudioTranscriptModalProcessor)

View File

@@ -47,6 +47,7 @@ class FileDiarizationModalProcessor(FileDiarizationProcessor):
"audio_file_url": data.audio_url,
"timestamp": 0,
},
follow_redirects=True,
)
response.raise_for_status()
diarization_data = response.json()["diarization"]

View File

@@ -54,6 +54,7 @@ class FileTranscriptModalProcessor(FileTranscriptProcessor):
"language": data.language,
"batch": True,
},
follow_redirects=True,
)
response.raise_for_status()
result = response.json()
@@ -67,6 +68,9 @@ class FileTranscriptModalProcessor(FileTranscriptProcessor):
for word_info in result.get("words", [])
]
# words come not in order
words.sort(key=lambda w: w.start)
return Transcript(words=words)

View File

@@ -1,6 +1,6 @@
from textwrap import dedent
from pydantic import BaseModel, Field
from pydantic import BaseModel, ConfigDict, Field
from reflector.llm import LLM
from reflector.processors.base import Processor
@@ -34,8 +34,14 @@ TOPIC_PROMPT = dedent(
class TopicResponse(BaseModel):
"""Structured response for topic detection"""
title: str = Field(description="A descriptive title for the topic being discussed")
summary: str = Field(description="A concise 1-2 sentence summary of the discussion")
model_config = ConfigDict(populate_by_name=True)
title: str = Field(
description="A descriptive title for the topic being discussed", alias="Title"
)
summary: str = Field(
description="A concise 1-2 sentence summary of the discussion", alias="Summary"
)
class TranscriptTopicDetectorProcessor(Processor):

View File

@@ -4,11 +4,8 @@ import tempfile
from pathlib import Path
from typing import Annotated, TypedDict
from profanityfilter import ProfanityFilter
from pydantic import BaseModel, Field, PrivateAttr
from reflector.redis_cache import redis_cache
class DiarizationSegment(TypedDict):
"""Type definition for diarization segment containing speaker information"""
@@ -20,9 +17,6 @@ class DiarizationSegment(TypedDict):
PUNC_RE = re.compile(r"[.;:?!…]")
profanity_filter = ProfanityFilter()
profanity_filter.set_censor("*")
class AudioFile(BaseModel):
name: str
@@ -124,21 +118,11 @@ def words_to_segments(words: list[Word]) -> list[TranscriptSegment]:
class Transcript(BaseModel):
translation: str | None = None
words: list[Word] = None
@property
def raw_text(self):
# Uncensored text
return "".join([word.text for word in self.words])
@redis_cache(prefix="profanity", duration=3600 * 24 * 7)
def _get_censored_text(self, text: str):
return profanity_filter.censor(text).strip()
words: list[Word] = []
@property
def text(self):
# Censored text
return self._get_censored_text(self.raw_text)
return "".join([word.text for word in self.words])
@property
def human_timestamp(self):
@@ -170,12 +154,6 @@ class Transcript(BaseModel):
word.start += offset
word.end += offset
def clone(self):
words = [
Word(text=word.text, start=word.start, end=word.end) for word in self.words
]
return Transcript(text=self.text, translation=self.translation, words=words)
def as_segments(self) -> list[TranscriptSegment]:
return words_to_segments(self.words)

View File

@@ -1,10 +1,17 @@
import asyncio
import functools
import json
from typing import Optional
import redis
import redis.asyncio as redis_async
import structlog
from redis.exceptions import LockError
from reflector.settings import settings
logger = structlog.get_logger(__name__)
redis_clients = {}
@@ -21,6 +28,12 @@ def get_redis_client(db=0):
return redis_clients[db]
async def get_async_redis_client(db: int = 0):
return await redis_async.from_url(
f"redis://{settings.REDIS_HOST}:{settings.REDIS_PORT}/{db}"
)
def redis_cache(prefix="cache", duration=3600, db=settings.REDIS_CACHE_DB, argidx=1):
"""
Cache the result of a function in Redis.
@@ -49,3 +62,87 @@ def redis_cache(prefix="cache", duration=3600, db=settings.REDIS_CACHE_DB, argid
return wrapper
return decorator
class RedisAsyncLock:
def __init__(
self,
key: str,
timeout: int = 120,
extend_interval: int = 30,
skip_if_locked: bool = False,
blocking: bool = True,
blocking_timeout: Optional[float] = None,
):
self.key = f"async_lock:{key}"
self.timeout = timeout
self.extend_interval = extend_interval
self.skip_if_locked = skip_if_locked
self.blocking = blocking
self.blocking_timeout = blocking_timeout
self._lock = None
self._redis = None
self._extend_task = None
self._acquired = False
async def _extend_lock_periodically(self):
while True:
try:
await asyncio.sleep(self.extend_interval)
if self._lock:
await self._lock.extend(self.timeout, replace_ttl=True)
logger.debug("Extended lock", key=self.key)
except LockError:
logger.warning("Failed to extend lock", key=self.key)
break
except asyncio.CancelledError:
break
except Exception as e:
logger.error("Error extending lock", key=self.key, error=str(e))
break
async def __aenter__(self):
self._redis = await get_async_redis_client()
self._lock = self._redis.lock(
self.key,
timeout=self.timeout,
blocking=self.blocking,
blocking_timeout=self.blocking_timeout,
)
self._acquired = await self._lock.acquire()
if not self._acquired:
if self.skip_if_locked:
logger.warning(
"Lock already acquired by another process, skipping", key=self.key
)
return self
else:
raise LockError(f"Failed to acquire lock: {self.key}")
self._extend_task = asyncio.create_task(self._extend_lock_periodically())
logger.info("Acquired lock", key=self.key)
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self._extend_task:
self._extend_task.cancel()
try:
await self._extend_task
except asyncio.CancelledError:
pass
if self._acquired and self._lock:
try:
await self._lock.release()
logger.info("Released lock", key=self.key)
except LockError:
logger.debug("Lock already released or expired", key=self.key)
if self._redis:
await self._redis.aclose()
@property
def acquired(self) -> bool:
return self._acquired

