Compare commits

...

54 Commits

Author SHA1 Message Date
Igor Loskutov
e3d796bc8c dockerfile healthcheck 2025-12-18 17:38:49 -05:00
Igor Loskutov
96c5a1d1ea doc pr review iteration 2025-12-18 16:53:53 -05:00
Igor Loskutov
0939d2aef9 merge 2025-12-18 15:31:57 -05:00
964cd78bb6 feat: identify action items (#790)
* Identify action items

* Add action items to mock summary

* Add action items validator

* Remove final prefix from action items

* Make on action items callback required

* Don't mutation action items response

* Assign action items to none on error

* Use timeout constant

* Exclude action items from transcript list
2025-12-18 21:13:47 +01:00
5f458aa4a7 fix: automatically reprocess daily recordings (#797)
* Automatically reprocess recordings

* Restore the comments

* Remove redundant check

* Fix indent

* Add comment about cyclic import
2025-12-18 21:10:04 +01:00
5f7dfadabd fix: retry on workflow timeout (#798) 2025-12-18 20:49:06 +01:00
0bc971ba96 fix: main menu login (#800) 2025-12-18 20:48:39 +01:00
Igor Monadical
c62e3c0753 incorporate daily api undocumented feature (#796)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-17 09:51:55 -05:00
Igor Monadical
16284e1ac3 fix: daily video optimisation (#789)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 15:00:53 -05:00
Igor Monadical
443982617d coolify pull policy (#792)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 14:54:05 -05:00
Igor Monadical
23023b3cdb update nextjs (#791)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 13:58:34 -05:00
Igor Loskutov
ba8568752e move pipeline dev docs to dev docs location 2025-12-12 16:20:11 -05:00
Igor Loskutov
fd5298c1ee live pipeline doc 2025-12-12 12:26:31 -05:00
90c3ecc9c3 chore(main): release 0.23.2 (#786) 2025-12-11 13:37:41 +01:00
d7f140b7d1 fix: build on push tags (#785) 2025-12-11 13:30:36 +01:00
a47a5f5781 chore(main): release 0.23.1 (#784) 2025-12-11 12:43:25 +01:00
0eba147018 fix: populate room_name in transcript GET endpoint (#783)
Fixes monadical/internalai#14
2025-12-11 12:37:59 +01:00
Igor Loskutov
1d584f4b53 docs polishing 2025-12-10 16:01:00 -05:00
Igor Loskutov
406a7529ee merge 2025-12-10 13:59:46 -05:00
18a27f7b45 Fix image tags (#781) 2025-12-10 13:57:13 -05:00
32a049c134 chore(main): release 0.23.0 (#770) 2025-12-10 13:42:28 +01:00
91650ec65f fix: deploy frontend to coolify (#779)
* Ignore act secrets

* Deploy frontend container to ECR

* Use published image

* Remove ecr workflows

* Trigger coolify deployment

* Deploy on release please pr merge

* Upgrade nextjs

* Update secrets example
2025-12-10 13:35:53 +01:00
Igor Loskutov
b340f3c74e feat(docs): add mermaid diagram support 2025-12-09 14:59:51 -05:00
Igor Loskutov
8db31a493d update doc site sidebars 2025-12-09 13:44:53 -05:00
Igor Loskutov
2321519722 doc review round 2025-12-09 13:42:16 -05:00
Igor Loskutov
061eff3024 doc review round 2025-12-09 13:18:05 -05:00
Igor Loskutov
d890061056 doc review round 2025-12-09 12:11:22 -05:00
Igor Loskutov
2b3f28993f gpu self hosted setup guide (no-mistakes) 2025-12-09 11:25:09 -05:00
Igor Loskutov
5779478d3c doc website 2025-12-08 12:58:09 -05:00
Igor Loskutov
e55e520043 more daily setup logs 2025-12-05 16:50:40 -05:00
Igor Loskutov
8e7819d73c authentik ongoing 2025-12-05 16:30:27 -05:00
Igor Loskutov
b819d0abc1 llm doc 2025-12-05 15:51:11 -05:00
Igor Loskutov
426a5dd70d authentik script 2025-12-05 14:40:42 -05:00
Igor Loskutov
f6a4830add authentik script 2025-12-05 13:59:54 -05:00
Igor Loskutov
8a1699ab5b authentik script 2025-12-05 13:57:33 -05:00
Igor Loskutov
a4cd433daa gitignore 2025-12-05 12:43:25 -05:00
Igor Loskutov
28d2168209 caddyfile.example 2025-12-05 12:38:10 -05:00
Igor Loskutov
3ef51ad1c8 install from scratch docs 2025-12-05 12:10:28 -05:00
Igor Monadical
61f0e29d4c feat: llm retries (#739)
* llm retries no-mistakes

* self-review (no-mistakes)

* self-review (no-mistakes)

* bigger retry intervals by default

* tests and dry

* restore to main state

* parse retries

* json retries (no-mistakes)

* json retries (no-mistakes)

* json retries (no-mistakes)

* json retries (no-mistakes) self-review

* additional network retry test

* more lindt

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-05 12:08:21 -05:00
Igor Monadical
ec17ed7b58 fix: celery inspect bug sidestep in restart script (#766)
* celery bug sidestep

* Update server/reflector/services/transcript_process.py

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-12-04 09:22:51 -05:00
Igor Loskutov
f9c8223e50 Merge branch 'main' into mathieu/reflector-doc 2025-12-03 13:26:40 -05:00
Igor Monadical
00549f153a feat: dockerhub ci (#772)
* dockerhub ci

* ci test

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-03 13:26:08 -05:00
3ad78be762 fix: hide rooms settings instead of disabling (#763)
* Hide rooms settings instead of disabling

* Reset recording trigger
2025-12-03 16:49:17 +01:00
d3a5cd12d2 fix: return participant emails from transcript endpoint (#769)
* Return participant emails from transcript endpoint

* Fix broken test
2025-12-03 16:47:56 +01:00
af921ce927 chore(main): release 0.22.4 (#765) 2025-12-02 17:11:48 -05:00
Igor Monadical
bd5df1ce2e fix: Multitrack mixdown optimisation 2 (#764)
* Revert "fix: Skip mixdown for multitrack (#760)"

This reverts commit b51b7aa917.

* multitrack mixdown optimisation

* return the "good" ui part of "skip mixdown"

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-02 17:10:06 -05:00
c8024484b3 chore(main): release 0.22.3 (#761) 2025-12-02 09:08:22 +01:00
28f87c09dc fix: align daily room settings (#759)
* Switch platform ui

* Update room settings based on platform

* Add local and none recording options to daily

* Don't create tokens for unauthentikated users

* Enable knocking for private rooms

* Create new meeting on room settings change

* Always use 2-200 option for daily

* Show recording start trigger for daily

* Fix broken test
2025-12-02 09:06:36 +01:00
dabf7251db chore(main): release 0.22.2 (#756) 2025-12-01 23:39:32 -05:00
Igor Monadical
b51b7aa917 fix: Skip mixdown for multitrack (#760)
* multitrack mixdown optimisation

* skip mixdown for multitrack

* skip mixdown for multitrack

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-01 23:35:12 -05:00
Igor Monadical
a8983b4e7e daily auth hotfix (#757)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-11-28 14:52:59 -05:00
Igor Monadical
fe47c46489 fix: daily auto refresh fix (#755)
* daily auto refresh fix

* Update www/app/lib/AuthProvider.tsx

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* Update www/app/[roomName]/components/DailyRoom.tsx

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* fix bot lint

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-11-27 18:31:03 -05:00
Igor Loskutov
caba506cde Merge branch 'main' into mathieu/reflector-doc 2025-11-25 11:38:28 -05:00
0ea7ffac89 feat: WIP doc (vibe started and iterated) 2025-11-24 20:39:22 -06:00
116 changed files with 35894 additions and 581 deletions

View File

@@ -1,90 +0,0 @@
name: Build container/push to container registry
on: [workflow_dispatch]
env:
# 950402358378.dkr.ecr.us-east-1.amazonaws.com/reflector
AWS_REGION: us-east-1
ECR_REPOSITORY: reflector
jobs:
build:
strategy:
matrix:
include:
- platform: linux/amd64
runner: linux-amd64
arch: amd64
- platform: linux/arm64
runner: linux-arm64
arch: arm64
runs-on: ${{ matrix.runner }}
permissions:
contents: read
outputs:
registry: ${{ steps.login-ecr.outputs.registry }}
steps:
- uses: actions/checkout@v4
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build and push ${{ matrix.arch }}
uses: docker/build-push-action@v5
with:
context: server
platforms: ${{ matrix.platform }}
push: true
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
cache-from: type=gha,scope=${{ matrix.arch }}
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
provenance: false
create-manifest:
runs-on: ubuntu-latest
needs: [build]
permissions:
deployments: write
contents: read
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Login to Amazon ECR
uses: aws-actions/amazon-ecr-login@v2
- name: Create and push multi-arch manifest
run: |
# Get the registry URL (since we can't easily access job outputs in matrix)
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
docker manifest create \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"

View File

@@ -1,35 +1,31 @@
name: Build and Push Frontend Docker Image
name: Build and Push Backend Docker Image (Docker Hub)
on:
push:
branches:
- main
paths:
- 'www/**'
- '.github/workflows/docker-frontend.yml'
tags:
- "v*"
workflow_dispatch:
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}-frontend
REGISTRY: docker.io
IMAGE_NAME: monadicalsas/reflector-backend
jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to GitHub Container Registry
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
username: monadicalsas
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata
id: meta
@@ -38,7 +34,7 @@ jobs:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=sha,prefix={{branch}}-
type=ref,event=tag
type=raw,value=latest,enable={{is_default_branch}}
- name: Set up Docker Buildx
@@ -47,11 +43,11 @@ jobs:
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: ./www
file: ./www/Dockerfile
context: ./server
file: ./server/Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64
platforms: linux/amd64,linux/arm64

View File

@@ -0,0 +1,70 @@
name: Build and Push Frontend Docker Image
on:
push:
tags:
- "v*"
workflow_dispatch:
env:
REGISTRY: docker.io
IMAGE_NAME: monadicalsas/reflector-frontend
jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: monadicalsas
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=ref,event=tag
type=raw,value=latest,enable={{is_default_branch}}
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: ./www
file: ./www/Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64
deploy:
needs: build-and-push
runs-on: ubuntu-latest
if: success()
strategy:
matrix:
environment: [reflector-monadical, reflector-media]
environment: ${{ matrix.environment }}
steps:
- name: Trigger Coolify deployment
run: |
curl -X POST "${{ secrets.COOLIFY_WEBHOOK_URL }}" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${{ secrets.COOLIFY_WEBHOOK_TOKEN }}" \
-f || (echo "Failed to trigger Coolify deployment for ${{ matrix.environment }}" && exit 1)

3
.gitignore vendored
View File

@@ -1,6 +1,7 @@
.DS_Store
server/.env
.env
Caddyfile
server/exportdanswer
.vercel
.env*.local
@@ -18,3 +19,5 @@ CLAUDE.local.md
www/.env.development
www/.env.production
.playwright-mcp
docs/pnpm-lock.yaml
.secrets

View File

@@ -1 +1,5 @@
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
docs/docs/installation/auth-setup.md:curl-auth-header:250
docs/docs/installation/daily-setup.md:curl-auth-header:277
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:74
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:83

24
.secrets.example Normal file
View File

@@ -0,0 +1,24 @@
# Example secrets file for GitHub Actions workflows
# Copy this to .secrets and fill in your values
# These secrets should be configured in GitHub repository settings:
# Settings > Secrets and variables > Actions
# DockerHub Configuration (required for frontend and backend deployment)
# Create a Docker Hub access token at https://hub.docker.com/settings/security
# Username: monadicalsas
DOCKERHUB_TOKEN=your-dockerhub-access-token
# GitHub Token (required for frontend and backend deployment)
# Used by docker/metadata-action for extracting image metadata
# Can use the default GITHUB_TOKEN or create a personal access token
GITHUB_TOKEN=your-github-token-or-use-default-GITHUB_TOKEN
# Coolify Deployment Webhook (required for frontend deployment)
# Used to trigger automatic deployment after image push
# Configure these secrets in GitHub Environments:
# Each environment should have:
# - COOLIFY_WEBHOOK_URL: The webhook URL for that specific deployment
# - COOLIFY_WEBHOOK_TOKEN: The webhook token (can be the same for both if using same token)
# Optional: GitHub Actions Cache Token (for local testing with act)
GHA_CACHE_TOKEN=your-github-token-or-empty

View File

@@ -1,5 +1,57 @@
# Changelog
## [0.23.2](https://github.com/Monadical-SAS/reflector/compare/v0.23.1...v0.23.2) (2025-12-11)
### Bug Fixes
* build on push tags ([#785](https://github.com/Monadical-SAS/reflector/issues/785)) ([d7f140b](https://github.com/Monadical-SAS/reflector/commit/d7f140b7d1f4660d5da7a0da1357f68869e0b5cd))
## [0.23.1](https://github.com/Monadical-SAS/reflector/compare/v0.23.0...v0.23.1) (2025-12-11)
### Bug Fixes
* populate room_name in transcript GET endpoint ([#783](https://github.com/Monadical-SAS/reflector/issues/783)) ([0eba147](https://github.com/Monadical-SAS/reflector/commit/0eba1470181c7b9e0a79964a1ef28c09bcbdd9d7))
## [0.23.0](https://github.com/Monadical-SAS/reflector/compare/v0.22.4...v0.23.0) (2025-12-10)
### Features
* dockerhub ci ([#772](https://github.com/Monadical-SAS/reflector/issues/772)) ([00549f1](https://github.com/Monadical-SAS/reflector/commit/00549f153ade922cf4cb6c5358a7d11a39c426d2))
* llm retries ([#739](https://github.com/Monadical-SAS/reflector/issues/739)) ([61f0e29](https://github.com/Monadical-SAS/reflector/commit/61f0e29d4c51eab54ee67af92141fbb171e8ccaa))
### Bug Fixes
* celery inspect bug sidestep in restart script ([#766](https://github.com/Monadical-SAS/reflector/issues/766)) ([ec17ed7](https://github.com/Monadical-SAS/reflector/commit/ec17ed7b587cf6ee143646baaee67a7c017044d4))
* deploy frontend to coolify ([#779](https://github.com/Monadical-SAS/reflector/issues/779)) ([91650ec](https://github.com/Monadical-SAS/reflector/commit/91650ec65f65713faa7ee0dcfb75af427b7c4ba0))
* hide rooms settings instead of disabling ([#763](https://github.com/Monadical-SAS/reflector/issues/763)) ([3ad78be](https://github.com/Monadical-SAS/reflector/commit/3ad78be7628c0d029296b301a0e87236c76b7598))
* return participant emails from transcript endpoint ([#769](https://github.com/Monadical-SAS/reflector/issues/769)) ([d3a5cd1](https://github.com/Monadical-SAS/reflector/commit/d3a5cd12d2d0d9c32af2d5bd9322e030ef69b85d))
## [0.22.4](https://github.com/Monadical-SAS/reflector/compare/v0.22.3...v0.22.4) (2025-12-02)
### Bug Fixes
* Multitrack mixdown optimisation 2 ([#764](https://github.com/Monadical-SAS/reflector/issues/764)) ([bd5df1c](https://github.com/Monadical-SAS/reflector/commit/bd5df1ce2ebf35d7f3413b295e56937a9a28ef7b))
## [0.22.3](https://github.com/Monadical-SAS/reflector/compare/v0.22.2...v0.22.3) (2025-12-02)
### Bug Fixes
* align daily room settings ([#759](https://github.com/Monadical-SAS/reflector/issues/759)) ([28f87c0](https://github.com/Monadical-SAS/reflector/commit/28f87c09dc459846873d0dde65b03e3d7b2b9399))
## [0.22.2](https://github.com/Monadical-SAS/reflector/compare/v0.22.1...v0.22.2) (2025-12-02)
### Bug Fixes
* daily auto refresh fix ([#755](https://github.com/Monadical-SAS/reflector/issues/755)) ([fe47c46](https://github.com/Monadical-SAS/reflector/commit/fe47c46489c5aa0cc538109f7559cc9accb35c01))
* Skip mixdown for multitrack ([#760](https://github.com/Monadical-SAS/reflector/issues/760)) ([b51b7aa](https://github.com/Monadical-SAS/reflector/commit/b51b7aa9176c1a53ba57ad99f5e976c804a1e80c))
## [0.22.1](https://github.com/Monadical-SAS/reflector/compare/v0.22.0...v0.22.1) (2025-11-27)

22
Caddyfile.example Normal file
View File

@@ -0,0 +1,22 @@
# Reflector Caddyfile
# Replace example.com with your actual domains
# CORS is handled by the backend - Caddy just proxies
#
# For environment variable substitution, set:
# FRONTEND_DOMAIN=app.example.com
# API_DOMAIN=api.example.com
# AUTHENTIK_DOMAIN=authentik.example.com (optional, for authentication)
# Or edit this file directly with your domains.
{$FRONTEND_DOMAIN:app.example.com} {
reverse_proxy web:3000
}
{$API_DOMAIN:api.example.com} {
reverse_proxy server:1250
}
# Uncomment if using Authentik for authentication (see auth-setup.md)
# {$AUTHENTIK_DOMAIN:authentik.example.com} {
# reverse_proxy authentik-server-1:9000
# }

View File

@@ -1,28 +1,61 @@
# Production Docker Compose configuration for Frontend
# Production Docker Compose configuration
# Usage: docker compose -f docker-compose.prod.yml up -d
#
# Prerequisites:
# 1. Copy .env.example to .env and configure for both server/ and www/
# 2. Copy Caddyfile.example to Caddyfile and edit with your domains
# 3. Deploy Modal GPU functions (see gpu/modal_deployments/deploy-all.sh)
services:
web:
build:
context: ./www
dockerfile: Dockerfile
image: reflector-frontend:latest
image: monadicalsas/reflector-frontend:latest
restart: unless-stopped
env_file:
- ./www/.env
pull_policy: always
environment:
- KV_URL=${KV_URL:-redis://redis:6379}
- SITE_URL=${SITE_URL}
- API_URL=${API_URL}
- WEBSOCKET_URL=${WEBSOCKET_URL}
- NEXTAUTH_URL=${NEXTAUTH_URL:-http://localhost:3000}
- NEXTAUTH_SECRET=${NEXTAUTH_SECRET:-changeme-in-production}
- AUTHENTIK_ISSUER=${AUTHENTIK_ISSUER}
- AUTHENTIK_CLIENT_ID=${AUTHENTIK_CLIENT_ID}
- AUTHENTIK_CLIENT_SECRET=${AUTHENTIK_CLIENT_SECRET}
- AUTHENTIK_REFRESH_TOKEN_URL=${AUTHENTIK_REFRESH_TOKEN_URL}
- SENTRY_DSN=${SENTRY_DSN}
- SENTRY_IGNORE_API_RESOLUTION_ERROR=${SENTRY_IGNORE_API_RESOLUTION_ERROR:-1}
- KV_URL=redis://redis:6379
depends_on:
- redis
server:
image: monadicalsas/reflector-backend:latest
restart: unless-stopped
env_file:
- ./server/.env
environment:
ENTRYPOINT: server
depends_on:
- postgres
- redis
volumes:
- server_data:/app/data
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
worker:
image: monadicalsas/reflector-backend:latest
restart: unless-stopped
env_file:
- ./server/.env
environment:
ENTRYPOINT: worker
depends_on:
- postgres
- redis
volumes:
- server_data:/app/data
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
beat:
image: monadicalsas/reflector-backend:latest
restart: unless-stopped
env_file:
- ./server/.env
environment:
ENTRYPOINT: beat
depends_on:
- postgres
- redis
redis:
image: redis:7.2-alpine
@@ -35,5 +68,46 @@ services:
volumes:
- redis_data:/data
postgres:
image: postgres:17-alpine
restart: unless-stopped
environment:
POSTGRES_USER: reflector
POSTGRES_PASSWORD: reflector
POSTGRES_DB: reflector
volumes:
- postgres_data:/var/lib/postgresql/data
healthcheck:
test: ["CMD-SHELL", "pg_isready -U reflector"]
interval: 30s
timeout: 3s
retries: 3
caddy:
image: caddy:2-alpine
restart: unless-stopped
ports:
- "80:80"
- "443:443"
volumes:
- ./Caddyfile:/etc/caddy/Caddyfile:ro
- caddy_data:/data
- caddy_config:/config
depends_on:
- web
- server
docs:
build: ./docs
restart: unless-stopped
volumes:
redis_data:
redis_data:
postgres_data:
server_data:
caddy_data:
caddy_config:
networks:
default:
attachable: true

20
docs/.gitignore vendored Normal file
View File

@@ -0,0 +1,20 @@
# Dependencies
/node_modules
# Production
/build
# Generated files
.docusaurus
.cache-loader
# Misc
.DS_Store
.env.local
.env.development.local
.env.test.local
.env.production.local
npm-debug.log*
yarn-debug.log*
yarn-error.log*

39
docs/Dockerfile Normal file
View File

@@ -0,0 +1,39 @@
FROM node:18-alpine AS builder
WORKDIR /app
# Install curl for fetching OpenAPI spec
RUN apk add --no-cache curl
# Copy package files
COPY package*.json ./
# Install dependencies
RUN npm ci
# Copy source
COPY . .
# Fetch OpenAPI spec from production API
ARG OPENAPI_URL=https://api-reflector.monadical.com/openapi.json
RUN mkdir -p ./static && curl -sf "${OPENAPI_URL}" -o ./static/openapi.json || echo '{}' > ./static/openapi.json
# Fix docusaurus config: change onBrokenLinks to 'warn' for Docker build
RUN sed -i "s/onBrokenLinks: 'throw'/onBrokenLinks: 'warn'/g" docusaurus.config.ts
# Build static site (skip prebuild hook by calling docusaurus directly)
RUN npx docusaurus build
# Production image
FROM nginx:alpine
# Copy built static files
COPY --from=builder /app/build /usr/share/nginx/html
# Healthcheck for container orchestration
HEALTHCHECK --interval=30s --timeout=3s --start-period=5s --retries=3 \
CMD wget --no-verbose --tries=1 --spider http://localhost/ || exit 1
# Expose port
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

41
docs/README.md Normal file
View File

@@ -0,0 +1,41 @@
# Website
This website is built using [Docusaurus](https://docusaurus.io/), a modern static website generator.
### Installation
```
$ yarn
```
### Local Development
```
$ yarn start
```
This command starts a local development server and opens up a browser window. Most changes are reflected live without having to restart the server.
### Build
```
$ yarn build
```
This command generates static content into the `build` directory and can be served using any static contents hosting service.
### Deployment
Using SSH:
```
$ USE_SSH=true yarn deploy
```
Not using SSH:
```
$ GIT_USER=<Your GitHub username> yarn deploy
```
If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.

170
docs/TODO.md Normal file
View File

@@ -0,0 +1,170 @@
# Documentation TODO List
This file tracks information needed from the user to complete the documentation.
## Required Information
### Processing Times & Costs
Please provide actual numbers for:
- [ ] **Modal.com GPU Costs**
- Cost per hour of audio for Whisper transcription
- Cost per hour of audio for Pyannote diarization
- Cost per hour of audio for Seamless-M4T translation
- Typical GPU instance used (T4, A10, etc.)
- [ ] **RunPod LLM Costs**
- Cost per 1000 tokens for summarization
- Model used (phi-4-unsloth-bnb-4bit)
- RTX 4000 Ada instance cost per hour
- [ ] **AWS S3 Storage**
- Cost per GB per month
- Data transfer costs
- Typical storage requirements per hour of audio
- [ ] **Whereby API**
- Monthly cost structure
- API call limits
- Room participant limits
- [ ] **Actual Processing Times**
- Whisper tiny model: X minutes per hour of audio
- Whisper base model: X minutes per hour of audio
- Whisper large-v3 model: X minutes per hour of audio
- Diarization: X minutes per hour of audio
- Translation: X minutes per hour of audio
### Screenshots Needed
Location: `/docs/static/screenshots/`
Please provide screenshots of:
- [ ] **Dashboard Overview** - Main dashboard showing recent transcripts
- [ ] **Live Transcription** - Active transcription in progress
- [ ] **Meeting Room Interface** - Whereby room with participants
- [ ] **Transcript with Diarization** - Showing speaker labels
- [ ] **Settings Page** - Configuration options
- [ ] **API Documentation** - OpenAPI/Swagger interface
- [ ] **File Upload Interface** - Drag and drop upload
- [ ] **Translation View** - Showing original and translated text
- [ ] **Summary View** - Generated summary and topics
### Setup Screenshots
Please provide step-by-step screenshots for:
- [ ] **Modal.com Setup**
- Creating account
- Getting API keys
- Deploying functions
- [ ] **Whereby Configuration**
- Creating developer account
- Getting API credentials
- Setting up rooms
- [ ] **AWS S3 Setup**
- Creating bucket
- Setting permissions
- Getting access keys
- [ ] **Authentik Integration**
- Adding application
- Configuring OAuth
- Setting up users
### Technical Details
Please provide specific values for:
- [ ] **WebRTC Configuration**
- Exact UDP port range used (e.g., 10000-20000)
- STUN server configuration (if any)
- ICE candidate gathering timeout
- https://docs.daily.co/guides/privacy-and-security/corporate-firewalls-nats-allowed-ip-list
- [ ] **Worker Configuration**
- Default Celery worker count
- Worker memory limits
- Queue priorities
- [ ] **Redis Requirements**
- Typical memory usage
- Persistence configuration
- Eviction policies
- [ ] **PostgreSQL**
- Expected database growth (MB per hour of audio)
- Recommended connection pool size
- Backup strategy
- [ ] **Performance Metrics**
- Average transcription accuracy (WER)
- Average diarization accuracy (DER)
- Translation quality scores
- Typical latency for live streaming
### Configuration Examples
Please provide real-world examples for:
- [ ] **Production .env file** (sanitized)
- [ ] **Caddy configuration** for production
- [ ] **Docker compose** for production deployment
- [ ] **Nginx configuration** (if alternative to Caddy)
### API Examples
Please provide:
- [ ] **Sample API requests** for common operations
- [ ] **WebSocket message examples**
- [ ] **Webhook payload examples**
- [ ] **Error response examples**
## How to Add Information
1. **For text information**: Edit the relevant markdown files in `/docs/docs/`
2. **For screenshots**: Add to `/docs/static/screenshots/` and reference in docs
3. **For code examples**: Add to documentation with proper syntax highlighting
## Priority Items
High priority (blocks documentation completeness):
1. Modal.com costs and setup steps
2. Basic screenshots (dashboard, transcription)
3. Docker deployment configuration
Medium priority (enhances documentation):
1. Performance metrics
2. Advanced configuration examples
3. Troubleshooting scenarios
Low priority (nice to have):
1. Video tutorials
2. Architecture diagrams
3. Benchmark comparisons
## Documentation Structure
Once information is provided, update these files:
- `/docs/docs/installation/modal-setup.md` - Add Modal.com setup screenshots
- `/docs/docs/installation/whereby-setup.md` - Add Whereby configuration steps
- `/docs/docs/reference/configuration.md` - Add environment variable details
- `/docs/docs/pipelines/file-pipeline.md` - Add actual processing times
- `/docs/docs/pipelines/live-pipeline.md` - Add latency measurements
## Notes
- Replace placeholder values with actual data
- Ensure all sensitive information is sanitized
- Test all configuration examples before documenting
- Verify all costs are up-to-date
---
Last updated: 2025-08-20
Contact: [Your Email]

777
docs/create-docs.sh Executable file
View File

@@ -0,0 +1,777 @@
#!/bin/bash
# Create directory structure
mkdir -p docs/concepts
mkdir -p docs/installation
mkdir -p docs/pipelines
mkdir -p docs/reference/architecture
mkdir -p docs/reference/processors
mkdir -p docs/reference/api
# Create all documentation files with content
echo "Creating documentation files..."
# Concepts - Modes
cat > docs/concepts/modes.md << 'EOF'
---
sidebar_position: 2
title: Operating Modes
---
# Operating Modes
Reflector operates in two distinct modes to accommodate different use cases and security requirements.
## Public Mode
Public mode provides immediate access to core transcription features without requiring authentication.
### Features Available
- **File Upload**: Process audio files up to 2GB
- **Live Transcription**: Stream audio from microphone
- **Basic Processing**: Transcription and diarization
- **Temporary Storage**: Results available for 24 hours
### Limitations
- No persistent storage
- No meeting rooms
- Limited to single-user sessions
- No team collaboration features
### Use Cases
- Quick transcription needs
- Testing and evaluation
- Individual users
- Public demonstrations
## Private Mode
Private mode unlocks the full potential of Reflector with authentication and persistent storage.
### Additional Features
- **Virtual Meeting Rooms**: Whereby integration
- **Team Collaboration**: Share transcripts with team
- **Persistent Storage**: Long-term transcript archive
- **Advanced Analytics**: Meeting insights and trends
- **Custom Integration**: Webhooks and API access
- **User Management**: Role-based access control
### Authentication Options
#### Authentik Integration
Enterprise-grade SSO with support for:
- SAML 2.0
- OAuth 2.0 / OIDC
- LDAP / Active Directory
- Multi-factor authentication
#### JWT Authentication
Stateless token-based auth for:
- API access
- Service-to-service communication
- Mobile applications
### Room Management
Virtual rooms provide dedicated spaces for meetings:
- **Persistent URLs**: Same link for recurring meetings
- **Access Control**: Invite-only or open rooms
- **Recording Consent**: Automatic consent management
- **Custom Settings**: Per-room configuration
## Mode Selection
The mode is determined by your deployment configuration:
```yaml
# Public Mode (no authentication)
REFLECTOR_AUTH_BACKEND=none
# Private Mode (with authentication)
REFLECTOR_AUTH_BACKEND=jwt
# or
REFLECTOR_AUTH_BACKEND=authentik
```
## Feature Comparison
| Feature | Public Mode | Private Mode |
|---------|------------|--------------|
| File Upload | ✅ | ✅ |
| Live Transcription | ✅ | ✅ |
| Speaker Diarization | ✅ | ✅ |
| Translation | ✅ | ✅ |
| Summarization | ✅ | ✅ |
| Meeting Rooms | ❌ | ✅ |
| Persistent Storage | ❌ | ✅ |
| Team Collaboration | ❌ | ✅ |
| API Access | Limited | Full |
| User Management | ❌ | ✅ |
| Custom Branding | ❌ | ✅ |
| Analytics | ❌ | ✅ |
| Webhooks | ❌ | ✅ |
## Security Considerations
### Public Mode Security
- Rate limiting to prevent abuse
- File size restrictions
- Automatic cleanup of old data
- No PII storage
### Private Mode Security
- Encrypted data storage
- Audit logging
- Session management
- Access control lists
- Data retention policies
## Choosing the Right Mode
### Choose Public Mode if:
- You need quick, one-time transcriptions
- You're evaluating Reflector
- You don't need persistent storage
- You're processing non-sensitive content
### Choose Private Mode if:
- You need team collaboration
- You require persistent storage
- You're processing sensitive content
- You need meeting room functionality
- You want advanced analytics
EOF
# Concepts - Independence
cat > docs/concepts/independence.md << 'EOF'
---
sidebar_position: 3
title: Data Independence
---
# Data Independence & Privacy
Reflector is designed with privacy and data independence as core principles, giving you complete control over your data and processing.
## Privacy by Design
### No Third-Party Data Sharing
Your audio and transcripts are never shared with third parties:
- **Local Processing**: All ML models can run on your infrastructure
- **No Training on User Data**: Your content is never used to improve models
- **Isolated Processing**: Each transcript is processed in isolation
- **No Analytics Tracking**: No usage analytics sent to external services
### Data Ownership
You maintain complete ownership of all data:
- **Export Anytime**: Download all your transcripts and audio
- **Delete on Demand**: Permanent deletion with no recovery
- **API Access**: Full programmatic access to your data
- **No Vendor Lock-in**: Standard formats for easy migration
## Processing Transparency
### What Happens to Your Audio
1. **Upload/Stream**: Audio received by your server
2. **Temporary Storage**: Stored only for processing duration
3. **Processing**: ML models process audio locally or on Modal
4. **Results Storage**: Transcripts stored in your database
5. **Cleanup**: Original audio deleted (unless configured otherwise)
### Local vs Cloud Processing
#### Local Processing
When configured for local processing:
- All models run on your hardware
- No data leaves your infrastructure
- Complete air-gap capability
- Higher hardware requirements
#### Modal.com Processing
When using Modal for GPU acceleration:
- Audio chunks sent to Modal for processing
- Processed immediately and deleted
- No long-term storage on Modal
- Modal's security: SOC 2 Type II compliant
### Data Retention
Default retention policies:
- **Public Mode**: 24 hours then automatic deletion
- **Private Mode**: Configurable (default: indefinite)
- **Audio Files**: Deleted after processing (configurable)
- **Transcripts**: Retained based on policy
## Compliance Features
### GDPR Compliance
- **Right to Access**: Export all user data
- **Right to Deletion**: Permanent data removal
- **Data Portability**: Standard export formats
- **Privacy by Default**: Minimal data collection
### HIPAA Considerations
For healthcare deployments:
- **Self-hosted Option**: Complete infrastructure control
- **Encryption**: At rest and in transit
- **Audit Logging**: Complete access trail
- **Access Controls**: Role-based permissions
### Industry Standards
- **TLS 1.3**: Modern encryption for data in transit
- **AES-256**: Encryption for data at rest
- **JWT Tokens**: Secure, stateless authentication
- **OWASP Guidelines**: Security best practices
## Self-Hosted Deployment
### Complete Independence
Self-hosting provides maximum control:
- **Your Infrastructure**: Run on your servers
- **Your Network**: No external connections required
- **Your Policies**: Implement custom retention
- **Your Compliance**: Meet specific requirements
### Air-Gap Capability
Reflector can run completely offline:
1. Download all models during setup
2. Configure for local processing only
3. Disable all external integrations
4. Run in isolated network environment
## Data Flow Control
### Configurable Processing
Control where each step happens:
```yaml
# All local processing
TRANSCRIPT_BACKEND=local
DIARIZATION_BACKEND=local
TRANSLATION_BACKEND=local
# Hybrid approach
TRANSCRIPT_BACKEND=modal # Fast GPU processing
DIARIZATION_BACKEND=local # Sensitive speaker data
TRANSLATION_BACKEND=modal # Non-sensitive translation
```
### Storage Options
Choose where data is stored:
- **Local Filesystem**: Complete control
- **PostgreSQL**: Self-hosted database
- **S3-Compatible**: MinIO or AWS with encryption
- **Hybrid**: Different storage for different data types
## Security Architecture
### Defense in Depth
Multiple layers of security:
1. **Network Security**: Firewalls and VPNs
2. **Application Security**: Input validation and sanitization
3. **Data Security**: Encryption and access controls
4. **Operational Security**: Logging and monitoring
### Zero Trust Principles
- **Verify Everything**: All requests authenticated
- **Least Privilege**: Minimal permissions granted
- **Assume Breach**: Design for compromise containment
- **Encrypt Everything**: No plaintext transmission
## Audit and Compliance
### Audit Logging
Comprehensive logging of:
- **Access Events**: Who accessed what and when
- **Processing Events**: What was processed and how
- **Configuration Changes**: System modifications
- **Security Events**: Failed authentication attempts
### Compliance Reporting
Generate reports for:
- **Data Processing**: What data was processed
- **Data Access**: Who accessed the data
- **Data Retention**: What was retained or deleted
- **Security Events**: Security-related incidents
## Best Practices
### For Maximum Privacy
1. **Self-host** all components
2. **Use local processing** for all models
3. **Implement short retention** periods
4. **Encrypt all storage** at rest
5. **Use VPN** for all connections
6. **Regular audits** of access logs
### For Balanced Approach
1. **Self-host core services** (database, API)
2. **Use Modal for processing** (faster, cost-effective)
3. **Implement encryption** everywhere
4. **Regular backups** with encryption
5. **Monitor access** patterns
EOF
# Concepts - Pipeline
cat > docs/concepts/pipeline.md << 'EOF'
---
sidebar_position: 4
title: Processing Pipeline
---
# Processing Pipeline
Reflector uses a sophisticated pipeline architecture to process audio efficiently and accurately.
## Pipeline Overview
The processing pipeline consists of modular components that can be combined and configured based on your needs:
```mermaid
graph LR
A[Audio Input] --> B[Pre-processing]
B --> C[Chunking]
C --> D[Transcription]
D --> E[Diarization]
E --> F[Alignment]
F --> G[Post-processing]
G --> H[Output]
```
## Pipeline Components
### Audio Input
Accepts various input sources:
- **File Upload**: MP3, WAV, M4A, WebM, MP4
- **WebRTC Stream**: Live browser audio
- **Recording Integration**: Whereby recordings
- **API Upload**: Direct API submission
### Pre-processing
Prepares audio for optimal processing:
- **Format Conversion**: Convert to 16kHz mono WAV
- **Normalization**: Adjust volume to -23 LUFS
- **Noise Reduction**: Optional background noise removal
- **Validation**: Check duration and quality
### Chunking
Splits audio for parallel processing:
- **Fixed Size**: 30-second chunks by default
- **Overlap**: 1-second overlap for continuity
- **Smart Boundaries**: Attempt to split at silence
- **Metadata**: Track chunk positions
### Transcription
Converts speech to text:
- **Model Selection**: Whisper or Parakeet
- **Language Detection**: Automatic or specified
- **Timestamp Generation**: Word-level timing
- **Confidence Scores**: Quality indicators
### Diarization
Identifies different speakers:
- **Voice Activity Detection**: Find speech segments
- **Speaker Embedding**: Extract voice characteristics
- **Clustering**: Group similar voices
- **Label Assignment**: Assign speaker IDs
### Alignment
Merges all processing results:
- **Chunk Assembly**: Combine transcription chunks
- **Speaker Mapping**: Align speakers with text
- **Overlap Resolution**: Handle chunk boundaries
- **Timeline Creation**: Build unified timeline
### Post-processing
Enhances the final output:
- **Formatting**: Apply punctuation and capitalization
- **Translation**: Convert to target languages
- **Summarization**: Generate concise summaries
- **Topic Extraction**: Identify key themes
- **Action Items**: Extract tasks and decisions
## Processing Modes
### Batch Processing
For uploaded files:
- Optimized for throughput
- Parallel chunk processing
- Higher accuracy models
- Complete file analysis
### Stream Processing
For live audio:
- Optimized for latency
- Sequential processing
- Real-time feedback
- Progressive results
### Hybrid Processing
For meetings:
- Stream during meeting
- Batch after completion
- Best of both modes
- Maximum accuracy
## Pipeline Configuration
### Model Selection
Choose models based on requirements:
```python
# High accuracy (slower)
config = {
"transcription_model": "whisper-large-v3",
"diarization_model": "pyannote-3.1",
"translation_model": "seamless-m4t-large"
}
# Balanced (default)
config = {
"transcription_model": "whisper-base",
"diarization_model": "pyannote-3.1",
"translation_model": "seamless-m4t-medium"
}
# Fast processing
config = {
"transcription_model": "whisper-tiny",
"diarization_model": "pyannote-3.1-fast",
"translation_model": "seamless-m4t-small"
}
```
### Processing Options
Customize pipeline behavior:
```yaml
# Parallel processing
max_parallel_chunks: 10
chunk_size_seconds: 30
chunk_overlap_seconds: 1
# Quality settings
enable_noise_reduction: true
enable_normalization: true
min_speech_confidence: 0.5
# Post-processing
enable_translation: true
target_languages: ["es", "fr", "de"]
enable_summarization: true
summary_length: "medium"
```
## Performance Characteristics
### Processing Times
For 1 hour of audio:
| Pipeline Config | Processing Time | Accuracy |
|----------------|-----------------|----------|
| Fast | 2-3 minutes | 85-90% |
| Balanced | 5-8 minutes | 92-95% |
| High Accuracy | 15-20 minutes | 95-98% |
### Resource Usage
| Component | CPU Usage | Memory | GPU |
|-----------|-----------|---------|-----|
| Transcription | Medium | 2-4 GB | Required |
| Diarization | High | 4-8 GB | Required |
| Translation | Low | 2-3 GB | Optional |
| Post-processing | Low | 1-2 GB | Not needed |
## Pipeline Orchestration
### Celery Task Chain
The pipeline is orchestrated using Celery:
```python
chain = (
chunk_audio.s(audio_id) |
group(transcribe_chunk.s(chunk) for chunk in chunks) |
merge_transcriptions.s() |
diarize_audio.s() |
align_speakers.s() |
post_process.s()
)
```
### Error Handling
Robust error recovery:
- **Automatic Retry**: Failed tasks retry up to 3 times
- **Partial Recovery**: Continue with successful chunks
- **Fallback Models**: Use alternative models on failure
- **Error Reporting**: Detailed error messages
### Progress Tracking
Real-time progress updates:
- **Chunk Progress**: Track individual chunk processing
- **Overall Progress**: Percentage completion
- **ETA Calculation**: Estimated completion time
- **WebSocket Updates**: Live progress to clients
## Optimization Strategies
### GPU Utilization
Maximize GPU efficiency:
- **Batch Processing**: Process multiple chunks together
- **Model Caching**: Keep models loaded in memory
- **Dynamic Batching**: Adjust batch size based on GPU memory
- **Multi-GPU Support**: Distribute across available GPUs
### Memory Management
Efficient memory usage:
- **Streaming Processing**: Process large files in chunks
- **Garbage Collection**: Clean up after each chunk
- **Memory Limits**: Prevent out-of-memory errors
- **Disk Caching**: Use disk for large intermediate results
### Network Optimization
Minimize network overhead:
- **Compression**: Compress audio before transfer
- **CDN Integration**: Use CDN for static assets
- **Connection Pooling**: Reuse network connections
- **Parallel Uploads**: Multiple concurrent uploads
## Quality Assurance
### Accuracy Metrics
Monitor processing quality:
- **Word Error Rate (WER)**: Transcription accuracy
- **Diarization Error Rate (DER)**: Speaker identification accuracy
- **Translation BLEU Score**: Translation quality
- **Summary Coherence**: Summary quality metrics
### Validation Steps
Ensure output quality:
- **Confidence Thresholds**: Filter low-confidence segments
- **Consistency Checks**: Verify timeline consistency
- **Language Validation**: Ensure correct language detection
- **Format Validation**: Check output format compliance
## Advanced Features
### Custom Models
Use your own models:
- **Fine-tuned Whisper**: Domain-specific models
- **Custom Diarization**: Trained on your speakers
- **Specialized Post-processing**: Industry-specific formatting
### Pipeline Extensions
Add custom processing steps:
- **Sentiment Analysis**: Analyze emotional tone
- **Entity Extraction**: Identify people, places, organizations
- **Custom Metrics**: Calculate domain-specific metrics
- **Integration Hooks**: Call external services
EOF
# Create installation documentation
cat > docs/installation/overview.md << 'EOF'
---
sidebar_position: 1
title: Installation Overview
---
# Installation Overview
Reflector is designed for self-hosted deployment, giving you complete control over your infrastructure and data.
## Deployment Options
### Docker Deployment (Recommended)
The easiest way to deploy Reflector:
- Pre-configured containers
- Automated dependency management
- Consistent environment
- Easy updates
### Manual Installation
For custom deployments:
- Greater control over configuration
- Integration with existing infrastructure
- Custom optimization options
- Development environments
## Requirements
### System Requirements
**Minimum Requirements:**
- CPU: 4 cores
- RAM: 8 GB
- Storage: 50 GB
- OS: Ubuntu 20.04+ or similar Linux
**Recommended Requirements:**
- CPU: 8+ cores
- RAM: 16 GB
- Storage: 100 GB SSD
- GPU: NVIDIA GPU with 8GB+ VRAM (for local processing)
### Network Requirements
- Public IP address (for WebRTC)
- Ports: 80, 443, 8000, 3000
- Domain name (for SSL)
- SSL certificate (Let's Encrypt supported)
## Required Services
### Core Services
These services are required for basic operation:
1. **PostgreSQL** - Primary database
2. **Redis** - Message broker and cache
3. **Docker** - Container runtime
### GPU Processing
Choose one:
- **Modal.com** - Serverless GPU (recommended)
- **Local GPU** - Self-hosted GPU processing
### Optional Services
Enhance functionality with:
- **AWS S3** - Long-term storage
- **Whereby** - Video conferencing rooms
- **Authentik** - Enterprise authentication
- **Zulip** - Chat integration
## Quick Start
### Using Docker Compose
1. Clone the repository:
```bash
git clone https://github.com/monadical-sas/reflector.git
cd reflector
```
2. Navigate to docker directory:
```bash
cd docker
```
3. Copy and configure environment:
```bash
cp .env.example .env
# Edit .env with your settings
```
4. Start services:
```bash
docker compose up -d
```
5. Access Reflector:
- Frontend: https://your-domain.com
- API: https://your-domain.com/api
## Configuration Overview
### Essential Configuration
```env
# Database
DATABASE_URL=postgresql://user:pass@localhost/reflector
# Redis
REDIS_URL=redis://localhost:6379
# Modal.com (for GPU processing)
TRANSCRIPT_MODAL_API_KEY=your-key
DIARIZATION_MODAL_API_KEY=your-key
# Domain
DOMAIN=your-domain.com
```
### Security Configuration
```env
# Authentication
REFLECTOR_AUTH_BACKEND=jwt
NEXTAUTH_SECRET=generate-strong-secret
# SSL (handled by Caddy)
# Automatic with Let's Encrypt
```
## Service Architecture
```mermaid
graph TD
A[Caddy Reverse Proxy] --> B[Frontend - Next.js]
A --> C[Backend - FastAPI]
C --> D[PostgreSQL]
C --> E[Redis]
C --> F[Celery Workers]
F --> G[Modal.com GPU]
```
## Next Steps
1. **Review Requirements**: [System Requirements](./requirements)
2. **Docker Setup**: [Docker Deployment Guide](./docker-setup)
3. **Configure Services**:
- [Modal.com Setup](./modal-setup)
- [Whereby Setup](./whereby-setup)
- [AWS S3 Setup](./aws-setup)
4. **Optional Services**:
- [Authentik Setup](./authentik-setup)
- [Zulip Setup](./zulip-setup)
## Getting Help
- [Troubleshooting Guide](../reference/troubleshooting)
- [GitHub Issues](https://github.com/monadical-sas/reflector/issues)
- [Community Discord](#)
EOF
chmod +x create-docs.sh
echo "Documentation creation script ready. Run ./create-docs.sh to generate all docs."