View File

@@ -0,0 +1,408 @@
"""
ICS Calendar Synchronization Service
This module provides services for fetching, parsing, and synchronizing ICS (iCalendar)
calendar feeds with room booking data in the database.
Key Components:
- ICSFetchService: Handles HTTP fetching and parsing of ICS calendar data
- ICSSyncService: Manages the synchronization process between ICS feeds and database
Example Usage:
# Sync a room's calendar
room = Room(id="room1", name="conference-room", ics_url="https://cal.example.com/room.ics")
result = await ics_sync_service.sync_room_calendar(room)
# Result structure:
{
"status": "success", # success|unchanged|error|skipped
"hash": "abc123...", # MD5 hash of ICS content
"events_found": 5, # Events matching this room
"total_events": 12, # Total events in calendar within time window
"events_created": 2, # New events added to database
"events_updated": 3, # Existing events modified
"events_deleted": 1 # Events soft-deleted (no longer in calendar)
}
Event Matching:
Events are matched to rooms by checking if the room's full URL appears in the
event's LOCATION or DESCRIPTION fields. Only events within a 25-hour window
(1 hour ago to 24 hours from now) are processed.
Input: ICS calendar URL (e.g., "https://calendar.google.com/calendar/ical/...")
Output: EventData objects with structured calendar information:
{
"ics_uid": "event123@google.com",
"title": "Team Meeting",
"description": "Weekly sync meeting",
"location": "https://meet.company.com/conference-room",
"start_time": datetime(2024, 1, 15, 14, 0, tzinfo=UTC),
"end_time": datetime(2024, 1, 15, 15, 0, tzinfo=UTC),
"attendees": [
{"email": "user@company.com", "name": "John Doe", "role": "ORGANIZER"},
{"email": "attendee@company.com", "name": "Jane Smith", "status": "ACCEPTED"}
],
"ics_raw_data": "BEGIN:VEVENT\nUID:event123@google.com\n..."
}
"""
import hashlib
from datetime import date, datetime, timedelta, timezone
from enum import Enum
from typing import TypedDict
import httpx
import pytz
import structlog
from icalendar import Calendar, Event
from reflector.db.calendar_events import CalendarEvent, calendar_events_controller
from reflector.db.rooms import Room, rooms_controller
from reflector.redis_cache import RedisAsyncLock
from reflector.settings import settings
logger = structlog.get_logger()
EVENT_WINDOW_DELTA_START = timedelta(hours=-1)
EVENT_WINDOW_DELTA_END = timedelta(hours=24)
class SyncStatus(str, Enum):
SUCCESS = "success"
UNCHANGED = "unchanged"
ERROR = "error"
SKIPPED = "skipped"
class AttendeeData(TypedDict, total=False):
email: str | None
name: str | None
status: str | None
role: str | None
class EventData(TypedDict):
ics_uid: str
title: str | None
description: str | None
location: str | None
start_time: datetime
end_time: datetime
attendees: list[AttendeeData]
ics_raw_data: str
class SyncStats(TypedDict):
events_created: int
events_updated: int
events_deleted: int
class SyncResultBase(TypedDict):
status: SyncStatus
class SyncResult(SyncResultBase, total=False):
hash: str | None
events_found: int
total_events: int
events_created: int
events_updated: int
events_deleted: int
error: str | None
reason: str | None
class ICSFetchService:
def __init__(self):
self.client = httpx.AsyncClient(
timeout=30.0, headers={"User-Agent": "Reflector/1.0"}
)
async def fetch_ics(self, url: str) -> str:
response = await self.client.get(url)
response.raise_for_status()
return response.text
def parse_ics(self, ics_content: str) -> Calendar:
return Calendar.from_ical(ics_content)
def extract_room_events(
self, calendar: Calendar, room_name: str, room_url: str
) -> tuple[list[EventData], int]:
events = []
total_events = 0
now = datetime.now(timezone.utc)
window_start = now + EVENT_WINDOW_DELTA_START
window_end = now + EVENT_WINDOW_DELTA_END
for component in calendar.walk():
if component.name != "VEVENT":
continue
status = component.get("STATUS", "").upper()
if status == "CANCELLED":
continue
# Count total non-cancelled events in the time window
event_data = self._parse_event(component)
if event_data and window_start <= event_data["start_time"] <= window_end:
total_events += 1
# Check if event matches this room
if self._event_matches_room(component, room_name, room_url):
events.append(event_data)
return events, total_events
def _event_matches_room(self, event: Event, room_name: str, room_url: str) -> bool:
location = str(event.get("LOCATION", ""))
description = str(event.get("DESCRIPTION", ""))
# Only match full room URL
# XXX leaved here as a patterns, to later be extended with tinyurl or such too
patterns = [
room_url,
]
# Check location and description for patterns
text_to_check = f"{location} {description}".lower()
for pattern in patterns:
if pattern.lower() in text_to_check:
return True
return False
def _parse_event(self, event: Event) -> EventData | None:
uid = str(event.get("UID", ""))
summary = str(event.get("SUMMARY", ""))
description = str(event.get("DESCRIPTION", ""))
location = str(event.get("LOCATION", ""))
dtstart = event.get("DTSTART")
dtend = event.get("DTEND")
if not dtstart:
return None
# Convert fields
start_time = self._normalize_datetime(
dtstart.dt if hasattr(dtstart, "dt") else dtstart
)
end_time = (
self._normalize_datetime(dtend.dt if hasattr(dtend, "dt") else dtend)
if dtend
else start_time + timedelta(hours=1)
)
attendees = self._parse_attendees(event)
# Get raw event data for storage
raw_data = event.to_ical().decode("utf-8")
return {
"ics_uid": uid,
"title": summary,
"description": description,