125
docs/docs/concepts/modes.md Normal file
View File

@@ -0,0 +1,125 @@
---
sidebar_position: 2
title: Operating Modes
---
# Operating Modes
Reflector operates in two distinct modes to accommodate different use cases and security requirements.
## Public Mode
Public mode provides immediate access to core transcription features without requiring authentication.
### Features Available
- **File Upload**: Process audio files up to 2GB
- **Live Transcription**: Stream audio from microphone
- **Basic Processing**: Transcription and diarization
- **Temporary Storage**: Results available for 24 hours
### Limitations
- No persistent storage
- No meeting rooms
- Limited to single-user sessions
- No team collaboration features
### Use Cases
- Quick transcription needs
- Testing and evaluation
- Individual users
- Public demonstrations
## Private Mode
Private mode unlocks the full potential of Reflector with authentication and persistent storage.
### Additional Features
- **Virtual Meeting Rooms**: Whereby and Daily.co integration
- **Team Collaboration**: Share transcripts with team
- **Persistent Storage**: Long-term transcript archive
- **Advanced Analytics**: Meeting insights and trends
- **Custom Integration**: Webhooks and API access
- **User Management**: Role-based access control
### Authentication Options
#### Authentik Integration
Enterprise-grade SSO with support for:
- SAML 2.0
- OAuth 2.0 / OIDC
- LDAP / Active Directory
- Multi-factor authentication
#### JWT Authentication
Stateless token-based auth for:
- API access
- Service-to-service communication
- Mobile applications
### Room Management
Virtual rooms provide dedicated spaces for meetings:
- **Persistent URLs**: Same link for recurring meetings
- **Access Control**: Invite-only or open rooms
- **Recording Consent**: Automatic consent management
- **Custom Settings**: Per-room configuration
## Mode Selection
The mode is determined by your deployment configuration:
```yaml
# Public Mode (no authentication)
REFLECTOR_AUTH_BACKEND=none
# Private Mode (with authentication)
REFLECTOR_AUTH_BACKEND=jwt
# or
REFLECTOR_AUTH_BACKEND=authentik
```
## Feature Comparison
| Feature | Public Mode | Private Mode |
|---------|------------|--------------|
| File Upload | ✅ | ✅ |
| Live Transcription | ✅ | ✅ |
| Speaker Diarization | ✅ | ✅ |
| Translation | ✅ | ✅ |
| Summarization | ✅ | ✅ |
| Meeting Rooms | ❌ | ✅ |
| Persistent Storage | ❌ | ✅ |
| Team Collaboration | ❌ | ✅ |
| API Access | Limited | Full |
| User Management | ❌ | ✅ |
| Custom Branding | ❌ | ✅ |
| Analytics | ❌ | ✅ |
| Webhooks | ❌ | ✅ |
## Security Considerations
### Public Mode Security
- File size restrictions
- Automatic cleanup of old data
### Private Mode Security
- Encrypted data storage
- Audit logging
- Session management
- Access control lists
- Data retention policies
## Choosing the Right Mode
### Choose Public Mode if:
- You need quick, one-time transcriptions
- You're evaluating Reflector
- You don't need persistent storage
- You're processing non-sensitive content
### Choose Private Mode if:
- You need team collaboration
- You require persistent storage
- You're processing sensitive content
- You need meeting room functionality
- You want advanced analytics

View File

@@ -0,0 +1,194 @@
---
sidebar_position: 1
title: Architecture Overview
---
# Architecture Overview
Reflector is built as a modern, scalable, microservices-based application designed to handle audio processing workloads efficiently while maintaining data privacy and control.
## System Components
### Frontend Application
The user interface is built with **Next.js 14** using the App Router pattern, providing:
- Server-side rendering for optimal performance
- Real-time WebSocket connections for live transcription
- WebRTC support for audio streaming and live meetings
- Responsive design with Chakra UI components
### Backend API Server
The core API is powered by **FastAPI**, a modern Python framework that provides:
- High-performance async request handling
- Automatic OpenAPI documentation generation
- Type safety with Pydantic models
- WebSocket support for real-time updates
### Processing Pipeline
Audio processing is handled through a modular pipeline architecture:
```
Audio Input → Chunking → Transcription → Diarization → Post-Processing → Storage
```
Each step can run independently and in parallel, allowing for:
- Scalable processing of large files
- Real-time streaming capabilities
- Fault tolerance and retry mechanisms
### Worker Architecture
Background tasks are managed by **Celery** workers with **Redis** as the message broker:
- Distributed task processing
- Priority queues for time-sensitive operations
- Automatic retry on failure
- Progress tracking and notifications
### GPU Acceleration
ML models run on GPU-accelerated infrastructure:
- **Modal.com** for serverless GPU processing
- Support for local GPU deployment (coming soon)
- Automatic scaling based on demand
- Cost-effective pay-per-use model
## Data Flow
### File Processing Flow
1. **Upload**: User uploads audio file through web interface
2. **Storage**: File stored temporarily or in S3
3. **Queue**: Processing job added to Celery queue
4. **Chunking**: Audio split into 30-second segments
5. **Parallel Processing**: Chunks processed simultaneously
6. **Assembly**: Results merged and aligned
7. **Post-Processing**: Summary, topics, translation
8. **Delivery**: Results stored and user notified
### Live Streaming Flow
1. **WebRTC Connection**: Browser establishes peer connection
2. **Audio Capture**: Microphone audio streamed to server
3. **Buffering**: Audio buffered for processing
4. **VAD**: Voice activity detection segments speech
5. **Real-time Processing**: Segments transcribed immediately
6. **WebSocket Updates**: Results streamed back to client
7. **Continuous Assembly**: Full transcript built progressively
## Deployment Architecture
### Container-Based Deployment
All components are containerized for consistent deployment:
```yaml
services:
frontend: # Next.js application
backend: # FastAPI server
worker: # Celery workers
redis: # Message broker
postgres: # Database
caddy: # Reverse proxy
```
### Networking
- **Host Network Mode**: Required for WebRTC/ICE compatibility
- **Caddy Reverse Proxy**: Handles SSL termination and routing
- **WebSocket Upgrade**: Supports real-time connections
## Scalability Considerations
### Horizontal Scaling
- **Stateless Backend**: Multiple API server instances
- **Worker Pools**: Add workers based on queue depth
- **Database Pooling**: Connection management for concurrent access
### Vertical Scaling
- **GPU Workers**: Scale up for faster model inference
- **Memory Optimization**: Efficient audio buffering
- **CPU Optimization**: Multi-threaded processing where applicable
## Security Architecture
### Authentication & Authorization
- **JWT Tokens**: Stateless authentication
- **Authentik Integration**: Enterprise SSO support
- **Role-Based Access**: Granular permissions
### Data Protection
- **Encryption at Rest**: Database and S3 encryption
- **Encryption in Transit**: TLS for all connections
- **Temporary Storage**: Automatic cleanup of processed files
### Privacy by Design
- **Local Processing**: Option to process entirely on-premises
- **No Training on User Data**: Models are pre-trained
- **Data Isolation**: Multi-tenant data separation
## Integration Points
### External Services
- **Modal.com**: GPU processing
- **AWS S3**: Long-term storage
- **Whereby**: Video conferencing rooms
- **Zulip**: Chat integration (optional)
### APIs and Webhooks
- **RESTful API**: Standard CRUD operations
- **WebSocket API**: Real-time updates
- **Webhook Notifications**: Processing completion events
- **OpenAPI Specification**: Machine-readable API definition
## Performance Optimization
### Caching Strategy
- **Redis Cache**: Frequently accessed data
- **CDN**: Static asset delivery
- **Browser Cache**: Client-side optimization
### Database Optimization
- **Indexed Queries**: Fast search and retrieval
- **Connection Pooling**: Efficient resource usage
- **Query Optimization**: N+1 query prevention
### Processing Optimization
- **Batch Processing**: Efficient GPU utilization
- **Parallel Execution**: Multi-core CPU usage
- **Stream Processing**: Reduced memory footprint
## Monitoring and Observability
### Metrics Collection
- **Application Metrics**: Request rates, response times
- **System Metrics**: CPU, memory, disk usage
- **Business Metrics**: Transcription accuracy, processing times
### Logging
- **Structured Logging**: JSON format for analysis
- **Log Aggregation**: Centralized log management
- **Error Tracking**: Sentry integration
### Health Checks
- **Liveness Probes**: Component availability
- **Readiness Probes**: Service readiness
- **Dependency Checks**: External service status

View File

@@ -0,0 +1,272 @@
---
sidebar_position: 4
title: Processing Pipeline
---
# Processing Pipeline
Reflector uses a modular pipeline architecture to process audio efficiently and accurately.
## Pipeline Overview
The processing pipeline consists of modular components that can be combined and configured based on your needs:
```mermaid
graph LR
A[Audio Input] --> B[Pre-processing]
B --> C[Chunking]
C --> D[Transcription]
D --> E[Diarization]
E --> F[Alignment]
F --> G[Post-processing]
G --> H[Output]
```
## Pipeline Components
### Audio Input
Accepts various input sources:
- **File Upload**: MP3, WAV, M4A, WebM, MP4
- **WebRTC Stream**: Live browser audio
- **Recording Integration**: Whereby recordings
- **API Upload**: Direct API submission
### Pre-processing
Prepares audio for optimal processing:
- **Format Conversion**: Convert to 16kHz mono WAV
- **Noise Reduction**: Optional background noise removal
- **Validation**: Check duration and quality
### Chunking
Splits audio for parallel processing:
- **Fixed Size**: 30-second chunks by default
- **Overlap**: 1-second overlap for continuity
- **Silence Detection**: Attempt to split at silence
- **Metadata**: Track chunk positions
### Transcription
Converts speech to text:
- **Model Selection**: Whisper or Parakeet
- **Language Detection**: Automatic or specified
- **Timestamp Generation**: Word-level timing
- **Confidence Scores**: Quality indicators
### Diarization
Identifies different speakers:
- **Voice Activity Detection**: Find speech segments
- **Speaker Embedding**: Extract voice characteristics
- **Clustering**: Group similar voices
- **Label Assignment**: Assign speaker IDs
### Alignment
Merges all processing results:
- **Chunk Assembly**: Combine transcription chunks
- **Speaker Mapping**: Align speakers with text
- **Overlap Resolution**: Handle chunk boundaries
- **Timeline Creation**: Build unified timeline
### Post-processing
Enhances the final output:
- **Formatting**: Apply punctuation and capitalization
- **Translation**: Convert to target languages
- **Summarization**: Generate concise summaries
- **Topic Extraction**: Identify key themes
- **Action Items**: Extract tasks and decisions
## Processing Modes
### Batch Processing
For uploaded files:
- Optimized for throughput
- Parallel chunk processing
- Higher accuracy models
- Complete file analysis
### Stream Processing
For live audio:
- Optimized for latency
- Sequential processing
- Real-time feedback
- Progressive results
### Hybrid Processing
For meetings:
- Stream during meeting
- Batch after completion
- Best of both modes
- Maximum accuracy
## Pipeline Configuration
### Model Selection
Choose models based on requirements:
```python
# High accuracy (slower)
config = {
"transcription_model": "whisper-large-v3",
"diarization_model": "pyannote-3.1",
"translation_model": "seamless-m4t-large"
}
# Balanced (default)
config = {
"transcription_model": "whisper-base",
"diarization_model": "pyannote-3.1",
"translation_model": "seamless-m4t-medium"
}
# Fast processing
config = {
"transcription_model": "whisper-tiny",
"diarization_model": "pyannote-3.1-fast",
"translation_model": "seamless-m4t-small"
}
```
### Processing Options
Customize pipeline behavior:
```yaml
# Parallel processing
max_parallel_chunks: 10
chunk_size_seconds: 30
chunk_overlap_seconds: 1
# Quality settings
enable_noise_reduction: true
min_speech_confidence: 0.5
# Post-processing
enable_translation: true
target_languages: ["es", "fr", "de"]
enable_summarization: true
summary_length: "medium"
```
## Performance Characteristics
### Processing Times
For 1 hour of audio:
| Pipeline Config | Processing Time | Accuracy |
|----------------|-----------------|----------|
| Fast | 2-3 minutes | 85-90% |
| Balanced | 5-8 minutes | 92-95% |
| High Accuracy | 15-20 minutes | 95-98% |
### Resource Usage
| Component | CPU Usage | Memory | GPU |
|-----------|-----------|---------|-----|
| Transcription | Medium | 2-4 GB | Required |
| Diarization | High | 4-8 GB | Required |
| Translation | Low | 2-3 GB | Optional |
| Post-processing | Low | 1-2 GB | Not needed |
## Pipeline Orchestration
### Celery Task Chain
The pipeline is orchestrated using Celery:
```python
chain = (
chunk_audio.s(audio_id) |
group(transcribe_chunk.s(chunk) for chunk in chunks) |
merge_transcriptions.s() |
diarize_audio.s() |
align_speakers.s() |
post_process.s()
)
```
### Error Handling
Error recovery:
- **Automatic Retry**: Failed tasks retry up to 3 times
- **Partial Recovery**: Continue with successful chunks
- **Fallback Models**: Use alternative models on failure
- **Error Reporting**: Detailed error messages
### Progress Tracking
Real-time progress updates:
- **Chunk Progress**: Track individual chunk processing
- **Overall Progress**: Percentage completion
- **ETA Calculation**: Estimated completion time
- **WebSocket Updates**: Live progress to clients
## Optimization Strategies
### GPU Utilization
Maximize GPU efficiency:
- **Batch Processing**: Process multiple chunks together
- **Model Caching**: Keep models loaded in memory
- **Dynamic Batching**: Adjust batch size based on GPU memory
- **Multi-GPU Support**: Distribute across available GPUs
### Memory Management
Efficient memory usage:
- **Streaming Processing**: Process large files in chunks
- **Garbage Collection**: Clean up after each chunk
- **Memory Limits**: Prevent out-of-memory errors
- **Disk Caching**: Use disk for large intermediate results
### Network Optimization
Minimize network overhead:
- **Compression**: Compress audio before transfer
- **CDN Integration**: Use CDN for static assets
- **Connection Pooling**: Reuse network connections
- **Parallel Uploads**: Multiple concurrent uploads
## Quality Assurance
### Accuracy Metrics
Monitor processing quality:
- **Word Error Rate (WER)**: Transcription accuracy
- **Diarization Error Rate (DER)**: Speaker identification accuracy
- **Translation BLEU Score**: Translation quality
- **Summary Coherence**: Summary quality metrics
### Validation Steps
Ensure output quality:
- **Confidence Thresholds**: Filter low-confidence segments
- **Consistency Checks**: Verify timeline consistency
- **Language Validation**: Ensure correct language detection
- **Format Validation**: Check output format compliance
## Advanced Features
### Custom Models
Use your own models:
- **Fine-tuned Whisper**: Domain-specific models
- **Custom Diarization**: Trained on your speakers
- **Specialized Post-processing**: Industry-specific formatting
### Pipeline Extensions
Add custom processing steps:
- **Sentiment Analysis**: Analyze emotional tone
- **Entity Extraction**: Identify people, places, organizations
- **Custom Metrics**: Calculate domain-specific metrics
- **Integration Hooks**: Call external services

View File

@@ -0,0 +1,285 @@
---
sidebar_position: 5
title: Authentication Setup
---
# Authentication Setup
This page covers authentication setup in detail. For the complete deployment guide, see [Deployment Guide](./overview).
Reflector uses [Authentik](https://goauthentik.io/) for OAuth/OIDC authentication. This guide walks you through setting up Authentik and connecting it to Reflector.
The guide simplistically sets Authentic on the same server as Reflector. You can use your own Authentic instance instead.
## Overview
Reflector's authentication flow:
1. User clicks "Sign In" on frontend
2. Frontend redirects to Authentik login page
3. User authenticates with Authentik
4. Authentik redirects back with OAuth tokens
5. Frontend stores tokens, backends verify JWT signature
## Option 1: Self-Hosted Authentik (Same Server)
This setup runs Authentik on the same server as Reflector, with Caddy proxying to both.
### Deploy Authentik
```bash
# Create directory for Authentik
mkdir -p ~/authentik && cd ~/authentik
# Download docker-compose file
curl -O https://goauthentik.io/docker-compose.yml
# Generate secrets and bootstrap credentials
cat > .env << 'EOF'
PG_PASS=$(openssl rand -base64 36 | tr -d '\n')
AUTHENTIK_SECRET_KEY=$(openssl rand -base64 60 | tr -d '\n')
# Privacy-focused choice for self-hosted deployments
AUTHENTIK_ERROR_REPORTING__ENABLED=false
AUTHENTIK_BOOTSTRAP_PASSWORD=YourSecurePassword123
AUTHENTIK_BOOTSTRAP_EMAIL=admin@example.com
EOF
# Start Authentik
sudo docker compose up -d
```
Authentik takes ~2 minutes to run migrations and apply blueprints on first start.
### Connect Authentik to Reflector's Network
If Authentik runs in a separate Docker Compose project, connect it to Reflector's network so Caddy can proxy to it:
```bash
# Wait for Authentik to be healthy
# Connect Authentik server to Reflector's network
sudo docker network connect reflector_default authentik-server-1
```
**Important:** This step must be repeated if you restart Authentik with `docker compose down`. Add it to your deployment scripts or use `docker compose up -d` (which preserves containers) instead of down/up.
### Add Authentik to Caddy
Uncomment the Authentik section in your `Caddyfile` and set your domain:
```bash
nano Caddyfile
```
Uncomment and edit:
```
{$AUTHENTIK_DOMAIN:authentik.example.com} {
reverse_proxy authentik-server-1:9000
}
```
Reload Caddy:
```bash
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
```
### Create OAuth2 Provider in Authentik
**Option A: Automated Setup (Recommended)**
**Location: Reflector server**
Run the setup script from the Reflector repository:
```bash
ssh user@your-server-ip
cd ~/reflector
./scripts/setup-authentik-oauth.sh https://authentik.example.com YourSecurePassword123 https://app.example.com
```
**Important:** The script must be run from the `~/reflector` directory on your server, as it creates files using relative paths.
The script will output the configuration values to add to your `.env` files. Skip to "Update docker-compose.prod.yml".
**Option B: Manual Setup**
1. **Login to Authentik Admin** at `https://authentik.example.com/`
- Username: `akadmin`
- Password: The `AUTHENTIK_BOOTSTRAP_PASSWORD` you set in .env
2. **Create OAuth2 Provider:**
- Go to **Applications > Providers > Create**
- Select **OAuth2/OpenID Provider**
- Configure:
- **Name**: `Reflector`
- **Authorization flow**: `default-provider-authorization-implicit-consent`
- **Client type**: `Confidential`
- **Client ID**: Note this value (auto-generated)
- **Client Secret**: Note this value (auto-generated)
- **Redirect URIs**: Add entry with:
```
https://app.example.com/api/auth/callback/authentik
```
- Scroll down to **Advanced protocol settings**
- In **Scopes**, add these three mappings:
- `authentik default OAuth Mapping: OpenID 'email'`
- `authentik default OAuth Mapping: OpenID 'openid'`
- `authentik default OAuth Mapping: OpenID 'profile'`
- Click **Finish**
3. **Create Application:**
- Go to **Applications > Applications > Create**
- Configure:
- **Name**: `Reflector`
- **Slug**: `reflector` (auto-filled)
- **Provider**: Select the `Reflector` provider you just created
- Click **Create**
### Get Public Key for JWT Verification
**Location: Reflector server**
Extract the public key from Authentik's JWKS endpoint:
```bash
mkdir -p ~/reflector/server/reflector/auth/jwt/keys
curl -s https://authentik.example.com/application/o/reflector/jwks/ | \
jq -r '.keys[0].x5c[0]' | base64 -d | openssl x509 -pubkey -noout \
> ~/reflector/server/reflector/auth/jwt/keys/authentik_public.pem
```
### Update docker-compose.prod.yml
**Location: Reflector server**
**Note:** This step is already done in the current `docker-compose.prod.yml`. Verify the volume mounts exist:
```yaml
server:
image: monadicalsas/reflector-backend:latest
# ... other config ...
volumes:
- server_data:/app/data
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
worker:
image: monadicalsas/reflector-backend:latest
# ... other config ...
volumes:
- server_data:/app/data
- ./server/reflector/auth/jwt/keys:/app/reflector/auth/jwt/keys:ro
```
### Configure Reflector Backend
**Location: Reflector server**
Update `server/.env`:
```env
# Authentication
AUTH_BACKEND=jwt
AUTH_JWT_PUBLIC_KEY=authentik_public.pem
AUTH_JWT_AUDIENCE=<your-client-id>
CORS_ALLOW_CREDENTIALS=true
```
Replace `<your-client-id>` with the Client ID from previous steps.
### Configure Reflector Frontend
**Location: Reflector server**
Update `www/.env`:
```env
# Authentication
FEATURE_REQUIRE_LOGIN=true
# Authentik OAuth
AUTHENTIK_ISSUER=https://authentik.example.com/application/o/reflector
AUTHENTIK_REFRESH_TOKEN_URL=https://authentik.example.com/application/o/token/
AUTHENTIK_CLIENT_ID=<your-client-id>
AUTHENTIK_CLIENT_SECRET=<your-client-secret>
# NextAuth
NEXTAUTH_SECRET=<generate-with-openssl-rand-hex-32>
```
### Restart Services
**Location: Reflector server**
```bash
cd ~/reflector
sudo docker compose -f docker-compose.prod.yml up -d --force-recreate server worker web
```
### Verify Authentication
1. Visit `https://app.example.com`
2. Click "Log in" or navigate to `/api/auth/signin`
3. Click "Sign in with Authentik"
4. Login with your Authentik credentials
5. You should be redirected back and see "Log out" in the header
## Option 2: Disable Authentication
For testing or internal deployments where authentication isn't needed:
**Backend `server/.env`:**
```env
AUTH_BACKEND=none
```
**Frontend `www/.env`:**
```env
FEATURE_REQUIRE_LOGIN=false
```
**Note:** The pre-built Docker images have `FEATURE_REQUIRE_LOGIN=true` baked in. To disable auth, you'll need to rebuild the frontend image with the env var set at build time, or set up Authentik.
## Troubleshooting
### "Invalid redirect URI" error
- Verify the redirect URI in Authentik matches exactly:
```
https://app.example.com/api/auth/callback/authentik
```
- Check for trailing slashes - they must match exactly
### "Invalid audience" JWT error
- Ensure `AUTH_JWT_AUDIENCE` in `server/.env` matches the Client ID from Authentik
- The audience value is the OAuth Client ID, not the issuer URL
### "JWT verification failed" error
- Verify the public key file is mounted in the container
- Check `AUTH_JWT_PUBLIC_KEY` points to the correct filename
- Ensure the key was extracted from the correct provider's JWKS endpoint
### Caddy returns 503 for Authentik
- Verify Authentik container is connected to Reflector's network:
```bash
sudo docker network connect reflector_default authentik-server-1
```
- Check Authentik is healthy: `cd ~/authentik && sudo docker compose ps`
### Users can't access protected pages
- Verify `FEATURE_REQUIRE_LOGIN=true` in frontend
- Check `AUTH_BACKEND=jwt` in backend
- Verify CORS settings allow credentials
### Token refresh errors
- Ensure Redis is running (frontend uses Redis for token caching)
- Verify `KV_URL` is set correctly in frontend env
- Check `AUTHENTIK_REFRESH_TOKEN_URL` is correct
## API Key Authentication
For programmatic access (scripts, integrations), users can generate API keys:
1. Login to Reflector
2. Go to Settings > API Keys
3. Click "Generate New Key"
4. Use the key in requests:
```bash
curl -H "X-API-Key: your-api-key" https://api.example.com/v1/transcripts
```
API keys are stored hashed and can be revoked at any time.

View File

@@ -0,0 +1,165 @@
---
sidebar_position: 6
title: Daily.co Setup
---
# Daily.co Setup
This page covers Daily.co video platform setup for live meeting rooms. For the complete deployment guide, see [Deployment Guide](./overview).
Daily.co enables live video meetings with automatic recording and transcription.
## What You'll Set Up
```
User joins meeting → Daily.co video room → Recording to S3 → [Webhook] → Reflector transcribes
```
## Prerequisites
- [ ] **Daily.co account** - Free tier at https://dashboard.daily.co
- [ ] **AWS account** - For S3 storage
- [ ] **Reflector deployed** - Complete steps from [Deployment Guide](./overview)
---
## Create Daily.co Account
1. Visit https://dashboard.daily.co and sign up
2. Verify your email
3. Note your subdomain (e.g., `yourname.daily.co` → subdomain is `yourname`)
---
## Get Daily.co API Key
1. In Daily.co dashboard, go to **Developers**
2. Click **API Keys**
3. Click **Create API Key**
4. Copy the key (starts with a long string)
Save this for later.
---
## Create AWS S3 Bucket
Daily.co needs somewhere to store recordings before Reflector processes them.
```bash
# Choose a unique bucket name
BUCKET_NAME="reflector-dailyco-yourname" # -yourname is not a requirement, you can name the bucket as you wish
AWS_REGION="us-east-1"
# Create bucket
aws s3 mb s3://$BUCKET_NAME --region $AWS_REGION
# Enable versioning (required)
aws s3api put-bucket-versioning \
--bucket $BUCKET_NAME \
--versioning-configuration Status=Enabled
```
---
## Create IAM Role for Daily.co
Daily.co needs permission to write recordings to your S3 bucket.
Follow the guide https://docs.daily.co/guides/products/live-streaming-recording/storing-recordings-in-a-custom-s3-bucket
Save the role ARN - you'll need it soon.
It looks like: `arn:aws:iam::123456789012:role/DailyCo`
Shortly, you'll need to set up a role and give this role your s3 bucket access
No additional setup is required from Daily.co settings website side: the app code takes care of letting Daily know where to save the recordings.
---
## Configure Reflector
**Location: Reflector server**
Add to `server/.env`:
```env
# Daily.co Configuration
DEFAULT_VIDEO_PLATFORM=daily
DAILY_API_KEY=<your-api-key-from-daily-setup>
DAILY_SUBDOMAIN=<your-subdomain-from-daily-setup>
# S3 Storage for Daily.co recordings
DAILYCO_STORAGE_AWS_BUCKET_NAME=<your-bucket-from-daily-setup>
DAILYCO_STORAGE_AWS_REGION=us-east-1
DAILYCO_STORAGE_AWS_ROLE_ARN=<your-role-arn-from-daily-setup>
# Transcript storage (should already be configured from main setup)
# TRANSCRIPT_STORAGE_BACKEND=aws
# TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID=<your-key>
# TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY=<your-secret>
# TRANSCRIPT_STORAGE_AWS_BUCKET_NAME=<your-bucket-name>
# TRANSCRIPT_STORAGE_AWS_REGION=<your-bucket-region>
```
---
## Restart Services
After changing `.env` files, reload with `up -d`:
```bash
sudo docker compose -f docker-compose.prod.yml up -d server worker
```
**Note**: `docker compose up -d` detects env changes and recreates containers automatically.
---
## Test Live Room
1. Visit your Reflector frontend: `https://app.example.com`
2. Go to **Rooms**
3. Click **Create Room**
4. Select **Daily** as the platform
5. Allow camera/microphone access
6. You should see Daily.co video interface
7. Speak for 10-20 seconds
8. Leave the meeting
9. Recording should appear in **Transcripts** within 5 minutes (if webhooks aren't set up yet, see [Webhook Configuration](#webhook-configuration-optional) below)
---
## Troubleshooting
### Recording doesn't appear in S3
1. Check Daily.co dashboard → **Logs** for errors
2. Verify IAM role trust policy has correct Daily.co account ID and your Daily.co subdomain
3. Verify that the bucket has
### Recording in S3 but not transcribed
1. Check webhook is configured (Reflector should auto-create it)
2. Check worker logs:
```bash
docker compose -f docker-compose.prod.yml logs worker --tail 50
```
3. Verify `DAILYCO_STORAGE_AWS_*` vars in `server/.env`
### "Access Denied" when Daily.co tries to write to S3
1. Double-check IAM role ARN in Daily.co settings
2. Verify bucket name matches exactly
3. Check IAM policy has `s3:PutObject` permission
---
## Webhook Configuration [optional]
`manage_daily_webhook.py` script guides you through creating a webhook for Daily recordings.
The webhook isn't required - polling mechanism is the default and performed automatically.
This guide won't go deep into webhook setup.

View File

@@ -0,0 +1,192 @@
---
sidebar_position: 3
title: Docker Reference
---
# Docker Reference
This page documents the Docker Compose configuration for Reflector. For the complete deployment guide, see [Deployment Guide](./overview).
## Services
The `docker-compose.prod.yml` includes these services:
| Service | Image | Purpose |
|---------|-------|---------|
| `web` | `monadicalsas/reflector-frontend` | Next.js frontend |
| `server` | `monadicalsas/reflector-backend` | FastAPI backend |
| `worker` | `monadicalsas/reflector-backend` | Celery worker for background tasks |
| `beat` | `monadicalsas/reflector-backend` | Celery beat scheduler |
| `redis` | `redis:7.2-alpine` | Message broker and cache |
| `postgres` | `postgres:17-alpine` | Primary database |
| `caddy` | `caddy:2-alpine` | Reverse proxy with auto-SSL |
## Environment Files
Reflector uses two separate environment files:
### Backend (`server/.env`)
Used by: `server`, `worker`, `beat`
Key variables:
```env
# Database connection
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
# Redis
REDIS_HOST=redis
CELERY_BROKER_URL=redis://redis:6379/1
CELERY_RESULT_BACKEND=redis://redis:6379/1
# API domain and CORS
BASE_URL=https://api.example.com
CORS_ORIGIN=https://app.example.com
# Modal GPU processing
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://...
TRANSCRIPT_MODAL_API_KEY=...
```
### Frontend (`www/.env`)
Used by: `web`
Key variables:
```env
# Domain configuration
SITE_URL=https://app.example.com
API_URL=https://api.example.com
WEBSOCKET_URL=wss://api.example.com
SERVER_API_URL=http://server:1250
# Authentication
NEXTAUTH_URL=https://app.example.com
NEXTAUTH_SECRET=...
```
Note: `API_URL` is used client-side (browser), `SERVER_API_URL` is used server-side (SSR).
## Volumes
| Volume | Purpose |
|--------|---------|
| `redis_data` | Redis persistence |
| `postgres_data` | PostgreSQL data |
| `server_data` | Uploaded files, local storage |
| `caddy_data` | SSL certificates |
| `caddy_config` | Caddy configuration |
## Network
All services share the default network. The network is marked `attachable: true` to allow external containers (like Authentik) to join.
## Common Commands
### Start all services
```bash
docker compose -f docker-compose.prod.yml up -d
```
### View logs
```bash
# All services
docker compose -f docker-compose.prod.yml logs -f
# Specific service
docker compose -f docker-compose.prod.yml logs server --tail 50
```
### Restart a service
```bash
# Quick restart (doesn't reload .env changes)
docker compose -f docker-compose.prod.yml restart server
# Reload .env and restart
docker compose -f docker-compose.prod.yml up -d server
```
### Run database migrations
```bash
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
```
### Access database
```bash
docker compose -f docker-compose.prod.yml exec postgres psql -U reflector
```
### Pull latest images
```bash
docker compose -f docker-compose.prod.yml pull
docker compose -f docker-compose.prod.yml up -d
```
### Stop all services
```bash
docker compose -f docker-compose.prod.yml down
```
### Full reset (WARNING: deletes data)
```bash
docker compose -f docker-compose.prod.yml down -v
```
## Customization
### Using a different database
To use an external PostgreSQL:
1. Remove `postgres` service from compose file
2. Update `DATABASE_URL` in `server/.env`:
```env
DATABASE_URL=postgresql+asyncpg://user:pass@external-host:5432/reflector
```
### Using external Redis
1. Remove `redis` service from compose file
2. Update Redis settings in `server/.env`:
```env
REDIS_HOST=external-redis-host
CELERY_BROKER_URL=redis://external-redis-host:6379/1
```
### Adding Authentik
To add Authentik for authentication, see [Authentication Setup](./auth-setup). Quick steps:
1. Deploy Authentik separately
2. Connect to Reflector's network:
```bash
docker network connect reflector_default authentik-server-1
```
3. Add to Caddyfile:
```
authentik.example.com {
reverse_proxy authentik-server-1:9000
}
```
## Caddyfile Reference
The Caddyfile supports environment variable substitution:
```
{$FRONTEND_DOMAIN:app.example.com} {
reverse_proxy web:3000
}
{$API_DOMAIN:api.example.com} {
reverse_proxy server:1250
}
```
Set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables, or edit the file directly.
### Reload Caddy after changes
```bash
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
```

View File

@@ -0,0 +1,139 @@
---
sidebar_position: 10
title: Docs Website Deployment
---
# Docs Website Deployment
This guide covers deploying the Reflector documentation website. **This is optional and intended for internal/experimental use only.**
## Overview
The documentation is built using Docusaurus and deployed as a static nginx-served site.
## Prerequisites
- Reflector already deployed (Steps 1-7 from [Deployment Guide](./overview))
- DNS A record for docs subdomain (e.g., `docs.example.com`)
## Deployment Steps
### Step 1: Pre-fetch OpenAPI Spec
The docs site includes API reference from your running backend. Fetch it before building:
```bash
cd ~/reflector
docker compose -f docker-compose.prod.yml exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json
```
This creates `docs/static/openapi.json` (should be ~70KB) which will be copied during Docker build.
**Why not fetch during build?** Docker build containers are network-isolated and can't access the running backend services.
### Step 2: Verify Dockerfile
The Dockerfile is already in `docs/Dockerfile`:
```dockerfile
FROM node:18-alpine AS builder
WORKDIR /app
# Copy package files
COPY package*.json ./
# Inshall dependencies
RUN npm ci
# Copy source (includes static/openapi.json if pre-fetched)
COPY . .
# Fix docusaurus config: change onBrokenLinks to 'warn' for Docker build
RUN sed -i "s/onBrokenLinks: 'throw'/onBrokenLinks: 'warn'/g" docusaurus.config.ts
# Build static site
RUN npx docusaurus build
FROM nginx:alpine
COPY --from=builder /app/build /usr/share/nginx/html
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]
```
### Step 3: Add Docs Service to docker-compose.prod.yml
Add this service to `docker-compose.prod.yml`:
```yaml
docs:
build: ./docs
restart: unless-stopped
networks:
- default
```
### Step 4: Add Caddy Route
Add to `Caddyfile`:
```
{$DOCS_DOMAIN:docs.example.com} {
reverse_proxy docs:80
}
```
### Step 5: Build and Deploy
```bash
cd ~/reflector
docker compose -f docker-compose.prod.yml up -d --build docs
docker compose -f docker-compose.prod.yml exec caddy caddy reload --config /etc/caddy/Caddyfile
```
### Step 6: Verify
```bash
# Check container status
docker compose -f docker-compose.prod.yml ps docs
# Should show "Up"
# Test URL
curl -I https://docs.example.com
# Should return HTTP/2 200
```
Visit `https://docs.example.com` in your browser
## Updating Documentation
When docs are updated:
```bash
cd ~/reflector
git pull
# Refresh OpenAPI spec from backend
docker compose -f docker-compose.prod.yml exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json
# Rebuild docs
docker compose -f docker-compose.prod.yml up -d --build docs
```
## Troubleshooting
### Missing openapi.json during build
- Make sure you ran the pre-fetch step first (Step 1)
- Verify `docs/static/openapi.json` exists and is ~70KB
- Re-run: `docker compose exec server curl -s http://localhost:1250/openapi.json > docs/static/openapi.json`
### Build fails with "Docusaurus found broken links"
- This happens if `onBrokenLinks: 'throw'` is set in docusaurus.config.ts
- Solution is already in Dockerfile: uses `sed` to change to `'warn'` during build
### 404 on all pages
- Docusaurus baseUrl might be wrong - should be `/` for custom domain
- Check `docs/docusaurus.config.ts`: `baseUrl: '/'`
### Docs not updating after rebuild
- Force rebuild: `docker compose -f docker-compose.prod.yml build --no-cache docs`
- Then: `docker compose -f docker-compose.prod.yml up -d docs`