"location": location,
"start_time": start_time,
"end_time": end_time,
"attendees": attendees,
"ics_raw_data": raw_data,
}
def _normalize_datetime(self, dt) -> datetime:
# Ensure datetime is with timezone, if not, assume UTC
if isinstance(dt, date) and not isinstance(dt, datetime):
dt = datetime.combine(dt, datetime.min.time())
dt = pytz.UTC.localize(dt)
elif isinstance(dt, datetime):
if dt.tzinfo is None:
dt = pytz.UTC.localize(dt)
else:
dt = dt.astimezone(pytz.UTC)
return dt
def _parse_attendees(self, event: Event) -> list[AttendeeData]:
# Extracts attendee information from both ATTENDEE and ORGANIZER properties.
# Handles malformed comma-separated email addresses in single ATTENDEE fields
# by splitting them into separate attendee entries. Returns a list of attendee
# data including email, name, status, and role information.
final_attendees = []
attendees = event.get("ATTENDEE", [])
if not isinstance(attendees, list):
attendees = [attendees]
for att in attendees:
email_str = str(att).replace("mailto:", "") if att else None
# Handle malformed comma-separated email addresses in a single ATTENDEE field
if email_str and "," in email_str:
# Split comma-separated emails and create separate attendee entries
email_parts = [email.strip() for email in email_str.split(",")]
for email in email_parts:
if email and "@" in email:
clean_email = email.replace("MAILTO:", "").replace(
"mailto:", ""
)
att_data: AttendeeData = {
"email": clean_email,
"name": att.params.get("CN")
if hasattr(att, "params") and email == email_parts[0]
else None,
"status": att.params.get("PARTSTAT")
if hasattr(att, "params") and email == email_parts[0]
else None,
"role": att.params.get("ROLE")
if hasattr(att, "params") and email == email_parts[0]
else None,
}
final_attendees.append(att_data)
else:
# Normal single attendee
att_data: AttendeeData = {
"email": email_str,
"name": att.params.get("CN") if hasattr(att, "params") else None,
"status": att.params.get("PARTSTAT")
if hasattr(att, "params")
else None,
"role": att.params.get("ROLE") if hasattr(att, "params") else None,
}
final_attendees.append(att_data)
# Add organizer
organizer = event.get("ORGANIZER")
if organizer:
org_email = (
str(organizer).replace("mailto:", "").replace("MAILTO:", "")
if organizer
else None
)
org_data: AttendeeData = {
"email": org_email,
"name": organizer.params.get("CN")
if hasattr(organizer, "params")
else None,
"role": "ORGANIZER",
}
final_attendees.append(org_data)
return final_attendees
class ICSSyncService:
def __init__(self):
self.fetch_service = ICSFetchService()
async def sync_room_calendar(self, room: Room) -> SyncResult:
async with RedisAsyncLock(
f"ics_sync_room:{room.id}", skip_if_locked=True
) as lock:
if not lock.acquired:
logger.warning("ICS sync already in progress for room", room_id=room.id)
return {
"status": SyncStatus.SKIPPED,
"reason": "Sync already in progress",
}
return await self._sync_room_calendar(room)
async def _sync_room_calendar(self, room: Room) -> SyncResult:
if not room.ics_enabled or not room.ics_url:
return {"status": SyncStatus.SKIPPED, "reason": "ICS not configured"}
try:
if not self._should_sync(room):
return {"status": SyncStatus.SKIPPED, "reason": "Not time to sync yet"}
ics_content = await self.fetch_service.fetch_ics(room.ics_url)
calendar = self.fetch_service.parse_ics(ics_content)
content_hash = hashlib.md5(ics_content.encode()).hexdigest()
if room.ics_last_etag == content_hash:
logger.info("No changes in ICS for room", room_id=room.id)
room_url = f"{settings.UI_BASE_URL}/{room.name}"
events, total_events = self.fetch_service.extract_room_events(
calendar, room.name, room_url
)
return {
"status": SyncStatus.UNCHANGED,
"hash": content_hash,
"events_found": len(events),
"total_events": total_events,
"events_created": 0,
"events_updated": 0,
"events_deleted": 0,
}
# Extract matching events
room_url = f"{settings.UI_BASE_URL}/{room.name}"
events, total_events = self.fetch_service.extract_room_events(
calendar, room.name, room_url
)
sync_result = await self._sync_events_to_database(room.id, events)
# Update room sync metadata
await rooms_controller.update(
room,
{
"ics_last_sync": datetime.now(timezone.utc),
"ics_last_etag": content_hash,
},
mutate=False,
)
return {
"status": SyncStatus.SUCCESS,
"hash": content_hash,
"events_found": len(events),
"total_events": total_events,
**sync_result,
}
except Exception as e:
logger.error("Failed to sync ICS for room", room_id=room.id, error=str(e))
return {"status": SyncStatus.ERROR, "error": str(e)}
def _should_sync(self, room: Room) -> bool:
if not room.ics_last_sync:
return True
time_since_sync = datetime.now(timezone.utc) - room.ics_last_sync
return time_since_sync.total_seconds() >= room.ics_fetch_interval
async def _sync_events_to_database(
self, room_id: str, events: list[EventData]
) -> SyncStats:
created = 0
updated = 0
current_ics_uids = []
for event_data in events:
calendar_event = CalendarEvent(room_id=room_id, **event_data)
existing = await calendar_events_controller.get_by_ics_uid(
room_id, event_data["ics_uid"]
)
if existing:
updated += 1
else:
created += 1
await calendar_events_controller.upsert(calendar_event)
current_ics_uids.append(event_data["ics_uid"])
# Soft delete events that are no longer in calendar
deleted = await calendar_events_controller.soft_delete_missing(
room_id, current_ics_uids
)
return {
"events_created": created,
"events_updated": updated,
"events_deleted": deleted,
}
ics_sync_service = ICSSyncService()