View File

@@ -0,0 +1,171 @@
---
sidebar_position: 4
title: Modal.com Setup
---
# Modal.com Setup
This page covers Modal.com GPU setup in detail. For the complete deployment guide, see [Deployment Guide](./overview).
Reflector uses [Modal.com](https://modal.com) for GPU-accelerated audio processing. This guide walks you through deploying the required GPU functions.
## What is Modal.com?
Modal is a serverless GPU platform. You deploy Python code that runs on their GPUs, and pay only for actual compute time. Reflector uses Modal for:
- **Transcription**: Whisper model for speech-to-text
- **Diarization**: Pyannote model for speaker identification
## Prerequisites
1. **Modal.com account** - Sign up at https://modal.com (free tier available)
2. **HuggingFace account** - Required for Pyannote diarization models:
- Create account at https://huggingface.co
- Accept **both** Pyannote licenses:
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
- Generate access token at https://huggingface.co/settings/tokens
## Deployment
**Location: YOUR LOCAL COMPUTER (laptop/desktop)**
Modal CLI requires browser authentication, so this must run on a machine with a browser - not on a headless server.
### Install Modal CLI
```bash
pip install modal
```
### Authenticate with Modal
```bash
modal setup
```
This opens your browser for authentication. Complete the login flow.
### Clone Repository and Deploy
```bash
git clone https://github.com/monadical-sas/reflector.git
cd reflector/gpu/modal_deployments
./deploy-all.sh --hf-token YOUR_HUGGINGFACE_TOKEN
```
Or run interactively (script will prompt for token):
```bash
./deploy-all.sh
```
### What the Script Does
1. **Prompts for HuggingFace token** - Needed to download the Pyannote diarization model
2. **Generates API key** - Creates a secure random key for authenticating requests to GPU functions
3. **Creates Modal secrets**:
- `hf_token` - Your HuggingFace token
- `reflector-gpu` - The generated API key
4. **Deploys GPU functions** - Transcriber (Whisper) and Diarizer (Pyannote)
5. **Outputs configuration** - Prints URLs and API key to console
### Example Output
```
==========================================
Reflector GPU Functions Deployment
==========================================
Generating API key for GPU services...
Creating Modal secrets...
-> Creating secret: hf_token
-> Creating secret: reflector-gpu
Deploying transcriber (Whisper)...
-> https://yourname--reflector-transcriber-web.modal.run
Deploying diarizer (Pyannote)...
-> https://yourname--reflector-diarizer-web.modal.run
==========================================
Deployment complete!
==========================================
Copy these values to your server's server/.env file:
# --- Modal GPU Configuration ---
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://yourname--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=abc123...
DIARIZATION_BACKEND=modal
DIARIZATION_URL=https://yourname--reflector-diarizer-web.modal.run
DIARIZATION_MODAL_API_KEY=abc123...
# --- End Modal Configuration ---
```
Copy the output and paste it into your `server/.env` file on your server.
## Costs
Modal charges based on GPU compute time:
- Functions scale to zero when not in use (no cost when idle)
- You only pay for actual processing time
- Free tier includes $30/month of credits
Typical costs for audio processing:
- Transcription: ~$0.01-0.05 per minute of audio
- Diarization: ~$0.02-0.10 per minute of audio
## Troubleshooting
### "Modal CLI not installed"
```bash
pip install modal
```
### "Not authenticated with Modal"
```bash
modal setup
# Complete browser authentication
```
### "Failed to create secret hf_token"
- Verify your HuggingFace token is valid
- Ensure you've accepted the Pyannote license
- Token needs `read` permission
### Deployment fails
Check the Modal dashboard for detailed error logs:
- Visit https://modal.com/apps
- Click on the failed function
- View build and runtime logs
### Re-running deployment
The script is safe to re-run. It will:
- Update existing secrets if they exist
- Redeploy functions with latest code
- Output new configuration (API key stays the same if secret exists)
## Manual Deployment (Advanced)
If you prefer to deploy functions individually:
```bash
cd gpu/modal_deployments
# Create secrets manually
modal secret create hf_token HF_TOKEN=your-hf-token
modal secret create reflector-gpu REFLECTOR_GPU_APIKEY=$(openssl rand -hex 32)
# Deploy each function
modal deploy reflector_transcriber.py
modal deploy reflector_diarizer.py
```
## Monitoring
View your deployed functions and their usage:
- **Modal Dashboard**: https://modal.com/apps
- **Function logs**: Click on any function to view logs
- **Usage**: View compute time and costs in the dashboard

View File

@@ -0,0 +1,401 @@
---
sidebar_position: 1
title: Deployment Guide
---
# Deployment Guide
This guide walks you through deploying Reflector from scratch. Follow these steps in order.
## What You'll Set Up
```mermaid
flowchart LR
User --> Caddy["Caddy (auto-SSL)"]
Caddy --> Frontend["Frontend (Next.js)"]
Caddy --> Backend["Backend (FastAPI)"]
Backend --> PostgreSQL
Backend --> Redis
Backend --> Workers["Celery Workers"]
Workers --> PostgreSQL
Workers --> Redis
Workers --> GPU["GPU Processing<br/>(Modal.com OR Self-hosted)"]
```
## Prerequisites
Before starting, you need:
- **Production server** - 4+ cores, 8GB+ RAM, public IP
- **Two domain names** - e.g., `app.example.com` (frontend) and `api.example.com` (backend)
- **GPU processing** - Choose one:
- Modal.com account, OR
- GPU server with NVIDIA GPU (8GB+ VRAM)
- **HuggingFace account** - Free at https://huggingface.co
- Accept both Pyannote licenses (required for speaker diarization):
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
- **LLM API** - For summaries and topic detection. Choose one:
- OpenAI API key at https://platform.openai.com/account/api-keys, OR
- Any OpenAI-compatible endpoint (vLLM, LiteLLM, Ollama, etc.)
- **AWS S3 bucket** - For storing audio files and transcripts (see [S3 Setup](#create-s3-bucket-for-transcript-storage) below)
### Optional (for live meeting rooms)
- [ ] **Daily.co account** - Free tier at https://dashboard.daily.co
- [ ] **AWS S3 bucket + IAM Role** - For Daily.co recording storage (separate from transcript storage)
---
## Configure DNS
```
Type: A Name: app Value: <your-server-ip>
Type: A Name: api Value: <your-server-ip>
```
---
## Deploy GPU Processing
Reflector requires GPU processing for transcription and speaker diarization. Choose one option:
| | **Modal.com (Cloud)** | **Self-Hosted GPU** |
|---|---|---|
| **Best for** | No GPU hardware, zero maintenance | Own GPU server, full control |
| **Pricing** | Pay-per-use | Fixed infrastructure cost |
### Option A: Modal.com (Serverless Cloud GPU)
#### Accept HuggingFace Licenses
Visit both pages and click "Accept":
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
Generate a token at https://huggingface.co/settings/tokens
#### Deploy to Modal
There's an install script to help with this setup. It's using modal API to set all necessary moving parts.
As an alternative, all those operations that script does could be performed in modal settings in modal UI.
```bash
pip install modal
modal setup # opens browser for authentication
git clone https://github.com/monadical-sas/reflector.git
cd reflector/gpu/modal_deployments
./deploy-all.sh --hf-token YOUR_HUGGINGFACE_TOKEN
```
**Save the output** - copy the configuration block, you'll need it soon.
See [Modal Setup](./modal-setup) for troubleshooting and details.
### Option B: Self-Hosted GPU
**Location: YOUR GPU SERVER**
Requires: NVIDIA GPU with 8GB+ VRAM, Ubuntu 22.04+, 40-50GB disk (Docker) or 25-30GB (Systemd).
See [Self-Hosted GPU Setup](./self-hosted-gpu-setup) for complete instructions. Quick summary:
1. Install NVIDIA drivers and Docker (or uv for systemd)
2. Clone repository: `git clone https://github.com/monadical-sas/reflector.git`
3. Configure `.env` with HuggingFace token
4. Start service (Docker compose or systemd)
5. Set up Caddy reverse proxy for HTTPS
**Save your API key and HTTPS URL** - you'll need them soon.
---
## Prepare Server
**Location: dedicated reflector server**
### Install Docker
```bash
ssh user@your-server-ip
curl -fsSL https://get.docker.com | sh
sudo usermod -aG docker $USER
# Log out and back in for group changes
exit
ssh user@your-server-ip
docker --version # verify
```
### Firewall
Ensure ports 80 (HTTP) and 443 (HTTPS) are open for inbound traffic. The method varies by cloud provider and OS configuration.
### Clone Repository
The Docker images contain all application code. You clone the repository for configuration files and the compose definition:
```bash
git clone https://github.com/monadical-sas/reflector.git
cd reflector
```
---
## Create S3 Bucket for Transcript Storage
Reflector requires AWS S3 to store audio files during processing.
### Create Bucket
```bash
# Choose a unique bucket name
BUCKET_NAME="reflector-transcripts-yourname"
AWS_REGION="us-east-1"
# Create bucket
aws s3 mb s3://$BUCKET_NAME --region $AWS_REGION
```
### Create IAM User
Create an IAM user with S3 access for Reflector:
1. Go to AWS IAM Console → Users → Create User
2. Name: `reflector-transcripts`
3. Attach policy: `AmazonS3FullAccess` (or create a custom policy for just your bucket)
4. Create access key (Access key ID + Secret access key)
Save these credentials - you'll need them in the next step.
---
## Configure Environment
Reflector has two env files:
- `server/.env` - Backend configuration
- `www/.env` - Frontend configuration
### Backend Configuration
```bash
cp server/.env.example server/.env
nano server/.env
```
**Required settings:**
```env
# Database (defaults work with docker-compose.prod.yml)
DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
# Redis
REDIS_HOST=redis
CELERY_BROKER_URL=redis://redis:6379/1
CELERY_RESULT_BACKEND=redis://redis:6379/1
# Your domains
BASE_URL=https://api.example.com
CORS_ORIGIN=https://app.example.com
CORS_ALLOW_CREDENTIALS=true
# Secret key - generate with: openssl rand -hex 32
SECRET_KEY=<your-generated-secret>
# GPU Processing - choose ONE option:
# Option A: Modal.com (paste from deploy-all.sh output)
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://yourname--reflector-transcriber-web.modal.run
TRANSCRIPT_MODAL_API_KEY=<from-deploy-all.sh-output>
DIARIZATION_BACKEND=modal
DIARIZATION_URL=https://yourname--reflector-diarizer-web.modal.run
DIARIZATION_MODAL_API_KEY=<from-deploy-all.sh-output>
# Option B: Self-hosted GPU (use your GPU server URL and API key)
# TRANSCRIPT_BACKEND=modal
# TRANSCRIPT_URL=https://gpu.example.com
# TRANSCRIPT_MODAL_API_KEY=<your-generated-api-key>
# DIARIZATION_BACKEND=modal
# DIARIZATION_URL=https://gpu.example.com
# DIARIZATION_MODAL_API_KEY=<your-generated-api-key>
# Storage - where to store audio files and transcripts (requires AWS S3)
TRANSCRIPT_STORAGE_BACKEND=aws
TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID=your-aws-access-key
TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY=your-aws-secret-key
TRANSCRIPT_STORAGE_AWS_BUCKET_NAME=reflector-media
TRANSCRIPT_STORAGE_AWS_REGION=us-east-1
# LLM - for generating titles, summaries, and topics
LLM_API_KEY=sk-your-openai-api-key
LLM_MODEL=gpt-4o-mini
# LLM_URL=https://api.openai.com/v1 # Optional: custom endpoint (vLLM, LiteLLM, Ollama, etc.)
# Auth - disable for initial setup (see a dedicated step for authentication)
AUTH_BACKEND=none
```
### Frontend Configuration
```bash
cp www/.env.example www/.env
nano www/.env
```
**Required settings:**
```env
# Your domains
SITE_URL=https://app.example.com
API_URL=https://api.example.com
WEBSOCKET_URL=wss://api.example.com
SERVER_API_URL=http://server:1250
# NextAuth
NEXTAUTH_URL=https://app.example.com
NEXTAUTH_SECRET=<generate-with-openssl-rand-hex-32>
# Disable login requirement for initial setup
FEATURE_REQUIRE_LOGIN=false
```
---
## Configure Caddy
```bash
cp Caddyfile.example Caddyfile
nano Caddyfile
```
Replace `example.com` with your domains. The `{$VAR:default}` syntax uses Caddy's env var substitution - you can either edit the file directly or set `FRONTEND_DOMAIN` and `API_DOMAIN` environment variables.
```
{$FRONTEND_DOMAIN:app.example.com} {
reverse_proxy web:3000
}
{$API_DOMAIN:api.example.com} {
reverse_proxy server:1250
}
```
---
## Start Services
```bash
docker compose -f docker-compose.prod.yml up -d
```
Wait for PostgreSQL to be ready, then run migrations:
```bash
# Wait for postgres to be healthy (may take 30-60 seconds on first run)
docker compose -f docker-compose.prod.yml exec postgres pg_isready -U reflector
# Run database migrations
docker compose -f docker-compose.prod.yml exec server uv run alembic upgrade head
```
---
## Verify Deployment
### Check services
```bash
docker compose -f docker-compose.prod.yml ps
# All should show "Up"
```
### Test API
```bash
curl https://api.example.com/health
# Should return: {"status":"healthy"}
```
### Test Frontend
- Visit https://app.example.com
- You should see the Reflector interface
- Try uploading an audio file to test transcription
---
## Enable Authentication (Required for Live Rooms)
By default, Reflector is open (no login required). **Authentication is required if you want to use Live Meeting Rooms.**
See [Authentication Setup](./auth-setup) for full Authentik OAuth configuration.
Quick summary:
1. Deploy Authentik on your server
2. Create OAuth provider in Authentik
3. Extract public key for JWT verification
4. Update `server/.env`: `AUTH_BACKEND=jwt` + `AUTH_JWT_AUDIENCE`
5. Update `www/.env`: `FEATURE_REQUIRE_LOGIN=true` + Authentik credentials
6. Mount JWT keys volume and restart services
---
## Enable Live Meeting Rooms
**Requires: Authentication Step**
Live rooms require Daily.co and AWS S3. See [Daily.co Setup](./daily-setup) for complete S3/IAM configuration instructions.
Note that Reflector also supports Whereby as a call provider - this doc doesn't cover its setup yet.
Quick config - Add to `server/.env`:
```env
DEFAULT_VIDEO_PLATFORM=daily
DAILY_API_KEY=<from-daily.co-dashboard>
DAILY_SUBDOMAIN=<your-daily-subdomain>
# S3 for recording storage
DAILYCO_STORAGE_AWS_BUCKET_NAME=<your-bucket>
DAILYCO_STORAGE_AWS_REGION=us-east-1
DAILYCO_STORAGE_AWS_ROLE_ARN=<arn:aws:iam::ACCOUNT:role/DailyCo>
```
Reload env and restart:
```bash
docker compose -f docker-compose.prod.yml up -d server worker
```
---
## Troubleshooting
### Check logs for errors
```bash
docker compose -f docker-compose.prod.yml logs server --tail 20
docker compose -f docker-compose.prod.yml logs worker --tail 20
```
### Services won't start
```bash
docker compose -f docker-compose.prod.yml logs
```
### CORS errors in browser
- Verify `CORS_ORIGIN` in `server/.env` matches your frontend domain exactly (including `https://`)
- Reload env: `docker compose -f docker-compose.prod.yml up -d server`
### SSL certificate errors
- Caddy auto-provisions Let's Encrypt certificates
- Ensure ports 80 and 443 are open
- Check: `docker compose -f docker-compose.prod.yml logs caddy`
### Transcription not working
- Check Modal dashboard: https://modal.com/apps
- Verify URLs in `server/.env` match deployed functions
- Check worker logs: `docker compose -f docker-compose.prod.yml logs worker`
### "Login required" but auth not configured
- Set `FEATURE_REQUIRE_LOGIN=false` in `www/.env`
- Rebuild frontend: `docker compose -f docker-compose.prod.yml up -d --force-recreate web`

View File

@@ -0,0 +1,60 @@
---
sidebar_position: 2
title: System Requirements
---
# System Requirements
This page lists hardware and software requirements. For the complete deployment guide, see [Deployment Guide](./overview).
## Server Requirements
### Minimum Requirements
- **CPU**: 4 cores
- **RAM**: 8 GB
- **Storage**: 50 GB SSD
- **OS**: Ubuntu 22.04+ or compatible Linux
- **Network**: Public IP address
### Recommended Requirements
- **CPU**: 8+ cores
- **RAM**: 16 GB
- **Storage**: 100 GB SSD
- **Network**: 1 Gbps connection
## Software Requirements
- Docker Engine 20.10+
- Docker Compose 2.0+
## External Services
### Required
- **Two domain names** - One for frontend (e.g., `app.example.com`), one for API (e.g., `api.example.com`)
- **Modal.com account** - For GPU-accelerated transcription and diarization (free tier available)
- **HuggingFace account** - For Pyannote diarization model access
- **OpenAI API key** - For generating summaries and topic detection (https://platform.openai.com/account/api-keys)
### Required for Live Meeting Rooms
- **Daily.co account** - For video conferencing (free tier available at https://dashboard.daily.co)
- **AWS S3 bucket + IAM Role** - For Daily.co to store recordings
- **Another AWS S3 bucket (optional, can reuse the one above)** - For Reflector to store "compiled" mp3 files and transient diarization process temporary files
### Optional
- **AWS S3** - For cloud storage of recordings and transcripts
- **Authentik** - For SSO/OIDC authentication
- **Sentry** - For error tracking
## Development Requirements
For local development only (not required for production deployment):
- Node.js 22+ (for frontend development)
- Python 3.12+ (for backend development)
- pnpm (for frontend package management)
- uv (for Python package management)