View File

@@ -1,5 +1,9 @@
from pydantic.types import PositiveInt
from pydantic_settings import BaseSettings, SettingsConfigDict
from reflector.platform_types import Platform
from reflector.utils.string import NonEmptyString
class Settings(BaseSettings):
model_config = SettingsConfigDict(
@@ -21,6 +25,10 @@ class Settings(BaseSettings):
# local data directory
DATA_DIR: str = "./data"
# Audio Chunking
# backends: silero, frames
AUDIO_CHUNKER_BACKEND: str = "frames"
# Audio Transcription
# backends: whisper, modal
TRANSCRIPT_BACKEND: str = "whisper"
@@ -86,9 +94,8 @@ class Settings(BaseSettings):
AUTH_JWT_PUBLIC_KEY: str | None = "authentik.monadical.com_public.pem"
AUTH_JWT_AUDIENCE: str | None = None
# API public mode
# if set, all anonymous record will be public
PUBLIC_MODE: bool = False
PUBLIC_DATA_RETENTION_DAYS: PositiveInt = 7
# Min transcript length to generate topic + summary
MIN_TRANSCRIPT_LENGTH: int = 750
@@ -116,13 +123,26 @@ class Settings(BaseSettings):
# Whereby integration
WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
WHEREBY_API_KEY: str | None = None
WHEREBY_API_KEY: NonEmptyString | None = None
WHEREBY_WEBHOOK_SECRET: str | None = None
AWS_WHEREBY_ACCESS_KEY_ID: str | None = None
AWS_WHEREBY_ACCESS_KEY_SECRET: str | None = None
AWS_PROCESS_RECORDING_QUEUE_URL: str | None = None
SQS_POLLING_TIMEOUT_SECONDS: int = 60
# Daily.co integration
DAILY_API_KEY: str | None = None
DAILY_WEBHOOK_SECRET: str | None = None
DAILY_SUBDOMAIN: str | None = None
AWS_DAILY_S3_BUCKET: str | None = None
AWS_DAILY_S3_REGION: str = "us-west-2"
AWS_DAILY_ROLE_ARN: str | None = None
# Platform Migration Feature Flags
DAILY_MIGRATION_ENABLED: bool = False
DAILY_MIGRATION_ROOM_IDS: list[str] = []
DEFAULT_VIDEO_PLATFORM: Platform = "whereby"
# Zulip integration
ZULIP_REALM: str | None = None
ZULIP_API_KEY: str | None = None

View File

@@ -0,0 +1,72 @@
#!/usr/bin/env python
"""
Manual cleanup tool for old public data.
Uses the same implementation as the Celery worker task.
"""
import argparse
import asyncio
import sys
import structlog
from reflector.settings import settings
from reflector.worker.cleanup import _cleanup_old_public_data
logger = structlog.get_logger(__name__)
async def cleanup_old_data(days: int = 7):
logger.info(
"Starting manual cleanup",
retention_days=days,
public_mode=settings.PUBLIC_MODE,
)
if not settings.PUBLIC_MODE:
logger.critical(
"WARNING: PUBLIC_MODE is False. "
"This tool is intended for public instances only."
)
raise Exception("Tool intended for public instances only")
result = await _cleanup_old_public_data(days=days)
if result:
logger.info(
"Cleanup completed",
transcripts_deleted=result.get("transcripts_deleted", 0),
meetings_deleted=result.get("meetings_deleted", 0),
recordings_deleted=result.get("recordings_deleted", 0),
errors_count=len(result.get("errors", [])),
)
if result.get("errors"):
logger.warning(
"Errors encountered during cleanup:", errors=result["errors"][:10]
)
else:
logger.info("Cleanup skipped or completed without results")
def main():
parser = argparse.ArgumentParser(
description="Clean up old transcripts and meetings"
)
parser.add_argument(
"--days",
type=int,
default=7,
help="Number of days to keep data (default: 7)",
)
args = parser.parse_args()
if args.days < 1:
logger.error("Days must be at least 1")
sys.exit(1)
asyncio.run(cleanup_old_data(days=args.days))
if __name__ == "__main__":
main()