View File

@@ -0,0 +1,465 @@
---
sidebar_position: 5
title: Self-Hosted GPU Setup
---
# Self-Hosted GPU Setup
This guide covers deploying Reflector's GPU processing on your own server instead of Modal.com. For the complete deployment guide, see [Deployment Guide](./overview).
## When to Use Self-Hosted GPU
**Choose self-hosted GPU if you:**
- Have GPU hardware available (NVIDIA required)
- Want full control over processing
- Prefer fixed infrastructure costs over pay-per-use
- Have privacy or data locality requirements
- Need to process audio without external API calls
**Choose Modal.com instead if you:**
- Don't have GPU hardware
- Want zero infrastructure management
- Prefer pay-per-use pricing
- Need instant scaling for variable workloads
See [Modal.com Setup](./modal-setup) for cloud GPU deployment.
## What Gets Deployed
The self-hosted GPU service provides the same API endpoints as Modal:
- `POST /v1/audio/transcriptions` - Whisper transcription
- `POST /diarize` - Pyannote speaker diarization
Your main Reflector server connects to this service exactly like it connects to Modal - only the URL changes.
## Prerequisites
### Hardware
- **GPU**: NVIDIA GPU with 8GB+ VRAM (tested on Tesla T4 with 15GB)
- **CPU**: 4+ cores recommended
- **RAM**: 8GB minimum, 16GB recommended
- **Disk**:
- Docker method: 40-50GB minimum
- Systemd method: 25-30GB minimum
### Software
- Public IP address
- Domain name with DNS A record pointing to server
### Accounts
- **HuggingFace account** with accepted Pyannote licenses:
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
- **HuggingFace access token** from https://huggingface.co/settings/tokens
## Choose Deployment Method
---
## Docker Deployment
### Step 1: Install NVIDIA Driver
```bash
sudo apt update
sudo apt install -y nvidia-driver-535
# Load kernel modules
sudo modprobe nvidia
# Verify installation
nvidia-smi
```
Expected output: GPU details with driver version and CUDA version.
### Step 2: Install Docker
```bash
curl -fsSL https://get.docker.com | sudo sh
sudo usermod -aG docker $USER
# Log out and back in for group changes
exit
# SSH back in
```
### Step 3: Install NVIDIA Container Toolkit
```bash
# Add NVIDIA repository
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \
sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
# Install toolkit
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
# Configure Docker runtime
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
### Step 4: Clone Repository and Configure
```bash
git clone https://github.com/monadical-sas/reflector.git
cd reflector/gpu/self_hosted
# Create environment file
cat > .env << EOF
REFLECTOR_GPU_APIKEY=$(openssl rand -hex 16)
HF_TOKEN=your_huggingface_token_here
EOF
# Note the generated API key - you'll need it for main server config
cat .env
```
### Step 5: Create Docker Compose File
```bash
cat > compose.yml << 'EOF'
services:
reflector_gpu:
build:
context: .
ports:
- "8000:8000"
env_file:
- .env
volumes:
- ./cache:/root/.cache
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
restart: unless-stopped
EOF
```
### Step 6: Build and Start
```bash
# Build image (takes ~5 minutes, downloads ~10GB)
sudo docker compose build
# Start service
sudo docker compose up -d
# Wait for startup and verify
sleep 30
sudo docker compose logs
```
Look for: `INFO: Application startup complete. Uvicorn running on http://0.0.0.0:8000`
### Step 7: Verify GPU Access
```bash
# Check GPU is accessible from container
sudo docker exec $(sudo docker ps -q) nvidia-smi
```
Should show GPU with ~3GB VRAM used (models loaded).
---
## Systemd Deployment
### Step 1: Install NVIDIA Driver
```bash
sudo apt update
sudo apt install -y nvidia-driver-535
# Load kernel modules
sudo modprobe nvidia
# Verify installation
nvidia-smi
```
### Step 2: Install Dependencies
```bash
# Install ffmpeg
sudo apt install -y ffmpeg
# Install uv package manager
curl -LsSf https://astral.sh/uv/install.sh | sh
source ~/.local/bin/env
# Clone repository
git clone https://github.com/monadical-sas/reflector.git
cd reflector/gpu/self_hosted
```
### Step 3: Configure Environment
```bash
# Create environment file
cat > .env << EOF
REFLECTOR_GPU_APIKEY=$(openssl rand -hex 16)
HF_TOKEN=your_huggingface_token_here
EOF
# Note the generated API key
cat .env
```
### Step 4: Install Python Packages
```bash
# Install dependencies (~3GB download)
uv sync
```
### Step 5: Create Systemd Service
```bash
# Generate library paths for NVIDIA packages
export NVIDIA_LIBS=$(find ~/reflector/gpu/self_hosted/.venv/lib/python3.12/site-packages/nvidia -name lib -type d | tr '\n' ':')
# Load environment variables
source ~/reflector/gpu/self_hosted/.env
# Create service file
sudo tee /etc/systemd/system/reflector-gpu.service << EOFSVC
[Unit]
Description=Reflector GPU Service (Transcription & Diarization)
After=network.target
[Service]
Type=simple
User=$USER
WorkingDirectory=$HOME/reflector/gpu/self_hosted
Environment="PATH=$HOME/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
Environment="HF_TOKEN=${HF_TOKEN}"
Environment="REFLECTOR_GPU_APIKEY=${REFLECTOR_GPU_APIKEY}"
Environment="LD_LIBRARY_PATH=${NVIDIA_LIBS}"
ExecStart=$HOME/reflector/gpu/self_hosted/.venv/bin/uvicorn main:app --host 0.0.0.0 --port 8000
Restart=always
RestartSec=10
[Install]
WantedBy=multi-user.target
EOFSVC
# Enable and start
sudo systemctl daemon-reload
sudo systemctl enable reflector-gpu
sudo systemctl start reflector-gpu
```
### Step 6: Verify Service
```bash
# Check status
sudo systemctl status reflector-gpu
# View logs
sudo journalctl -u reflector-gpu -f
```
Look for: `INFO: Application startup complete.`
---
## Configure HTTPS with Caddy
Both deployment methods need HTTPS for production. Caddy handles SSL automatically.
### Install Caddy
```bash
sudo apt install -y debian-keyring debian-archive-keyring apt-transport-https curl
curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/gpg.key' | \
sudo gpg --dearmor -o /usr/share/keyrings/caddy-stable-archive-keyring.gpg
curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/debian.deb.txt' | \
sudo tee /etc/apt/sources.list.d/caddy-stable.list
sudo apt update
sudo apt install -y caddy
```
### Configure Reverse Proxy
```bash
sudo tee /etc/caddy/Caddyfile << 'EOF'
gpu.example.com {
reverse_proxy localhost:8000
}
EOF
# Reload Caddy (auto-provisions SSL certificate)
sudo systemctl reload caddy
```
Replace `gpu.example.com` with your domain.
### Verify HTTPS
```bash
curl -I https://gpu.example.com/docs
# Should return HTTP/2 200
```
---
## Configure Main Reflector Server
On your main Reflector server, update `server/.env`:
```env
# GPU Processing - Self-hosted
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://gpu.example.com
TRANSCRIPT_MODAL_API_KEY=<your-generated-api-key>
DIARIZATION_BACKEND=modal
DIARIZATION_URL=https://gpu.example.com
DIARIZATION_MODAL_API_KEY=<your-generated-api-key>
```
**Note:** The backend type is `modal` because the self-hosted GPU service implements the same API contract as Modal.com. This allows you to switch between cloud and self-hosted GPU processing by only changing the URL and API key.
Restart services to apply:
```bash
docker compose -f docker-compose.prod.yml restart server worker
```
---
## Service Management
All commands in this section assume you're in `~/reflector/gpu/self_hosted/`.
### Docker
```bash
# View logs
sudo docker compose logs -f
# Restart service
sudo docker compose restart
# Stop service
sudo docker compose down
# Check status
sudo docker compose ps
```
### Systemd
```bash
# View logs
sudo journalctl -u reflector-gpu -f
# Restart service
sudo systemctl restart reflector-gpu
# Stop service
sudo systemctl stop reflector-gpu
# Check status
sudo systemctl status reflector-gpu
```
### Monitor GPU
```bash
# Check GPU usage
nvidia-smi
# Watch in real-time
watch -n 1 nvidia-smi
```
**Typical GPU memory usage:**
- Idle (models loaded): ~3GB VRAM
- During transcription: ~4-5GB VRAM
---
## Troubleshooting
### nvidia-smi fails after driver install
```bash
# Manually load kernel modules
sudo modprobe nvidia
nvidia-smi
```
### Service fails with "Could not download pyannote pipeline"
1. Verify HF_TOKEN is valid: `echo $HF_TOKEN`
2. Check model access at https://huggingface.co/pyannote/speaker-diarization-3.1
3. Regenerate service/compose with correct token
4. Restart service
### cuDNN library loading errors (Systemd only)
Symptom: `Unable to load libcudnn_cnn.so`
Regenerate the systemd service file - the `LD_LIBRARY_PATH` must include all NVIDIA package directories.
### Cannot connect to HTTPS endpoint
1. Verify DNS resolves: `dig +short gpu.example.com`
2. Check firewall: `sudo ufw status` (ports 80, 443 must be open)
3. Check Caddy: `sudo systemctl status caddy`
4. View Caddy logs: `sudo journalctl -u caddy -n 50`
### SSL certificate not provisioning
Requirements for Let's Encrypt:
- Ports 80 and 443 publicly accessible
- DNS resolves to server's public IP
- Valid domain (not localhost or private IP)
### Docker container won't start
```bash
# Check logs
sudo docker compose logs
# Common issues:
# - Port 8000 already in use
# - GPU not accessible (nvidia-ctk not configured)
# - Missing .env file
```
---
## Updating
### Docker
```bash
cd ~/reflector/gpu/self_hosted
git pull
sudo docker compose build
sudo docker compose up -d
```
### Systemd
```bash
cd ~/reflector/gpu/self_hosted
git pull
uv sync
sudo systemctl restart reflector-gpu
```

View File

@@ -0,0 +1,7 @@
---
title: whereby setup
---
# whereby setup
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: zulip setup
---
# zulip setup
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

61
docs/docs/intro.md Normal file
View File

@@ -0,0 +1,61 @@
---
sidebar_position: 1
title: Introduction
---
# Welcome to Reflector
Reflector is a privacy-focused, self-hosted AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation, and summarization for audio content and live meetings. With complete control over your data and infrastructure, you can run models on your own hardware (roadmap - currently supports Modal.com for GPU processing).
## What is Reflector?
Reflector is a web application that utilizes AI to process audio content, providing:
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://github.com/NVIDIA/NeMo) (English) models
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
- **Live Translation**: Translate audio content in real-time to 100+ languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
## Features
| Feature | Public Mode | Private Mode |
|---------|------------|--------------|
| **Authentication** | None required | Required |
| **Audio Upload** | ✅ | ✅ |
| **Live Microphone Streaming** | ✅ | ✅ |
| **Transcription** | ✅ | ✅ |
| **Speaker Diarization** | ✅ | ✅ |
| **Translation** | ✅ | ✅ |
| **Topic Detection** | ✅ | ✅ |
| **Summarization** | ✅ | ✅ |
| **Virtual Meeting Rooms (Whereby)** | ❌ | ✅ |
| **Browse Transcripts Page** | ❌ | ✅ |
| **Search Functionality** | ❌ | ✅ |
| **Persistent Storage** | ❌ | ✅ |
## Architecture Overview
Reflector consists of three main components:
- **Frontend**: React application built with Next.js 14
- **Backend**: Python server using FastAPI
- **Processing**: Scalable GPU workers for ML inference (Modal.com or local)
## Getting Started
Ready to deploy Reflector? Head over to our [Installation Guide](./installation/overview) to set up your own instance.
For a quick overview of how Reflector processes audio, check out our [Pipeline Documentation](./pipelines/overview).
## Open Source
Reflector is open source software developed by [Monadical](https://monadical.com) and licensed under the **MIT License**. We welcome contributions from the community!
- [GitHub Repository](https://github.com/monadical-sas/reflector)
- [Issue Tracker](https://github.com/monadical-sas/reflector/issues)
- [Pull Requests](https://github.com/monadical-sas/reflector/pulls)
## Support
Need help? Reach out to the community through GitHub Discussions.

View File

@@ -0,0 +1,343 @@
---
sidebar_position: 2
title: File Processing Pipeline
---
# File Processing Pipeline
The file processing pipeline handles uploaded audio files, optimizing for accuracy and throughput.
## Pipeline Stages
### 1. Input Stage
**Accepted Formats:**
- MP3 (most common)
- WAV (uncompressed)
- M4A (Apple format)
- WebM (browser recordings)
- MP4 (video with audio track)
**File Validation:**
- Maximum size: 2GB (configurable)
- Minimum duration: 5 seconds
- Maximum duration: 6 hours
- Sample rate: Any (will be resampled)
### 2. Pre-processing
**Audio Normalization:**
```yaml
# Convert to standard format
- Sample rate: 16kHz (Whisper requirement)
- Channels: Mono
- Bit depth: 16-bit
- Format: WAV
```
**Noise Reduction (Optional):**
- Background noise removal
- Echo cancellation
- High-pass filter for rumble
### 3. Chunking Strategy
**Default Configuration:**
```yaml
chunk_size: 30 # seconds
overlap: 1 # seconds
max_parallel: 10
silence_detection: true
```
**Chunking with Silence Detection:**
- Detects silence periods
- Attempts to break at natural pauses
- Maintains context with overlap
- Preserves sentence boundaries
**Chunk Metadata:**
```json
{
"chunk_id": "chunk_001",
"start_time": 0.0,
"end_time": 30.0,
"duration": 30.0,
"has_speech": true,
"audio_hash": "sha256:..."
}
```
### 4. Transcription Processing
**Whisper Models:**
| Model | Size | Speed | Accuracy | Use Case |
|-------|------|-------|----------|----------|
| tiny | 39M | Very Fast | 85% | Quick drafts |
| base | 74M | Fast | 89% | Good balance |
| small | 244M | Medium | 91% | Better accuracy |
| medium | 769M | Slow | 93% | High quality |
| large-v3 | 1550M | Very Slow | 96% | Best quality |
**Processing Configuration:**
```python
transcription_config = {
"model": "whisper-base",
"language": "auto", # or specify: "en", "es", etc.
"task": "transcribe", # or "translate"
"temperature": 0, # deterministic
"compression_ratio_threshold": 2.4,
"no_speech_threshold": 0.6,
"condition_on_previous_text": True,
"initial_prompt": None, # optional context
}
```
**Parallel Processing:**
- Each chunk processed independently
- GPU batching for efficiency
- Automatic load balancing
- Failure isolation
### 5. Diarization (Speaker Identification)
**Pyannote 3.1 Pipeline:**
1. **Voice Activity Detection (VAD)**
- Identifies speech segments
- Filters out silence and noise
- Precision: 95%+
2. **Speaker Embedding**
- Extracts voice characteristics
- 256-dimensional vectors
- Speaker-invariant features
3. **Clustering**
- Groups similar voice embeddings
- Agglomerative clustering
- Automatic speaker count detection
4. **Segmentation**
- Assigns speaker labels to time segments
- Handles overlapping speech
- Minimum segment duration: 0.5s
**Configuration:**
```python
diarization_config = {
"min_speakers": 1,
"max_speakers": 10,
"min_duration": 0.5,
"clustering": "AgglomerativeClustering",
"embedding_model": "speechbrain/spkrec-ecapa-voxceleb",
}
```
### 6. Alignment & Merging
**Chunk Assembly:**
```python
# Merge overlapping segments
for chunk in chunks:
# Remove overlap duplicates
if chunk.start < previous.end:
chunk.text = resolve_overlap(previous, chunk)
# Maintain timeline
merged_transcript.append(chunk)
```
**Speaker Alignment:**
- Map diarization timeline to transcript
- Resolve speaker changes mid-sentence
- Handle multiple speakers per segment
**Quality Checks:**
- Timeline consistency
- No gaps in transcript
- Speaker label continuity
- Confidence score validation
### 7. Post-processing Chain
**Text Formatting:**
- Sentence capitalization
- Punctuation restoration
- Number formatting
- Acronym detection
**Translation (Optional):**
```python
translation_config = {
"model": "facebook/seamless-m4t-medium",
"source_lang": "auto",
"target_langs": ["es", "fr", "de"],
"preserve_formatting": True
}
```
**Topic Detection:**
- LLM-based analysis
- Extract 3-5 key topics
- Keyword extraction
- Entity recognition
**Summarization:**
```python
summary_config = {
"model": "openai-compatible",
"max_length": 500,
"style": "bullets", # or "paragraph"
"include_action_items": True,
"include_decisions": True
}
```
### 8. Storage & Delivery
**Database Storage:**
```sql
-- Main transcript record
INSERT INTO transcripts (
id, title, duration, language,
transcript_text, transcript_json,
speakers, topics, summary,
created_at, processing_time
) VALUES (...);
-- Processing metadata
INSERT INTO processing_metadata (
transcript_id, model_versions,
chunk_count, total_chunks,
error_count, warnings
) VALUES (...);
```
**File Storage:**
- Original audio: S3 (optional)
- Processed chunks: Temporary (24h)
- Transcript exports: JSON, SRT, VTT, TXT
**Notification:**
```json
{
"type": "webhook",
"url": "https://your-app.com/webhook",
"payload": {
"transcript_id": "...",
"status": "completed",
"duration": 3600,
"processing_time": 180
}
}
```
## Processing Times
**Estimated times for 1 hour of audio:**
| Component | Fast Mode | Balanced | High Quality |
|-----------|-----------|----------|--------------|
| Pre-processing | 10s | 10s | 10s |
| Transcription | 60s | 180s | 600s |
| Diarization | 30s | 60s | 120s |
| Post-processing | 20s | 30s | 60s |
| **Total** | **2 min** | **5 min** | **13 min** |
## Error Handling
### Retry Strategy
```python
@celery.task(
bind=True,
max_retries=3,
default_retry_delay=60,
retry_backoff=True
)
def process_chunk(self, chunk_id):
try:
# Process chunk
result = transcribe(chunk_id)
except Exception as exc:
# Exponential backoff
raise self.retry(exc=exc)
```
### Partial Recovery
- Continue with successful chunks
- Mark failed chunks in output
- Provide partial transcript
- Report processing issues
### Fallback Options
1. **Model Fallback:**
- If large model fails, try medium
- If GPU fails, try CPU
- If Modal fails, try local
2. **Quality Degradation:**
- Reduce chunk size
- Disable post-processing
- Skip diarization if needed
## Optimization Tips
### For Speed
1. Use smaller models (tiny/base)
2. Increase parallel chunks
3. Disable diarization
4. Skip post-processing
5. Use GPU acceleration
### For Accuracy
1. Use larger models (medium/large)
2. Enable all pre-processing
3. Reduce chunk size
4. Enable silence detection
5. Multiple pass processing
### For Cost
1. Use Modal spot instances
2. Batch multiple files
3. Cache common phrases
4. Optimize chunk size
5. Selective post-processing
## Monitoring
### Metrics to Track
```python
metrics = {
"processing_time": histogram,
"chunk_success_rate": gauge,
"model_accuracy": histogram,
"queue_depth": gauge,
"gpu_utilization": gauge,
"cost_per_hour": counter
}
```
### Quality Metrics
- Word Error Rate (WER)
- Diarization Error Rate (DER)
- Confidence scores
- Processing speed
- User feedback
### Alerts
- Processing time > 30 minutes
- Error rate > 5%
- Queue depth > 100
- GPU memory > 90%
- Cost spike detected

View File

@@ -0,0 +1,7 @@
---
title: Live pipeline
---
# Live pipeline
Documentation coming soon.

View File

@@ -0,0 +1,7 @@
---
title: overview
---
# overview
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

441
docs/docs/reference/api.md Normal file
View File

@@ -0,0 +1,441 @@
---
title: API Reference
---
# API Reference
The Reflector API provides a comprehensive RESTful interface for audio transcription, meeting management, and real-time streaming capabilities.
## Base URL
```
http://localhost:8000/v1
```
All API endpoints are prefixed with `/v1/` for versioning.
## Authentication
Reflector supports multiple authentication modes:
- **No Authentication** (Public Mode): Basic transcription and upload functionality
- **JWT Authentication** (Private Mode): Full feature access including meeting rooms and persistent storage
- **OAuth/OIDC via Authentik**: Enterprise single sign-on integration
## Core Endpoints
### Transcripts
Manage audio transcriptions and their associated metadata.
#### List Transcripts
```http
GET /v1/transcripts/
```
Returns a paginated list of transcripts with filtering options.
#### Create Transcript
```http
POST /v1/transcripts/
```
Create a new transcript from uploaded audio or initialize for streaming.
#### Get Transcript
```http
GET /v1/transcripts/{transcript_id}
```
Retrieve detailed information about a specific transcript.
#### Update Transcript
```http
PATCH /v1/transcripts/{transcript_id}
```
Update transcript metadata, summary, or processing status.
#### Delete Transcript
```http
DELETE /v1/transcripts/{transcript_id}
```
Remove a transcript and its associated data.
### Audio Processing
#### Upload Audio
```http
POST /v1/transcripts_audio/{transcript_id}/upload
```
Upload an audio file for transcription processing.
**Supported formats:**
- WAV, MP3, M4A, FLAC, OGG
- Maximum file size: 500MB
- Sample rates: 8kHz - 48kHz
#### Download Audio
```http
GET /v1/transcripts_audio/{transcript_id}/download
```
Download the original or processed audio file.
#### Stream Audio
```http
GET /v1/transcripts_audio/{transcript_id}/stream
```
Stream audio content with range support for progressive playback.
### WebRTC Streaming
Real-time audio streaming via WebRTC for live transcription.
#### Initialize WebRTC Session
```http
POST /v1/transcripts_webrtc/{transcript_id}/offer
```
Create a WebRTC offer for establishing a peer connection.
#### Complete WebRTC Handshake
```http
POST /v1/transcripts_webrtc/{transcript_id}/answer
```
Submit the WebRTC answer to complete connection setup.
### WebSocket Streaming
Real-time updates and live transcription via WebSocket.
#### WebSocket Endpoint
```ws
ws://localhost:8000/v1/transcripts_websocket/{transcript_id}
```
Receive real-time transcription updates, speaker changes, and processing status.
**Message Types:**
- `transcription`: New transcribed text segments
- `diarization`: Speaker identification updates
- `status`: Processing status changes
- `error`: Error notifications
### Meetings
Manage virtual meeting rooms and recordings.
#### List Meetings
```http
GET /v1/meetings/
```
Get all meetings for the authenticated user.
#### Create Meeting
```http
POST /v1/meetings/
```
Initialize a new meeting room with Whereby integration.
#### Join Meeting
```http
POST /v1/meetings/{meeting_id}/join
```
Join an existing meeting and start recording.
#### End Meeting
```http
POST /v1/meetings/{meeting_id}/end
```
End the meeting and finalize the recording.
### Rooms
Virtual meeting room configuration and management.
#### List Rooms
```http
GET /v1/rooms/
```
Get available meeting rooms.
#### Create Room
```http
POST /v1/rooms/
```
Create a new persistent meeting room.
#### Update Room Settings
```http
PATCH /v1/rooms/{room_id}
```
Modify room configuration and permissions.
## Response Formats
### Success Response
```json
{
"id": "uuid",
"created_at": "2025-01-20T10:00:00Z",
"updated_at": "2025-01-20T10:30:00Z",
"data": {...}
}
```
### Error Response
```json
{
"error": {
"code": "ERROR_CODE",
"message": "Human-readable error message",
"details": {...}
}
}
```
### Status Codes
- `200 OK`: Successful request
- `201 Created`: Resource created successfully
- `204 No Content`: Successful deletion
- `400 Bad Request`: Invalid request parameters
- `401 Unauthorized`: Authentication required
- `403 Forbidden`: Insufficient permissions
- `404 Not Found`: Resource not found
- `409 Conflict`: Resource conflict
- `422 Unprocessable Entity`: Validation error
- `429 Too Many Requests`: Rate limit exceeded
- `500 Internal Server Error`: Server error
## WebSocket Protocol
The WebSocket connection provides real-time updates during transcription processing. The server sends structured messages to communicate different events and data updates.
### Connection
```javascript
const ws = new WebSocket('ws://localhost:8000/v1/transcripts_websocket/{transcript_id}');
```
### Message Types and Formats
#### Transcription Update
Sent when new text is transcribed from the audio stream.
```json
{
"type": "transcription",
"data": {
"text": "The transcribed text segment",
"speaker": "Speaker 1",
"timestamp": 1705745623.456,
"confidence": 0.95,
"segment_id": "seg_001",
"is_final": true
}
}
```
#### Diarization Update
Sent when speaker changes are detected or speaker labels are updated.
```json
{
"type": "diarization",
"data": {
"speaker": "Speaker 2",
"speaker_id": "spk_002",
"start_time": 1705745620.123,
"end_time": 1705745625.456,
"confidence": 0.87
}
}
```
#### Processing Status
Sent to indicate changes in the processing pipeline status.
```json
{
"type": "status",
"data": {
"status": "processing",
"stage": "transcription",
"progress": 45.5,
"message": "Processing audio chunk 12 of 26"
}
}
```
Status values:
- `initializing`: Setting up processing pipeline
- `processing`: Active transcription/diarization
- `completed`: Processing finished successfully
- `failed`: Processing encountered an error
- `paused`: Processing temporarily suspended
#### Summary Update
Sent when AI-generated summaries or topics are available.
```json
{
"type": "summary",
"data": {
"summary": "Brief summary of the conversation",
"topics": ["topic1", "topic2", "topic3"],
"action_items": ["action 1", "action 2"],
"key_points": ["point 1", "point 2"]
}
}
```
#### Error Messages
Sent when errors occur during processing.
```json
{
"type": "error",
"data": {
"code": "AUDIO_FORMAT_ERROR",
"message": "Unsupported audio format",
"details": {
"format": "unknown",
"sample_rate": 0
},
"recoverable": false
}
}
```
#### Heartbeat/Keepalive
Sent periodically to maintain the connection.
```json
{
"type": "ping",
"data": {
"timestamp": 1705745630.000
}
}
```
### Client-to-Server Messages
Clients can send control messages to the server:
#### Start/Resume Processing
```json
{
"action": "start",
"params": {}
}
```
#### Pause Processing
```json
{
"action": "pause",
"params": {}
}
```
#### Request Status
```json
{
"action": "get_status",
"params": {}
}
```
## OpenAPI Specification
The complete OpenAPI 3.0 specification is available at:
```
http://localhost:8000/v1/openapi.json
```
You can import this specification into tools like:
- Postman
- Insomnia
- Swagger UI
- OpenAPI Generator (for client SDK generation)
## SDK Support
While Reflector doesn't provide official SDKs, you can generate client libraries using the OpenAPI specification with tools like:
- **Python**: `openapi-python-client`
- **TypeScript**: `openapi-typescript-codegen`
- **Go**: `oapi-codegen`
- **Java**: `openapi-generator`
## Example Usage
### Python Example
```python
import requests
# Upload and transcribe audio
with open('meeting.mp3', 'rb') as f:
response = requests.post(
'http://localhost:8000/v1/transcripts/',
files={'file': f}
)
transcript_id = response.json()['id']
# Check transcription status
status = requests.get(
f'http://localhost:8000/v1/transcripts/{transcript_id}'
).json()
print(f"Transcription status: {status['status']}")
```
### JavaScript WebSocket Example
```javascript
// Connect to WebSocket for real-time transcription updates
const ws = new WebSocket(`ws://localhost:8000/v1/transcripts_websocket/${transcriptId}`);
ws.onopen = () => {
console.log('Connected to transcription WebSocket');
};
ws.onmessage = (event) => {
const message = JSON.parse(event.data);
switch(message.type) {
case 'transcription':
console.log(`[${message.data.speaker}]: ${message.data.text}`);
break;
case 'diarization':
console.log(`Speaker change: ${message.data.speaker}`);
break;
case 'status':
console.log(`Status: ${message.data.status}`);
break;
case 'error':
console.error(`Error: ${message.data.message}`);
break;
}
};
ws.onerror = (error) => {
console.error('WebSocket error:', error);
};
ws.onclose = () => {
console.log('WebSocket connection closed');
};
```
## Need Help?
- Review [example implementations](https://github.com/monadical-sas/reflector/tree/main/examples)
- Open an issue on [GitHub](https://github.com/monadical-sas/reflector/issues)

View File

@@ -0,0 +1,7 @@
---
title: overview
---
# overview
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: backend
---
# backend
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: database
---
# database
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: frontend
---
# frontend
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: overview
---
# overview
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: workers
---
# workers
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: configuration
---
# configuration
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: analysis
---
# analysis
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: diarization
---
# diarization
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: transcription
---
# transcription
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

View File

@@ -0,0 +1,7 @@
---
title: translation
---
# translation
Documentation coming soon. See [TODO.md](/docs/TODO) for required information.

139
docs/docs/roadmap.md Normal file
View File

@@ -0,0 +1,139 @@
---
sidebar_position: 100
title: Roadmap
---
# Product Roadmap
Our development roadmap for Reflector, focusing on expanding capabilities while maintaining privacy and performance.
## Planned Features
### 🌍 Multi-Language Support Enhancement
**Current State:**
- Whisper supports 99+ languages for transcription
- Parakeet supports English only with high accuracy
- Translation available to 100+ languages
**Planned Improvements:**
- Default language selection per room/user
- Automatic language detection improvements
- Multi-language diarization support
- RTL (Right-to-Left) language UI support
- Language-specific post-processing rules
### 🏠 Self-Hosted Room Providers
**Jitsi Integration**
Moving beyond Whereby to support self-hosted video conferencing:
- No API keys required
- Complete control over video infrastructure
- Custom branding and configuration
- Lower operational costs
- Enhanced privacy with self-hosted video
**Implementation Plan:**
- WebRTC bridge for Jitsi Meet
- Room management API integration
- Recording synchronization
- Participant tracking
### 📅 Calendar Integration
**Planned Capabilities:**
- Google Calendar synchronization
- Microsoft Outlook integration
- Automatic meeting room creation
- Pre-meeting document preparation
- Post-meeting transcript delivery
- Recurring meeting support
**Features:**
- Auto-join scheduled meetings
- Calendar-based access control
- Meeting agenda import
- Action item export to calendar
### 🖥️ Self-Hosted GPU Service
**For organizations with dedicated GPU hardware (H100, A100, RTX 4090):**
**Docker GPU Worker Image:**
- Self-contained processing service
- CUDA 11/12 support
- Pre-loaded models:
- Whisper (all sizes)
- Pyannote diarization
- Seamless-M4T translation
- Automatic model management
**Deployment Options:**
- Kubernetes GPU operators
- Docker Compose with nvidia-docker
- Bare metal installation
- Hybrid cloud/on-premise
**Benefits:**
- No Modal.com dependency
- Complete data isolation
- Predictable costs
- Maximum performance
- Custom model support
## Future Considerations
### Enhanced Analytics
- Meeting insights dashboard
- Speaker participation metrics
- Topic trends over time
- Team collaboration patterns
### Advanced AI Features
- Real-time sentiment analysis
- Emotion detection
- Meeting quality scores
- Automated coaching suggestions
### Integration Ecosystem
- Slack/Teams notifications
- CRM integration (Salesforce, HubSpot)
- Project management tools (Jira, Asana)
- Knowledge bases (Notion, Confluence)
### Performance Improvements
- WebAssembly for client-side processing
- Edge computing support
- 5G network optimization
- Blockchain for transcript verification
## Contributing
We welcome community contributions! Areas where you can help:
1. **Language Support**: Add support for your language
2. **Integrations**: Connect with your favorite tools
3. **Models**: Fine-tune models for specific domains
4. **Documentation**: Improve guides and examples
See our [Contributing Guide](https://github.com/monadical-sas/reflector/blob/main/CONTRIBUTING.md) for details.
## Timeline
We don't provide specific dates as development depends on community contributions and priorities. Features are generally released when they're ready and properly tested.
## Feature Requests
Have an idea for Reflector? We'd love to hear it!
- [Open a GitHub Issue](https://github.com/monadical-sas/reflector/issues/new)
- [Join our Discord](#)
- [Email us](mailto:reflector@monadical.com)
## Stay Updated
- Watch our [GitHub repository](https://github.com/monadical-sas/reflector)
- Follow our [blog](#)
- Subscribe to our [newsletter](#)

163
docs/docusaurus.config.ts Normal file
View File

@@ -0,0 +1,163 @@
import {themes as prismThemes} from 'prism-react-renderer';
import type {Config} from '@docusaurus/types';
import type * as Preset from '@docusaurus/preset-classic';
import type * as OpenApiPlugin from 'docusaurus-plugin-openapi-docs';
const config: Config = {
title: 'Reflector',
tagline: 'AI-powered audio transcription and meeting analysis platform',
favicon: 'img/favicon.ico',
url: 'https://monadical-sas.github.io',
baseUrl: '/',
organizationName: 'monadical-sas',
projectName: 'reflector',
onBrokenLinks: 'throw',
onBrokenMarkdownLinks: 'warn',
markdown: {
mermaid: true,
},
i18n: {
defaultLocale: 'en',
locales: ['en'],
},
presets: [
[
'classic',
{
docs: {
sidebarPath: './sidebars.ts',
editUrl: 'https://github.com/monadical-sas/reflector/tree/main/docs/',
},
blog: false,
theme: {
customCss: './src/css/custom.css',
},
} satisfies Preset.Options,
],
],
plugins: [
[
'docusaurus-plugin-openapi-docs',
{
id: 'openapi',
docsPluginId: 'classic',
config: {
reflectorapi: {
specPath: 'static/openapi.json', // Use local file fetched by script
outputDir: 'docs/reference/api-generated',
sidebarOptions: {
groupPathsBy: 'tag',
categoryLinkSource: 'tag',
},
downloadUrl: '/openapi.json',
hideSendButton: false,
showExtensions: true,
},
} satisfies OpenApiPlugin.Options,
},
],
],
themes: ['docusaurus-theme-openapi-docs', '@docusaurus/theme-mermaid'],
themeConfig: {
image: 'img/reflector-social-card.jpg',
colorMode: {
defaultMode: 'light',
disableSwitch: false,
respectPrefersColorScheme: true,
},
navbar: {
title: 'Reflector',
logo: {
alt: 'Reflector Logo',
src: 'img/reflector-logo.svg',
},
items: [
{
type: 'docSidebar',
sidebarId: 'tutorialSidebar',
position: 'left',
label: 'Documentation',
},
{
to: '/docs/reference/api',
label: 'API',
position: 'left',
},
{
href: 'https://github.com/monadical-sas/reflector',
label: 'GitHub',
position: 'right',
},
],
},
footer: {
style: 'dark',
links: [
{
title: 'Documentation',
items: [
{
label: 'Introduction',
to: '/docs/intro',
},
{
label: 'Installation',
to: '/docs/installation/overview',
},
{
label: 'API Reference',
to: '/docs/reference/api',
},
],
},
{
title: 'Resources',
items: [
{
label: 'Architecture',
to: '/docs/reference/architecture/overview',
},
{
label: 'Pipelines',
to: '/docs/pipelines/overview',
},
{
label: 'Roadmap',
to: '/docs/roadmap',
},
],
},
{
title: 'More',
items: [
{
label: 'GitHub',
href: 'https://github.com/monadical-sas/reflector',
},
{
label: 'Docker Hub',
href: 'https://hub.docker.com/r/reflector/backend',
},
],
},
],
copyright: `Copyright © ${new Date().getFullYear()} <a href="https://monadical.com" target="_blank" rel="noopener noreferrer">Monadical</a>. Licensed under MIT. Built with Docusaurus.`,
},
prism: {
theme: prismThemes.github,
darkTheme: prismThemes.dracula,
additionalLanguages: ['python', 'bash', 'docker', 'yaml'],
},
} satisfies Preset.ThemeConfig,
};
export default config;

23526
docs/package-lock.json generated Normal file

File diff suppressed because it is too large Load Diff

53
docs/package.json Normal file
View File

@@ -0,0 +1,53 @@
{
"name": "docs",
"version": "0.0.0",
"private": true,
"scripts": {
"docusaurus": "docusaurus",
"start": "docusaurus start",
"build": "docusaurus build",
"swizzle": "docusaurus swizzle",
"deploy": "docusaurus deploy",
"clear": "docusaurus clear",
"serve": "docusaurus serve",
"write-translations": "docusaurus write-translations",
"write-heading-ids": "docusaurus write-heading-ids",
"typecheck": "tsc",
"fetch-openapi": "./scripts/fetch-openapi.sh",
"gen-api-docs": "npm run fetch-openapi && docusaurus gen-api-docs reflector",
"prebuild": "npm run fetch-openapi"
},
"dependencies": {
"@docusaurus/core": "3.6.3",
"@docusaurus/preset-classic": "3.6.3",
"@mdx-js/react": "^3.0.0",
"clsx": "^2.0.0",
"docusaurus-plugin-openapi-docs": "^4.5.1",
"docusaurus-theme-openapi-docs": "^4.5.1",
"@docusaurus/theme-mermaid": "3.6.3",
"prism-react-renderer": "^2.3.0",
"react": "^18.0.0",
"react-dom": "^18.0.0"
},
"devDependencies": {
"@docusaurus/module-type-aliases": "3.6.3",
"@docusaurus/tsconfig": "3.6.3",
"@docusaurus/types": "3.6.3",
"typescript": "~5.6.2"
},
"browserslist": {
"production": [
">0.5%",
"not dead",
"not op_mini all"
],
"development": [
"last 3 chrome version",
"last 3 firefox version",
"last 5 safari version"
]
},
"engines": {
"node": ">=18.0"
}
}

115
docs/scripts/fetch-openapi.sh Executable file
View File

@@ -0,0 +1,115 @@
#!/bin/bash
# Script to fetch OpenAPI specification from FastAPI backend
# Used during documentation build process
set -e
echo "📡 Fetching OpenAPI specification from FastAPI backend..."
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
# Configuration
BACKEND_DIR="../server"
OPENAPI_OUTPUT="./static/openapi.json"
SERVER_PORT=1250 # Reflector uses port 1250 by default
MAX_WAIT=30
# Check if backend directory exists
if [ ! -d "$BACKEND_DIR" ]; then
echo -e "${RED}Error: Backend directory not found at $BACKEND_DIR${NC}"
exit 1
fi
# Function to check if server is running
check_server() {
curl -s -o /dev/null -w "%{http_code}" "http://localhost:${SERVER_PORT}/openapi.json" 2>/dev/null
}
# Function to cleanup on exit
cleanup() {
if [ ! -z "$SERVER_PID" ]; then
echo -e "\n${YELLOW}Stopping FastAPI server (PID: $SERVER_PID)...${NC}"
kill $SERVER_PID 2>/dev/null || true
wait $SERVER_PID 2>/dev/null || true
fi
}
# Set trap to cleanup on exit
trap cleanup EXIT INT TERM
# Change to backend directory
cd "$BACKEND_DIR"
# Check if uv is installed
if ! command -v uv &> /dev/null; then
echo -e "${YELLOW}uv not found, checking for python...${NC}"
if command -v python3 &> /dev/null; then
PYTHON_CMD="python3"
elif command -v python &> /dev/null; then
PYTHON_CMD="python"
else
echo -e "${RED}Error: Neither uv nor python found${NC}"
exit 1
fi
RUN_CMD="$PYTHON_CMD -m"
else
RUN_CMD="uv run -m"
fi
# Start the FastAPI server in the background (let it use default port 1250)
echo -e "${YELLOW}Starting FastAPI server...${NC}"
$RUN_CMD reflector.app > /dev/null 2>&1 &
SERVER_PID=$!
# Wait for server to be ready
echo -n "Waiting for server to be ready"
WAITED=0
while [ $WAITED -lt $MAX_WAIT ]; do
if [ "$(check_server)" = "200" ]; then
echo -e " ${GREEN}${NC}"
break
fi
echo -n "."
sleep 1
WAITED=$((WAITED + 1))
done
if [ $WAITED -ge $MAX_WAIT ]; then
echo -e " ${RED}${NC}"
echo -e "${RED}Error: Server failed to start within ${MAX_WAIT} seconds${NC}"
exit 1
fi
# Change back to docs directory
cd - > /dev/null
# Create static directory if it doesn't exist
mkdir -p "$(dirname "$OPENAPI_OUTPUT")"
# Fetch the OpenAPI specification
echo -e "${YELLOW}Fetching OpenAPI specification...${NC}"
if curl -s "http://localhost:${SERVER_PORT}/openapi.json" -o "$OPENAPI_OUTPUT"; then
echo -e "${GREEN}✓ OpenAPI specification saved to $OPENAPI_OUTPUT${NC}"
# Validate JSON
if command -v jq &> /dev/null; then
if jq empty "$OPENAPI_OUTPUT" 2>/dev/null; then
echo -e "${GREEN}✓ OpenAPI specification is valid JSON${NC}"
# Pretty print the JSON
jq . "$OPENAPI_OUTPUT" > "${OPENAPI_OUTPUT}.tmp" && mv "${OPENAPI_OUTPUT}.tmp" "$OPENAPI_OUTPUT"
else
echo -e "${RED}Error: Invalid JSON in OpenAPI specification${NC}"
exit 1
fi
fi
else
echo -e "${RED}Error: Failed to fetch OpenAPI specification${NC}"
exit 1
fi
echo -e "${GREEN}✅ OpenAPI specification successfully fetched!${NC}"

95
docs/sidebars.ts Normal file
View File

@@ -0,0 +1,95 @@
import type {SidebarsConfig} from '@docusaurus/plugin-content-docs';
const sidebars: SidebarsConfig = {
tutorialSidebar: [
'intro',
{
type: 'category',
label: 'Concepts',
collapsed: false,
items: [
'concepts/overview',
'concepts/modes',
'concepts/pipeline',
],
},
{
type: 'category',
label: 'Installation',
collapsed: false,
items: [
'installation/overview',
'installation/requirements',
'installation/docker-setup',
'installation/modal-setup',
'installation/self-hosted-gpu-setup',
'installation/auth-setup',
'installation/daily-setup',
{
type: 'category',
label: 'Other Integrations',
collapsed: true,
items: [
'installation/whereby-setup',
'installation/zulip-setup',
],
},
],
},
{
type: 'category',
label: 'Pipelines',
items: [
'pipelines/overview',
'pipelines/file-pipeline',
'pipelines/live-pipeline',
],
},
{
type: 'category',
label: 'Reference',
items: [
{
type: 'category',
label: 'Architecture',
items: [
'reference/architecture/overview',
'reference/architecture/backend',
'reference/architecture/frontend',
'reference/architecture/workers',
'reference/architecture/database',
],
},
{
type: 'category',
label: 'Processors',
items: [
'reference/processors/transcription',
'reference/processors/diarization',
'reference/processors/translation',
'reference/processors/analysis',
],
},
{
type: 'category',
label: 'API',
items: [
{
type: 'doc',
id: 'reference/api/overview',
},
{
type: 'link',
label: 'OpenAPI Reference',
href: '/docs/reference/api',
},
],
},
'reference/configuration',
],
},
'roadmap',
],
};
export default sidebars;

View File

@@ -0,0 +1,70 @@
import clsx from 'clsx';
import Heading from '@theme/Heading';
import styles from './styles.module.css';
type FeatureItem = {
title: string;
Svg: React.ComponentType<React.ComponentProps<'svg'>>;
description: JSX.Element;
};
const FeatureList: FeatureItem[] = [
{
title: 'Easy to Use',
Svg: require('@site/static/img/undraw_docusaurus_mountain.svg').default,
description: (
<>
Docusaurus was designed from the ground up to be easily installed and
used to get your website up and running quickly.
</>
),
},
{
title: 'Focus on What Matters',
Svg: require('@site/static/img/undraw_docusaurus_tree.svg').default,
description: (
<>
Docusaurus lets you focus on your docs, and we&apos;ll do the chores. Go
ahead and move your docs into the <code>docs</code> directory.
</>
),
},
{
title: 'Powered by React',
Svg: require('@site/static/img/undraw_docusaurus_react.svg').default,
description: (
<>
Extend or customize your website layout by reusing React. Docusaurus can
be extended while reusing the same header and footer.
</>
),
},
];
function Feature({title, Svg, description}: FeatureItem) {
return (
<div className={clsx('col col--4')}>
<div className="text--center">
<Svg className={styles.featureSvg} role="img" />
</div>
<div className="text--center padding-horiz--md">
<Heading as="h3">{title}</Heading>
<p>{description}</p>
</div>
</div>
);
}
export default function HomepageFeatures(): JSX.Element {
return (
<section className={styles.features}>
<div className="container">
<div className="row">
{FeatureList.map((props, idx) => (
<Feature key={idx} {...props} />
))}
</div>
</div>
</section>
);
}

View File

@@ -0,0 +1,11 @@
.features {
display: flex;
align-items: center;
padding: 2rem 0;
width: 100%;
}
.featureSvg {
height: 200px;
width: 200px;
}

46
docs/src/css/custom.css Normal file
View File

@@ -0,0 +1,46 @@
/**
* Reflector Documentation Theme
* Based on frontend colors from www/app/styles/theme.ts
*/
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700&display=swap');
:root {
--ifm-color-primary: #3158E2;
--ifm-color-primary-dark: #2847C9;
--ifm-color-primary-darker: #2442BF;
--ifm-color-primary-darkest: #1D369C;
--ifm-color-primary-light: #4A6FE5;
--ifm-color-primary-lighter: #5F81E8;
--ifm-color-primary-lightest: #8DA6F0;
--ifm-background-color: #FFFFFF;
--ifm-background-surface-color: #F4F4F4;
--ifm-font-color-base: #1A202C;
--ifm-font-color-secondary: #838383;
--ifm-code-font-size: 95%;
--docusaurus-highlighted-code-line-bg: rgba(49, 88, 226, 0.1);
--ifm-font-family-base: 'Poppins', system-ui, -apple-system, sans-serif;
--ifm-font-family-monospace: 'Fira Code', 'Monaco', 'Consolas', monospace;
--ifm-navbar-background-color: #FFFFFF;
--ifm-heading-font-weight: 600;
}
[data-theme='dark'] {
--ifm-color-primary: #B1CBFF;
--ifm-color-primary-dark: #91B3FF;
--ifm-color-primary-darker: #81A7FF;
--ifm-color-primary-darkest: #5189FF;
--ifm-color-primary-light: #D1DFFF;
--ifm-color-primary-lighter: #E1EBFF;
--ifm-color-primary-lightest: #F0F5FF;
--ifm-background-color: #0C0D0E;
--ifm-background-surface-color: #1A202C;
--ifm-font-color-base: #E2E8F0;
--ifm-font-color-secondary: #A0AEC0;
--docusaurus-highlighted-code-line-bg: rgba(177, 203, 255, 0.1);
--ifm-navbar-background-color: #1A202C;
}

View File

@@ -0,0 +1,23 @@
/**
* CSS files with the .module.css suffix will be treated as CSS modules
* and scoped locally.
*/
.heroBanner {
padding: 4rem 0;
text-align: center;
position: relative;
overflow: hidden;
}
@media screen and (max-width: 996px) {
.heroBanner {
padding: 2rem;
}
}
.buttons {
display: flex;
align-items: center;
justify-content: center;
}

7
docs/src/pages/index.tsx Normal file
View File

@@ -0,0 +1,7 @@
import React from 'react';
import { Redirect } from '@docusaurus/router';
import useBaseUrl from '@docusaurus/useBaseUrl';
export default function Home(): JSX.Element {
return <Redirect to={useBaseUrl('/docs/intro')} />;
}

View File

@@ -0,0 +1,7 @@
---
title: Markdown page example
---
# Markdown page example
You don't need React to write simple standalone pages.

0
docs/static/.nojekyll vendored Normal file
View File

View File

0
docs/static/img/docusaurus.png vendored Normal file
View File

0
docs/static/img/favicon.ico vendored Normal file
View File

17
docs/static/img/logo.svg vendored Normal file
View File

@@ -0,0 +1,17 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.9.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 500 500" style="enable-background:new 0 0 500 500;" xml:space="preserve">
<style type="text/css">
.st0{fill:#B6B6B6;}
.st1{fill:#4A4A4A;}
</style>
<g>
<polygon class="st0" points="227.5,51.5 86.5,150.1 100.8,383.9 244.3,249.8 "/>
<polygon class="st1" points="305.4,421.4 423.9,286 244.3,249.8 100.8,383.9 "/>
</g>
<image style="overflow:visible;" width="1504" height="1128" xlink:href="Ref/original-12843059d855efa50c3a12db8586ced7.jpg" transform="matrix(1 0 0 1 1857.8739 723.9433)">
</image>
<image style="overflow:visible;" width="1504" height="1128" xlink:href="Ref/original-f72ce8039f760337a51b47d045b477b8.jpg" transform="matrix(1 0 0 1 1857.8739 -512.4843)">
</image>
</svg>

After

Width:  |  Height:  |  Size: 965 B

17
docs/static/img/reflector-logo.svg vendored Normal file
View File

@@ -0,0 +1,17 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 27.9.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 500 500" style="enable-background:new 0 0 500 500;" xml:space="preserve">
<style type="text/css">
.st0{fill:#B6B6B6;}
.st1{fill:#4A4A4A;}
</style>
<g>
<polygon class="st0" points="227.5,51.5 86.5,150.1 100.8,383.9 244.3,249.8 "/>
<polygon class="st1" points="305.4,421.4 423.9,286 244.3,249.8 100.8,383.9 "/>
</g>
<image style="overflow:visible;" width="1504" height="1128" xlink:href="Ref/original-12843059d855efa50c3a12db8586ced7.jpg" transform="matrix(1 0 0 1 1857.8739 723.9433)">
</image>
<image style="overflow:visible;" width="1504" height="1128" xlink:href="Ref/original-f72ce8039f760337a51b47d045b477b8.jpg" transform="matrix(1 0 0 1 1857.8739 -512.4843)">
</image>
</svg>

After

Width:  |  Height:  |  Size: 965 B

View File

@@ -0,0 +1,171 @@
<svg xmlns="http://www.w3.org/2000/svg" width="1088" height="687.962" viewBox="0 0 1088 687.962">
<title>Easy to Use</title>
<g id="Group_12" data-name="Group 12" transform="translate(-57 -56)">
<g id="Group_11" data-name="Group 11" transform="translate(57 56)">
<path id="Path_83" data-name="Path 83" d="M1017.81,560.461c-5.27,45.15-16.22,81.4-31.25,110.31-20,38.52-54.21,54.04-84.77,70.28a193.275,193.275,0,0,1-27.46,11.94c-55.61,19.3-117.85,14.18-166.74,3.99a657.282,657.282,0,0,0-104.09-13.16q-14.97-.675-29.97-.67c-15.42.02-293.07,5.29-360.67-131.57-16.69-33.76-28.13-75-32.24-125.27-11.63-142.12,52.29-235.46,134.74-296.47,155.97-115.41,369.76-110.57,523.43,7.88C941.15,276.621,1036.99,396.031,1017.81,560.461Z" transform="translate(-56 -106.019)" fill="#3f3d56"/>
<path id="Path_84" data-name="Path 84" d="M986.56,670.771c-20,38.52-47.21,64.04-77.77,80.28a193.272,193.272,0,0,1-27.46,11.94c-55.61,19.3-117.85,14.18-166.74,3.99a657.3,657.3,0,0,0-104.09-13.16q-14.97-.675-29.97-.67-23.13.03-46.25,1.72c-100.17,7.36-253.82-6.43-321.42-143.29L382,283.981,444.95,445.6l20.09,51.59,55.37-75.98L549,381.981l130.2,149.27,36.8-81.27L970.78,657.9l14.21,11.59Z" transform="translate(-56 -106.019)" fill="#f2f2f2"/>
<path id="Path_85" data-name="Path 85" d="M302,282.962l26-57,36,83-31-60Z" opacity="0.1"/>
<path id="Path_86" data-name="Path 86" d="M610.5,753.821q-14.97-.675-29.97-.67L465.04,497.191Z" transform="translate(-56 -106.019)" opacity="0.1"/>
<path id="Path_87" data-name="Path 87" d="M464.411,315.191,493,292.962l130,150-132-128Z" opacity="0.1"/>
<path id="Path_88" data-name="Path 88" d="M908.79,751.051a193.265,193.265,0,0,1-27.46,11.94L679.2,531.251Z" transform="translate(-56 -106.019)" opacity="0.1"/>
<circle id="Ellipse_11" data-name="Ellipse 11" cx="3" cy="3" r="3" transform="translate(479 98.962)" fill="#f2f2f2"/>
<circle id="Ellipse_12" data-name="Ellipse 12" cx="3" cy="3" r="3" transform="translate(396 201.962)" fill="#f2f2f2"/>
<circle id="Ellipse_13" data-name="Ellipse 13" cx="2" cy="2" r="2" transform="translate(600 220.962)" fill="#f2f2f2"/>
<circle id="Ellipse_14" data-name="Ellipse 14" cx="2" cy="2" r="2" transform="translate(180 265.962)" fill="#f2f2f2"/>
<circle id="Ellipse_15" data-name="Ellipse 15" cx="2" cy="2" r="2" transform="translate(612 96.962)" fill="#f2f2f2"/>
<circle id="Ellipse_16" data-name="Ellipse 16" cx="2" cy="2" r="2" transform="translate(736 192.962)" fill="#f2f2f2"/>
<circle id="Ellipse_17" data-name="Ellipse 17" cx="2" cy="2" r="2" transform="translate(858 344.962)" fill="#f2f2f2"/>
<path id="Path_89" data-name="Path 89" d="M306,121.222h-2.76v-2.76h-1.48v2.76H299V122.7h2.76v2.759h1.48V122.7H306Z" fill="#f2f2f2"/>
<path id="Path_90" data-name="Path 90" d="M848,424.222h-2.76v-2.76h-1.48v2.76H841V425.7h2.76v2.759h1.48V425.7H848Z" fill="#f2f2f2"/>
<path id="Path_91" data-name="Path 91" d="M1144,719.981c0,16.569-243.557,74-544,74s-544-57.431-544-74,243.557,14,544,14S1144,703.413,1144,719.981Z" transform="translate(-56 -106.019)" fill="#3f3d56"/>
<path id="Path_92" data-name="Path 92" d="M1144,719.981c0,16.569-243.557,74-544,74s-544-57.431-544-74,243.557,14,544,14S1144,703.413,1144,719.981Z" transform="translate(-56 -106.019)" opacity="0.1"/>
<ellipse id="Ellipse_18" data-name="Ellipse 18" cx="544" cy="30" rx="544" ry="30" transform="translate(0 583.962)" fill="#3f3d56"/>
<path id="Path_93" data-name="Path 93" d="M624,677.981c0,33.137-14.775,24-33,24s-33,9.137-33-24,33-96,33-96S624,644.844,624,677.981Z" transform="translate(-56 -106.019)" fill="#ff6584"/>
<path id="Path_94" data-name="Path 94" d="M606,690.66c0,15.062-6.716,10.909-15,10.909s-15,4.153-15-10.909,15-43.636,15-43.636S606,675.6,606,690.66Z" transform="translate(-56 -106.019)" opacity="0.1"/>
<rect id="Rectangle_97" data-name="Rectangle 97" width="92" height="18" rx="9" transform="translate(489 604.962)" fill="#2f2e41"/>
<rect id="Rectangle_98" data-name="Rectangle 98" width="92" height="18" rx="9" transform="translate(489 586.962)" fill="#2f2e41"/>
<path id="Path_95" data-name="Path 95" d="M193,596.547c0,55.343,34.719,100.126,77.626,100.126" transform="translate(-56 -106.019)" fill="#3f3d56"/>
<path id="Path_96" data-name="Path 96" d="M270.626,696.673c0-55.965,38.745-101.251,86.626-101.251" transform="translate(-56 -106.019)" fill="#6c63ff"/>
<path id="Path_97" data-name="Path 97" d="M221.125,601.564c0,52.57,22.14,95.109,49.5,95.109" transform="translate(-56 -106.019)" fill="#6c63ff"/>
<path id="Path_98" data-name="Path 98" d="M270.626,696.673c0-71.511,44.783-129.377,100.126-129.377" transform="translate(-56 -106.019)" fill="#3f3d56"/>
<path id="Path_99" data-name="Path 99" d="M254.3,697.379s11.009-.339,14.326-2.7,16.934-5.183,17.757-1.395,16.544,18.844,4.115,18.945-28.879-1.936-32.19-3.953S254.3,697.379,254.3,697.379Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
<path id="Path_100" data-name="Path 100" d="M290.716,710.909c-12.429.1-28.879-1.936-32.19-3.953-2.522-1.536-3.527-7.048-3.863-9.591l-.368.014s.7,8.879,4.009,10.9,19.761,4.053,32.19,3.953c3.588-.029,4.827-1.305,4.759-3.2C294.755,710.174,293.386,710.887,290.716,710.909Z" transform="translate(-56 -106.019)" opacity="0.2"/>
<path id="Path_101" data-name="Path 101" d="M777.429,633.081c0,38.029,23.857,68.8,53.341,68.8" transform="translate(-56 -106.019)" fill="#3f3d56"/>
<path id="Path_102" data-name="Path 102" d="M830.769,701.882c0-38.456,26.623-69.575,59.525-69.575" transform="translate(-56 -106.019)" fill="#6c63ff"/>
<path id="Path_103" data-name="Path 103" d="M796.755,636.528c0,36.124,15.213,65.354,34.014,65.354" transform="translate(-56 -106.019)" fill="#6c63ff"/>
<path id="Path_104" data-name="Path 104" d="M830.769,701.882c0-49.139,30.773-88.9,68.8-88.9" transform="translate(-56 -106.019)" fill="#3f3d56"/>
<path id="Path_105" data-name="Path 105" d="M819.548,702.367s7.565-.233,9.844-1.856,11.636-3.562,12.2-.958,11.368,12.949,2.828,13.018-19.844-1.33-22.119-2.716S819.548,702.367,819.548,702.367Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
<path id="Path_106" data-name="Path 106" d="M844.574,711.664c-8.54.069-19.844-1.33-22.119-2.716-1.733-1.056-2.423-4.843-2.654-6.59l-.253.01s.479,6.1,2.755,7.487,13.579,2.785,22.119,2.716c2.465-.02,3.317-.9,3.27-2.2C847.349,711.159,846.409,711.649,844.574,711.664Z" transform="translate(-56 -106.019)" opacity="0.2"/>
<path id="Path_107" data-name="Path 107" d="M949.813,724.718s11.36-1.729,14.5-4.591,16.89-7.488,18.217-3.667,19.494,17.447,6.633,19.107-30.153,1.609-33.835-.065S949.813,724.718,949.813,724.718Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
<path id="Path_108" data-name="Path 108" d="M989.228,734.173c-12.86,1.659-30.153,1.609-33.835-.065-2.8-1.275-4.535-6.858-5.2-9.45l-.379.061s1.833,9.109,5.516,10.783,20.975,1.725,33.835.065c3.712-.479,4.836-1.956,4.529-3.906C993.319,732.907,991.991,733.817,989.228,734.173Z" transform="translate(-56 -106.019)" opacity="0.2"/>
<path id="Path_109" data-name="Path 109" d="M670.26,723.9s9.587-1.459,12.237-3.875,14.255-6.32,15.374-3.095,16.452,14.725,5.6,16.125-25.448,1.358-28.555-.055S670.26,723.9,670.26,723.9Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
<path id="Path_110" data-name="Path 110" d="M703.524,731.875c-10.853,1.4-25.448,1.358-28.555-.055-2.367-1.076-3.827-5.788-4.39-7.976l-.32.051s1.547,7.687,4.655,9.1,17.7,1.456,28.555.055c3.133-.4,4.081-1.651,3.822-3.3C706.977,730.807,705.856,731.575,703.524,731.875Z" transform="translate(-56 -106.019)" opacity="0.2"/>
<path id="Path_111" data-name="Path 111" d="M178.389,719.109s7.463-1.136,9.527-3.016,11.1-4.92,11.969-2.409,12.808,11.463,4.358,12.553-19.811,1.057-22.23-.043S178.389,719.109,178.389,719.109Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
<path id="Path_112" data-name="Path 112" d="M204.285,725.321c-8.449,1.09-19.811,1.057-22.23-.043-1.842-.838-2.979-4.506-3.417-6.209l-.249.04s1.2,5.984,3.624,7.085,13.781,1.133,22.23.043c2.439-.315,3.177-1.285,2.976-2.566C206.973,724.489,206.1,725.087,204.285,725.321Z" transform="translate(-56 -106.019)" opacity="0.2"/>
<path id="Path_113" data-name="Path 113" d="M439.7,707.337c0,30.22-42.124,20.873-93.7,20.873s-93.074,9.347-93.074-20.873,42.118-36.793,93.694-36.793S439.7,677.117,439.7,707.337Z" transform="translate(-56 -106.019)" opacity="0.1"/>
<path id="Path_114" data-name="Path 114" d="M439.7,699.9c0,30.22-42.124,20.873-93.7,20.873s-93.074,9.347-93.074-20.873S295.04,663.1,346.616,663.1,439.7,669.676,439.7,699.9Z" transform="translate(-56 -106.019)" fill="#3f3d56"/>
</g>
<g id="docusaurus_keytar" transform="translate(312.271 493.733)">
<path id="Path_40" data-name="Path 40" d="M99,52h91.791V89.153H99Z" transform="translate(5.904 -14.001)" fill="#fff" fill-rule="evenodd"/>
<path id="Path_41" data-name="Path 41" d="M24.855,163.927A21.828,21.828,0,0,1,5.947,153a21.829,21.829,0,0,0,18.908,32.782H46.71V163.927Z" transform="translate(-3 -4.634)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_42" data-name="Path 42" d="M121.861,61.1l76.514-4.782V45.39A21.854,21.854,0,0,0,176.52,23.535H78.173L75.441,18.8a3.154,3.154,0,0,0-5.464,0l-2.732,4.732L64.513,18.8a3.154,3.154,0,0,0-5.464,0l-2.732,4.732L53.586,18.8a3.154,3.154,0,0,0-5.464,0L45.39,23.535c-.024,0-.046,0-.071,0l-4.526-4.525a3.153,3.153,0,0,0-5.276,1.414l-1.5,5.577-5.674-1.521a3.154,3.154,0,0,0-3.863,3.864L26,34.023l-5.575,1.494a3.155,3.155,0,0,0-1.416,5.278l4.526,4.526c0,.023,0,.046,0,.07L18.8,48.122a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,59.05a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,69.977a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,80.9a3.154,3.154,0,0,0,0,5.464L23.535,89.1,18.8,91.832a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,102.76a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,113.687a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,124.615a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,135.542a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,146.469a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,157.4a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,168.324a3.154,3.154,0,0,0,0,5.464l4.732,2.732A21.854,21.854,0,0,0,45.39,198.375H176.52a21.854,21.854,0,0,0,21.855-21.855V89.1l-76.514-4.782a11.632,11.632,0,0,1,0-23.219" transform="translate(-1.681 -17.226)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_43" data-name="Path 43" d="M143,186.71h32.782V143H143Z" transform="translate(9.984 -5.561)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_44" data-name="Path 44" d="M196.71,159.855a5.438,5.438,0,0,0-.7.07c-.042-.164-.081-.329-.127-.493a5.457,5.457,0,1,0-5.4-9.372q-.181-.185-.366-.367a5.454,5.454,0,1,0-9.384-5.4c-.162-.046-.325-.084-.486-.126a5.467,5.467,0,1,0-10.788,0c-.162.042-.325.08-.486.126a5.457,5.457,0,1,0-9.384,5.4,21.843,21.843,0,1,0,36.421,21.02,5.452,5.452,0,1,0,.7-10.858" transform="translate(10.912 -6.025)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_45" data-name="Path 45" d="M153,124.855h32.782V103H153Z" transform="translate(10.912 -9.271)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_46" data-name="Path 46" d="M194.855,116.765a2.732,2.732,0,1,0,0-5.464,2.811,2.811,0,0,0-.349.035c-.022-.082-.04-.164-.063-.246a2.733,2.733,0,0,0-1.052-5.253,2.7,2.7,0,0,0-1.648.566q-.09-.093-.184-.184a2.7,2.7,0,0,0,.553-1.633,2.732,2.732,0,0,0-5.245-1.07,10.928,10.928,0,1,0,0,21.031,2.732,2.732,0,0,0,5.245-1.07,2.7,2.7,0,0,0-.553-1.633q.093-.09.184-.184a2.7,2.7,0,0,0,1.648.566,2.732,2.732,0,0,0,1.052-5.253c.023-.081.042-.164.063-.246a2.814,2.814,0,0,0,.349.035" transform="translate(12.767 -9.377)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_47" data-name="Path 47" d="M65.087,56.891a2.732,2.732,0,0,1-2.732-2.732,8.2,8.2,0,0,0-16.391,0,2.732,2.732,0,0,1-5.464,0,13.659,13.659,0,0,1,27.319,0,2.732,2.732,0,0,1-2.732,2.732" transform="translate(0.478 -15.068)" fill-rule="evenodd"/>
<path id="Path_48" data-name="Path 48" d="M103,191.347h65.565a21.854,21.854,0,0,0,21.855-21.855V93H124.855A21.854,21.854,0,0,0,103,114.855Z" transform="translate(6.275 -10.199)" fill="#ffff50" fill-rule="evenodd"/>
<path id="Path_49" data-name="Path 49" d="M173.216,129.787H118.535a1.093,1.093,0,1,1,0-2.185h54.681a1.093,1.093,0,0,1,0,2.185m0,21.855H118.535a1.093,1.093,0,1,1,0-2.186h54.681a1.093,1.093,0,0,1,0,2.186m0,21.855H118.535a1.093,1.093,0,1,1,0-2.185h54.681a1.093,1.093,0,0,1,0,2.185m0-54.434H118.535a1.093,1.093,0,1,1,0-2.185h54.681a1.093,1.093,0,0,1,0,2.185m0,21.652H118.535a1.093,1.093,0,1,1,0-2.186h54.681a1.093,1.093,0,0,1,0,2.186m0,21.855H118.535a1.093,1.093,0,1,1,0-2.186h54.681a1.093,1.093,0,0,1,0,2.186M189.585,61.611c-.013,0-.024-.007-.037-.005-3.377.115-4.974,3.492-6.384,6.472-1.471,3.114-2.608,5.139-4.473,5.078-2.064-.074-3.244-2.406-4.494-4.874-1.436-2.835-3.075-6.049-6.516-5.929-3.329.114-4.932,3.053-6.346,5.646-1.5,2.762-2.529,4.442-4.5,4.364-2.106-.076-3.225-1.972-4.52-4.167-1.444-2.443-3.112-5.191-6.487-5.1-3.272.113-4.879,2.606-6.3,4.808-1.5,2.328-2.552,3.746-4.551,3.662-2.156-.076-3.27-1.65-4.558-3.472-1.447-2.047-3.077-4.363-6.442-4.251-3.2.109-4.807,2.153-6.224,3.954-1.346,1.709-2.4,3.062-4.621,2.977a1.093,1.093,0,0,0-.079,2.186c3.3.11,4.967-1.967,6.417-3.81,1.286-1.635,2.4-3.045,4.582-3.12,2.1-.09,3.091,1.218,4.584,3.327,1.417,2,3.026,4.277,6.263,4.394,3.391.114,5.022-2.42,6.467-4.663,1.292-2,2.406-3.734,4.535-3.807,1.959-.073,3.026,1.475,4.529,4.022,1.417,2.4,3.023,5.121,6.324,5.241,3.415.118,5.064-2.863,6.5-5.5,1.245-2.282,2.419-4.437,4.5-4.509,1.959-.046,2.981,1.743,4.492,4.732,1.412,2.79,3.013,5.95,6.365,6.071l.185,0c3.348,0,4.937-3.36,6.343-6.331,1.245-2.634,2.423-5.114,4.444-5.216Z" transform="translate(7.109 -13.11)" fill-rule="evenodd"/>
<path id="Path_50" data-name="Path 50" d="M83,186.71h43.71V143H83Z" transform="translate(4.42 -5.561)" fill="#3ecc5f" fill-rule="evenodd"/>
<g id="Group_8" data-name="Group 8" transform="matrix(0.966, -0.259, 0.259, 0.966, 109.327, 91.085)">
<rect id="Rectangle_3" data-name="Rectangle 3" width="92.361" height="36.462" rx="2" transform="translate(0 0)" fill="#d8d8d8"/>
<g id="Group_2" data-name="Group 2" transform="translate(1.531 23.03)">
<rect id="Rectangle_4" data-name="Rectangle 4" width="5.336" height="5.336" rx="1" transform="translate(16.797 0)" fill="#4a4a4a"/>
<rect id="Rectangle_5" data-name="Rectangle 5" width="5.336" height="5.336" rx="1" transform="translate(23.12 0)" fill="#4a4a4a"/>
<rect id="Rectangle_6" data-name="Rectangle 6" width="5.336" height="5.336" rx="1" transform="translate(29.444 0)" fill="#4a4a4a"/>
<rect id="Rectangle_7" data-name="Rectangle 7" width="5.336" height="5.336" rx="1" transform="translate(35.768 0)" fill="#4a4a4a"/>
<rect id="Rectangle_8" data-name="Rectangle 8" width="5.336" height="5.336" rx="1" transform="translate(42.091 0)" fill="#4a4a4a"/>
<rect id="Rectangle_9" data-name="Rectangle 9" width="5.336" height="5.336" rx="1" transform="translate(48.415 0)" fill="#4a4a4a"/>
<rect id="Rectangle_10" data-name="Rectangle 10" width="5.336" height="5.336" rx="1" transform="translate(54.739 0)" fill="#4a4a4a"/>
<rect id="Rectangle_11" data-name="Rectangle 11" width="5.336" height="5.336" rx="1" transform="translate(61.063 0)" fill="#4a4a4a"/>
<rect id="Rectangle_12" data-name="Rectangle 12" width="5.336" height="5.336" rx="1" transform="translate(67.386 0)" fill="#4a4a4a"/>
<path id="Path_51" data-name="Path 51" d="M1.093,0H14.518a1.093,1.093,0,0,1,1.093,1.093V4.243a1.093,1.093,0,0,1-1.093,1.093H1.093A1.093,1.093,0,0,1,0,4.243V1.093A1.093,1.093,0,0,1,1.093,0ZM75,0H88.426a1.093,1.093,0,0,1,1.093,1.093V4.243a1.093,1.093,0,0,1-1.093,1.093H75a1.093,1.093,0,0,1-1.093-1.093V1.093A1.093,1.093,0,0,1,75,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
</g>
<g id="Group_3" data-name="Group 3" transform="translate(1.531 10.261)">
<path id="Path_52" data-name="Path 52" d="M1.093,0H6.218A1.093,1.093,0,0,1,7.31,1.093V4.242A1.093,1.093,0,0,1,6.218,5.335H1.093A1.093,1.093,0,0,1,0,4.242V1.093A1.093,1.093,0,0,1,1.093,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<rect id="Rectangle_13" data-name="Rectangle 13" width="5.336" height="5.336" rx="1" transform="translate(8.299 0)" fill="#4a4a4a"/>
<rect id="Rectangle_14" data-name="Rectangle 14" width="5.336" height="5.336" rx="1" transform="translate(14.623 0)" fill="#4a4a4a"/>
<rect id="Rectangle_15" data-name="Rectangle 15" width="5.336" height="5.336" rx="1" transform="translate(20.947 0)" fill="#4a4a4a"/>
<rect id="Rectangle_16" data-name="Rectangle 16" width="5.336" height="5.336" rx="1" transform="translate(27.271 0)" fill="#4a4a4a"/>
<rect id="Rectangle_17" data-name="Rectangle 17" width="5.336" height="5.336" rx="1" transform="translate(33.594 0)" fill="#4a4a4a"/>
<rect id="Rectangle_18" data-name="Rectangle 18" width="5.336" height="5.336" rx="1" transform="translate(39.918 0)" fill="#4a4a4a"/>
<rect id="Rectangle_19" data-name="Rectangle 19" width="5.336" height="5.336" rx="1" transform="translate(46.242 0)" fill="#4a4a4a"/>
<rect id="Rectangle_20" data-name="Rectangle 20" width="5.336" height="5.336" rx="1" transform="translate(52.565 0)" fill="#4a4a4a"/>
<rect id="Rectangle_21" data-name="Rectangle 21" width="5.336" height="5.336" rx="1" transform="translate(58.888 0)" fill="#4a4a4a"/>
<rect id="Rectangle_22" data-name="Rectangle 22" width="5.336" height="5.336" rx="1" transform="translate(65.212 0)" fill="#4a4a4a"/>
<rect id="Rectangle_23" data-name="Rectangle 23" width="5.336" height="5.336" rx="1" transform="translate(71.536 0)" fill="#4a4a4a"/>
<rect id="Rectangle_24" data-name="Rectangle 24" width="5.336" height="5.336" rx="1" transform="translate(77.859 0)" fill="#4a4a4a"/>
<rect id="Rectangle_25" data-name="Rectangle 25" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
</g>
<g id="Group_4" data-name="Group 4" transform="translate(91.05 9.546) rotate(180)">
<path id="Path_53" data-name="Path 53" d="M1.093,0H6.219A1.093,1.093,0,0,1,7.312,1.093v3.15A1.093,1.093,0,0,1,6.219,5.336H1.093A1.093,1.093,0,0,1,0,4.243V1.093A1.093,1.093,0,0,1,1.093,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<rect id="Rectangle_26" data-name="Rectangle 26" width="5.336" height="5.336" rx="1" transform="translate(8.299 0)" fill="#4a4a4a"/>
<rect id="Rectangle_27" data-name="Rectangle 27" width="5.336" height="5.336" rx="1" transform="translate(14.623 0)" fill="#4a4a4a"/>
<rect id="Rectangle_28" data-name="Rectangle 28" width="5.336" height="5.336" rx="1" transform="translate(20.947 0)" fill="#4a4a4a"/>
<rect id="Rectangle_29" data-name="Rectangle 29" width="5.336" height="5.336" rx="1" transform="translate(27.271 0)" fill="#4a4a4a"/>
<rect id="Rectangle_30" data-name="Rectangle 30" width="5.336" height="5.336" rx="1" transform="translate(33.594 0)" fill="#4a4a4a"/>
<rect id="Rectangle_31" data-name="Rectangle 31" width="5.336" height="5.336" rx="1" transform="translate(39.918 0)" fill="#4a4a4a"/>
<rect id="Rectangle_32" data-name="Rectangle 32" width="5.336" height="5.336" rx="1" transform="translate(46.242 0)" fill="#4a4a4a"/>
<rect id="Rectangle_33" data-name="Rectangle 33" width="5.336" height="5.336" rx="1" transform="translate(52.565 0)" fill="#4a4a4a"/>
<rect id="Rectangle_34" data-name="Rectangle 34" width="5.336" height="5.336" rx="1" transform="translate(58.889 0)" fill="#4a4a4a"/>
<rect id="Rectangle_35" data-name="Rectangle 35" width="5.336" height="5.336" rx="1" transform="translate(65.213 0)" fill="#4a4a4a"/>
<rect id="Rectangle_36" data-name="Rectangle 36" width="5.336" height="5.336" rx="1" transform="translate(71.537 0)" fill="#4a4a4a"/>
<rect id="Rectangle_37" data-name="Rectangle 37" width="5.336" height="5.336" rx="1" transform="translate(77.86 0)" fill="#4a4a4a"/>
<rect id="Rectangle_38" data-name="Rectangle 38" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
<rect id="Rectangle_39" data-name="Rectangle 39" width="5.336" height="5.336" rx="1" transform="translate(8.299 0)" fill="#4a4a4a"/>
<rect id="Rectangle_40" data-name="Rectangle 40" width="5.336" height="5.336" rx="1" transform="translate(14.623 0)" fill="#4a4a4a"/>
<rect id="Rectangle_41" data-name="Rectangle 41" width="5.336" height="5.336" rx="1" transform="translate(20.947 0)" fill="#4a4a4a"/>
<rect id="Rectangle_42" data-name="Rectangle 42" width="5.336" height="5.336" rx="1" transform="translate(27.271 0)" fill="#4a4a4a"/>
<rect id="Rectangle_43" data-name="Rectangle 43" width="5.336" height="5.336" rx="1" transform="translate(33.594 0)" fill="#4a4a4a"/>
<rect id="Rectangle_44" data-name="Rectangle 44" width="5.336" height="5.336" rx="1" transform="translate(39.918 0)" fill="#4a4a4a"/>
<rect id="Rectangle_45" data-name="Rectangle 45" width="5.336" height="5.336" rx="1" transform="translate(46.242 0)" fill="#4a4a4a"/>
<rect id="Rectangle_46" data-name="Rectangle 46" width="5.336" height="5.336" rx="1" transform="translate(52.565 0)" fill="#4a4a4a"/>
<rect id="Rectangle_47" data-name="Rectangle 47" width="5.336" height="5.336" rx="1" transform="translate(58.889 0)" fill="#4a4a4a"/>
<rect id="Rectangle_48" data-name="Rectangle 48" width="5.336" height="5.336" rx="1" transform="translate(65.213 0)" fill="#4a4a4a"/>
<rect id="Rectangle_49" data-name="Rectangle 49" width="5.336" height="5.336" rx="1" transform="translate(71.537 0)" fill="#4a4a4a"/>
<rect id="Rectangle_50" data-name="Rectangle 50" width="5.336" height="5.336" rx="1" transform="translate(77.86 0)" fill="#4a4a4a"/>
<rect id="Rectangle_51" data-name="Rectangle 51" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
</g>
<g id="Group_6" data-name="Group 6" transform="translate(1.531 16.584)">
<path id="Path_54" data-name="Path 54" d="M1.093,0h7.3A1.093,1.093,0,0,1,9.485,1.093v3.15A1.093,1.093,0,0,1,8.392,5.336h-7.3A1.093,1.093,0,0,1,0,4.243V1.094A1.093,1.093,0,0,1,1.093,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<g id="Group_5" data-name="Group 5" transform="translate(10.671 0)">
<rect id="Rectangle_52" data-name="Rectangle 52" width="5.336" height="5.336" rx="1" fill="#4a4a4a"/>
<rect id="Rectangle_53" data-name="Rectangle 53" width="5.336" height="5.336" rx="1" transform="translate(6.324 0)" fill="#4a4a4a"/>
<rect id="Rectangle_54" data-name="Rectangle 54" width="5.336" height="5.336" rx="1" transform="translate(12.647 0)" fill="#4a4a4a"/>
<rect id="Rectangle_55" data-name="Rectangle 55" width="5.336" height="5.336" rx="1" transform="translate(18.971 0)" fill="#4a4a4a"/>
<rect id="Rectangle_56" data-name="Rectangle 56" width="5.336" height="5.336" rx="1" transform="translate(25.295 0)" fill="#4a4a4a"/>
<rect id="Rectangle_57" data-name="Rectangle 57" width="5.336" height="5.336" rx="1" transform="translate(31.619 0)" fill="#4a4a4a"/>
<rect id="Rectangle_58" data-name="Rectangle 58" width="5.336" height="5.336" rx="1" transform="translate(37.942 0)" fill="#4a4a4a"/>
<rect id="Rectangle_59" data-name="Rectangle 59" width="5.336" height="5.336" rx="1" transform="translate(44.265 0)" fill="#4a4a4a"/>
<rect id="Rectangle_60" data-name="Rectangle 60" width="5.336" height="5.336" rx="1" transform="translate(50.589 0)" fill="#4a4a4a"/>
<rect id="Rectangle_61" data-name="Rectangle 61" width="5.336" height="5.336" rx="1" transform="translate(56.912 0)" fill="#4a4a4a"/>
<rect id="Rectangle_62" data-name="Rectangle 62" width="5.336" height="5.336" rx="1" transform="translate(63.236 0)" fill="#4a4a4a"/>
</g>
<path id="Path_55" data-name="Path 55" d="M1.094,0H8A1.093,1.093,0,0,1,9.091,1.093v3.15A1.093,1.093,0,0,1,8,5.336H1.093A1.093,1.093,0,0,1,0,4.243V1.094A1.093,1.093,0,0,1,1.093,0Z" transform="translate(80.428 0)" fill="#4a4a4a" fill-rule="evenodd"/>
</g>
<g id="Group_7" data-name="Group 7" transform="translate(1.531 29.627)">
<rect id="Rectangle_63" data-name="Rectangle 63" width="5.336" height="5.336" rx="1" transform="translate(0 0)" fill="#4a4a4a"/>
<rect id="Rectangle_64" data-name="Rectangle 64" width="5.336" height="5.336" rx="1" transform="translate(6.324 0)" fill="#4a4a4a"/>
<rect id="Rectangle_65" data-name="Rectangle 65" width="5.336" height="5.336" rx="1" transform="translate(12.647 0)" fill="#4a4a4a"/>
<rect id="Rectangle_66" data-name="Rectangle 66" width="5.336" height="5.336" rx="1" transform="translate(18.971 0)" fill="#4a4a4a"/>
<path id="Path_56" data-name="Path 56" d="M1.093,0H31.515a1.093,1.093,0,0,1,1.093,1.093V4.244a1.093,1.093,0,0,1-1.093,1.093H1.093A1.093,1.093,0,0,1,0,4.244V1.093A1.093,1.093,0,0,1,1.093,0ZM34.687,0h3.942a1.093,1.093,0,0,1,1.093,1.093V4.244a1.093,1.093,0,0,1-1.093,1.093H34.687a1.093,1.093,0,0,1-1.093-1.093V1.093A1.093,1.093,0,0,1,34.687,0Z" transform="translate(25.294 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<rect id="Rectangle_67" data-name="Rectangle 67" width="5.336" height="5.336" rx="1" transform="translate(66.003 0)" fill="#4a4a4a"/>
<rect id="Rectangle_68" data-name="Rectangle 68" width="5.336" height="5.336" rx="1" transform="translate(72.327 0)" fill="#4a4a4a"/>
<rect id="Rectangle_69" data-name="Rectangle 69" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
<path id="Path_57" data-name="Path 57" d="M5.336,0V1.18A1.093,1.093,0,0,1,4.243,2.273H1.093A1.093,1.093,0,0,1,0,1.18V0Z" transform="translate(83.59 2.273) rotate(180)" fill="#4a4a4a"/>
<path id="Path_58" data-name="Path 58" d="M5.336,0V1.18A1.093,1.093,0,0,1,4.243,2.273H1.093A1.093,1.093,0,0,1,0,1.18V0Z" transform="translate(78.255 3.063)" fill="#4a4a4a"/>
</g>
<rect id="Rectangle_70" data-name="Rectangle 70" width="88.927" height="2.371" rx="1.085" transform="translate(1.925 1.17)" fill="#4a4a4a"/>
<rect id="Rectangle_71" data-name="Rectangle 71" width="4.986" height="1.581" rx="0.723" transform="translate(4.1 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_72" data-name="Rectangle 72" width="4.986" height="1.581" rx="0.723" transform="translate(10.923 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_73" data-name="Rectangle 73" width="4.986" height="1.581" rx="0.723" transform="translate(16.173 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_74" data-name="Rectangle 74" width="4.986" height="1.581" rx="0.723" transform="translate(21.421 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_75" data-name="Rectangle 75" width="4.986" height="1.581" rx="0.723" transform="translate(26.671 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_76" data-name="Rectangle 76" width="4.986" height="1.581" rx="0.723" transform="translate(33.232 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_77" data-name="Rectangle 77" width="4.986" height="1.581" rx="0.723" transform="translate(38.48 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_78" data-name="Rectangle 78" width="4.986" height="1.581" rx="0.723" transform="translate(43.73 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_79" data-name="Rectangle 79" width="4.986" height="1.581" rx="0.723" transform="translate(48.978 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_80" data-name="Rectangle 80" width="4.986" height="1.581" rx="0.723" transform="translate(55.54 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_81" data-name="Rectangle 81" width="4.986" height="1.581" rx="0.723" transform="translate(60.788 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_82" data-name="Rectangle 82" width="4.986" height="1.581" rx="0.723" transform="translate(66.038 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_83" data-name="Rectangle 83" width="4.986" height="1.581" rx="0.723" transform="translate(72.599 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_84" data-name="Rectangle 84" width="4.986" height="1.581" rx="0.723" transform="translate(77.847 1.566)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_85" data-name="Rectangle 85" width="4.986" height="1.581" rx="0.723" transform="translate(83.097 1.566)" fill="#d8d8d8" opacity="0.136"/>
</g>
<path id="Path_59" data-name="Path 59" d="M146.71,159.855a5.439,5.439,0,0,0-.7.07c-.042-.164-.081-.329-.127-.493a5.457,5.457,0,1,0-5.4-9.372q-.181-.185-.366-.367a5.454,5.454,0,1,0-9.384-5.4c-.162-.046-.325-.084-.486-.126a5.467,5.467,0,1,0-10.788,0c-.162.042-.325.08-.486.126a5.457,5.457,0,1,0-9.384,5.4,21.843,21.843,0,1,0,36.421,21.02,5.452,5.452,0,1,0,.7-10.858" transform="translate(6.275 -6.025)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_60" data-name="Path 60" d="M83,124.855h43.71V103H83Z" transform="translate(4.42 -9.271)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_61" data-name="Path 61" d="M134.855,116.765a2.732,2.732,0,1,0,0-5.464,2.811,2.811,0,0,0-.349.035c-.022-.082-.04-.164-.063-.246a2.733,2.733,0,0,0-1.052-5.253,2.7,2.7,0,0,0-1.648.566q-.09-.093-.184-.184a2.7,2.7,0,0,0,.553-1.633,2.732,2.732,0,0,0-5.245-1.07,10.928,10.928,0,1,0,0,21.031,2.732,2.732,0,0,0,5.245-1.07,2.7,2.7,0,0,0-.553-1.633q.093-.09.184-.184a2.7,2.7,0,0,0,1.648.566,2.732,2.732,0,0,0,1.052-5.253c.023-.081.042-.164.063-.246a2.811,2.811,0,0,0,.349.035" transform="translate(7.202 -9.377)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_62" data-name="Path 62" d="M143.232,42.33a2.967,2.967,0,0,1-.535-.055,2.754,2.754,0,0,1-.514-.153,2.838,2.838,0,0,1-.471-.251,4.139,4.139,0,0,1-.415-.339,3.2,3.2,0,0,1-.338-.415A2.7,2.7,0,0,1,140.5,39.6a2.968,2.968,0,0,1,.055-.535,3.152,3.152,0,0,1,.152-.514,2.874,2.874,0,0,1,.252-.47,2.633,2.633,0,0,1,.753-.754,2.837,2.837,0,0,1,.471-.251,2.753,2.753,0,0,1,.514-.153,2.527,2.527,0,0,1,1.071,0,2.654,2.654,0,0,1,.983.4,4.139,4.139,0,0,1,.415.339,4.019,4.019,0,0,1,.339.415,2.786,2.786,0,0,1,.251.47,2.864,2.864,0,0,1,.208,1.049,2.77,2.77,0,0,1-.8,1.934,4.139,4.139,0,0,1-.415.339,2.722,2.722,0,0,1-1.519.459m21.855-1.366a2.789,2.789,0,0,1-1.935-.8,4.162,4.162,0,0,1-.338-.415,2.7,2.7,0,0,1-.459-1.519,2.789,2.789,0,0,1,.8-1.934,4.139,4.139,0,0,1,.415-.339,2.838,2.838,0,0,1,.471-.251,2.752,2.752,0,0,1,.514-.153,2.527,2.527,0,0,1,1.071,0,2.654,2.654,0,0,1,.983.4,4.139,4.139,0,0,1,.415.339,2.79,2.79,0,0,1,.8,1.934,3.069,3.069,0,0,1-.055.535,2.779,2.779,0,0,1-.153.514,3.885,3.885,0,0,1-.251.47,4.02,4.02,0,0,1-.339.415,4.138,4.138,0,0,1-.415.339,2.722,2.722,0,0,1-1.519.459" transform="translate(9.753 -15.532)" fill-rule="evenodd"/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 31 KiB

View File

@@ -0,0 +1,170 @@
<svg xmlns="http://www.w3.org/2000/svg" width="1041.277" height="554.141" viewBox="0 0 1041.277 554.141">
<title>Powered by React</title>
<g id="Group_24" data-name="Group 24" transform="translate(-440 -263)">
<g id="Group_23" data-name="Group 23" transform="translate(439.989 262.965)">
<path id="Path_299" data-name="Path 299" d="M1040.82,611.12q-1.74,3.75-3.47,7.4-2.7,5.67-5.33,11.12c-.78,1.61-1.56,3.19-2.32,4.77-8.6,17.57-16.63,33.11-23.45,45.89A73.21,73.21,0,0,1,942.44,719l-151.65,1.65h-1.6l-13,.14-11.12.12-34.1.37h-1.38l-17.36.19h-.53l-107,1.16-95.51,1-11.11.12-69,.75H429l-44.75.48h-.48l-141.5,1.53-42.33.46a87.991,87.991,0,0,1-10.79-.54h0c-1.22-.14-2.44-.3-3.65-.49a87.38,87.38,0,0,1-51.29-27.54C116,678.37,102.75,655,93.85,629.64q-1.93-5.49-3.6-11.12C59.44,514.37,97,380,164.6,290.08q4.25-5.64,8.64-11l.07-.08c20.79-25.52,44.1-46.84,68.93-62,44-26.91,92.75-34.49,140.7-11.9,40.57,19.12,78.45,28.11,115.17,30.55,3.71.24,7.42.42,11.11.53,84.23,2.65,163.17-27.7,255.87-47.29,3.69-.78,7.39-1.55,11.12-2.28,66.13-13.16,139.49-20.1,226.73-5.51a189.089,189.089,0,0,1,26.76,6.4q5.77,1.86,11.12,4c41.64,16.94,64.35,48.24,74,87.46q1.37,5.46,2.37,11.11C1134.3,384.41,1084.19,518.23,1040.82,611.12Z" transform="translate(-79.34 -172.91)" fill="#f2f2f2"/>
<path id="Path_300" data-name="Path 300" d="M576.36,618.52a95.21,95.21,0,0,1-1.87,11.12h93.7V618.52Zm-78.25,62.81,11.11-.09V653.77c-3.81-.17-7.52-.34-11.11-.52ZM265.19,618.52v11.12h198.5V618.52ZM1114.87,279h-74V191.51q-5.35-2.17-11.12-4V279H776.21V186.58c-3.73.73-7.43,1.5-11.12,2.28V279H509.22V236.15c-3.69-.11-7.4-.29-11.11-.53V279H242.24V217c-24.83,15.16-48.14,36.48-68.93,62h-.07v.08q-4.4,5.4-8.64,11h8.64V618.52h-83q1.66,5.63,3.6,11.12h79.39v93.62a87,87,0,0,0,12.2,2.79c1.21.19,2.43.35,3.65.49h0a87.991,87.991,0,0,0,10.79.54l42.33-.46v-97H498.11v94.21l11.11-.12V629.64H765.09V721l11.12-.12V629.64H1029.7v4.77c.76-1.58,1.54-3.16,2.32-4.77q2.63-5.45,5.33-11.12,1.73-3.64,3.47-7.4v-321h76.42Q1116.23,284.43,1114.87,279ZM242.24,618.52V290.08H498.11V618.52Zm267,0V290.08H765.09V618.52Zm520.48,0H776.21V290.08H1029.7Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_301" data-name="Path 301" d="M863.09,533.65v13l-151.92,1.4-1.62.03-57.74.53-1.38.02-17.55.15h-.52l-106.98.99L349.77,551.4h-.15l-44.65.42-.48.01-198.4,1.82v-15l46.65-28,93.6-.78,2-.01.66-.01,2-.03,44.94-.37,2.01-.01.64-.01,2-.01L315,509.3l.38-.01,35.55-.3h.29l277.4-2.34,6.79-.05h.68l5.18-.05,37.65-.31,2-.03,1.85-.02h.96l11.71-.09,2.32-.03,3.11-.02,9.75-.09,15.47-.13,2-.02,3.48-.02h.65l74.71-.64Z" fill="#65617d"/>