View File

@@ -1,292 +1,204 @@
"""
Process audio file with diarization support
===========================================
Extended version of process.py that includes speaker diarization.
This tool processes audio files locally without requiring the full server infrastructure.
"""
import argparse
import asyncio
import tempfile
import uuid
import json
import shutil
import sys
import time
from pathlib import Path
from typing import List
import av
from typing import Any, Dict, List, Literal
from reflector.db.transcripts import SourceKind, TranscriptTopic, transcripts_controller
from reflector.logger import logger
from reflector.processors import (
AudioChunkerProcessor,
AudioFileWriterProcessor,
AudioMergeProcessor,
AudioTranscriptAutoProcessor,
Pipeline,
PipelineEvent,
TranscriptFinalSummaryProcessor,
TranscriptFinalTitleProcessor,
TranscriptLinerProcessor,
TranscriptTopicDetectorProcessor,
TranscriptTranslatorAutoProcessor,
from reflector.pipelines.main_file_pipeline import (
task_pipeline_file_process as task_pipeline_file_process,
)
from reflector.processors.base import BroadcastProcessor, Processor
from reflector.processors.types import (
AudioDiarizationInput,
TitleSummary,
TitleSummaryWithId,
from reflector.pipelines.main_live_pipeline import pipeline_post as live_pipeline_post
from reflector.pipelines.main_live_pipeline import (
pipeline_process as live_pipeline_process,
)
class TopicCollectorProcessor(Processor):
"""Collect topics for diarization"""
def serialize_topics(topics: List[TranscriptTopic]) -> List[Dict[str, Any]]:
"""Convert TranscriptTopic objects to JSON-serializable dicts"""
serialized = []
for topic in topics:
topic_dict = topic.model_dump()
serialized.append(topic_dict)
return serialized
INPUT_TYPE = TitleSummary
OUTPUT_TYPE = TitleSummary
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.topics: List[TitleSummaryWithId] = []
self._topic_id = 0
def debug_print_speakers(serialized_topics: List[Dict[str, Any]]) -> None:
"""Print debug info about speakers found in topics"""
all_speakers = set()
for topic_dict in serialized_topics:
for word in topic_dict.get("words", []):
all_speakers.add(word.get("speaker", 0))
async def _push(self, data: TitleSummary):
# Convert to TitleSummaryWithId and collect
self._topic_id += 1
topic_with_id = TitleSummaryWithId(
id=str(self._topic_id),
title=data.title,
summary=data.summary,
timestamp=data.timestamp,
duration=data.duration,
transcript=data.transcript,
print(
f"Found {len(serialized_topics)} topics with speakers: {all_speakers}",
file=sys.stderr,
)
TranscriptId = str
# common interface for every flow: it needs an Entry in db with specific ceremony (file path + status + actual file in file system)
# ideally we want to get rid of it at some point
async def prepare_entry(
source_path: str,
source_language: str,
target_language: str,
) -> TranscriptId:
file_path = Path(source_path)
transcript = await transcripts_controller.add(
file_path.name,
# note that the real file upload has SourceKind: LIVE for the reason of it's an error
source_kind=SourceKind.FILE,
source_language=source_language,
target_language=target_language,
user_id=None,
)
logger.info(
f"Created empty transcript {transcript.id} for file {file_path.name} because technically we need an empty transcript before we start transcript"
)
# pipelines expect files as upload.*
extension = file_path.suffix
upload_path = transcript.data_path / f"upload{extension}"
upload_path.parent.mkdir(parents=True, exist_ok=True)
shutil.copy2(source_path, upload_path)
logger.info(f"Copied {source_path} to {upload_path}")
# pipelines expect entity status "uploaded"
await transcripts_controller.update(transcript, {"status": "uploaded"})
return transcript.id
# same reason as prepare_entry
async def extract_result_from_entry(
transcript_id: TranscriptId, output_path: str
) -> None:
post_final_transcript = await transcripts_controller.get_by_id(transcript_id)
# assert post_final_transcript.status == "ended"
# File pipeline doesn't set status to "ended", only live pipeline does https://github.com/Monadical-SAS/reflector/issues/582
topics = post_final_transcript.topics
if not topics:
raise RuntimeError(
f"No topics found for transcript {transcript_id} after processing"
)
self.topics.append(topic_with_id)
# Pass through the original topic
await self.emit(data)
serialized_topics = serialize_topics(topics)
def get_topics(self) -> List[TitleSummaryWithId]:
return self.topics
if output_path:
# Write to JSON file
with open(output_path, "w") as f:
for topic_dict in serialized_topics:
json.dump(topic_dict, f)
f.write("\n")
print(f"Results written to {output_path}", file=sys.stderr)
else:
# Write to stdout as JSONL
for topic_dict in serialized_topics:
print(json.dumps(topic_dict))
debug_print_speakers(serialized_topics)
async def process_audio_file(
filename,
event_callback,
only_transcript=False,
source_language="en",
target_language="en",
enable_diarization=True,
diarization_backend="pyannote",
async def process_live_pipeline(
transcript_id: TranscriptId,
):
# Create temp file for audio if diarization is enabled
audio_temp_path = None
if enable_diarization:
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
audio_temp_path = audio_temp_file.name
audio_temp_file.close()
"""Process transcript_id with transcription and diarization"""
# Create processor for collecting topics
topic_collector = TopicCollectorProcessor()
print(f"Processing transcript_id {transcript_id}...", file=sys.stderr)
await live_pipeline_process(transcript_id=transcript_id)
print(f"Processing complete for transcript {transcript_id}", file=sys.stderr)
# Build pipeline for audio processing
processors = []
pre_final_transcript = await transcripts_controller.get_by_id(transcript_id)
# Add audio file writer at the beginning if diarization is enabled
if enable_diarization:
processors.append(AudioFileWriterProcessor(audio_temp_path))
# assert documented behaviour: after process, the pipeline isn't ended. this is the reason of calling pipeline_post
assert pre_final_transcript.status != "ended"
# Add the rest of the processors
processors += [
AudioChunkerProcessor(),
AudioMergeProcessor(),
AudioTranscriptAutoProcessor.as_threaded(),
TranscriptLinerProcessor(),
TranscriptTranslatorAutoProcessor.as_threaded(),
]
# at this point, diarization is running but we have no access to it. run diarization in parallel - one will hopefully win after polling
result = live_pipeline_post(transcript_id=transcript_id)
if not only_transcript:
processors += [
TranscriptTopicDetectorProcessor.as_threaded(),
# Collect topics for diarization
topic_collector,
BroadcastProcessor(
processors=[
TranscriptFinalTitleProcessor.as_threaded(),
TranscriptFinalSummaryProcessor.as_threaded(),
],
),
]
# Create main pipeline
pipeline = Pipeline(*processors)
pipeline.set_pref("audio:source_language", source_language)
pipeline.set_pref("audio:target_language", target_language)
pipeline.describe()
pipeline.on(event_callback)
# Start processing audio
logger.info(f"Opening {filename}")
container = av.open(filename)
try:
logger.info("Start pushing audio into the pipeline")
for frame in container.decode(audio=0):
await pipeline.push(frame)
finally:
logger.info("Flushing the pipeline")
await pipeline.flush()
# Run diarization if enabled and we have topics
if enable_diarization and not only_transcript and audio_temp_path:
topics = topic_collector.get_topics()
if topics:
logger.info(f"Starting diarization with {len(topics)} topics")
try:
from reflector.processors import AudioDiarizationAutoProcessor
diarization_processor = AudioDiarizationAutoProcessor(
name=diarization_backend
)
diarization_processor.set_pipeline(pipeline)
# For Modal backend, we need to upload the file to S3 first
if diarization_backend == "modal":
from datetime import datetime
from reflector.storage import get_transcripts_storage
from reflector.utils.s3_temp_file import S3TemporaryFile
storage = get_transcripts_storage()
# Generate a unique filename in evaluation folder
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
# Use context manager for automatic cleanup
async with S3TemporaryFile(storage, audio_filename) as s3_file:
# Read and upload the audio file
with open(audio_temp_path, "rb") as f:
audio_data = f.read()
audio_url = await s3_file.upload(audio_data)
logger.info(f"Uploaded audio to S3: {audio_filename}")
# Create diarization input with S3 URL
diarization_input = AudioDiarizationInput(
audio_url=audio_url, topics=topics
)
# Run diarization
await diarization_processor.push(diarization_input)
await diarization_processor.flush()
logger.info("Diarization complete")
# File will be automatically cleaned up when exiting the context
else:
# For local backend, use local file path
audio_url = audio_temp_path
# Create diarization input
diarization_input = AudioDiarizationInput(
audio_url=audio_url, topics=topics
)
# Run diarization
await diarization_processor.push(diarization_input)
await diarization_processor.flush()
logger.info("Diarization complete")
except ImportError as e:
logger.error(f"Failed to import diarization dependencies: {e}")
logger.error(
"Install with: uv pip install pyannote.audio torch torchaudio"
)
logger.error(
"And set HF_TOKEN environment variable for pyannote models"
)
raise SystemExit(1)
except Exception as e:
logger.error(f"Diarization failed: {e}")
raise SystemExit(1)
else:
logger.warning("Skipping diarization: no topics available")
# Clean up temp file
if audio_temp_path:
try:
Path(audio_temp_path).unlink()
except Exception as e:
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
logger.info("All done!")
# result.ready() blocks even without await; it mutates result also
while not result.ready():
print(f"Status: {result.state}")
time.sleep(2)
async def process_file_pipeline(
filename: str,
event_callback,
source_language="en",
target_language="en",
enable_diarization=True,
diarization_backend="modal",
transcript_id: TranscriptId,
):
"""Process audio/video file using the optimized file pipeline"""
# task_pipeline_file_process is a Celery task, need to use .delay() for async execution
result = task_pipeline_file_process.delay(transcript_id=transcript_id)
# Wait for the Celery task to complete
while not result.ready():
print(f"File pipeline status: {result.state}", file=sys.stderr)
time.sleep(2)
logger.info("File pipeline processing complete")
async def process(
source_path: str,
source_language: str,
target_language: str,
pipeline: Literal["live", "file"],
output_path: str = None,
):
from reflector.db import get_database
database = get_database()
# db connect is a part of ceremony
await database.connect()
try:
from reflector.db import database
from reflector.db.transcripts import SourceKind, transcripts_controller
from reflector.pipelines.main_file_pipeline import PipelineMainFile
await database.connect()
try:
# Create a temporary transcript for processing
transcript = await transcripts_controller.add(
"",
source_kind=SourceKind.FILE,
source_language=source_language,
target_language=target_language,
)
# Process the file
pipeline = PipelineMainFile(transcript_id=transcript.id)
await pipeline.process(Path(filename))
logger.info("File pipeline processing complete")
finally:
await database.disconnect()
except ImportError as e:
logger.error(f"File pipeline not available: {e}")
logger.info("Falling back to stream pipeline")
# Fall back to stream pipeline
await process_audio_file(
filename,
event_callback,
only_transcript=False,
source_language=source_language,
target_language=target_language,
enable_diarization=enable_diarization,
diarization_backend=diarization_backend,
transcript_id = await prepare_entry(
source_path,
source_language,
target_language,
)
pipeline_handlers = {
"live": process_live_pipeline,
"file": process_file_pipeline,
}
handler = pipeline_handlers.get(pipeline)
if not handler:
raise ValueError(f"Unknown pipeline type: {pipeline}")
await handler(transcript_id)
await extract_result_from_entry(transcript_id, output_path)
finally:
await database.disconnect()
if __name__ == "__main__":
import argparse
import os
parser = argparse.ArgumentParser(
description="Process audio files with optional speaker diarization"
description="Process audio files with speaker diarization"
)
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
parser.add_argument(
"--stream",
action="store_true",
help="Use streaming pipeline (original frame-based processing)",
)
parser.add_argument(
"--only-transcript",
"-t",
action="store_true",
help="Only generate transcript without topics/summaries",
"--pipeline",
required=True,
choices=["live", "file"],
help="Pipeline type to use for processing (live: streaming/incremental, file: batch/parallel)",
)
parser.add_argument(
"--source-language", default="en", help="Source language code (default: en)"
@@ -295,81 +207,14 @@ if __name__ == "__main__":
"--target-language", default="en", help="Target language code (default: en)"
)
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
parser.add_argument(
"--enable-diarization",
"-d",
action="store_true",
help="Enable speaker diarization",
)
parser.add_argument(
"--diarization-backend",
default="pyannote",
choices=["pyannote", "modal"],
help="Diarization backend to use (default: pyannote)",
)
args = parser.parse_args()
if "REDIS_HOST" not in os.environ:
os.environ["REDIS_HOST"] = "localhost"
output_fd = None
if args.output:
output_fd = open(args.output, "w")
async def event_callback(event: PipelineEvent):
processor = event.processor
data = event.data
# Ignore internal processors
if processor in (
"AudioChunkerProcessor",
"AudioMergeProcessor",
"AudioFileWriterProcessor",
"TopicCollectorProcessor",
"BroadcastProcessor",
):
return
# If diarization is enabled, skip the original topic events from the pipeline
# The diarization processor will emit the same topics but with speaker info
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
return
# Log all events
logger.info(f"Event: {processor} - {type(data).__name__}")
# Write to output
if output_fd:
output_fd.write(event.model_dump_json())
output_fd.write("\n")
output_fd.flush()
if args.stream:
# Use original streaming pipeline
asyncio.run(
process_audio_file(
args.source,
event_callback,
only_transcript=args.only_transcript,
source_language=args.source_language,
target_language=args.target_language,
enable_diarization=args.enable_diarization,
diarization_backend=args.diarization_backend,
)
asyncio.run(
process(
args.source,
args.source_language,
args.target_language,
args.pipeline,
args.output,
)
else:
# Use optimized file pipeline (default)
asyncio.run(
process_file_pipeline(
args.source,
event_callback,
source_language=args.source_language,
target_language=args.target_language,
enable_diarization=args.enable_diarization,
diarization_backend=args.diarization_backend,
)
)
if output_fd:
output_fd.close()
logger.info(f"Output written to {args.output}")
)