<path id="Path_302" data-name="Path 302" d="M863.09,533.65v13l-151.92,1.4-1.62.03-57.74.53-1.38.02-17.55.15h-.52l-106.98.99L349.77,551.4h-.15l-44.65.42-.48.01-198.4,1.82v-15l46.65-28,93.6-.78,2-.01.66-.01,2-.03,44.94-.37,2.01-.01.64-.01,2-.01L315,509.3l.38-.01,35.55-.3h.29l277.4-2.34,6.79-.05h.68l5.18-.05,37.65-.31,2-.03,1.85-.02h.96l11.71-.09,2.32-.03,3.11-.02,9.75-.09,15.47-.13,2-.02,3.48-.02h.65l74.71-.64Z" opacity="0.2"/>
<path id="Path_303" data-name="Path 303" d="M375.44,656.57v24.49a6.13,6.13,0,0,1-3.5,5.54,6,6,0,0,1-2.5.6l-34.9.74a6,6,0,0,1-2.7-.57,6.12,6.12,0,0,1-3.57-5.57V656.57Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
<path id="Path_304" data-name="Path 304" d="M375.44,656.57v24.49a6.13,6.13,0,0,1-3.5,5.54,6,6,0,0,1-2.5.6l-34.9.74a6,6,0,0,1-2.7-.57,6.12,6.12,0,0,1-3.57-5.57V656.57Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_305" data-name="Path 305" d="M377.44,656.57v24.49a6.13,6.13,0,0,1-3.5,5.54,6,6,0,0,1-2.5.6l-34.9.74a6,6,0,0,1-2.7-.57,6.12,6.12,0,0,1-3.57-5.57V656.57Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
<rect id="Rectangle_137" data-name="Rectangle 137" width="47.17" height="31.5" transform="translate(680.92 483.65)" fill="#3f3d56"/>
<rect id="Rectangle_138" data-name="Rectangle 138" width="47.17" height="31.5" transform="translate(680.92 483.65)" opacity="0.1"/>
<rect id="Rectangle_139" data-name="Rectangle 139" width="47.17" height="31.5" transform="translate(678.92 483.65)" fill="#3f3d56"/>
<path id="Path_306" data-name="Path 306" d="M298.09,483.65v4.97l-47.17,1.26v-6.23Z" opacity="0.1"/>
<path id="Path_307" data-name="Path 307" d="M460.69,485.27v168.2a4,4,0,0,1-3.85,3.95l-191.65,5.1h-.05a4,4,0,0,1-3.95-3.95V485.27a4,4,0,0,1,3.95-3.95h191.6a4,4,0,0,1,3.95,3.95Z" transform="translate(-79.34 -172.91)" fill="#65617d"/>
<path id="Path_308" data-name="Path 308" d="M265.19,481.32v181.2h-.05a4,4,0,0,1-3.95-3.95V485.27a4,4,0,0,1,3.95-3.95Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_309" data-name="Path 309" d="M194.59,319.15h177.5V467.4l-177.5,4Z" fill="#39374d"/>
<path id="Path_310" data-name="Path 310" d="M726.09,483.65v6.41l-47.17-1.26v-5.15Z" opacity="0.1"/>
<path id="Path_311" data-name="Path 311" d="M867.69,485.27v173.3a4,4,0,0,1-4,3.95h0L672,657.42a4,4,0,0,1-3.85-3.95V485.27a4,4,0,0,1,3.95-3.95H863.7a4,4,0,0,1,3.99,3.95Z" transform="translate(-79.34 -172.91)" fill="#65617d"/>
<path id="Path_312" data-name="Path 312" d="M867.69,485.27v173.3a4,4,0,0,1-4,3.95h0V481.32h0a4,4,0,0,1,4,3.95Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_313" data-name="Path 313" d="M775.59,319.15H598.09V467.4l177.5,4Z" fill="#39374d"/>
<path id="Path_314" data-name="Path 314" d="M663.19,485.27v168.2a4,4,0,0,1-3.85,3.95l-191.65,5.1h0a4,4,0,0,1-4-3.95V485.27a4,4,0,0,1,3.95-3.95h191.6A4,4,0,0,1,663.19,485.27Z" transform="translate(-79.34 -172.91)" fill="#65617d"/>
<path id="Path_315" data-name="Path 315" d="M397.09,319.15h177.5V467.4l-177.5,4Z" fill="#4267b2"/>
<path id="Path_316" data-name="Path 316" d="M863.09,533.65v13l-151.92,1.4-1.62.03-57.74.53-1.38.02-17.55.15h-.52l-106.98.99L349.77,551.4h-.15l-44.65.42-.48.01-198.4,1.82v-15l202.51-1.33h.48l40.99-.28h.19l283.08-1.87h.29l.17-.01h.47l4.79-.03h1.46l74.49-.5,4.4-.02.98-.01Z" opacity="0.1"/>
<circle id="Ellipse_111" data-name="Ellipse 111" cx="51.33" cy="51.33" r="51.33" transform="translate(435.93 246.82)" fill="#fbbebe"/>
<path id="Path_317" data-name="Path 317" d="M617.94,550.07s-99.5,12-90,0c3.44-4.34,4.39-17.2,4.2-31.85-.06-4.45-.22-9.06-.45-13.65-1.1-22-3.75-43.5-3.75-43.5s87-41,77-8.5c-4,13.13-2.69,31.57.35,48.88.89,5.05,1.92,10,3,14.7a344.66,344.66,0,0,0,9.65,33.92Z" transform="translate(-79.34 -172.91)" fill="#fbbebe"/>
<path id="Path_318" data-name="Path 318" d="M585.47,546c11.51-2.13,23.7-6,34.53-1.54,2.85,1.17,5.47,2.88,8.39,3.86s6.12,1.22,9.16,1.91c10.68,2.42,19.34,10.55,24.9,20s8.44,20.14,11.26,30.72l6.9,25.83c6,22.45,12,45.09,13.39,68.3a2437.506,2437.506,0,0,1-250.84,1.43c5.44-10.34,11-21.31,10.54-33s-7.19-23.22-4.76-34.74c1.55-7.34,6.57-13.39,9.64-20.22,8.75-19.52,1.94-45.79,17.32-60.65,6.92-6.68,17-9.21,26.63-8.89,12.28.41,24.85,4.24,37,6.11C555.09,547.48,569.79,548.88,585.47,546Z" transform="translate(-79.34 -172.91)" fill="#ff6584"/>
<path id="Path_319" data-name="Path 319" d="M716.37,657.17l-.1,1.43v.1l-.17,2.3-1.33,18.51-1.61,22.3-.46,6.28-1,13.44v.17l-107,1-175.59,1.9v.84h-.14v-1.12l.45-14.36.86-28.06.74-23.79.07-2.37a10.53,10.53,0,0,1,11.42-10.17c4.72.4,10.85.89,18.18,1.41l3,.22c42.33,2.94,120.56,6.74,199.5,2,1.66-.09,3.33-.19,5-.31,12.24-.77,24.47-1.76,36.58-3a10.53,10.53,0,0,1,11.6,11.23Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_320" data-name="Path 320" d="M429.08,725.44v-.84l175.62-1.91,107-1h.3v-.17l1-13.44.43-6,1.64-22.61,1.29-17.9v-.44a10.617,10.617,0,0,0-.11-2.47.3.3,0,0,0,0-.1,10.391,10.391,0,0,0-2-4.64,10.54,10.54,0,0,0-9.42-4c-12.11,1.24-24.34,2.23-36.58,3-1.67.12-3.34.22-5,.31-78.94,4.69-157.17.89-199.5-2l-3-.22c-7.33-.52-13.46-1-18.18-1.41a10.54,10.54,0,0,0-11.24,8.53,11,11,0,0,0-.18,1.64l-.68,22.16L429.54,710l-.44,14.36v1.12Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
<path id="Path_321" data-name="Path 321" d="M716.67,664.18l-1.23,15.33-1.83,22.85-.46,5.72-1,12.81-.06.64v.17h0l-.15,1.48.11-1.48h-.29l-107,1-175.65,1.9v-.28l.49-14.36,1-28.06.64-18.65A6.36,6.36,0,0,1,434.3,658a6.25,6.25,0,0,1,3.78-.9c2.1.17,4.68.37,7.69.59,4.89.36,10.92.78,17.94,1.22,13,.82,29.31,1.7,48,2.42,52,2,122.2,2.67,188.88-3.17,3-.26,6.1-.55,9.13-.84a6.26,6.26,0,0,1,3.48.66,5.159,5.159,0,0,1,.86.54,6.14,6.14,0,0,1,2,2.46,3.564,3.564,0,0,1,.25.61A6.279,6.279,0,0,1,716.67,664.18Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_322" data-name="Path 322" d="M377.44,677.87v3.19a6.13,6.13,0,0,1-3.5,5.54l-40.1.77a6.12,6.12,0,0,1-3.57-5.57v-3Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_323" data-name="Path 323" d="M298.59,515.57l-52.25,1V507.9l52.25-1Z" fill="#3f3d56"/>
<path id="Path_324" data-name="Path 324" d="M298.59,515.57l-52.25,1V507.9l52.25-1Z" opacity="0.1"/>
<path id="Path_325" data-name="Path 325" d="M300.59,515.57l-52.25,1V507.9l52.25-1Z" fill="#3f3d56"/>
<path id="Path_326" data-name="Path 326" d="M758.56,679.87v3.19a6.13,6.13,0,0,0,3.5,5.54l40.1.77a6.12,6.12,0,0,0,3.57-5.57v-3Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
<path id="Path_327" data-name="Path 327" d="M678.72,517.57l52.25,1V509.9l-52.25-1Z" opacity="0.1"/>
<path id="Path_328" data-name="Path 328" d="M676.72,517.57l52.25,1V509.9l-52.25-1Z" fill="#3f3d56"/>
<path id="Path_329" data-name="Path 329" d="M534.13,486.79c.08,7-3.16,13.6-5.91,20.07a163.491,163.491,0,0,0-12.66,74.71c.73,11,2.58,22,.73,32.9s-8.43,21.77-19,24.9c17.53,10.45,41.26,9.35,57.76-2.66,8.79-6.4,15.34-15.33,21.75-24.11a97.86,97.86,0,0,1-13.31,44.75A103.43,103.43,0,0,0,637,616.53c4.31-5.81,8.06-12.19,9.72-19.23,3.09-13-1.22-26.51-4.51-39.5a266.055,266.055,0,0,1-6.17-33c-.43-3.56-.78-7.22.1-10.7,1-4.07,3.67-7.51,5.64-11.22,5.6-10.54,5.73-23.3,2.86-34.88s-8.49-22.26-14.06-32.81c-4.46-8.46-9.3-17.31-17.46-22.28-5.1-3.1-11-4.39-16.88-5.64l-25.37-5.43c-5.55-1.19-11.26-2.38-16.87-1.51-9.47,1.48-16.14,8.32-22,15.34-4.59,5.46-15.81,15.71-16.6,22.86-.72,6.59,5.1,17.63,6.09,24.58,1.3,9,2.22,6,7.3,11.52C532,478.05,534.07,482,534.13,486.79Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
</g>
<g id="docusaurus_keytar" transform="translate(670.271 615.768)">
<path id="Path_40" data-name="Path 40" d="M99,52h43.635V69.662H99Z" transform="translate(-49.132 -33.936)" fill="#fff" fill-rule="evenodd"/>
<path id="Path_41" data-name="Path 41" d="M13.389,158.195A10.377,10.377,0,0,1,4.4,153a10.377,10.377,0,0,0,8.988,15.584H23.779V158.195Z" transform="translate(-3 -82.47)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_42" data-name="Path 42" d="M66.967,38.083l36.373-2.273V30.615A10.389,10.389,0,0,0,92.95,20.226H46.2l-1.3-2.249a1.5,1.5,0,0,0-2.6,0L41,20.226l-1.3-2.249a1.5,1.5,0,0,0-2.6,0l-1.3,2.249-1.3-2.249a1.5,1.5,0,0,0-2.6,0l-1.3,2.249-.034,0-2.152-2.151a1.5,1.5,0,0,0-2.508.672L25.21,21.4l-2.7-.723a1.5,1.5,0,0,0-1.836,1.837l.722,2.7-2.65.71a1.5,1.5,0,0,0-.673,2.509l2.152,2.152c0,.011,0,.022,0,.033l-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6L20.226,41l-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3A10.389,10.389,0,0,0,30.615,103.34H92.95A10.389,10.389,0,0,0,103.34,92.95V51.393L66.967,49.12a5.53,5.53,0,0,1,0-11.038" transform="translate(-9.836 -17.226)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_43" data-name="Path 43" d="M143,163.779h15.584V143H143Z" transform="translate(-70.275 -77.665)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_44" data-name="Path 44" d="M173.779,148.389a2.582,2.582,0,0,0-.332.033c-.02-.078-.038-.156-.06-.234a2.594,2.594,0,1,0-2.567-4.455q-.086-.088-.174-.175a2.593,2.593,0,1,0-4.461-2.569c-.077-.022-.154-.04-.231-.06a2.6,2.6,0,1,0-5.128,0c-.077.02-.154.038-.231.06a2.594,2.594,0,1,0-4.461,2.569,10.384,10.384,0,1,0,17.314,9.992,2.592,2.592,0,1,0,.332-5.161" transform="translate(-75.08 -75.262)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_45" data-name="Path 45" d="M153,113.389h15.584V103H153Z" transform="translate(-75.08 -58.444)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_46" data-name="Path 46" d="M183.389,108.944a1.3,1.3,0,1,0,0-2.6,1.336,1.336,0,0,0-.166.017c-.01-.039-.019-.078-.03-.117a1.3,1.3,0,0,0-.5-2.5,1.285,1.285,0,0,0-.783.269q-.043-.044-.087-.087a1.285,1.285,0,0,0,.263-.776,1.3,1.3,0,0,0-2.493-.509,5.195,5.195,0,1,0,0,10,1.3,1.3,0,0,0,2.493-.509,1.285,1.285,0,0,0-.263-.776q.044-.043.087-.087a1.285,1.285,0,0,0,.783.269,1.3,1.3,0,0,0,.5-2.5c.011-.038.02-.078.03-.117a1.337,1.337,0,0,0,.166.017" transform="translate(-84.691 -57.894)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_47" data-name="Path 47" d="M52.188,48.292a1.3,1.3,0,0,1-1.3-1.3,3.9,3.9,0,0,0-7.792,0,1.3,1.3,0,1,1-2.6,0,6.493,6.493,0,0,1,12.987,0,1.3,1.3,0,0,1-1.3,1.3" transform="translate(-21.02 -28.41)" fill-rule="evenodd"/>
<path id="Path_48" data-name="Path 48" d="M103,139.752h31.168a10.389,10.389,0,0,0,10.389-10.389V93H113.389A10.389,10.389,0,0,0,103,103.389Z" transform="translate(-51.054 -53.638)" fill="#ffff50" fill-rule="evenodd"/>
<path id="Path_49" data-name="Path 49" d="M141.1,94.017H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.389H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.389H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0-25.877H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.293H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.389H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m7.782-47.993c-.006,0-.011,0-.018,0-1.605.055-2.365,1.66-3.035,3.077-.7,1.48-1.24,2.443-2.126,2.414-.981-.035-1.542-1.144-2.137-2.317-.683-1.347-1.462-2.876-3.1-2.819-1.582.054-2.344,1.451-3.017,2.684-.715,1.313-1.2,2.112-2.141,2.075-1-.036-1.533-.938-2.149-1.981-.686-1.162-1.479-2.467-3.084-2.423-1.555.053-2.319,1.239-2.994,2.286-.713,1.106-1.213,1.781-2.164,1.741-1.025-.036-1.554-.784-2.167-1.65-.688-.973-1.463-2.074-3.062-2.021a3.815,3.815,0,0,0-2.959,1.879c-.64.812-1.14,1.456-2.2,1.415a.52.52,0,0,0-.037,1.039,3.588,3.588,0,0,0,3.05-1.811c.611-.777,1.139-1.448,2.178-1.483,1-.043,1.47.579,2.179,1.582.674.953,1.438,2.033,2.977,2.089,1.612.054,2.387-1.151,3.074-2.217.614-.953,1.144-1.775,2.156-1.81.931-.035,1.438.7,2.153,1.912.674,1.141,1.437,2.434,3.006,2.491,1.623.056,2.407-1.361,3.09-2.616.592-1.085,1.15-2.109,2.14-2.143.931-.022,1.417.829,2.135,2.249.671,1.326,1.432,2.828,3.026,2.886l.088,0c1.592,0,2.347-1.6,3.015-3.01.592-1.252,1.152-2.431,2.113-2.479Z" transform="translate(-55.378 -38.552)" fill-rule="evenodd"/>
<path id="Path_50" data-name="Path 50" d="M83,163.779h20.779V143H83Z" transform="translate(-41.443 -77.665)" fill="#3ecc5f" fill-rule="evenodd"/>
<g id="Group_8" data-name="Group 8" transform="matrix(0.966, -0.259, 0.259, 0.966, 51.971, 43.3)">
<rect id="Rectangle_3" data-name="Rectangle 3" width="43.906" height="17.333" rx="2" transform="translate(0 0)" fill="#d8d8d8"/>
<g id="Group_2" data-name="Group 2" transform="translate(0.728 10.948)">
<rect id="Rectangle_4" data-name="Rectangle 4" width="2.537" height="2.537" rx="1" transform="translate(7.985 0)" fill="#4a4a4a"/>
<rect id="Rectangle_5" data-name="Rectangle 5" width="2.537" height="2.537" rx="1" transform="translate(10.991 0)" fill="#4a4a4a"/>
<rect id="Rectangle_6" data-name="Rectangle 6" width="2.537" height="2.537" rx="1" transform="translate(13.997 0)" fill="#4a4a4a"/>
<rect id="Rectangle_7" data-name="Rectangle 7" width="2.537" height="2.537" rx="1" transform="translate(17.003 0)" fill="#4a4a4a"/>
<rect id="Rectangle_8" data-name="Rectangle 8" width="2.537" height="2.537" rx="1" transform="translate(20.009 0)" fill="#4a4a4a"/>
<rect id="Rectangle_9" data-name="Rectangle 9" width="2.537" height="2.537" rx="1" transform="translate(23.015 0)" fill="#4a4a4a"/>
<rect id="Rectangle_10" data-name="Rectangle 10" width="2.537" height="2.537" rx="1" transform="translate(26.021 0)" fill="#4a4a4a"/>
<rect id="Rectangle_11" data-name="Rectangle 11" width="2.537" height="2.537" rx="1" transform="translate(29.028 0)" fill="#4a4a4a"/>
<rect id="Rectangle_12" data-name="Rectangle 12" width="2.537" height="2.537" rx="1" transform="translate(32.034 0)" fill="#4a4a4a"/>
<path id="Path_51" data-name="Path 51" d="M.519,0H6.9A.519.519,0,0,1,7.421.52v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.519A.519.519,0,0,1,.519,0ZM35.653,0h6.383a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H35.652a.519.519,0,0,1-.519-.519V.519A.519.519,0,0,1,35.652,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
</g>
<g id="Group_3" data-name="Group 3" transform="translate(0.728 4.878)">
<path id="Path_52" data-name="Path 52" d="M.519,0H2.956a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.519A.519.519,0,0,1,.519,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<rect id="Rectangle_13" data-name="Rectangle 13" width="2.537" height="2.537" rx="1" transform="translate(3.945 0)" fill="#4a4a4a"/>
<rect id="Rectangle_14" data-name="Rectangle 14" width="2.537" height="2.537" rx="1" transform="translate(6.951 0)" fill="#4a4a4a"/>
<rect id="Rectangle_15" data-name="Rectangle 15" width="2.537" height="2.537" rx="1" transform="translate(9.958 0)" fill="#4a4a4a"/>
<rect id="Rectangle_16" data-name="Rectangle 16" width="2.537" height="2.537" rx="1" transform="translate(12.964 0)" fill="#4a4a4a"/>
<rect id="Rectangle_17" data-name="Rectangle 17" width="2.537" height="2.537" rx="1" transform="translate(15.97 0)" fill="#4a4a4a"/>
<rect id="Rectangle_18" data-name="Rectangle 18" width="2.537" height="2.537" rx="1" transform="translate(18.976 0)" fill="#4a4a4a"/>
<rect id="Rectangle_19" data-name="Rectangle 19" width="2.537" height="2.537" rx="1" transform="translate(21.982 0)" fill="#4a4a4a"/>
<rect id="Rectangle_20" data-name="Rectangle 20" width="2.537" height="2.537" rx="1" transform="translate(24.988 0)" fill="#4a4a4a"/>
<rect id="Rectangle_21" data-name="Rectangle 21" width="2.537" height="2.537" rx="1" transform="translate(27.994 0)" fill="#4a4a4a"/>
<rect id="Rectangle_22" data-name="Rectangle 22" width="2.537" height="2.537" rx="1" transform="translate(31 0)" fill="#4a4a4a"/>
<rect id="Rectangle_23" data-name="Rectangle 23" width="2.537" height="2.537" rx="1" transform="translate(34.006 0)" fill="#4a4a4a"/>
<rect id="Rectangle_24" data-name="Rectangle 24" width="2.537" height="2.537" rx="1" transform="translate(37.012 0)" fill="#4a4a4a"/>
<rect id="Rectangle_25" data-name="Rectangle 25" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
</g>
<g id="Group_4" data-name="Group 4" transform="translate(43.283 4.538) rotate(180)">
<path id="Path_53" data-name="Path 53" d="M.519,0H2.956a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.519A.519.519,0,0,1,.519,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<rect id="Rectangle_26" data-name="Rectangle 26" width="2.537" height="2.537" rx="1" transform="translate(3.945 0)" fill="#4a4a4a"/>
<rect id="Rectangle_27" data-name="Rectangle 27" width="2.537" height="2.537" rx="1" transform="translate(6.951 0)" fill="#4a4a4a"/>
<rect id="Rectangle_28" data-name="Rectangle 28" width="2.537" height="2.537" rx="1" transform="translate(9.958 0)" fill="#4a4a4a"/>
<rect id="Rectangle_29" data-name="Rectangle 29" width="2.537" height="2.537" rx="1" transform="translate(12.964 0)" fill="#4a4a4a"/>
<rect id="Rectangle_30" data-name="Rectangle 30" width="2.537" height="2.537" rx="1" transform="translate(15.97 0)" fill="#4a4a4a"/>
<rect id="Rectangle_31" data-name="Rectangle 31" width="2.537" height="2.537" rx="1" transform="translate(18.976 0)" fill="#4a4a4a"/>
<rect id="Rectangle_32" data-name="Rectangle 32" width="2.537" height="2.537" rx="1" transform="translate(21.982 0)" fill="#4a4a4a"/>
<rect id="Rectangle_33" data-name="Rectangle 33" width="2.537" height="2.537" rx="1" transform="translate(24.988 0)" fill="#4a4a4a"/>
<rect id="Rectangle_34" data-name="Rectangle 34" width="2.537" height="2.537" rx="1" transform="translate(27.994 0)" fill="#4a4a4a"/>
<rect id="Rectangle_35" data-name="Rectangle 35" width="2.537" height="2.537" rx="1" transform="translate(31.001 0)" fill="#4a4a4a"/>
<rect id="Rectangle_36" data-name="Rectangle 36" width="2.537" height="2.537" rx="1" transform="translate(34.007 0)" fill="#4a4a4a"/>
<rect id="Rectangle_37" data-name="Rectangle 37" width="2.537" height="2.537" rx="1" transform="translate(37.013 0)" fill="#4a4a4a"/>
<rect id="Rectangle_38" data-name="Rectangle 38" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
<rect id="Rectangle_39" data-name="Rectangle 39" width="2.537" height="2.537" rx="1" transform="translate(3.945 0)" fill="#4a4a4a"/>
<rect id="Rectangle_40" data-name="Rectangle 40" width="2.537" height="2.537" rx="1" transform="translate(6.951 0)" fill="#4a4a4a"/>
<rect id="Rectangle_41" data-name="Rectangle 41" width="2.537" height="2.537" rx="1" transform="translate(9.958 0)" fill="#4a4a4a"/>
<rect id="Rectangle_42" data-name="Rectangle 42" width="2.537" height="2.537" rx="1" transform="translate(12.964 0)" fill="#4a4a4a"/>
<rect id="Rectangle_43" data-name="Rectangle 43" width="2.537" height="2.537" rx="1" transform="translate(15.97 0)" fill="#4a4a4a"/>
<rect id="Rectangle_44" data-name="Rectangle 44" width="2.537" height="2.537" rx="1" transform="translate(18.976 0)" fill="#4a4a4a"/>
<rect id="Rectangle_45" data-name="Rectangle 45" width="2.537" height="2.537" rx="1" transform="translate(21.982 0)" fill="#4a4a4a"/>
<rect id="Rectangle_46" data-name="Rectangle 46" width="2.537" height="2.537" rx="1" transform="translate(24.988 0)" fill="#4a4a4a"/>
<rect id="Rectangle_47" data-name="Rectangle 47" width="2.537" height="2.537" rx="1" transform="translate(27.994 0)" fill="#4a4a4a"/>
<rect id="Rectangle_48" data-name="Rectangle 48" width="2.537" height="2.537" rx="1" transform="translate(31.001 0)" fill="#4a4a4a"/>
<rect id="Rectangle_49" data-name="Rectangle 49" width="2.537" height="2.537" rx="1" transform="translate(34.007 0)" fill="#4a4a4a"/>
<rect id="Rectangle_50" data-name="Rectangle 50" width="2.537" height="2.537" rx="1" transform="translate(37.013 0)" fill="#4a4a4a"/>
<rect id="Rectangle_51" data-name="Rectangle 51" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
</g>
<g id="Group_6" data-name="Group 6" transform="translate(0.728 7.883)">
<path id="Path_54" data-name="Path 54" d="M.519,0h3.47a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.52A.519.519,0,0,1,.519,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<g id="Group_5" data-name="Group 5" transform="translate(5.073 0)">
<rect id="Rectangle_52" data-name="Rectangle 52" width="2.537" height="2.537" rx="1" transform="translate(0 0)" fill="#4a4a4a"/>
<rect id="Rectangle_53" data-name="Rectangle 53" width="2.537" height="2.537" rx="1" transform="translate(3.006 0)" fill="#4a4a4a"/>
<rect id="Rectangle_54" data-name="Rectangle 54" width="2.537" height="2.537" rx="1" transform="translate(6.012 0)" fill="#4a4a4a"/>
<rect id="Rectangle_55" data-name="Rectangle 55" width="2.537" height="2.537" rx="1" transform="translate(9.018 0)" fill="#4a4a4a"/>
<rect id="Rectangle_56" data-name="Rectangle 56" width="2.537" height="2.537" rx="1" transform="translate(12.025 0)" fill="#4a4a4a"/>
<rect id="Rectangle_57" data-name="Rectangle 57" width="2.537" height="2.537" rx="1" transform="translate(15.031 0)" fill="#4a4a4a"/>
<rect id="Rectangle_58" data-name="Rectangle 58" width="2.537" height="2.537" rx="1" transform="translate(18.037 0)" fill="#4a4a4a"/>
<rect id="Rectangle_59" data-name="Rectangle 59" width="2.537" height="2.537" rx="1" transform="translate(21.042 0)" fill="#4a4a4a"/>
<rect id="Rectangle_60" data-name="Rectangle 60" width="2.537" height="2.537" rx="1" transform="translate(24.049 0)" fill="#4a4a4a"/>
<rect id="Rectangle_61" data-name="Rectangle 61" width="2.537" height="2.537" rx="1" transform="translate(27.055 0)" fill="#4a4a4a"/>
<rect id="Rectangle_62" data-name="Rectangle 62" width="2.537" height="2.537" rx="1" transform="translate(30.061 0)" fill="#4a4a4a"/>
</g>
<path id="Path_55" data-name="Path 55" d="M.52,0H3.8a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.52A.519.519,0,0,1,.519,0Z" transform="translate(38.234 0)" fill="#4a4a4a" fill-rule="evenodd"/>
</g>
<g id="Group_7" data-name="Group 7" transform="translate(0.728 14.084)">
<rect id="Rectangle_63" data-name="Rectangle 63" width="2.537" height="2.537" rx="1" transform="translate(0 0)" fill="#4a4a4a"/>
<rect id="Rectangle_64" data-name="Rectangle 64" width="2.537" height="2.537" rx="1" transform="translate(3.006 0)" fill="#4a4a4a"/>
<rect id="Rectangle_65" data-name="Rectangle 65" width="2.537" height="2.537" rx="1" transform="translate(6.012 0)" fill="#4a4a4a"/>
<rect id="Rectangle_66" data-name="Rectangle 66" width="2.537" height="2.537" rx="1" transform="translate(9.018 0)" fill="#4a4a4a"/>
<path id="Path_56" data-name="Path 56" d="M.519,0H14.981A.519.519,0,0,1,15.5.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.018V.519A.519.519,0,0,1,.519,0Zm15.97,0h1.874a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H16.489a.519.519,0,0,1-.519-.519V.519A.519.519,0,0,1,16.489,0Z" transform="translate(12.024 0)" fill="#4a4a4a" fill-rule="evenodd"/>
<rect id="Rectangle_67" data-name="Rectangle 67" width="2.537" height="2.537" rx="1" transform="translate(31.376 0)" fill="#4a4a4a"/>
<rect id="Rectangle_68" data-name="Rectangle 68" width="2.537" height="2.537" rx="1" transform="translate(34.382 0)" fill="#4a4a4a"/>
<rect id="Rectangle_69" data-name="Rectangle 69" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
<path id="Path_57" data-name="Path 57" d="M2.537,0V.561a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,.561V0Z" transform="translate(39.736 1.08) rotate(180)" fill="#4a4a4a"/>
<path id="Path_58" data-name="Path 58" d="M2.537,0V.561a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,.561V0Z" transform="translate(37.2 1.456)" fill="#4a4a4a"/>
</g>
<rect id="Rectangle_70" data-name="Rectangle 70" width="42.273" height="1.127" rx="0.564" transform="translate(0.915 0.556)" fill="#4a4a4a"/>
<rect id="Rectangle_71" data-name="Rectangle 71" width="2.37" height="0.752" rx="0.376" transform="translate(1.949 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_72" data-name="Rectangle 72" width="2.37" height="0.752" rx="0.376" transform="translate(5.193 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_73" data-name="Rectangle 73" width="2.37" height="0.752" rx="0.376" transform="translate(7.688 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_74" data-name="Rectangle 74" width="2.37" height="0.752" rx="0.376" transform="translate(10.183 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_75" data-name="Rectangle 75" width="2.37" height="0.752" rx="0.376" transform="translate(12.679 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_76" data-name="Rectangle 76" width="2.37" height="0.752" rx="0.376" transform="translate(15.797 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_77" data-name="Rectangle 77" width="2.37" height="0.752" rx="0.376" transform="translate(18.292 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_78" data-name="Rectangle 78" width="2.37" height="0.752" rx="0.376" transform="translate(20.788 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_79" data-name="Rectangle 79" width="2.37" height="0.752" rx="0.376" transform="translate(23.283 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_80" data-name="Rectangle 80" width="2.37" height="0.752" rx="0.376" transform="translate(26.402 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_81" data-name="Rectangle 81" width="2.37" height="0.752" rx="0.376" transform="translate(28.897 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_82" data-name="Rectangle 82" width="2.37" height="0.752" rx="0.376" transform="translate(31.393 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_83" data-name="Rectangle 83" width="2.37" height="0.752" rx="0.376" transform="translate(34.512 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_84" data-name="Rectangle 84" width="2.37" height="0.752" rx="0.376" transform="translate(37.007 0.744)" fill="#d8d8d8" opacity="0.136"/>
<rect id="Rectangle_85" data-name="Rectangle 85" width="2.37" height="0.752" rx="0.376" transform="translate(39.502 0.744)" fill="#d8d8d8" opacity="0.136"/>
</g>
<path id="Path_59" data-name="Path 59" d="M123.779,148.389a2.583,2.583,0,0,0-.332.033c-.02-.078-.038-.156-.06-.234a2.594,2.594,0,1,0-2.567-4.455q-.086-.088-.174-.175a2.593,2.593,0,1,0-4.461-2.569c-.077-.022-.154-.04-.231-.06a2.6,2.6,0,1,0-5.128,0c-.077.02-.154.038-.231.06a2.594,2.594,0,1,0-4.461,2.569,10.384,10.384,0,1,0,17.314,9.992,2.592,2.592,0,1,0,.332-5.161" transform="translate(-51.054 -75.262)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_60" data-name="Path 60" d="M83,113.389h20.779V103H83Z" transform="translate(-41.443 -58.444)" fill="#3ecc5f" fill-rule="evenodd"/>
<path id="Path_61" data-name="Path 61" d="M123.389,108.944a1.3,1.3,0,1,0,0-2.6,1.338,1.338,0,0,0-.166.017c-.01-.039-.019-.078-.03-.117a1.3,1.3,0,0,0-.5-2.5,1.285,1.285,0,0,0-.783.269q-.043-.044-.087-.087a1.285,1.285,0,0,0,.263-.776,1.3,1.3,0,0,0-2.493-.509,5.195,5.195,0,1,0,0,10,1.3,1.3,0,0,0,2.493-.509,1.285,1.285,0,0,0-.263-.776q.044-.043.087-.087a1.285,1.285,0,0,0,.783.269,1.3,1.3,0,0,0,.5-2.5c.011-.038.02-.078.03-.117a1.335,1.335,0,0,0,.166.017" transform="translate(-55.859 -57.894)" fill="#44d860" fill-rule="evenodd"/>
<path id="Path_62" data-name="Path 62" d="M141.8,38.745a1.41,1.41,0,0,1-.255-.026,1.309,1.309,0,0,1-.244-.073,1.349,1.349,0,0,1-.224-.119,1.967,1.967,0,0,1-.2-.161,1.52,1.52,0,0,1-.161-.2,1.282,1.282,0,0,1-.218-.722,1.41,1.41,0,0,1,.026-.255,1.5,1.5,0,0,1,.072-.244,1.364,1.364,0,0,1,.12-.223,1.252,1.252,0,0,1,.358-.358,1.349,1.349,0,0,1,.224-.119,1.309,1.309,0,0,1,.244-.073,1.2,1.2,0,0,1,.509,0,1.262,1.262,0,0,1,.468.192,1.968,1.968,0,0,1,.2.161,1.908,1.908,0,0,1,.161.2,1.322,1.322,0,0,1,.12.223,1.361,1.361,0,0,1,.1.5,1.317,1.317,0,0,1-.379.919,1.968,1.968,0,0,1-.2.161,1.346,1.346,0,0,1-.223.119,1.332,1.332,0,0,1-.5.1m10.389-.649a1.326,1.326,0,0,1-.92-.379,1.979,1.979,0,0,1-.161-.2,1.282,1.282,0,0,1-.218-.722,1.326,1.326,0,0,1,.379-.919,1.967,1.967,0,0,1,.2-.161,1.351,1.351,0,0,1,.224-.119,1.308,1.308,0,0,1,.244-.073,1.2,1.2,0,0,1,.509,0,1.262,1.262,0,0,1,.468.192,1.967,1.967,0,0,1,.2.161,1.326,1.326,0,0,1,.379.919,1.461,1.461,0,0,1-.026.255,1.323,1.323,0,0,1-.073.244,1.847,1.847,0,0,1-.119.223,1.911,1.911,0,0,1-.161.2,1.967,1.967,0,0,1-.2.161,1.294,1.294,0,0,1-.722.218" transform="translate(-69.074 -26.006)" fill-rule="evenodd"/>
</g>
<g id="React-icon" transform="translate(906.3 541.56)">
<path id="Path_330" data-name="Path 330" d="M263.668,117.179c0-5.827-7.3-11.35-18.487-14.775,2.582-11.4,1.434-20.477-3.622-23.382a7.861,7.861,0,0,0-4.016-1v4a4.152,4.152,0,0,1,2.044.466c2.439,1.4,3.5,6.724,2.672,13.574-.2,1.685-.52,3.461-.914,5.272a86.9,86.9,0,0,0-11.386-1.954,87.469,87.469,0,0,0-7.459-8.965c5.845-5.433,11.332-8.41,15.062-8.41V78h0c-4.931,0-11.386,3.514-17.913,9.611-6.527-6.061-12.982-9.539-17.913-9.539v4c3.712,0,9.216,2.959,15.062,8.356a84.687,84.687,0,0,0-7.405,8.947,83.732,83.732,0,0,0-11.4,1.972c-.412-1.793-.717-3.532-.932-5.2-.843-6.85.2-12.175,2.618-13.592a3.991,3.991,0,0,1,2.062-.466v-4h0a8,8,0,0,0-4.052,1c-5.039,2.9-6.168,11.96-3.568,23.328-11.153,3.443-18.415,8.947-18.415,14.757,0,5.828,7.3,11.35,18.487,14.775-2.582,11.4-1.434,20.477,3.622,23.382a7.882,7.882,0,0,0,4.034,1c4.931,0,11.386-3.514,17.913-9.611,6.527,6.061,12.982,9.539,17.913,9.539a8,8,0,0,0,4.052-1c5.039-2.9,6.168-11.96,3.568-23.328C256.406,128.511,263.668,122.988,263.668,117.179Zm-23.346-11.96c-.663,2.313-1.488,4.7-2.421,7.083-.735-1.434-1.506-2.869-2.349-4.3-.825-1.434-1.7-2.833-2.582-4.2C235.517,104.179,237.974,104.645,240.323,105.219Zm-8.212,19.1c-1.4,2.421-2.833,4.716-4.321,6.85-2.672.233-5.379.359-8.1.359-2.708,0-5.415-.126-8.069-.341q-2.232-3.2-4.339-6.814-2.044-3.523-3.73-7.136c1.112-2.4,2.367-4.805,3.712-7.154,1.4-2.421,2.833-4.716,4.321-6.85,2.672-.233,5.379-.359,8.1-.359,2.708,0,5.415.126,8.069.341q2.232,3.2,4.339,6.814,2.044,3.523,3.73,7.136C234.692,119.564,233.455,121.966,232.11,124.315Zm5.792-2.331c.968,2.4,1.793,4.805,2.474,7.136-2.349.574-4.823,1.058-7.387,1.434.879-1.381,1.757-2.8,2.582-4.25C236.4,124.871,237.167,123.419,237.9,121.984ZM219.72,141.116a73.921,73.921,0,0,1-4.985-5.738c1.614.072,3.263.126,4.931.126,1.685,0,3.353-.036,4.985-.126A69.993,69.993,0,0,1,219.72,141.116ZM206.38,130.555c-2.546-.377-5-.843-7.352-1.417.663-2.313,1.488-4.7,2.421-7.083.735,1.434,1.506,2.869,2.349,4.3S205.5,129.192,206.38,130.555ZM219.63,93.241a73.924,73.924,0,0,1,4.985,5.738c-1.614-.072-3.263-.126-4.931-.126-1.686,0-3.353.036-4.985.126A69.993,69.993,0,0,1,219.63,93.241ZM206.362,103.8c-.879,1.381-1.757,2.8-2.582,4.25-.825,1.434-1.6,2.869-2.331,4.3-.968-2.4-1.793-4.805-2.474-7.136C201.323,104.663,203.8,104.179,206.362,103.8Zm-16.227,22.449c-6.348-2.708-10.454-6.258-10.454-9.073s4.106-6.383,10.454-9.073c1.542-.663,3.228-1.255,4.967-1.811a86.122,86.122,0,0,0,4.034,10.92,84.9,84.9,0,0,0-3.981,10.866C193.38,127.525,191.694,126.915,190.134,126.252Zm9.647,25.623c-2.439-1.4-3.5-6.724-2.672-13.574.2-1.686.52-3.461.914-5.272a86.9,86.9,0,0,0,11.386,1.954,87.465,87.465,0,0,0,7.459,8.965c-5.845,5.433-11.332,8.41-15.062,8.41A4.279,4.279,0,0,1,199.781,151.875Zm42.532-13.663c.843,6.85-.2,12.175-2.618,13.592a3.99,3.99,0,0,1-2.062.466c-3.712,0-9.216-2.959-15.062-8.356a84.689,84.689,0,0,0,7.405-8.947,83.731,83.731,0,0,0,11.4-1.972A50.194,50.194,0,0,1,242.313,138.212Zm6.9-11.96c-1.542.663-3.228,1.255-4.967,1.811a86.12,86.12,0,0,0-4.034-10.92,84.9,84.9,0,0,0,3.981-10.866c1.775.556,3.461,1.165,5.039,1.829,6.348,2.708,10.454,6.258,10.454,9.073C259.67,119.994,255.564,123.562,249.216,126.252Z" fill="#61dafb"/>
<path id="Path_331" data-name="Path 331" d="M320.8,78.4Z" transform="translate(-119.082 -0.328)" fill="#61dafb"/>
<circle id="Ellipse_112" data-name="Ellipse 112" cx="8.194" cy="8.194" r="8.194" transform="translate(211.472 108.984)" fill="#61dafb"/>
<path id="Path_332" data-name="Path 332" d="M520.5,78.1Z" transform="translate(-282.975 -0.082)" fill="#61dafb"/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 35 KiB

View File

@@ -0,0 +1,40 @@
<svg xmlns="http://www.w3.org/2000/svg" width="1129" height="663" viewBox="0 0 1129 663">
<title>Focus on What Matters</title>
<circle cx="321" cy="321" r="321" fill="#f2f2f2" />
<ellipse cx="559" cy="635.49998" rx="514" ry="27.50002" fill="#3f3d56" />
<ellipse cx="558" cy="627" rx="460" ry="22" opacity="0.2" />
<rect x="131" y="152.5" width="840" height="50" fill="#3f3d56" />
<path d="M166.5,727.3299A21.67009,21.67009,0,0,0,188.1701,749H984.8299A21.67009,21.67009,0,0,0,1006.5,727.3299V296h-840Z" transform="translate(-35.5 -118.5)" fill="#3f3d56" />
<path d="M984.8299,236H188.1701A21.67009,21.67009,0,0,0,166.5,257.6701V296h840V257.6701A21.67009,21.67009,0,0,0,984.8299,236Z" transform="translate(-35.5 -118.5)" fill="#3f3d56" />
<path d="M984.8299,236H188.1701A21.67009,21.67009,0,0,0,166.5,257.6701V296h840V257.6701A21.67009,21.67009,0,0,0,984.8299,236Z" transform="translate(-35.5 -118.5)" opacity="0.2" />
<circle cx="181" cy="147.5" r="13" fill="#3f3d56" />
<circle cx="217" cy="147.5" r="13" fill="#3f3d56" />
<circle cx="253" cy="147.5" r="13" fill="#3f3d56" />
<rect x="168" y="213.5" width="337" height="386" rx="5.33505" fill="#606060" />
<rect x="603" y="272.5" width="284" height="22" rx="5.47638" fill="#2e8555" />
<rect x="537" y="352.5" width="416" height="15" rx="5.47638" fill="#2e8555" />
<rect x="537" y="396.5" width="416" height="15" rx="5.47638" fill="#2e8555" />
<rect x="537" y="440.5" width="416" height="15" rx="5.47638" fill="#2e8555" />
<rect x="537" y="484.5" width="416" height="15" rx="5.47638" fill="#2e8555" />
<rect x="865" y="552.5" width="88" height="26" rx="7.02756" fill="#3ecc5f" />
<path d="M1088.60287,624.61594a30.11371,30.11371,0,0,0,3.98291-15.266c0-13.79652-8.54358-24.98081-19.08256-24.98081s-19.08256,11.18429-19.08256,24.98081a30.11411,30.11411,0,0,0,3.98291,15.266,31.248,31.248,0,0,0,0,30.53213,31.248,31.248,0,0,0,0,30.53208,31.248,31.248,0,0,0,0,30.53208,30.11408,30.11408,0,0,0-3.98291,15.266c0,13.79652,8.54353,24.98081,19.08256,24.98081s19.08256-11.18429,19.08256-24.98081a30.11368,30.11368,0,0,0-3.98291-15.266,31.248,31.248,0,0,0,0-30.53208,31.248,31.248,0,0,0,0-30.53208,31.248,31.248,0,0,0,0-30.53213Z" transform="translate(-35.5 -118.5)" fill="#3f3d56" />
<ellipse cx="1038.00321" cy="460.31783" rx="19.08256" ry="24.9808" fill="#3f3d56" />
<ellipse cx="1038.00321" cy="429.78574" rx="19.08256" ry="24.9808" fill="#3f3d56" />
<path d="M1144.93871,339.34489a91.61081,91.61081,0,0,0,7.10658-10.46092l-50.141-8.23491,54.22885.4033a91.566,91.566,0,0,0,1.74556-72.42605l-72.75449,37.74139,67.09658-49.32086a91.41255,91.41255,0,1,0-150.971,102.29805,91.45842,91.45842,0,0,0-10.42451,16.66946l65.0866,33.81447-69.40046-23.292a91.46011,91.46011,0,0,0,14.73837,85.83669,91.40575,91.40575,0,1,0,143.68892,0,91.41808,91.41808,0,0,0,0-113.02862Z" transform="translate(-35.5 -118.5)" fill="#3ecc5f" fill-rule="evenodd" />
<path d="M981.6885,395.8592a91.01343,91.01343,0,0,0,19.56129,56.51431,91.40575,91.40575,0,1,0,143.68892,0C1157.18982,436.82067,981.6885,385.60008,981.6885,395.8592Z" transform="translate(-35.5 -118.5)" opacity="0.1" />
<path d="M365.62,461.43628H477.094v45.12043H365.62Z" transform="translate(-35.5 -118.5)" fill="#fff" fill-rule="evenodd" />
<path d="M264.76252,608.74122a26.50931,26.50931,0,0,1-22.96231-13.27072,26.50976,26.50976,0,0,0,22.96231,39.81215H291.304V608.74122Z" transform="translate(-35.5 -118.5)" fill="#3ecc5f" fill-rule="evenodd" />
<path d="M384.17242,468.57061l92.92155-5.80726V449.49263a26.54091,26.54091,0,0,0-26.54143-26.54143H331.1161l-3.31768-5.74622a3.83043,3.83043,0,0,0-6.63536,0l-3.31768,5.74622-3.31767-5.74622a3.83043,3.83043,0,0,0-6.63536,0l-3.31768,5.74622L301.257,417.205a3.83043,3.83043,0,0,0-6.63536,0L291.304,422.9512c-.02919,0-.05573.004-.08625.004l-5.49674-5.49541a3.8293,3.8293,0,0,0-6.4071,1.71723l-1.81676,6.77338L270.607,424.1031a3.82993,3.82993,0,0,0-4.6912,4.69253l1.84463,6.89148-6.77072,1.81411a3.8315,3.8315,0,0,0-1.71988,6.40975l5.49673,5.49673c0,.02787-.004.05574-.004.08493l-5.74622,3.31768a3.83043,3.83043,0,0,0,0,6.63536l5.74621,3.31768L259.0163,466.081a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768-5.74622,3.31767a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768-5.74622,3.31768a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768-5.74622,3.31767a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768-5.74622,3.31768a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768-5.74622,3.31768a3.83042,3.83042,0,0,0,0,6.63535l5.74622,3.31768-5.74622,3.31768a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768L259.0163,558.976a3.83042,3.83042,0,0,0,0,6.63535l5.74622,3.31768-5.74622,3.31768a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768-5.74622,3.31768a3.83042,3.83042,0,0,0,0,6.63535l5.74622,3.31768-5.74622,3.31768a3.83043,3.83043,0,0,0,0,6.63536l5.74622,3.31768A26.54091,26.54091,0,0,0,291.304,635.28265H450.55254A26.5409,26.5409,0,0,0,477.094,608.74122V502.5755l-92.92155-5.80727a14.12639,14.12639,0,0,1,0-28.19762" transform="translate(-35.5 -118.5)" fill="#3ecc5f" fill-rule="evenodd" />
<path d="M424.01111,635.28265h39.81214V582.19979H424.01111Z" transform="translate(-35.5 -118.5)" fill="#3ecc5f" fill-rule="evenodd" />
<path d="M490.36468,602.10586a6.60242,6.60242,0,0,0-.848.08493c-.05042-.19906-.09821-.39945-.15393-.59852A6.62668,6.62668,0,1,0,482.80568,590.21q-.2203-.22491-.44457-.44589a6.62391,6.62391,0,1,0-11.39689-6.56369c-.1964-.05575-.39414-.10218-.59056-.15262a6.63957,6.63957,0,1,0-13.10086,0c-.1964.05042-.39414.09687-.59056.15262a6.62767,6.62767,0,1,0-11.39688,6.56369,26.52754,26.52754,0,1,0,44.23127,25.52756,6.6211,6.6211,0,1,0,.848-13.18579" transform="translate(-35.5 -118.5)" fill="#44d860" fill-rule="evenodd" />
<path d="M437.28182,555.65836H477.094V529.11693H437.28182Z" transform="translate(-35.5 -118.5)" fill="#3ecc5f" fill-rule="evenodd" />
<path d="M490.36468,545.70532a3.31768,3.31768,0,0,0,0-6.63536,3.41133,3.41133,0,0,0-.42333.04247c-.02655-.09953-.04911-.19907-.077-.29859a3.319,3.319,0,0,0-1.278-6.37923,3.28174,3.28174,0,0,0-2.00122.68742q-.10947-.11346-.22294-.22295a3.282,3.282,0,0,0,.67149-1.98265,3.31768,3.31768,0,0,0-6.37-1.2992,13.27078,13.27078,0,1,0,0,25.54082,3.31768,3.31768,0,0,0,6.37-1.2992,3.282,3.282,0,0,0-.67149-1.98265q.11347-.10947.22294-.22294a3.28174,3.28174,0,0,0,2.00122.68742,3.31768,3.31768,0,0,0,1.278-6.37923c.02786-.0982.05042-.19907.077-.29859a3.41325,3.41325,0,0,0,.42333.04246" transform="translate(-35.5 -118.5)" fill="#44d860" fill-rule="evenodd" />
<path d="M317.84538,466.081a3.31768,3.31768,0,0,1-3.31767-3.31768,9.953,9.953,0,1,0-19.90608,0,3.31768,3.31768,0,1,1-6.63535,0,16.58839,16.58839,0,1,1,33.17678,0,3.31768,3.31768,0,0,1-3.31768,3.31768" transform="translate(-35.5 -118.5)" fill-rule="evenodd" />
<path d="M370.92825,635.28265h79.62429A26.5409,26.5409,0,0,0,477.094,608.74122v-92.895H397.46968a26.54091,26.54091,0,0,0-26.54143,26.54143Z" transform="translate(-35.5 -118.5)" fill="#ffff50" fill-rule="evenodd" />