View File

@@ -1,315 +0,0 @@
"""
@vibe-generated
Process audio file with diarization support
===========================================
Extended version of process.py that includes speaker diarization.
This tool processes audio files locally without requiring the full server infrastructure.
"""
import asyncio
import tempfile
import uuid
from pathlib import Path
from typing import List
import av
from reflector.logger import logger
from reflector.processors import (
AudioChunkerProcessor,
AudioFileWriterProcessor,
AudioMergeProcessor,
AudioTranscriptAutoProcessor,
Pipeline,
PipelineEvent,
TranscriptFinalSummaryProcessor,
TranscriptFinalTitleProcessor,
TranscriptLinerProcessor,
TranscriptTopicDetectorProcessor,
TranscriptTranslatorAutoProcessor,
)
from reflector.processors.base import BroadcastProcessor, Processor
from reflector.processors.types import (
AudioDiarizationInput,
TitleSummary,
TitleSummaryWithId,
)
class TopicCollectorProcessor(Processor):
"""Collect topics for diarization"""
INPUT_TYPE = TitleSummary
OUTPUT_TYPE = TitleSummary
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.topics: List[TitleSummaryWithId] = []
self._topic_id = 0
async def _push(self, data: TitleSummary):
# Convert to TitleSummaryWithId and collect
self._topic_id += 1
topic_with_id = TitleSummaryWithId(
id=str(self._topic_id),
title=data.title,
summary=data.summary,
timestamp=data.timestamp,
duration=data.duration,
transcript=data.transcript,
)
self.topics.append(topic_with_id)
# Pass through the original topic
await self.emit(data)
def get_topics(self) -> List[TitleSummaryWithId]:
return self.topics
async def process_audio_file_with_diarization(
filename,
event_callback,
only_transcript=False,
source_language="en",
target_language="en",
enable_diarization=True,
diarization_backend="modal",
):
# Create temp file for audio if diarization is enabled
audio_temp_path = None
if enable_diarization:
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
audio_temp_path = audio_temp_file.name
audio_temp_file.close()
# Create processor for collecting topics
topic_collector = TopicCollectorProcessor()
# Build pipeline for audio processing
processors = []
# Add audio file writer at the beginning if diarization is enabled
if enable_diarization:
processors.append(AudioFileWriterProcessor(audio_temp_path))
# Add the rest of the processors
processors += [
AudioChunkerProcessor(),
AudioMergeProcessor(),
AudioTranscriptAutoProcessor.as_threaded(),
]
processors += [
TranscriptLinerProcessor(),
TranscriptTranslatorAutoProcessor.as_threaded(),
]
if not only_transcript:
processors += [
TranscriptTopicDetectorProcessor.as_threaded(),
# Collect topics for diarization
topic_collector,
BroadcastProcessor(
processors=[
TranscriptFinalTitleProcessor.as_threaded(),
TranscriptFinalSummaryProcessor.as_threaded(),
],
),
]
# Create main pipeline
pipeline = Pipeline(*processors)
pipeline.set_pref("audio:source_language", source_language)
pipeline.set_pref("audio:target_language", target_language)
pipeline.describe()
pipeline.on(event_callback)
# Start processing audio
logger.info(f"Opening {filename}")
container = av.open(filename)
try:
logger.info("Start pushing audio into the pipeline")
for frame in container.decode(audio=0):
await pipeline.push(frame)
finally:
logger.info("Flushing the pipeline")
await pipeline.flush()
# Run diarization if enabled and we have topics
if enable_diarization and not only_transcript and audio_temp_path:
topics = topic_collector.get_topics()
if topics:
logger.info(f"Starting diarization with {len(topics)} topics")
try:
from reflector.processors import AudioDiarizationAutoProcessor
diarization_processor = AudioDiarizationAutoProcessor(
name=diarization_backend
)
diarization_processor.set_pipeline(pipeline)
# For Modal backend, we need to upload the file to S3 first
if diarization_backend == "modal":
from datetime import datetime, timezone
from reflector.storage import get_transcripts_storage
from reflector.utils.s3_temp_file import S3TemporaryFile
storage = get_transcripts_storage()
# Generate a unique filename in evaluation folder
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
# Use context manager for automatic cleanup
async with S3TemporaryFile(storage, audio_filename) as s3_file:
# Read and upload the audio file
with open(audio_temp_path, "rb") as f:
audio_data = f.read()
audio_url = await s3_file.upload(audio_data)
logger.info(f"Uploaded audio to S3: {audio_filename}")
# Create diarization input with S3 URL
diarization_input = AudioDiarizationInput(
audio_url=audio_url, topics=topics
)
# Run diarization
await diarization_processor.push(diarization_input)
await diarization_processor.flush()
logger.info("Diarization complete")
# File will be automatically cleaned up when exiting the context
else:
# For local backend, use local file path
audio_url = audio_temp_path
# Create diarization input
diarization_input = AudioDiarizationInput(
audio_url=audio_url, topics=topics
)
# Run diarization
await diarization_processor.push(diarization_input)
await diarization_processor.flush()
logger.info("Diarization complete")
except ImportError as e:
logger.error(f"Failed to import diarization dependencies: {e}")
logger.error(
"Install with: uv pip install pyannote.audio torch torchaudio"
)
logger.error(
"And set HF_TOKEN environment variable for pyannote models"
)
raise SystemExit(1)
except Exception as e:
logger.error(f"Diarization failed: {e}")
raise SystemExit(1)
else:
logger.warning("Skipping diarization: no topics available")
# Clean up temp file
if audio_temp_path:
try:
Path(audio_temp_path).unlink()
except Exception as e:
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
logger.info("All done!")
if __name__ == "__main__":
import argparse
import os
parser = argparse.ArgumentParser(
description="Process audio files with optional speaker diarization"
)
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
parser.add_argument(
"--only-transcript",
"-t",
action="store_true",
help="Only generate transcript without topics/summaries",
)
parser.add_argument(
"--source-language", default="en", help="Source language code (default: en)"
)
parser.add_argument(
"--target-language", default="en", help="Target language code (default: en)"
)
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
parser.add_argument(
"--enable-diarization",
"-d",
action="store_true",
help="Enable speaker diarization",
)
parser.add_argument(
"--diarization-backend",
default="modal",
choices=["modal"],
help="Diarization backend to use (default: modal)",
)
args = parser.parse_args()
# Set REDIS_HOST to localhost if not provided
if "REDIS_HOST" not in os.environ:
os.environ["REDIS_HOST"] = "localhost"
logger.info("REDIS_HOST not set, defaulting to localhost")
output_fd = None
if args.output:
output_fd = open(args.output, "w")
async def event_callback(event: PipelineEvent):
processor = event.processor
data = event.data
# Ignore internal processors
if processor in (
"AudioChunkerProcessor",
"AudioMergeProcessor",
"AudioFileWriterProcessor",
"TopicCollectorProcessor",
"BroadcastProcessor",
):
return
# If diarization is enabled, skip the original topic events from the pipeline
# The diarization processor will emit the same topics but with speaker info
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
return
# Log all events
logger.info(f"Event: {processor} - {type(data).__name__}")
# Write to output
if output_fd:
output_fd.write(event.model_dump_json())
output_fd.write("\n")
output_fd.flush()
asyncio.run(
process_audio_file_with_diarization(
args.source,
event_callback,
only_transcript=args.only_transcript,
source_language=args.source_language,
target_language=args.target_language,
enable_diarization=args.enable_diarization,
diarization_backend=args.diarization_backend,
)
)
if output_fd:
output_fd.close()
logger.info(f"Output written to {args.output}")