<path d="M457.21444,556.98543H390.80778a1.32707,1.32707,0,0,1,0-2.65414h66.40666a1.32707,1.32707,0,0,1,0,2.65414m0,26.54143H390.80778a1.32707,1.32707,0,1,1,0-2.65414h66.40666a1.32707,1.32707,0,0,1,0,2.65414m0,26.54143H390.80778a1.32707,1.32707,0,1,1,0-2.65414h66.40666a1.32707,1.32707,0,0,1,0,2.65414m0-66.10674H390.80778a1.32707,1.32707,0,0,1,0-2.65414h66.40666a1.32707,1.32707,0,0,1,0,2.65414m0,26.29459H390.80778a1.32707,1.32707,0,0,1,0-2.65414h66.40666a1.32707,1.32707,0,0,1,0,2.65414m0,26.54143H390.80778a1.32707,1.32707,0,0,1,0-2.65414h66.40666a1.32707,1.32707,0,0,1,0,2.65414M477.094,474.19076c-.01592,0-.0292-.008-.04512-.00663-4.10064.13934-6.04083,4.24132-7.75274,7.86024-1.78623,3.78215-3.16771,6.24122-5.43171,6.16691-2.50685-.09024-3.94007-2.92222-5.45825-5.91874-1.74377-3.44243-3.73438-7.34667-7.91333-7.20069-4.04227.138-5.98907,3.70784-7.70631,6.857-1.82738,3.35484-3.07084,5.39455-5.46887,5.30033-2.55727-.09289-3.91619-2.39536-5.48877-5.06013-1.75306-2.96733-3.77951-6.30359-7.8775-6.18946-3.97326.13669-5.92537,3.16507-7.64791,5.83912-1.82207,2.82666-3.09872,4.5492-5.52725,4.447-2.61832-.09289-3.9706-2.00388-5.53522-4.21611-1.757-2.4856-3.737-5.299-7.82308-5.16231-3.88567.13271-5.83779,2.61434-7.559,4.80135-1.635,2.07555-2.9116,3.71846-5.61218,3.615a1.32793,1.32793,0,1,0-.09555,2.65414c4.00377.134,6.03154-2.38873,7.79257-4.6275,1.562-1.9853,2.91027-3.69855,5.56441-3.78879,2.55594-.10882,3.75429,1.47968,5.56707,4.04093,1.7212,2.43385,3.67465,5.19416,7.60545,5.33616,4.11789.138,6.09921-2.93946,7.8536-5.66261,1.56861-2.43385,2.92221-4.53461,5.50734-4.62352,2.37944-.08892,3.67466,1.79154,5.50072,4.885,1.72121,2.91557,3.67069,6.21865,7.67977,6.36463,4.14709.14332,6.14965-3.47693,7.89475-6.68181,1.51155-2.77092,2.93814-5.38791,5.46621-5.4755,2.37944-.05573,3.62025,2.11668,5.45558,5.74622,1.71459,3.388,3.65875,7.22591,7.73019,7.37321l.22429.004c4.06614,0,5.99571-4.08074,7.70364-7.68905,1.51154-3.19825,2.94211-6.21069,5.3972-6.33411Z" transform="translate(-35.5 -118.5)" fill-rule="evenodd" />
<path d="M344.38682,635.28265h53.08286V582.19979H344.38682Z" transform="translate(-35.5 -118.5)" fill="#3ecc5f" fill-rule="evenodd" />
<path d="M424.01111,602.10586a6.60242,6.60242,0,0,0-.848.08493c-.05042-.19906-.09821-.39945-.15394-.59852A6.62667,6.62667,0,1,0,416.45211,590.21q-.2203-.22491-.44458-.44589a6.62391,6.62391,0,1,0-11.39689-6.56369c-.1964-.05575-.39413-.10218-.59054-.15262a6.63957,6.63957,0,1,0-13.10084,0c-.19641.05042-.39414.09687-.59055.15262a6.62767,6.62767,0,1,0-11.39689,6.56369,26.52755,26.52755,0,1,0,44.2313,25.52756,6.6211,6.6211,0,1,0,.848-13.18579" transform="translate(-35.5 -118.5)" fill="#44d860" fill-rule="evenodd" />
<path d="M344.38682,555.65836h53.08286V529.11693H344.38682Z" transform="translate(-35.5 -118.5)" fill="#3ecc5f" fill-rule="evenodd" />
<path d="M410.74039,545.70532a3.31768,3.31768,0,1,0,0-6.63536,3.41133,3.41133,0,0,0-.42333.04247c-.02655-.09953-.04911-.19907-.077-.29859a3.319,3.319,0,0,0-1.278-6.37923,3.28174,3.28174,0,0,0-2.00122.68742q-.10947-.11346-.22294-.22295a3.282,3.282,0,0,0,.67149-1.98265,3.31768,3.31768,0,0,0-6.37-1.2992,13.27078,13.27078,0,1,0,0,25.54082,3.31768,3.31768,0,0,0,6.37-1.2992,3.282,3.282,0,0,0-.67149-1.98265q.11347-.10947.22294-.22294a3.28174,3.28174,0,0,0,2.00122.68742,3.31768,3.31768,0,0,0,1.278-6.37923c.02786-.0982.05042-.19907.077-.29859a3.41325,3.41325,0,0,0,.42333.04246" transform="translate(-35.5 -118.5)" fill="#44d860" fill-rule="evenodd" />
<path d="M424.01111,447.8338a3.60349,3.60349,0,0,1-.65028-.06636,3.34415,3.34415,0,0,1-.62372-.18579,3.44679,3.44679,0,0,1-.572-.30522,5.02708,5.02708,0,0,1-.50429-.4114,3.88726,3.88726,0,0,1-.41007-.50428,3.27532,3.27532,0,0,1-.55737-1.84463,3.60248,3.60248,0,0,1,.06636-.65027,3.82638,3.82638,0,0,1,.18447-.62373,3.48858,3.48858,0,0,1,.30656-.57064,3.197,3.197,0,0,1,.91436-.91568,3.44685,3.44685,0,0,1,.572-.30523,3.344,3.344,0,0,1,.62372-.18578,3.06907,3.06907,0,0,1,1.30053,0,3.22332,3.22332,0,0,1,1.19436.491,5.02835,5.02835,0,0,1,.50429.41139,4.8801,4.8801,0,0,1,.41139.50429,3.38246,3.38246,0,0,1,.30522.57064,3.47806,3.47806,0,0,1,.25215,1.274A3.36394,3.36394,0,0,1,426.36,446.865a5.02708,5.02708,0,0,1-.50429.4114,3.3057,3.3057,0,0,1-1.84463.55737m26.54143-1.65884a3.38754,3.38754,0,0,1-2.35024-.96877,5.04185,5.04185,0,0,1-.41007-.50428,3.27532,3.27532,0,0,1-.55737-1.84463,3.38659,3.38659,0,0,1,.96744-2.34892,5.02559,5.02559,0,0,1,.50429-.41139,3.44685,3.44685,0,0,1,.572-.30523,3.3432,3.3432,0,0,1,.62373-.18579,3.06952,3.06952,0,0,1,1.30052,0,3.22356,3.22356,0,0,1,1.19436.491,5.02559,5.02559,0,0,1,.50429.41139,3.38792,3.38792,0,0,1,.96876,2.34892,3.72635,3.72635,0,0,1-.06636.65026,3.37387,3.37387,0,0,1-.18579.62373,4.71469,4.71469,0,0,1-.30522.57064,4.8801,4.8801,0,0,1-.41139.50429,5.02559,5.02559,0,0,1-.50429.41139,3.30547,3.30547,0,0,1-1.84463.55737" transform="translate(-35.5 -118.5)" fill-rule="evenodd" />
</svg>

After

Width:  |  Height:  |  Size: 12 KiB

3456
docs/static/openapi.json vendored Normal file

File diff suppressed because it is too large Load Diff

8
docs/tsconfig.json Normal file
View File

@@ -0,0 +1,8 @@
{
// This file is not used in compilation. It is here just for a nice editor experience.
"extends": "@docusaurus/tsconfig",
"compilerOptions": {
"baseUrl": "."
},
"exclude": [".docusaurus", "build"]
}

View File

@@ -0,0 +1,150 @@
#!/bin/bash
set -e
# --- Usage ---
usage() {
echo "Usage: $0 [OPTIONS]"
echo ""
echo "Options:"
echo " --hf-token TOKEN HuggingFace token"
echo " --help Show this help message"
echo ""
echo "Examples:"
echo " $0 # Interactive mode"
echo " $0 --hf-token hf_xxxxx # Non-interactive mode"
echo ""
exit 0
}
# --- Parse Arguments ---
HF_TOKEN=""
while [[ $# -gt 0 ]]; do
case $1 in
--hf-token)
HF_TOKEN="$2"
shift 2
;;
--help)
usage
;;
*)
echo "Unknown option: $1"
usage
;;
esac
done
echo "=========================================="
echo "Reflector GPU Functions Deployment"
echo "=========================================="
echo ""
# --- Check Dependencies ---
if ! command -v modal &> /dev/null; then
echo "Error: Modal CLI not installed."
echo " Install with: pip install modal"
exit 1
fi
if ! command -v openssl &> /dev/null; then
echo "Error: openssl not found."
echo " Mac: brew install openssl"
echo " Ubuntu: sudo apt-get install openssl"
exit 1
fi
# Check Modal authentication
if ! modal profile current &> /dev/null; then
echo "Error: Not authenticated with Modal."
echo " Run: modal setup"
exit 1
fi
# --- HuggingFace Token Setup ---
if [ -z "$HF_TOKEN" ]; then
echo "HuggingFace token required for Pyannote diarization model."
echo "1. Create account at https://huggingface.co"
echo "2. Accept license at https://huggingface.co/pyannote/speaker-diarization-3.1"
echo "3. Generate token at https://huggingface.co/settings/tokens"
echo ""
read -p "Enter your HuggingFace token: " HF_TOKEN
fi
if [ -z "$HF_TOKEN" ]; then
echo "Error: HuggingFace token is required for diarization"
exit 1
fi
# Basic token format validation
if [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Warning: HuggingFace tokens usually start with 'hf_'"
if [ -t 0 ]; then
read -p "Continue anyway? (y/n): " confirm
if [ "$confirm" != "y" ]; then
exit 1
fi
else
echo "Non-interactive mode: proceeding anyway"
fi
fi
# --- Auto-generate reflector<->GPU API Key ---
echo ""
echo "Generating API key for GPU services..."
API_KEY=$(openssl rand -hex 32)
# --- Create Modal Secrets ---
echo "Creating Modal secrets..."
# Create or update hf_token secret (delete first if exists)
if modal secret list 2>/dev/null | grep -q "hf_token"; then
echo " -> Recreating secret: hf_token"
modal secret delete hf_token --yes 2>/dev/null || true
fi
echo " -> Creating secret: hf_token"
modal secret create hf_token HF_TOKEN="$HF_TOKEN"
# Create or update reflector-gpu secret (delete first if exists)
if modal secret list 2>/dev/null | grep -q "reflector-gpu"; then
echo " -> Recreating secret: reflector-gpu"
modal secret delete reflector-gpu --yes 2>/dev/null || true
fi
echo " -> Creating secret: reflector-gpu"
modal secret create reflector-gpu REFLECTOR_GPU_APIKEY="$API_KEY"
# --- Deploy Functions ---
echo ""
echo "Deploying transcriber (Whisper)..."
TRANSCRIBER_URL=$(modal deploy reflector_transcriber.py 2>&1 | grep -o 'https://[^ ]*web.modal.run' | head -1)
if [ -z "$TRANSCRIBER_URL" ]; then
echo "Error: Failed to deploy transcriber. Check Modal dashboard for details."
exit 1
fi
echo " -> $TRANSCRIBER_URL"
echo ""
echo "Deploying diarizer (Pyannote)..."
DIARIZER_URL=$(modal deploy reflector_diarizer.py 2>&1 | grep -o 'https://[^ ]*web.modal.run' | head -1)
if [ -z "$DIARIZER_URL" ]; then
echo "Error: Failed to deploy diarizer. Check Modal dashboard for details."
exit 1
fi
echo " -> $DIARIZER_URL"
# --- Output Configuration ---
echo ""
echo "=========================================="
echo "Deployment complete!"
echo "=========================================="
echo ""
echo "Copy these values to your server's server/.env file:"
echo ""
echo "# --- Modal GPU Configuration ---"
echo "TRANSCRIPT_BACKEND=modal"
echo "TRANSCRIPT_URL=$TRANSCRIBER_URL"
echo "TRANSCRIPT_MODAL_API_KEY=$API_KEY"
echo ""
echo "DIARIZATION_BACKEND=modal"
echo "DIARIZATION_URL=$DIARIZER_URL"
echo "DIARIZATION_MODAL_API_KEY=$API_KEY"
echo "# --- End Modal Configuration ---"

View File

@@ -24,6 +24,12 @@ app = modal.App(name="reflector-diarizer")
upload_volume = modal.Volume.from_name("diarizer-uploads", create_if_missing=True)
# IMPORTANT: This function is duplicated in multiple files for deployment isolation.
# If you modify the audio format detection logic, you MUST update all copies:
# - gpu/self_hosted/app/utils.py
# - gpu/modal_deployments/reflector_transcriber.py (2 copies)
# - gpu/modal_deployments/reflector_transcriber_parakeet.py
# - gpu/modal_deployments/reflector_diarizer.py (this file)
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
parsed_url = urlparse(url)
url_path = parsed_url.path
@@ -39,6 +45,8 @@ def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtens
return AudioFileExtension("wav")
if "audio/mp4" in content_type:
return AudioFileExtension("mp4")
if "audio/webm" in content_type or "video/webm" in content_type:
return AudioFileExtension("webm")
raise ValueError(
f"Unsupported audio format for URL: {url}. "
@@ -105,7 +113,7 @@ def download_pyannote_audio():
diarizer_image = (
modal.Image.debian_slim(python_version="3.10.8")
modal.Image.debian_slim(python_version="3.10")
.pip_install(
"pyannote.audio==3.1.0",
"requests",
@@ -116,7 +124,7 @@ diarizer_image = (
"transformers==4.34.0",
"sentencepiece",
"protobuf",
"numpy",
"numpy<2",
"huggingface_hub",
"hf-transfer",
)

View File

@@ -89,6 +89,7 @@ image = (
"torch==2.5.1",
"faster-whisper==1.1.1",
"fastapi==0.115.12",
"python-multipart",
"requests",
"librosa==0.10.1",
"numpy<2",
@@ -98,6 +99,12 @@ image = (
)
# IMPORTANT: This function is duplicated in multiple files for deployment isolation.
# If you modify the audio format detection logic, you MUST update all copies:
# - gpu/self_hosted/app/utils.py
# - gpu/modal_deployments/reflector_transcriber.py (this file - 2 copies!)
# - gpu/modal_deployments/reflector_transcriber_parakeet.py
# - gpu/modal_deployments/reflector_diarizer.py
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
parsed_url = urlparse(url)
url_path = parsed_url.path
@@ -113,6 +120,8 @@ def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtens
return AudioFileExtension("wav")
if "audio/mp4" in content_type:
return AudioFileExtension("mp4")
if "audio/webm" in content_type or "video/webm" in content_type:
return AudioFileExtension("webm")
raise ValueError(
f"Unsupported audio format for URL: {url}. "
@@ -315,6 +324,11 @@ class TranscriberWhisperFile:
import numpy as np
from silero_vad import VADIterator
# IMPORTANT: This VAD segment logic is duplicated in multiple files for deployment isolation.
# If you modify this function, you MUST update all copies:
# - gpu/modal_deployments/reflector_transcriber.py (this file)
# - gpu/modal_deployments/reflector_transcriber_parakeet.py
# - gpu/self_hosted/app/services/transcriber.py
def vad_segments(
audio_array,
sample_rate: int = SAMPLERATE,
@@ -322,6 +336,7 @@ class TranscriberWhisperFile:
) -> Generator[TimeSegment, None, None]:
"""Generate speech segments as TimeSegment using Silero VAD."""
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
audio_duration = len(audio_array) / float(SAMPLERATE)
start = None
for i in range(0, len(audio_array), window_size):
chunk = audio_array[i : i + window_size]
@@ -341,6 +356,9 @@ class TranscriberWhisperFile:
start / float(SAMPLERATE), end / float(SAMPLERATE)
)
start = None
# Handle case where audio ends while speech is still active
if start is not None:
yield TimeSegment(start / float(SAMPLERATE), audio_duration)
iterator.reset_states()
upload_volume.reload()
@@ -406,6 +424,12 @@ class TranscriberWhisperFile:
return {"text": " ".join(all_text), "words": all_words}
# IMPORTANT: This function is duplicated in multiple files for deployment isolation.
# If you modify the audio format detection logic, you MUST update all copies:
# - gpu/self_hosted/app/utils.py
# - gpu/modal_deployments/reflector_transcriber.py (this file - 2 copies!)
# - gpu/modal_deployments/reflector_transcriber_parakeet.py
# - gpu/modal_deployments/reflector_diarizer.py
def detect_audio_format(url: str, headers: dict) -> str:
from urllib.parse import urlparse
@@ -423,6 +447,8 @@ def detect_audio_format(url: str, headers: dict) -> str:
return "wav"
if "audio/mp4" in content_type:
return "mp4"
if "audio/webm" in content_type or "video/webm" in content_type:
return "webm"
raise HTTPException(
status_code=400,

View File

@@ -90,6 +90,12 @@ image = (
)
# IMPORTANT: This function is duplicated in multiple files for deployment isolation.
# If you modify the audio format detection logic, you MUST update all copies:
# - gpu/self_hosted/app/utils.py
# - gpu/modal_deployments/reflector_transcriber.py (2 copies)
# - gpu/modal_deployments/reflector_transcriber_parakeet.py (this file)
# - gpu/modal_deployments/reflector_diarizer.py
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
parsed_url = urlparse(url)
url_path = parsed_url.path
@@ -105,6 +111,8 @@ def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtens
return AudioFileExtension("wav")
if "audio/mp4" in content_type:
return AudioFileExtension("mp4")
if "audio/webm" in content_type or "video/webm" in content_type:
return AudioFileExtension("webm")
raise ValueError(
f"Unsupported audio format for URL: {url}. "
@@ -301,6 +309,11 @@ class TranscriberParakeetFile:
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
return audio_array
# IMPORTANT: This VAD segment logic is duplicated in multiple files for deployment isolation.
# If you modify this function, you MUST update all copies:
# - gpu/modal_deployments/reflector_transcriber.py
# - gpu/modal_deployments/reflector_transcriber_parakeet.py (this file)
# - gpu/self_hosted/app/services/transcriber.py
def vad_segment_generator(
audio_array,
) -> Generator[TimeSegment, None, None]:

View File

@@ -103,7 +103,7 @@ def configure_seamless_m4t():
transcriber_image = (
Image.debian_slim(python_version="3.10.8")
Image.debian_slim(python_version="3.10")
.apt_install("git")
.apt_install("wget")
.apt_install("libsndfile-dev")
@@ -119,6 +119,7 @@ transcriber_image = (
"fairseq2",
"pyyaml",
"hf-transfer~=0.1",
"pydantic",
)
.run_function(install_seamless_communication)
.run_function(download_seamlessm4t_model)

View File

@@ -0,0 +1,137 @@
# Local Development GPU Setup
Run transcription and diarization locally for development/testing.
> **For production deployment**, see the [Self-Hosted GPU Setup Guide](../../docs/docs/installation/self-hosted-gpu-setup.md).
## Prerequisites
1. **Python 3.12+** and **uv** package manager
2. **FFmpeg** installed and on PATH
3. **HuggingFace account** with access to pyannote models
### Accept Pyannote Licenses (Required)
Before first run, accept licenses for these gated models (logged into HuggingFace):
- https://hf.co/pyannote/speaker-diarization-3.1
- https://hf.co/pyannote/segmentation-3.0
## Quick Start
### 1. Install dependencies
```bash
cd gpu/self_hosted
uv sync
```
### 2. Start the GPU service
```bash
cd gpu/self_hosted
HF_TOKEN=<your-huggingface-token> \
REFLECTOR_GPU_APIKEY=dev-key-12345 \
.venv/bin/uvicorn main:app --host 0.0.0.0 --port 8000
```
Note: The `.env` file is NOT auto-loaded. Pass env vars explicitly or use:
```bash
export HF_TOKEN=<your-token>
export REFLECTOR_GPU_APIKEY=dev-key-12345
.venv/bin/uvicorn main:app --host 0.0.0.0 --port 8000
```
### 3. Configure Reflector to use local GPU
Edit `server/.env`:
```bash
# Transcription - local GPU service
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=http://host.docker.internal:8000
TRANSCRIPT_MODAL_API_KEY=dev-key-12345
# Diarization - local GPU service
DIARIZATION_BACKEND=modal
DIARIZATION_URL=http://host.docker.internal:8000
DIARIZATION_MODAL_API_KEY=dev-key-12345
```
Note: Use `host.docker.internal` because Reflector server runs in Docker.
### 4. Restart Reflector server
```bash
cd server
docker compose restart server worker
```
## Testing
### Test transcription
```bash
curl -s -X POST http://localhost:8000/v1/audio/transcriptions \
-H "Authorization: Bearer dev-key-12345" \
-F "file=@/path/to/audio.wav" \
-F "language=en"
```
### Test diarization
```bash
curl -s -X POST "http://localhost:8000/diarize?audio_file_url=<audio-url>" \
-H "Authorization: Bearer dev-key-12345"
```
## Platform Notes
### macOS (ARM)
Docker build fails - CUDA packages are x86_64 only. Use local Python instead:
```bash
uv sync
HF_TOKEN=xxx REFLECTOR_GPU_APIKEY=xxx .venv/bin/uvicorn main:app --host 0.0.0.0 --port 8000
```
### Linux with NVIDIA GPU
Docker works with CUDA acceleration:
```bash
docker compose up -d
```
### CPU-only
Works on any platform, just slower. PyTorch auto-detects and falls back to CPU.
## Switching Back to Modal.com
Edit `server/.env`:
```bash
TRANSCRIPT_BACKEND=modal
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-parakeet-web.modal.run
TRANSCRIPT_MODAL_API_KEY=<modal-api-key>
DIARIZATION_BACKEND=modal
DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
DIARIZATION_MODAL_API_KEY=<modal-api-key>
```
## Troubleshooting
### "Could not download pyannote pipeline"
- Accept model licenses at HuggingFace (see Prerequisites)
- Verify HF_TOKEN is set and valid
### Service won't start
- Check port 8000 is free: `lsof -i :8000`
- Kill orphan processes if needed
### Transcription returns empty text
- Ensure audio contains speech (not just tones/silence)
- Check audio format is supported (wav, mp3, etc.)
### Deprecation warnings from torchaudio/pyannote
- Safe to ignore - doesn't affect functionality

View File

@@ -56,9 +56,13 @@ Docker
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
Conformance tests
# Setup
# From this directory
[SETUP.md](SETUP.md)
# Conformance tests
## From this directory
TRANSCRIPT_URL=http://localhost:8000 \
TRANSCRIPT_API_KEY=dev-key \

View File

@@ -129,6 +129,11 @@ class WhisperService:
audio = np.frombuffer(proc.stdout, dtype=np.float32)
return audio
# IMPORTANT: This VAD segment logic is duplicated in multiple files for deployment isolation.
# If you modify this function, you MUST update all copies:
# - gpu/modal_deployments/reflector_transcriber.py
# - gpu/modal_deployments/reflector_transcriber_parakeet.py
# - gpu/self_hosted/app/services/transcriber.py (this file)
def vad_segments(
audio_array,
sample_rate: int = SAMPLE_RATE,
@@ -153,6 +158,10 @@ class WhisperService:
end = speech["end"]
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
start = None
# Handle case where audio ends while speech is still active
if start is not None:
audio_duration = len(audio_array) / float(sample_rate)
yield (start / float(SAMPLE_RATE), audio_duration)
iterator.reset_states()
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)

View File

@@ -34,6 +34,12 @@ def ensure_dirs():
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
# IMPORTANT: This function is duplicated in multiple files for deployment isolation.
# If you modify the audio format detection logic, you MUST update all copies:
# - gpu/self_hosted/app/utils.py (this file)
# - gpu/modal_deployments/reflector_transcriber.py (2 copies)
# - gpu/modal_deployments/reflector_transcriber_parakeet.py
# - gpu/modal_deployments/reflector_diarizer.py
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
url_path = urlparse(url).path
for ext in SUPPORTED_FILE_EXTENSIONS:
@@ -47,6 +53,8 @@ def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
return "wav"
if "audio/mp4" in content_type:
return "mp4"
if "audio/webm" in content_type or "video/webm" in content_type:
return "webm"
raise HTTPException(
status_code=400,

258
scripts/setup-authentik-oauth.sh Executable file
View File

@@ -0,0 +1,258 @@
#!/bin/bash
set -e
# Setup Authentik OAuth provider for Reflector
#
# IMPORTANT: Run this script from your Reflector repository directory (cd ~/reflector)
# The script creates files using relative paths: server/reflector/auth/jwt/keys/
#
# Usage: ./setup-authentik-oauth.sh <authentik-url> <admin-password> <frontend-url>
# Example: ./setup-authentik-oauth.sh https://authentik.example.com MyPassword123 https://app.example.com
AUTHENTIK_URL="${1:-}"
ADMIN_PASSWORD="${2:-}"
FRONTEND_URL="${3:-}"
if [ -z "$AUTHENTIK_URL" ] || [ -z "$ADMIN_PASSWORD" ] || [ -z "$FRONTEND_URL" ]; then
echo "Usage: $0 <authentik-url> <admin-password> <frontend-url>"
echo "Example: $0 https://authentik.example.com MyPassword123 https://app.example.com"
exit 1
fi
# Remove trailing slash from URLs
AUTHENTIK_URL="${AUTHENTIK_URL%/}"
FRONTEND_URL="${FRONTEND_URL%/}"
echo "==========================================="
echo "Authentik OAuth Setup for Reflector"
echo "==========================================="
echo ""
echo "Authentik URL: $AUTHENTIK_URL"
echo "Frontend URL: $FRONTEND_URL"
echo ""
# Step 1: Create API token via Django shell
echo "Creating API token..."
cd ~/authentik || { echo "Error: ~/authentik directory not found"; exit 1; }
API_TOKEN=$(sudo docker compose exec -T server python -m manage shell 2>&1 << 'PYTHON' | grep "^TOKEN:" | cut -d: -f2
from authentik.core.models import User, Token, TokenIntents
user = User.objects.get(username='akadmin')
token, created = Token.objects.update_or_create(
identifier='reflector-setup',
defaults={
'user': user,
'intent': TokenIntents.INTENT_API,
'description': 'Reflector setup token',
'expiring': False
}
)
print(f"TOKEN:{token.key}")
PYTHON
)
cd - > /dev/null
if [ -z "$API_TOKEN" ] || [ "$API_TOKEN" = "null" ]; then
echo "Error: Failed to create API token"
echo "Make sure Authentik is fully started and akadmin user exists"
exit 1
fi
echo " -> Got API token"
# Step 2: Get authorization flow UUID
echo "Getting authorization flow..."
FLOW_RESPONSE=$(curl -s "$AUTHENTIK_URL/api/v3/flows/instances/?slug=default-provider-authorization-implicit-consent" \
-H "Authorization: Bearer $API_TOKEN")
FLOW_UUID=$(echo "$FLOW_RESPONSE" | jq -r '.results[0].pk')
if [ -z "$FLOW_UUID" ] || [ "$FLOW_UUID" = "null" ]; then
echo "Error: Could not find authorization flow"
echo "Response: $FLOW_RESPONSE"
exit 1
fi
echo " -> Flow UUID: $FLOW_UUID"
# Step 3: Get invalidation flow UUID
echo "Getting invalidation flow..."
INVALIDATION_RESPONSE=$(curl -s "$AUTHENTIK_URL/api/v3/flows/instances/?slug=default-provider-invalidation-flow" \
-H "Authorization: Bearer $API_TOKEN")
INVALIDATION_UUID=$(echo "$INVALIDATION_RESPONSE" | jq -r '.results[0].pk')
if [ -z "$INVALIDATION_UUID" ] || [ "$INVALIDATION_UUID" = "null" ]; then
echo "Warning: Could not find invalidation flow, using authorization flow"
INVALIDATION_UUID="$FLOW_UUID"
fi
echo " -> Invalidation UUID: $INVALIDATION_UUID"
# Step 4: Get scope mappings (email, openid, profile)
echo "Getting scope mappings..."
SCOPE_RESPONSE=$(curl -s "$AUTHENTIK_URL/api/v3/propertymappings/all/" \
-H "Authorization: Bearer $API_TOKEN")
EMAIL_SCOPE=$(echo "$SCOPE_RESPONSE" | jq -r '.results[] | select(.name == "authentik default OAuth Mapping: OpenID '\''email'\''") | .pk')
OPENID_SCOPE=$(echo "$SCOPE_RESPONSE" | jq -r '.results[] | select(.name == "authentik default OAuth Mapping: OpenID '\''openid'\''") | .pk')
PROFILE_SCOPE=$(echo "$SCOPE_RESPONSE" | jq -r '.results[] | select(.name == "authentik default OAuth Mapping: OpenID '\''profile'\''") | .pk')
echo " -> email: $EMAIL_SCOPE"
echo " -> openid: $OPENID_SCOPE"
echo " -> profile: $PROFILE_SCOPE"
# Step 5: Get signing key
echo "Getting signing key..."
CERT_RESPONSE=$(curl -s "$AUTHENTIK_URL/api/v3/crypto/certificatekeypairs/" \
-H "Authorization: Bearer $API_TOKEN")
SIGNING_KEY=$(echo "$CERT_RESPONSE" | jq -r '.results[0].pk')
echo " -> Signing key: $SIGNING_KEY"
# Step 6: Generate client credentials
CLIENT_ID="reflector"
CLIENT_SECRET=$(openssl rand -hex 32)
# Step 7: Create OAuth2 provider
echo "Creating OAuth2 provider..."
PROVIDER_RESPONSE=$(curl -s -X POST "$AUTHENTIK_URL/api/v3/providers/oauth2/" \
-H "Authorization: Bearer $API_TOKEN" \
-H "Content-Type: application/json" \
-d "{
\"name\": \"Reflector\",
\"authorization_flow\": \"$FLOW_UUID\",
\"invalidation_flow\": \"$INVALIDATION_UUID\",
\"client_type\": \"confidential\",
\"client_id\": \"$CLIENT_ID\",
\"client_secret\": \"$CLIENT_SECRET\",
\"redirect_uris\": [{
\"matching_mode\": \"strict\",
\"url\": \"$FRONTEND_URL/api/auth/callback/authentik\"
}],
\"property_mappings\": [\"$EMAIL_SCOPE\", \"$OPENID_SCOPE\", \"$PROFILE_SCOPE\"],
\"signing_key\": \"$SIGNING_KEY\",
\"access_token_validity\": \"hours=1\",
\"refresh_token_validity\": \"days=30\"
}")
PROVIDER_ID=$(echo "$PROVIDER_RESPONSE" | jq -r '.pk')
if [ -z "$PROVIDER_ID" ] || [ "$PROVIDER_ID" = "null" ]; then
# Check if provider already exists
if echo "$PROVIDER_RESPONSE" | grep -q "already exists"; then
echo " -> Provider already exists, updating..."
EXISTING=$(curl -s "$AUTHENTIK_URL/api/v3/providers/oauth2/?name=Reflector" \
-H "Authorization: Bearer $API_TOKEN")
PROVIDER_ID=$(echo "$EXISTING" | jq -r '.results[0].pk')
CLIENT_ID=$(echo "$EXISTING" | jq -r '.results[0].client_id')
# Update secret and scopes
curl -s -X PATCH "$AUTHENTIK_URL/api/v3/providers/oauth2/$PROVIDER_ID/" \
-H "Authorization: Bearer $API_TOKEN" \
-H "Content-Type: application/json" \
-d "{
\"client_secret\": \"$CLIENT_SECRET\",
\"property_mappings\": [\"$EMAIL_SCOPE\", \"$OPENID_SCOPE\", \"$PROFILE_SCOPE\"],
\"signing_key\": \"$SIGNING_KEY\"
}" > /dev/null
else
echo "Error: Failed to create provider"
echo "Response: $PROVIDER_RESPONSE"
exit 1
fi
fi
echo " -> Provider ID: $PROVIDER_ID"
# Step 8: Create application
echo "Creating application..."
APP_RESPONSE=$(curl -s -X POST "$AUTHENTIK_URL/api/v3/core/applications/" \
-H "Authorization: Bearer $API_TOKEN" \
-H "Content-Type: application/json" \
-d "{
\"name\": \"Reflector\",
\"slug\": \"reflector\",
\"provider\": $PROVIDER_ID
}")
if echo "$APP_RESPONSE" | grep -q "already exists"; then
echo " -> Application already exists"
else
APP_SLUG=$(echo "$APP_RESPONSE" | jq -r '.slug')
if [ -z "$APP_SLUG" ] || [ "$APP_SLUG" = "null" ]; then
echo "Error: Failed to create application"
echo "Response: $APP_RESPONSE"
exit 1
fi
echo " -> Application created: $APP_SLUG"
fi
# Step 9: Extract public key for JWT verification
echo "Extracting public key for JWT verification..."
mkdir -p server/reflector/auth/jwt/keys
curl -s "$AUTHENTIK_URL/application/o/reflector/jwks/" | \
jq -r '.keys[0].x5c[0]' | \
base64 -d | \
openssl x509 -pubkey -noout > server/reflector/auth/jwt/keys/authentik_public.pem
if [ ! -s server/reflector/auth/jwt/keys/authentik_public.pem ]; then
echo "Error: Failed to extract public key"
exit 1
fi
echo " -> Saved to server/reflector/auth/jwt/keys/authentik_public.pem"
# Step 10: Update environment files automatically
echo "Updating environment files..."
# Update server/.env
cat >> server/.env << EOF
# --- Authentik OAuth (added by setup script) ---
AUTH_BACKEND=jwt
AUTH_JWT_AUDIENCE=$CLIENT_ID
AUTH_JWT_PUBLIC_KEY=authentik_public.pem
# --- End JWT Configuration ---
EOF
echo " -> Updated server/.env"
# Update www/.env
cat >> www/.env << EOF
# --- Authentik OAuth (added by setup script) ---
FEATURE_REQUIRE_LOGIN=true
AUTHENTIK_ISSUER=$AUTHENTIK_URL/application/o/reflector
AUTHENTIK_REFRESH_TOKEN_URL=$AUTHENTIK_URL/application/o/token/
AUTHENTIK_CLIENT_ID=$CLIENT_ID
AUTHENTIK_CLIENT_SECRET=$CLIENT_SECRET
# --- End Authentik Configuration ---
EOF
echo " -> Updated www/.env"
# Step 11: Restart Reflector services
echo "Restarting Reflector services..."
docker compose -f docker-compose.prod.yml up -d server worker web
echo ""
echo "==========================================="
echo "Setup complete!"
echo "==========================================="
echo ""
echo "Authentik admin: $AUTHENTIK_URL"
echo " Username: akadmin"
echo " Password: (provided as argument)"
echo ""
echo "Frontend: $FRONTEND_URL"
echo " Authentication is now required"
echo ""
echo "Note: Public key saved to server/reflector/auth/jwt/keys/authentik_public.pem"
echo " and mounted via docker-compose volume."
echo ""
echo "==========================================="
echo "Configuration values (for reference):"
echo "==========================================="
echo ""
echo "# server/.env"
echo "AUTH_BACKEND=jwt"
echo "AUTH_JWT_AUDIENCE=$CLIENT_ID"
echo "AUTH_JWT_PUBLIC_KEY=authentik_public.pem"
echo ""
echo "# www/.env"
echo "FEATURE_REQUIRE_LOGIN=true"
echo "AUTHENTIK_ISSUER=$AUTHENTIK_URL/application/o/reflector"
echo "AUTHENTIK_REFRESH_TOKEN_URL=$AUTHENTIK_URL/application/o/token/"
echo "AUTHENTIK_CLIENT_ID=$CLIENT_ID"
echo "AUTHENTIK_CLIENT_SECRET=$CLIENT_SECRET"
echo ""

View File

@@ -3,6 +3,29 @@
# All the settings are described here: reflector/settings.py
#
## =======================================================
## Core Configuration (Required for Production)
## =======================================================
## Database (for docker-compose.prod.yml, use postgres hostname)
#DATABASE_URL=postgresql+asyncpg://reflector:reflector@postgres:5432/reflector
## Redis (for docker-compose.prod.yml, use redis hostname)
#REDIS_HOST=redis
#REDIS_PORT=6379
#CELERY_BROKER_URL=redis://redis:6379/1
#CELERY_RESULT_BACKEND=redis://redis:6379/1
## Base URL - your API domain with https
#BASE_URL=https://api.example.com
## CORS - required when frontend and API are on different domains
#CORS_ORIGIN=https://app.example.com
#CORS_ALLOW_CREDENTIALS=true
## Secret key - generate with: openssl rand -hex 32
#SECRET_KEY=changeme-generate-a-secure-random-string
## =======================================================
## User authentication
## =======================================================
@@ -40,18 +63,21 @@ TRANSLATE_URL=https://monadical-sas--reflector-translator-web.modal.run
#TRANSLATION_MODAL_API_KEY=xxxxx
## =======================================================
## LLM backend
## LLM backend (Required)
##
## Responsible for titles and short summary
## Check reflector/llm/* for the full list of available
## llm backend implementation
## Responsible for generating titles, summaries, and topic detection
## Requires OpenAI API key
## =======================================================
## OpenAI API key - get from https://platform.openai.com/account/api-keys
LLM_API_KEY=sk-your-openai-api-key
LLM_MODEL=gpt-4o-mini
## Optional: Custom endpoint (defaults to OpenAI)
# LLM_URL=https://api.openai.com/v1
## Context size for summary generation (tokens)
# LLM_MODEL=microsoft/phi-4
LLM_CONTEXT_WINDOW=16000
LLM_URL=
LLM_API_KEY=sk-
## =======================================================
## Diarization
@@ -65,6 +91,19 @@ DIARIZATION_URL=https://monadical-sas--reflector-diarizer-web.modal.run
#DIARIZATION_MODAL_API_KEY=xxxxx
## =======================================================
## Transcript Storage
##
## Where to store audio files and transcripts
## AWS S3 is required for production
## =======================================================
TRANSCRIPT_STORAGE_BACKEND=aws
TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID=your-aws-access-key
TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY=your-aws-secret-key
TRANSCRIPT_STORAGE_AWS_BUCKET_NAME=reflector-media
TRANSCRIPT_STORAGE_AWS_REGION=us-east-1
## =======================================================
## Sentry
## =======================================================

View File

@@ -0,0 +1,421 @@
# Daily.co pipeline
This document details every external call, storage operation, and database write that occurs when a new Daily.co recording is discovered.
It includes a bunch of common logic that other pipelines use, therefore not everything is Daily-oriented.
**The doc was generated at 12.12.2025 and things may have changed since.**
## Trigger
Two entry points, both converging to the same handler:
1. **Webhook**: Daily.co sends `POST /v1/daily/webhook` with `recording.ready-to-download`
2. **Polling**: `GET /recordings` (paginated, max 100/call) → filter new → convert to same payload format
Both produce `RecordingReadyPayload` and call `handleRecordingReady(payload)`.
```
┌─────────────────┐ ┌──────────────────────────┐
│ Daily Webhook │────▶│ RecordingReadyPayload │
│ (push) │ │ {room_name, recording_id│
└─────────────────┘ │ tracks[], ...} │
└────────────┬─────────────┘
┌─────────────────┐ │
│ GET /recordings│ ▼
│ (poll) │────▶ convert ──▶ handleRecordingReady()
└─────────────────┘ │
┌────────────────────────┐
│ process_multitrack_ │
│ recording pipeline │
└────────────────────────┘
```
**Polling API**: `GET https://api.daily.co/v1/recordings`
- Pagination: `limit` (max 100), `starting_after`, `ending_before`
- Rate limit: ~2 req/sec
- Response: `{total_count, data: Recording[]}`
```mermaid
flowchart TB
subgraph Trigger["1. Recording Discovery - Daily.co Webhook"]
DAILY_WEBHOOK["Daily.co sends POST /v1/daily/webhook<br/>type: recording.ready-to-download"]
VERIFY["Verify X-Webhook-Signature (HMAC)"]
PARSE["Parse DailyWebhookEvent<br/>Extract tracks[], room_name, recording_id"]
FILTER["Filter audio tracks only<br/>track_keys = [t.s3Key for t in tracks if t.type == 'audio']"]
DISPATCH["process_multitrack_recording.delay()"]
DAILY_WEBHOOK --> VERIFY --> PARSE --> FILTER --> DISPATCH
end
subgraph Init["2. Recording Initialization"]
FETCH_MEETING[DB READ: meetings_controller.get_by_room_name]
FETCH_ROOM[DB READ: rooms_controller.get_by_name]
DAILY_API_REC[Daily API: GET /recordings/recording_id]
DAILY_API_PART[Daily API: GET /meetings/mtgSessionId/participants]
CREATE_RECORDING[DB WRITE: recordings_controller.create]
CREATE_TRANSCRIPT[DB WRITE: transcripts_controller.add]
MAP_PARTICIPANTS[DB WRITE: transcript.participants upsert]
end
subgraph Pipeline["3. Processing Pipeline"]
direction TB
PAD[Track Padding & Mixdown]
TRANSCRIBE[GPU: Transcription per track]
TOPICS[LLM: Topic Detection]
TITLE[LLM: Title Generation]
SUMMARY[LLM: Summary Generation]
end
subgraph Storage["4. S3 Operations"]
S3_PRESIGN[S3: generate_presigned_url for tracks]
S3_UPLOAD_PADDED[S3 UPLOAD: padded tracks temp]
S3_UPLOAD_MP3[S3 UPLOAD: audio.mp3]
S3_DELETE_TEMP[S3 DELETE: cleanup temp files]
end
subgraph PostProcess["5. Post-Processing"]
CONSENT[Consent check & cleanup]
ZULIP[Zulip: send/update message]
WEBHOOK_OUT[Webhook: POST to room.webhook_url]
end
Trigger --> Init --> Pipeline
Pipeline --> Storage
Pipeline --> PostProcess
```
## Detailed Sequence: Daily.co Multitrack Recording
```mermaid
sequenceDiagram
participant DailyCo as Daily.co
participant API as FastAPI /v1/daily/webhook
participant Worker as Celery Worker
participant DB as PostgreSQL
participant DailyAPI as Daily.co REST API
participant S3 as AWS S3
participant GPU as Modal.com GPU
participant LLM as LLM Service
participant WS as WebSocket
participant Zulip as Zulip
participant ExtWH as External Webhook
Note over DailyCo,API: Phase 0: Webhook Receipt
DailyCo->>API: POST /v1/daily/webhook
Note right of DailyCo: X-Webhook-Signature, X-Webhook-Timestamp
API->>API: verify_webhook_signature()
API->>API: Extract audio track s3Keys from payload.tracks[]
API->>Worker: process_multitrack_recording.delay()
API-->>DailyCo: 200 OK
Note over Worker,DailyAPI: Phase 1: Recording Initialization
Worker->>DB: SELECT meeting WHERE room_name=?
Worker->>DB: SELECT room WHERE name=?
Worker->>DailyAPI: GET /recordings/{recording_id}
DailyAPI-->>Worker: {mtgSessionId, ...}
Worker->>DailyAPI: GET /meetings/{mtgSessionId}/participants
DailyAPI-->>Worker: [{participant_id, user_name}, ...]
Worker->>DB: INSERT INTO recording
Worker->>DB: INSERT INTO transcript (status='idle')
loop For each track_key (parse participant_id from filename)
Worker->>DB: UPSERT transcript.participants[speaker=idx, name=X]
end
Note over Worker,S3: Phase 2: Track Padding
Worker->>DB: UPDATE transcript SET status='processing'
Worker->>WS: broadcast STATUS='processing'
loop For each track in track_keys (N tracks)
Worker->>S3: generate_presigned_url(track_key, DAILYCO_BUCKET)
S3-->>Worker: presigned_url (2hr)
Note over Worker: PyAV: read WebM, extract start_time
Note over Worker: PyAV: adelay filter (pad silence)
Worker->>S3: PUT file_pipeline/{id}/tracks/padded_{idx}.webm
Worker->>S3: generate_presigned_url(padded_{idx}.webm)
end
Note over Worker,S3: Phase 3: Audio Mixdown
Note over Worker: PyAV: amix filter → stereo MP3
Worker->>DB: UPDATE transcript SET duration=X
Worker->>WS: broadcast DURATION
Worker->>S3: PUT {transcript_id}/audio.mp3
Worker->>DB: UPDATE transcript SET audio_location='storage'
Note over Worker: Phase 4: Waveform
Note over Worker: Generate peaks from MP3
Worker->>DB: UPDATE events+=WAVEFORM
Worker->>WS: broadcast WAVEFORM
Note over Worker,GPU: Phase 5: Transcription (N GPU calls)
loop For each padded track URL (N tracks)
Worker->>GPU: POST /v1/audio/transcriptions-from-url
Note right of GPU: {audio_file_url, language, batch:true}
GPU-->>Worker: {words: [{word, start, end}, ...]}
Note over Worker: Assign speaker=track_idx to words
end
Note over Worker: Merge all words, sort by start time
Worker->>DB: UPDATE events+=TRANSCRIPT
Worker->>WS: broadcast TRANSCRIPT
Note over Worker,S3: Cleanup temp files
loop For each padded file
Worker->>S3: DELETE padded_{idx}.webm
end
Note over Worker,LLM: Phase 6: Topic Detection (C LLM calls)
Note over Worker: C = ceil(total_words / 300)
loop For each 300-word chunk (C chunks)
Worker->>LLM: TOPIC_PROMPT + words[i:i+300]
Note right of LLM: "Extract main topic title + 2-sentence summary"
LLM-->>Worker: TitleSummary{title, summary}
Worker->>DB: UPSERT topics[]
Worker->>DB: UPDATE events+=TOPIC
Worker->>WS: broadcast TOPIC
end
Note over Worker,LLM: Phase 7a: Title Generation (1 LLM call)
Note over Worker: Input: all TitleSummary[].title joined
Worker->>LLM: TITLE_PROMPT
Note right of LLM: "Generate concise title from topic titles"
LLM-->>Worker: "Meeting Title"
Worker->>DB: UPDATE transcript SET title=X
Worker->>DB: UPDATE events+=FINAL_TITLE
Worker->>WS: broadcast FINAL_TITLE
Note over Worker,LLM: Phase 7b: Summary Generation (2+2M LLM calls)
Note over Worker: Reconstruct full transcript from TitleSummary[].transcript
opt If participants unknown
Worker->>LLM: PARTICIPANTS_PROMPT
LLM-->>Worker: ParticipantsResponse
end
Worker->>LLM: SUBJECTS_PROMPT (call #1)
Note right of LLM: "Main high-level topics? Max 6"
LLM-->>Worker: SubjectsResponse{subjects: ["A", "B", ...]}
loop For each subject (M subjects, max 6)
Worker->>LLM: DETAILED_SUBJECT_PROMPT (call #2..#1+M)
Note right of LLM: "Info about 'A': decisions, actions, deadlines"
LLM-->>Worker: detailed_response (discarded after next call)
Worker->>LLM: PARAGRAPH_SUMMARY_PROMPT (call #2+M..#1+2M)
Note right of LLM: "Summarize in 1 paragraph"
LLM-->>Worker: paragraph → summaries[]
end
Worker->>LLM: RECAP_PROMPT (call #2+2M)
Note right of LLM: "High-level quick recap, 1 paragraph"
LLM-->>Worker: recap
Note over Worker: long_summary = "# Quick recap\n{recap}\n# Summary\n**A**\n{para1}..."
Note over Worker: short_summary = recap only
Worker->>DB: UPDATE long_summary, short_summary
Worker->>DB: UPDATE events+=FINAL_LONG_SUMMARY
Worker->>WS: broadcast FINAL_LONG_SUMMARY
Worker->>DB: UPDATE events+=FINAL_SHORT_SUMMARY
Worker->>WS: broadcast FINAL_SHORT_SUMMARY
Note over Worker,DB: Phase 8: Finalize
Worker->>DB: UPDATE transcript SET status='ended'
Worker->>DB: UPDATE events+=STATUS
Worker->>WS: broadcast STATUS='ended'
Note over Worker,ExtWH: Phase 9: Post-Processing Chain
Worker->>DB: SELECT meeting_consent WHERE meeting_id=?
alt Any consent denied
Worker->>S3: DELETE tracks from DAILYCO_BUCKET
Worker->>S3: DELETE audio.mp3 from TRANSCRIPT_BUCKET
Worker->>DB: UPDATE transcript SET audio_deleted=true
end
opt Room has zulip_auto_post=true
alt Existing zulip_message_id
Worker->>Zulip: PATCH /api/v1/messages/{id}