View File

@@ -53,7 +53,7 @@ async def run_single_processor(args):
async def event_callback(event: PipelineEvent):
processor = event.processor
# ignore some processor
if processor in ("AudioChunkerProcessor", "AudioMergeProcessor"):
if processor in ("AudioChunkerAutoProcessor", "AudioMergeProcessor"):
return
print(f"Event: {event}")
if output_fd:

View File

@@ -1,96 +0,0 @@
#!/usr/bin/env python3
"""
@vibe-generated
Test script for the diarization CLI tool
=========================================
This script helps test the diarization functionality with sample audio files.
"""
import asyncio
import sys
from pathlib import Path
from reflector.logger import logger
async def test_diarization(audio_file: str):
"""Test the diarization functionality"""
# Import the processing function
from process_with_diarization import process_audio_file_with_diarization
# Collect events
events = []
async def event_callback(event):
events.append({"processor": event.processor, "data": event.data})
logger.info(f"Event from {event.processor}")
# Process the audio file
logger.info(f"Processing audio file: {audio_file}")
try:
await process_audio_file_with_diarization(
audio_file,
event_callback,
only_transcript=False,
source_language="en",
target_language="en",
enable_diarization=True,
diarization_backend="modal",
)
# Analyze results
logger.info(f"Processing complete. Received {len(events)} events")
# Look for diarization results
diarized_topics = []
for event in events:
if "TitleSummary" in event["processor"]:
# Check if words have speaker information
if hasattr(event["data"], "transcript") and event["data"].transcript:
words = event["data"].transcript.words
if words and hasattr(words[0], "speaker"):
speakers = set(
w.speaker for w in words if hasattr(w, "speaker")
)
logger.info(
f"Found {len(speakers)} speakers in topic: {event['data'].title}"
)
diarized_topics.append(event["data"])
if diarized_topics:
logger.info(f"Successfully diarized {len(diarized_topics)} topics")
# Print sample output
sample_topic = diarized_topics[0]
logger.info("Sample diarized output:")
for i, word in enumerate(sample_topic.transcript.words[:10]):
logger.info(f" Word {i}: '{word.text}' - Speaker {word.speaker}")
else:
logger.warning("No diarization results found in output")
return events
except Exception as e:
logger.error(f"Error during processing: {e}")
raise
def main():
if len(sys.argv) < 2:
print("Usage: python test_diarization.py <audio_file>")
sys.exit(1)
audio_file = sys.argv[1]
if not Path(audio_file).exists():
print(f"Error: Audio file '{audio_file}' not found")
sys.exit(1)
# Run the test
asyncio.run(test_diarization(audio_file))
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,23 @@
from typing import Annotated
from pydantic import Field, TypeAdapter, constr
NonEmptyStringBase = constr(min_length=1, strip_whitespace=False)
NonEmptyString = Annotated[
NonEmptyStringBase,
Field(description="A non-empty string", min_length=1),
]
non_empty_string_adapter = TypeAdapter(NonEmptyString)
def parse_non_empty_string(s: str, error: str | None = None) -> NonEmptyString:
try:
return non_empty_string_adapter.validate_python(s)
except Exception as e:
raise ValueError(f"{e}: {error}" if error else e) from e
def try_parse_non_empty_string(s: str) -> NonEmptyString | None:
if not s:
return None
return parse_non_empty_string(s)

View File

@@ -0,0 +1,18 @@
# Video Platform Abstraction Layer
"""
This module provides an abstraction layer for different video conferencing platforms.
It allows seamless switching between providers (Whereby, Daily.co, etc.) without
changing the core application logic.
"""
from .base import VideoPlatformClient
from .models import MeetingData, VideoPlatformConfig
from .registry import get_platform_client, register_platform
__all__ = [
"VideoPlatformClient",
"VideoPlatformConfig",
"MeetingData",
"get_platform_client",
"register_platform",
]

View File

@@ -0,0 +1,60 @@
from abc import ABC, abstractmethod
from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict, Optional
from reflector.platform_types import Platform
from .models import MeetingData, VideoPlatformConfig
if TYPE_CHECKING:
from reflector.db.rooms import Room
class VideoPlatformClient(ABC):
"""Abstract base class for video platform integrations."""
PLATFORM_NAME: Platform
def __init__(self, config: VideoPlatformConfig):
self.config = config
@abstractmethod
async def create_meeting(
self, room_name_prefix: str, end_date: datetime, room: "Room"
) -> MeetingData:
"""Create a new meeting room."""
pass
@abstractmethod
async def get_room_sessions(self, room_name: str) -> Dict[str, Any]:
"""Get session information for a room."""
pass
@abstractmethod
async def delete_room(self, room_name: str) -> bool:
"""Delete a room. Returns True if successful."""
pass
@abstractmethod
async def upload_logo(self, room_name: str, logo_path: str) -> bool:
"""Upload a logo to the room. Returns True if successful."""
pass
@abstractmethod
def verify_webhook_signature(
self, body: bytes, signature: str, timestamp: Optional[str] = None
) -> bool:
"""Verify webhook signature for security."""
pass
def format_recording_config(self, room: "Room") -> Dict[str, Any]:
"""Format recording configuration for the platform.
Can be overridden by specific implementations."""
if room.recording_type == "cloud" and self.config.s3_bucket:
return {
"type": room.recording_type,
"bucket": self.config.s3_bucket,
"region": self.config.s3_region,
"trigger": room.recording_trigger,
}
return {"type": room.recording_type}

Some files were not shown because too many files have changed in this diff Show More