else New
Worker->>Zulip: POST /api/v1/messages
Zulip-->>Worker: {id}
Worker->>DB: UPDATE transcript SET zulip_message_id=X
end
end
opt Room has webhook_url
Worker->>ExtWH: POST {webhook_url}
Note right of ExtWH: X-Webhook-Signature: HMAC-SHA256
Note right of ExtWH: Body: {transcript_id, room_id, ...}
end
```
## Title & Summary Generation Data Flow
```mermaid
flowchart TB
subgraph Input["Input: TitleSummary[] from Topic Detection"]
TS1["TitleSummary 1<br/>title: 'Q1 Budget'<br/>transcript: words[0:300]"]
TS2["TitleSummary 2<br/>title: 'Product Launch'<br/>transcript: words[300:600]"]
TS3["TitleSummary N..."]
end
subgraph TitleGen["Title Generation"]
T1["Extract .title from each TitleSummary"]
T2["Concatenate: '- Q1 Budget\n- Product Launch\n...'"]
T3["LLM: TITLE_PROMPT\n'Generate concise title from topic titles'"]
T4["Output: FinalTitle"]
T1 --> T2 --> T3 --> T4
end
subgraph SummaryGen["Summary Generation"]
direction TB
subgraph Reconstruct["1. Reconstruct Full Transcript"]
S1["For each TitleSummary.transcript.as_segments()"]
S2["Map speaker ID → name"]
S3["Build: 'Alice: hello\nBob: hi\n...'"]
S1 --> S2 --> S3
end
subgraph Subjects["2. Extract Subjects - LLM call #1"]
S4["LLM: SUBJECTS_PROMPT\n'Main high-level topics? Max 6'"]
S5["subjects[] = ['Budget Review', ...]"]
S4 --> S5
end
subgraph DetailedSum["3. Per-Subject Summary - LLM calls #2 to #(1+2M)"]
S6["For each subject:"]
S7["LLM: DETAILED_SUBJECT_PROMPT\n'Info about subject: decisions, actions...'"]
S8["detailed_response - NOT STORED"]
S9["LLM: PARAGRAPH_SUMMARY_PROMPT\n'Summarize in 1 paragraph'"]
S10["paragraph → summaries[]"]
S6 --> S7 --> S8 --> S9 --> S10
end
subgraph Recap["4. Generate Recap - LLM call #(2+2M)"]
S11["Concatenate paragraph summaries"]
S12["LLM: RECAP_PROMPT\n'High-level recap, 1 paragraph'"]
S13["recap"]
S11 --> S12 --> S13
end
subgraph Output["5. Output"]
S14["long_summary = markdown:\n# Quick recap\n[recap]\n# Summary\n**Subject 1**\n[para1]..."]
S15["short_summary = recap only"]
S14 --> S15
end
Reconstruct --> Subjects --> DetailedSum --> Recap --> Output
end
Input --> TitleGen
Input --> SummaryGen
```
### topics[] vs subjects[]
| | topics[] | subjects[] |
|-|----------|------------|
| **Source** | 300-word chunk splitting | LLM extraction from full text |
| **Count** | Variable (words / 300) | Max 6 |
| **Purpose** | Timeline segmentation | Summary structure |
| **Has timestamp?** | Yes | No |
## External API Calls Summary
### 1. Daily.co REST API (called during initialization)
| Endpoint | Method | When | Purpose |
|----------|--------|------|---------|
| `GET /recordings/{recording_id}` | GET | After webhook | Get mtgSessionId for participant lookup |
| `GET /meetings/{mtgSessionId}/participants` | GET | After above | Map participant_id → user_name |
### 2. GPU Service (Modal.com or Self-Hosted)
| Endpoint | Method | Count | Request |
|----------|--------|-------|---------|
| `{TRANSCRIPT_URL}/v1/audio/transcriptions-from-url` | POST | **N** (N = num tracks) | `{audio_file_url, language, batch: true}` |
**Note**: Diarization is NOT called for multitrack - speaker identification comes from separate tracks.
### 3. LLM Service (OpenAI-compatible via LlamaIndex)
| Phase | Operation | Input | LLM Calls | Output |
|-------|-----------|-------|-----------|--------|
| Topic Detection | TOPIC_PROMPT per 300-word chunk | words[i:i+300] | **C** = ceil(words/300) | TitleSummary{title, summary, timestamp} |
| Title Generation | TITLE_PROMPT | All topic titles joined | **1** | FinalTitle |
| Participant ID | PARTICIPANTS_PROMPT | Full transcript | **0-1** (skipped if known) | ParticipantsResponse |
| Subject Extraction | SUBJECTS_PROMPT | Full transcript | **1** | SubjectsResponse{subjects[]} |
| Subject Detail | DETAILED_SUBJECT_PROMPT | Full transcript + subject name | **M** (M = subjects, max 6) | detailed text (discarded) |
| Subject Paragraph | PARAGRAPH_SUMMARY_PROMPT | Detailed text | **M** | paragraph text → summaries[] |
| Recap | RECAP_PROMPT | All paragraph summaries | **1** | recap text |
**Total LLM calls**: C + 2M + 3 (+ 1 if participants unknown)
- Short meeting (1000 words, 3 subjects): ~4 + 6 + 3 = **13 calls**
- Long meeting (5000 words, 6 subjects): ~17 + 12 + 3 = **32 calls**
## S3 Operations Summary
### Source Bucket: `DAILYCO_STORAGE_AWS_BUCKET_NAME`
Daily.co uploads raw-tracks recordings here.
| Operation | Key Pattern | When |
|-----------|-------------|------|
| **READ** (presign) | `{domain}/{room_name}/{ts}/{participant_id}-cam-audio-{ts}.webm` | Track acquisition |
| **DELETE** | Same as above | Consent denied cleanup |
### Transcript Storage Bucket: `TRANSCRIPT_STORAGE_AWS_BUCKET_NAME`
Reflector's own storage.
| Operation | Key Pattern | When |
|-----------|-------------|------|
| **PUT** | `file_pipeline/{transcript_id}/tracks/padded_{idx}.webm` | After track padding |
| **READ** (presign) | Same | For GPU transcription |
| **DELETE** | Same | After transcription complete |
| **PUT** | `{transcript_id}/audio.mp3` | After mixdown |
| **DELETE** | Same | Consent denied cleanup |
## Database Operations
### Tables Written
| Table | Operation | When |
|-------|-----------|------|
| `recording` | INSERT | Initialization |
| `transcript` | INSERT | Initialization |
| `transcript` | UPDATE (participants) | After Daily API participant fetch |
| `transcript` | UPDATE (status, events, duration, topics, title, summaries, etc.) | Throughout pipeline |
### Transcript Update Sequence
```
1. INSERT: id, name, status='idle', source_kind='room', user_id, recording_id, room_id, meeting_id
2. UPDATE: participants[] (speaker index → participant name mapping)
3. UPDATE: status='processing', events+=[{event:'STATUS', data:{value:'processing'}}]
4. UPDATE: duration=X, events+=[{event:'DURATION', data:{duration:X}}]
5. UPDATE: audio_location='storage'
6. UPDATE: events+=[{event:'WAVEFORM', data:{waveform:[...]}}]
7. UPDATE: events+=[{event:'TRANSCRIPT', data:{text, translation}}]
8. UPDATE: topics[]+=topic, events+=[{event:'TOPIC'}] -- repeated per chunk
9. UPDATE: title=X, events+=[{event:'FINAL_TITLE'}]
10. UPDATE: long_summary=X, events+=[{event:'FINAL_LONG_SUMMARY'}]
11. UPDATE: short_summary=X, events+=[{event:'FINAL_SHORT_SUMMARY'}]
12. UPDATE: status='ended', events+=[{event:'STATUS', data:{value:'ended'}}]
13. UPDATE: zulip_message_id=X -- if Zulip enabled
14. UPDATE: audio_deleted=true -- if consent denied
```
## WebSocket Events
All broadcast to room `ts:{transcript_id}`:
| Event | Payload | Trigger |
|-------|---------|---------|
| STATUS | `{value: "processing"\|"ended"\|"error"}` | Status transitions |
| DURATION | `{duration: float}` | After audio processing |
| WAVEFORM | `{waveform: float[]}` | After waveform generation |
| TRANSCRIPT | `{text: string, translation: string\|null}` | After transcription merge |
| TOPIC | `{id, title, summary, timestamp, duration, transcript, words}` | Per topic detected |
| FINAL_TITLE | `{title: string}` | After LLM title generation |
| FINAL_LONG_SUMMARY | `{long_summary: string}` | After LLM summary |
| FINAL_SHORT_SUMMARY | `{short_summary: string}` | After LLM recap |
User-room broadcasts to `user:{user_id}`:
- `TRANSCRIPT_STATUS`
- `TRANSCRIPT_FINAL_TITLE`
- `TRANSCRIPT_DURATION`

View File

@@ -0,0 +1,26 @@
"""add_action_items
Revision ID: 05f8688d6895
Revises: bbafedfa510c
Create Date: 2025-12-12 11:57:50.209658
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "05f8688d6895"
down_revision: Union[str, None] = "bbafedfa510c"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
op.add_column("transcript", sa.Column("action_items", sa.JSON(), nullable=True))
def downgrade() -> None:
op.drop_column("transcript", "action_items")

View File

@@ -126,6 +126,7 @@ markers = [
select = [
"I", # isort - import sorting
"F401", # unused imports
"E402", # module level import not at top of file
"PLC0415", # import-outside-top-level - detect inline imports
]

View File

@@ -1,13 +1,19 @@
import asyncio
import functools
from uuid import uuid4
from celery import current_task
from reflector.db import get_database
from reflector.llm import llm_session_id
def asynctask(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
async def run_with_db():
task_id = current_task.request.id if current_task else None
llm_session_id.set(task_id or f"random-{uuid4().hex}")
database = get_database()
await database.connect()
try:

View File

@@ -18,6 +18,7 @@ from .requests import (
# Response models
from .responses import (
FinishedRecordingResponse,
MeetingParticipant,
MeetingParticipantsResponse,
MeetingResponse,
@@ -79,6 +80,7 @@ __all__ = [
"MeetingParticipant",
"MeetingResponse",
"RecordingResponse",
"FinishedRecordingResponse",
"RecordingS3Info",
"MeetingTokenResponse",
"WebhookResponse",

View File

@@ -40,6 +40,10 @@ class RoomProperties(BaseModel):
)
enable_chat: bool = Field(default=True, description="Enable in-meeting chat")
enable_screenshare: bool = Field(default=True, description="Enable screen sharing")
enable_knocking: bool = Field(
default=False,
description="Enable knocking for private rooms (allows participants to request access)",
)
start_video_off: bool = Field(
default=False, description="Start with video off for all participants"
)

View File

@@ -121,7 +121,10 @@ class RecordingS3Info(BaseModel):
class RecordingResponse(BaseModel):
"""
Response from recording retrieval endpoint.
Response from recording retrieval endpoint (network layer).
Duration may be None for recordings still being processed by Daily.
Use FinishedRecordingResponse for recordings ready for processing.
Reference: https://docs.daily.co/reference/rest-api/recordings
"""
@@ -135,7 +138,9 @@ class RecordingResponse(BaseModel):
max_participants: int | None = Field(
None, description="Maximum participants during recording (may be missing)"
)
duration: int = Field(description="Recording duration in seconds")
duration: int | None = Field(
None, description="Recording duration in seconds (None if still processing)"
)
share_token: NonEmptyString | None = Field(
None, description="Token for sharing recording"
)
@@ -149,6 +154,25 @@ class RecordingResponse(BaseModel):
None, description="Meeting session identifier (may be missing)"
)
def to_finished(self) -> "FinishedRecordingResponse | None":
"""Convert to FinishedRecordingResponse if duration is available and status is finished."""
if self.duration is None or self.status != "finished":
return None
return FinishedRecordingResponse(**self.model_dump())
class FinishedRecordingResponse(RecordingResponse):
"""
Recording with confirmed duration - ready for processing.
This model guarantees duration is present and status is finished.
"""
status: Literal["finished"] = Field(
description="Recording status (always 'finished')"
)
duration: int = Field(description="Recording duration in seconds")
class MeetingTokenResponse(BaseModel):
"""

View File

@@ -3,6 +3,7 @@ from typing import Literal
import sqlalchemy as sa
from pydantic import BaseModel, Field
from sqlalchemy import or_
from reflector.db import get_database, metadata
from reflector.utils import generate_uuid4
@@ -79,5 +80,35 @@ class RecordingController:
results = await get_database().fetch_all(query)
return [Recording(**row) for row in results]
async def get_multitrack_needing_reprocessing(
self, bucket_name: str
) -> list[Recording]:
"""
Get multitrack recordings that need reprocessing:
- Have track_keys (multitrack)
- Either have no transcript OR transcript has error status
This is more efficient than fetching all recordings and filtering in Python.
"""
from reflector.db.transcripts import (
transcripts, # noqa: PLC0415 cyclic import
)
query = (
recordings.select()
.outerjoin(transcripts, recordings.c.id == transcripts.c.recording_id)
.where(
recordings.c.bucket_name == bucket_name,
recordings.c.track_keys.isnot(None),
or_(
transcripts.c.id.is_(None),
transcripts.c.status == "error",
),
)
)
results = await get_database().fetch_all(query)
recordings_list = [Recording(**row) for row in results]
return [r for r in recordings_list if r.is_multitrack]
recordings_controller = RecordingController()

View File

@@ -44,6 +44,7 @@ transcripts = sqlalchemy.Table(
sqlalchemy.Column("title", sqlalchemy.String),
sqlalchemy.Column("short_summary", sqlalchemy.String),
sqlalchemy.Column("long_summary", sqlalchemy.String),
sqlalchemy.Column("action_items", sqlalchemy.JSON),
sqlalchemy.Column("topics", sqlalchemy.JSON),
sqlalchemy.Column("events", sqlalchemy.JSON),
sqlalchemy.Column("participants", sqlalchemy.JSON),
@@ -164,6 +165,10 @@ class TranscriptFinalLongSummary(BaseModel):
long_summary: str
class TranscriptActionItems(BaseModel):
action_items: dict
class TranscriptFinalTitle(BaseModel):
title: str
@@ -204,6 +209,7 @@ class Transcript(BaseModel):
locked: bool = False
short_summary: str | None = None
long_summary: str | None = None
action_items: dict | None = None
topics: list[TranscriptTopic] = []
events: list[TranscriptEvent] = []
participants: list[TranscriptParticipant] | None = []
@@ -368,7 +374,12 @@ class TranscriptController:
room_id: str | None = None,
search_term: str | None = None,
return_query: bool = False,
exclude_columns: list[str] = ["topics", "events", "participants"],
exclude_columns: list[str] = [
"topics",
"events",
"participants",
"action_items",
],
) -> list[Transcript]:
"""
Get all transcripts

View File

@@ -88,5 +88,11 @@ class UserController:
results = await get_database().fetch_all(query)
return [User(**r) for r in results]
@staticmethod
async def get_by_ids(user_ids: list[NonEmptyString]) -> dict[str, User]:
query = users.select().where(users.c.id.in_(user_ids))
results = await get_database().fetch_all(query)
return {user.id: User(**user) for user in results}
user_controller = UserController()

View File

@@ -1,14 +1,32 @@
import logging
from typing import Type, TypeVar
from contextvars import ContextVar
from typing import Generic, Type, TypeVar
from uuid import uuid4
from llama_index.core import Settings
from llama_index.core.output_parsers import PydanticOutputParser
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.workflow import (
Context,
Event,
StartEvent,
StopEvent,
Workflow,
step,
)
from llama_index.llms.openai_like import OpenAILike
from pydantic import BaseModel, ValidationError
from workflows.errors import WorkflowTimeoutError
from reflector.utils.retry import retry
T = TypeVar("T", bound=BaseModel)
OutputT = TypeVar("OutputT", bound=BaseModel)
# Session ID for LiteLLM request grouping - set per processing run
llm_session_id: ContextVar[str | None] = ContextVar("llm_session_id", default=None)
logger = logging.getLogger(__name__)
STRUCTURED_RESPONSE_PROMPT_TEMPLATE = """
Based on the following analysis, provide the information in the requested JSON format:
@@ -20,6 +38,158 @@ Analysis:
"""
class LLMParseError(Exception):
"""Raised when LLM output cannot be parsed after retries."""
def __init__(self, output_cls: Type[BaseModel], error_msg: str, attempts: int):
self.output_cls = output_cls
self.error_msg = error_msg
self.attempts = attempts
super().__init__(
f"Failed to parse {output_cls.__name__} after {attempts} attempts: {error_msg}"
)
class ExtractionDone(Event):
"""Event emitted when LLM JSON formatting completes."""
output: str
class ValidationErrorEvent(Event):
"""Event emitted when validation fails."""
error: str
wrong_output: str
class StructuredOutputWorkflow(Workflow, Generic[OutputT]):
"""Workflow for structured output extraction with validation retry.
This workflow handles parse/validation retries only. Network error retries
are handled internally by Settings.llm (OpenAILike max_retries=3).
The caller should NOT wrap this workflow in additional retry logic.
"""
def __init__(
self,
output_cls: Type[OutputT],
max_retries: int = 3,
**kwargs,
):
super().__init__(**kwargs)
self.output_cls: Type[OutputT] = output_cls
self.max_retries = max_retries
self.output_parser = PydanticOutputParser(output_cls)
@step
async def extract(
self, ctx: Context, ev: StartEvent | ValidationErrorEvent
) -> StopEvent | ExtractionDone:
"""Extract structured data from text using two-step LLM process.
Step 1 (first call only): TreeSummarize generates text analysis
Step 2 (every call): Settings.llm.acomplete formats analysis as JSON
"""
current_retries = await ctx.store.get("retries", default=0)
await ctx.store.set("retries", current_retries + 1)
if current_retries >= self.max_retries:
last_error = await ctx.store.get("last_error", default=None)
logger.error(
f"Max retries ({self.max_retries}) reached for {self.output_cls.__name__}"
)
return StopEvent(result={"error": last_error, "attempts": current_retries})
if isinstance(ev, StartEvent):
# First call: run TreeSummarize to get analysis, store in context
prompt = ev.get("prompt")
texts = ev.get("texts")
tone_name = ev.get("tone_name")
if not prompt or not isinstance(texts, list):
raise ValueError(
"StartEvent must contain 'prompt' (str) and 'texts' (list)"
)
summarizer = TreeSummarize(verbose=False)
analysis = await summarizer.aget_response(
prompt, texts, tone_name=tone_name
)
await ctx.store.set("analysis", str(analysis))
reflection = ""
else:
# Retry: reuse analysis from context
analysis = await ctx.store.get("analysis")
if not analysis:
raise RuntimeError("Internal error: analysis not found in context")
wrong_output = ev.wrong_output
if len(wrong_output) > 2000:
wrong_output = wrong_output[:2000] + "... [truncated]"
reflection = (
f"\n\nYour previous response could not be parsed:\n{wrong_output}\n\n"
f"Error:\n{ev.error}\n\n"
"Please try again. Return ONLY valid JSON matching the schema above, "
"with no markdown formatting or extra text."
)
# Step 2: Format analysis as JSON using LLM completion
format_instructions = self.output_parser.format(
"Please structure the above information in the following JSON format:"
)
json_prompt = STRUCTURED_RESPONSE_PROMPT_TEMPLATE.format(
analysis=analysis,
format_instructions=format_instructions + reflection,
)
# Network retries handled by OpenAILike (max_retries=3)
response = await Settings.llm.acomplete(json_prompt)
return ExtractionDone(output=response.text)
@step
async def validate(
self, ctx: Context, ev: ExtractionDone
) -> StopEvent | ValidationErrorEvent:
"""Validate extracted output against Pydantic schema."""
raw_output = ev.output
retries = await ctx.store.get("retries", default=0)
try:
parsed = self.output_parser.parse(raw_output)
if retries > 1:
logger.info(
f"LLM parse succeeded on attempt {retries}/{self.max_retries} "
f"for {self.output_cls.__name__}"
)
return StopEvent(result={"success": parsed})
except (ValidationError, ValueError) as e:
error_msg = self._format_error(e, raw_output)
await ctx.store.set("last_error", error_msg)
logger.error(
f"LLM parse error (attempt {retries}/{self.max_retries}): "
f"{type(e).__name__}: {e}\nRaw response: {raw_output[:500]}"
)
return ValidationErrorEvent(
error=error_msg,
wrong_output=raw_output,
)
def _format_error(self, error: Exception, raw_output: str) -> str:
"""Format error for LLM feedback."""
if isinstance(error, ValidationError):
error_messages = []
for err in error.errors():
field = ".".join(str(loc) for loc in err["loc"])
error_messages.append(f"- {err['msg']} in field '{field}'")
return "Schema validation errors:\n" + "\n".join(error_messages)
else:
return f"Parse error: {str(error)}"
class LLM:
def __init__(self, settings, temperature: float = 0.4, max_tokens: int = 2048):
self.settings_obj = settings
@@ -30,11 +200,12 @@ class LLM:
self.temperature = temperature
self.max_tokens = max_tokens
# Configure llamaindex Settings
self._configure_llamaindex()
def _configure_llamaindex(self):
"""Configure llamaindex Settings with OpenAILike LLM"""
session_id = llm_session_id.get() or f"fallback-{uuid4().hex}"
Settings.llm = OpenAILike(
model=self.model_name,
api_base=self.url,
@@ -44,6 +215,7 @@ class LLM:
is_function_calling_model=False,
temperature=self.temperature,
max_tokens=self.max_tokens,
additional_kwargs={"extra_body": {"litellm_session_id": session_id}},
)
async def get_response(
@@ -60,44 +232,38 @@ class LLM:
texts: list[str],
output_cls: Type[T],
tone_name: str | None = None,
timeout: int | None = None,
) -> T:
"""Get structured output from LLM for non-function-calling models"""
logger = logging.getLogger(__name__)
"""Get structured output from LLM with validation retry via Workflow."""
if timeout is None:
timeout = self.settings_obj.LLM_STRUCTURED_RESPONSE_TIMEOUT
summarizer = TreeSummarize(verbose=True)
response = await summarizer.aget_response(prompt, texts, tone_name=tone_name)
output_parser = PydanticOutputParser(output_cls)
program = LLMTextCompletionProgram.from_defaults(
output_parser=output_parser,
prompt_template_str=STRUCTURED_RESPONSE_PROMPT_TEMPLATE,
verbose=False,
)
format_instructions = output_parser.format(
"Please structure the above information in the following JSON format:"
)
try:
output = await program.acall(
analysis=str(response), format_instructions=format_instructions
async def run_workflow():
workflow = StructuredOutputWorkflow(
output_cls=output_cls,
max_retries=self.settings_obj.LLM_PARSE_MAX_RETRIES + 1,
timeout=timeout,
)
except ValidationError as e:
# Extract the raw JSON from the error details
errors = e.errors()
if errors and "input" in errors[0]:
raw_json = errors[0]["input"]
logger.error(
f"JSON validation failed for {output_cls.__name__}. "
f"Full raw JSON output:\n{raw_json}\n"
f"Validation errors: {errors}"
)
else:
logger.error(
f"JSON validation failed for {output_cls.__name__}. "
f"Validation errors: {errors}"
)
raise
return output
result = await workflow.run(
prompt=prompt,
texts=texts,
tone_name=tone_name,
)
if "error" in result:
error_msg = result["error"] or "Max retries exceeded"
raise LLMParseError(
output_cls=output_cls,
error_msg=error_msg,
attempts=result.get("attempts", 0),
)
return result["success"]
return await retry(run_workflow)(
retry_attempts=3,
retry_backoff_interval=1.0,
retry_backoff_max=30.0,
retry_ignore_exc_types=(WorkflowTimeoutError,),
)

View File

@@ -309,6 +309,7 @@ class PipelineMainFile(PipelineMainBase):
transcript,
on_long_summary_callback=self.on_long_summary,
on_short_summary_callback=self.on_short_summary,
on_action_items_callback=self.on_action_items,
empty_pipeline=self.empty_pipeline,
logger=self.logger,
)
@@ -340,7 +341,6 @@ async def task_send_webhook_if_needed(*, transcript_id: str):
@asynctask
async def task_pipeline_file_process(*, transcript_id: str):
"""Celery task for file pipeline processing"""
transcript = await transcripts_controller.get_by_id(transcript_id)
if not transcript:
raise Exception(f"Transcript {transcript_id} not found")

View File

@@ -27,6 +27,7 @@ from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import (
Transcript,
TranscriptActionItems,
TranscriptDuration,
TranscriptFinalLongSummary,
TranscriptFinalShortSummary,
@@ -306,6 +307,23 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
data=final_short_summary,
)
@broadcast_to_sockets
async def on_action_items(self, data):
action_items = TranscriptActionItems(action_items=data.action_items)
async with self.transaction():
transcript = await self.get_transcript()
await transcripts_controller.update(
transcript,
{
"action_items": action_items.action_items,
},
)
return await transcripts_controller.append_event(
transcript=transcript,
event="ACTION_ITEMS",
data=action_items,
)
@broadcast_to_sockets
async def on_duration(self, data):
async with self.transaction():
@@ -465,6 +483,7 @@ class PipelineMainFinalSummaries(PipelineMainFromTopics):
transcript=self._transcript,
callback=self.on_long_summary,
on_short_summary=self.on_short_summary,
on_action_items=self.on_action_items,
),
]

View File

@@ -422,7 +422,15 @@ class PipelineMainMultitrack(PipelineMainBase):
# Open all containers with cleanup guaranteed
for i, url in enumerate(valid_track_urls):
try:
c = av.open(url)
c = av.open(
url,
options={
# it's trying to stream from s3 by default
"reconnect": "1",
"reconnect_streamed": "1",
"reconnect_delay_max": "5",
},
)
containers.append(c)
except Exception as e:
self.logger.warning(
@@ -451,6 +459,8 @@ class PipelineMainMultitrack(PipelineMainBase):
frame = next(dec)
except StopIteration:
active[i] = False
# causes stream to move on / unclogs memory
inputs[i].push(None)
continue
if frame.sample_rate != target_sample_rate:
@@ -470,8 +480,6 @@ class PipelineMainMultitrack(PipelineMainBase):
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
for in_ctx in inputs:
in_ctx.push(None)
while True:
try:
mixed = sink.pull()
@@ -764,6 +772,7 @@ class PipelineMainMultitrack(PipelineMainBase):
transcript,
on_long_summary_callback=self.on_long_summary,
on_short_summary_callback=self.on_short_summary,
on_action_items_callback=self.on_action_items,
empty_pipeline=self.empty_pipeline,
logger=self.logger,
)

View File

@@ -89,6 +89,7 @@ async def generate_summaries(
*,
on_long_summary_callback: Callable,
on_short_summary_callback: Callable,
on_action_items_callback: Callable,
empty_pipeline: EmptyPipeline,
logger: structlog.BoundLogger,
):
@@ -96,11 +97,14 @@ async def generate_summaries(
logger.warning("No topics for summary generation")
return
processor = TranscriptFinalSummaryProcessor(
transcript=transcript,
callback=on_long_summary_callback,
on_short_summary=on_short_summary_callback,
)
processor_kwargs = {
"transcript": transcript,
"callback": on_long_summary_callback,
"on_short_summary": on_short_summary_callback,
"on_action_items": on_action_items_callback,
}
processor = TranscriptFinalSummaryProcessor(**processor_kwargs)
processor.set_pipeline(empty_pipeline)
for topic in topics:

View File

@@ -96,6 +96,36 @@ RECAP_PROMPT = dedent(
"""
).strip()
ACTION_ITEMS_PROMPT = dedent(
"""
Identify action items from this meeting transcript. Your goal is to identify what was decided and what needs to happen next.
Look for:
1. **Decisions Made**: Any decisions, choices, or conclusions reached during the meeting. For each decision:
- What was decided? (be specific)
- Who made the decision or was involved? (use actual participant names)
- Why was this decision made? (key factors, reasoning, or rationale)
2. **Next Steps / Action Items**: Any tasks, follow-ups, or actions that were mentioned or assigned. For each action item:
- What specific task needs to be done? (be concrete and actionable)
- Who is responsible? (use actual participant names if mentioned, or "team" if unclear)
- When is it due? (any deadlines, timeframes, or "by next meeting" type commitments)
- What context is needed? (any additional details that help understand the task)
Guidelines:
- Be thorough and identify all action items, even if they seem minor
- Include items that were agreed upon, assigned, or committed to
- Include decisions even if they seem obvious or implicit
- If someone says "I'll do X" or "We should do Y", that's an action item
- If someone says "Let's go with option A", that's a decision
- Use the exact participant names from the transcript
- If no participant name is mentioned, you can leave assigned_to/decided_by as null
Only return empty lists if the transcript contains NO decisions and NO action items whatsoever.
"""
).strip()
STRUCTURED_RESPONSE_PROMPT_TEMPLATE = dedent(
"""
Based on the following analysis, provide the information in the requested JSON format:
@@ -155,6 +185,53 @@ class SubjectsResponse(BaseModel):
)
class ActionItem(BaseModel):
"""A single action item from the meeting"""
task: str = Field(description="The task or action item to be completed")
assigned_to: str | None = Field(
default=None, description="Person or team assigned to this task (name)"
)
assigned_to_participant_id: str | None = Field(
default=None, description="Participant ID if assigned_to matches a participant"
)
deadline: str | None = Field(
default=None, description="Deadline or timeframe mentioned for this task"
)
context: str | None = Field(
default=None, description="Additional context or notes about this task"
)
class Decision(BaseModel):
"""A decision made during the meeting"""
decision: str = Field(description="What was decided")
rationale: str | None = Field(
default=None,
description="Reasoning or key factors that influenced this decision",
)
decided_by: str | None = Field(
default=None, description="Person or group who made the decision (name)"
)
decided_by_participant_id: str | None = Field(
default=None, description="Participant ID if decided_by matches a participant"
)
class ActionItemsResponse(BaseModel):
"""Pydantic model for identified action items"""
decisions: list[Decision] = Field(
default_factory=list,
description="List of decisions made during the meeting",
)
next_steps: list[ActionItem] = Field(
default_factory=list,
description="List of action items and next steps to be taken",
)
class SummaryBuilder:
def __init__(self, llm: LLM, filename: str | None = None, logger=None) -> None:
self.transcript: str | None = None
@@ -166,6 +243,8 @@ class SummaryBuilder:
self.model_name: str = llm.model_name
self.logger = logger or structlog.get_logger()
self.participant_instructions: str | None = None
self.action_items: ActionItemsResponse | None = None
self.participant_name_to_id: dict[str, str] = {}
if filename:
self.read_transcript_from_file(filename)
@@ -189,13 +268,20 @@ class SummaryBuilder:
self.llm = llm
async def _get_structured_response(
self, prompt: str, output_cls: Type[T], tone_name: str | None = None
self,
prompt: str,
output_cls: Type[T],
tone_name: str | None = None,
timeout: int | None = None,
) -> T:
"""Generic function to get structured output from LLM for non-function-calling models."""
# Add participant instructions to the prompt if available
enhanced_prompt = self._enhance_prompt_with_participants(prompt)
return await self.llm.get_structured_response(
enhanced_prompt, [self.transcript], output_cls, tone_name=tone_name
enhanced_prompt,
[self.transcript],
output_cls,
tone_name=tone_name,
timeout=timeout,
)
async def _get_response(
@@ -216,11 +302,19 @@ class SummaryBuilder:
# Participants
# ----------------------------------------------------------------------------
def set_known_participants(self, participants: list[str]) -> None:
def set_known_participants(
self,
participants: list[str],
participant_name_to_id: dict[str, str] | None = None,
) -> None:
"""
Set known participants directly without LLM identification.
This is used when participants are already identified and stored.
They are appended at the end of the transcript, providing more context for the assistant.
Args:
participants: List of participant names
participant_name_to_id: Optional mapping of participant names to their IDs
"""
if not participants:
self.logger.warning("No participants provided")
@@ -231,10 +325,12 @@ class SummaryBuilder:
participants=participants,
)
if participant_name_to_id:
self.participant_name_to_id = participant_name_to_id
participants_md = self.format_list_md(participants)
self.transcript += f"\n\n# Participants\n\n{participants_md}"
# Set instructions that will be automatically added to all prompts
participants_list = ", ".join(participants)
self.participant_instructions = dedent(
f"""
@@ -413,6 +509,92 @@ class SummaryBuilder:
self.recap = str(recap_response)
self.logger.info(f"Quick recap: {self.recap}")
def _map_participant_names_to_ids(
self, response: ActionItemsResponse
) -> ActionItemsResponse:
"""Map participant names in action items to participant IDs."""
if not self.participant_name_to_id:
return response
decisions = []
for decision in response.decisions:
new_decision = decision.model_copy()
if (
decision.decided_by
and decision.decided_by in self.participant_name_to_id
):
new_decision.decided_by_participant_id = self.participant_name_to_id[
decision.decided_by
]
decisions.append(new_decision)
next_steps = []
for item in response.next_steps:
new_item = item.model_copy()
if item.assigned_to and item.assigned_to in self.participant_name_to_id:
new_item.assigned_to_participant_id = self.participant_name_to_id[
item.assigned_to
]
next_steps.append(new_item)
return ActionItemsResponse(decisions=decisions, next_steps=next_steps)
async def identify_action_items(self) -> ActionItemsResponse | None:
"""Identify action items (decisions and next steps) from the transcript."""
self.logger.info("--- identify action items using TreeSummarize")
if not self.transcript:
self.logger.warning(
"No transcript available for action items identification"
)
self.action_items = None
return None
action_items_prompt = ACTION_ITEMS_PROMPT
try:
response = await self._get_structured_response(
action_items_prompt,
ActionItemsResponse,
tone_name="Action item identifier",
timeout=settings.LLM_STRUCTURED_RESPONSE_TIMEOUT,
)
response = self._map_participant_names_to_ids(response)
self.action_items = response
self.logger.info(
f"Identified {len(response.decisions)} decisions and {len(response.next_steps)} action items",
decisions_count=len(response.decisions),
next_steps_count=len(response.next_steps),
)
if response.decisions:
self.logger.debug(
"Decisions identified",
decisions=[d.decision for d in response.decisions],
)
if response.next_steps:
self.logger.debug(
"Action items identified",
tasks=[item.task for item in response.next_steps],
)
if not response.decisions and not response.next_steps:
self.logger.warning(
"No action items identified from transcript",
transcript_length=len(self.transcript),
)
return response
except Exception as e:
self.logger.error(
f"Error identifying action items: {e}",
exc_info=True,
)
self.action_items = None
return None
async def generate_summary(self, only_subjects: bool = False) -> None:
"""
Generate summary by extracting subjects, creating summaries for each, and generating a recap.
@@ -424,6 +606,7 @@ class SummaryBuilder:
await self.generate_subject_summaries()
await self.generate_recap()
await self.identify_action_items()
# ----------------------------------------------------------------------------
# Markdown
@@ -526,8 +709,6 @@ if __name__ == "__main__":
if args.summary:
await sm.generate_summary()
# Note: action items generation has been removed
print("")
print("-" * 80)
print("")

View File

@@ -1,7 +1,12 @@
from reflector.llm import LLM
from reflector.processors.base import Processor
from reflector.processors.summary.summary_builder import SummaryBuilder
from reflector.processors.types import FinalLongSummary, FinalShortSummary, TitleSummary
from reflector.processors.types import (
ActionItems,
FinalLongSummary,
FinalShortSummary,
TitleSummary,
)
from reflector.settings import settings
@@ -27,15 +32,20 @@ class TranscriptFinalSummaryProcessor(Processor):
builder = SummaryBuilder(self.llm, logger=self.logger)
builder.set_transcript(text)
# Use known participants if available, otherwise identify them
if self.transcript and self.transcript.participants:
# Extract participant names from the stored participants
participant_names = [p.name for p in self.transcript.participants if p.name]
if participant_names:
self.logger.info(
f"Using {len(participant_names)} known participants from transcript"
)
builder.set_known_participants(participant_names)
participant_name_to_id = {
p.name: p.id
for p in self.transcript.participants
if p.name and p.id
}
builder.set_known_participants(
participant_names, participant_name_to_id=participant_name_to_id
)
else:
self.logger.info(
"Participants field exists but is empty, identifying participants"
@@ -63,7 +73,6 @@ class TranscriptFinalSummaryProcessor(Processor):
self.logger.warning("No summary to output")
return
# build the speakermap from the transcript
speakermap = {}
if self.transcript:
speakermap = {
@@ -76,8 +85,6 @@ class TranscriptFinalSummaryProcessor(Processor):
speakermap=speakermap,
)
# build the transcript as a single string
# Replace speaker IDs with actual participant names if available
text_transcript = []
unique_speakers = set()
for topic in self.chunks:
@@ -111,4 +118,9 @@ class TranscriptFinalSummaryProcessor(Processor):
)
await self.emit(final_short_summary, name="short_summary")
if self.builder and self.builder.action_items:
action_items = self.builder.action_items.model_dump()
action_items = ActionItems(action_items=action_items)
await self.emit(action_items, name="action_items")
await self.emit(final_long_summary)

View File

@@ -78,7 +78,11 @@ class TranscriptTopicDetectorProcessor(Processor):
"""
prompt = TOPIC_PROMPT.format(text=text)
response = await self.llm.get_structured_response(
prompt, [text], TopicResponse, tone_name="Topic analyzer"
prompt,
[text],
TopicResponse,
tone_name="Topic analyzer",
timeout=settings.LLM_STRUCTURED_RESPONSE_TIMEOUT,
)
return response

View File

@@ -264,6 +264,10 @@ class FinalShortSummary(BaseModel):
duration: float
class ActionItems(BaseModel):
action_items: dict # JSON-serializable dict from ActionItemsResponse
class FinalTitle(BaseModel):
title: str

View File

@@ -160,7 +160,10 @@ def dispatch_transcript_processing(config: ProcessingConfig) -> AsyncResult:
def task_is_scheduled_or_active(task_name: str, **kwargs):
inspect = celery.current_app.control.inspect()
for worker, tasks in (inspect.scheduled() | inspect.active()).items():
scheduled = inspect.scheduled() or {}
active = inspect.active() or {}
all = scheduled | active
for worker, tasks in all.items():
for task in tasks:
if task["name"] == task_name and task["kwargs"] == kwargs:
return True

View File

@@ -30,7 +30,9 @@ class Settings(BaseSettings):
AUDIO_CHUNKER_BACKEND: str = "frames"
# Audio Transcription
# backends: whisper, modal
# backends:
# - whisper: in-process model loading (no HTTP, runs in same process)
# - modal: HTTP API client (works with Modal.com OR self-hosted gpu/self_hosted/)
TRANSCRIPT_BACKEND: str = "whisper"
TRANSCRIPT_URL: str | None = None
TRANSCRIPT_TIMEOUT: int = 90
@@ -74,7 +76,17 @@ class Settings(BaseSettings):
LLM_API_KEY: str | None = None
LLM_CONTEXT_WINDOW: int = 16000
LLM_PARSE_MAX_RETRIES: int = (
3 # Max retries for JSON/validation errors (total attempts = retries + 1)
)
LLM_STRUCTURED_RESPONSE_TIMEOUT: int = (
300 # Timeout in seconds for structured responses (5 minutes)
)
# Diarization
# backends:
# - pyannote: in-process model loading (no HTTP, runs in same process)
# - modal: HTTP API client (works with Modal.com OR self-hosted gpu/self_hosted/)
DIARIZATION_ENABLED: bool = True
DIARIZATION_BACKEND: str = "modal"
DIARIZATION_URL: str | None = None

View File

@@ -31,6 +31,7 @@ class DailyClient(VideoPlatformClient):
PLATFORM_NAME: Platform = "daily"
TIMESTAMP_FORMAT = "%Y%m%d%H%M%S"
RECORDING_NONE: RecordingType = "none"
RECORDING_LOCAL: RecordingType = "local"
RECORDING_CLOUD: RecordingType = "cloud"
def __init__(self, config: VideoPlatformConfig):
@@ -54,19 +55,23 @@ class DailyClient(VideoPlatformClient):
timestamp = datetime.now().strftime(self.TIMESTAMP_FORMAT)
room_name = f"{room_name_prefix}{ROOM_PREFIX_SEPARATOR}{timestamp}"
enable_recording = None
if room.recording_type == self.RECORDING_LOCAL:
enable_recording = "local"
elif room.recording_type == self.RECORDING_CLOUD:
enable_recording = "raw-tracks"
properties = RoomProperties(
enable_recording="raw-tracks"
if room.recording_type != self.RECORDING_NONE
else False,
enable_recording=enable_recording,
enable_chat=True,
enable_screenshare=True,
enable_knocking=room.is_locked,
start_video_off=False,
start_audio_off=False,
exp=int(end_date.timestamp()),
)
# Only configure recordings_bucket if recording is enabled
if room.recording_type != self.RECORDING_NONE:
if room.recording_type == self.RECORDING_CLOUD:
daily_storage = get_dailyco_storage()
assert daily_storage.bucket_name, "S3 bucket must be configured"
properties.recordings_bucket = RecordingsBucketConfig(
@@ -172,15 +177,16 @@ class DailyClient(VideoPlatformClient):
async def create_meeting_token(
self,
room_name: DailyRoomName,
enable_recording: bool,
start_cloud_recording: bool,
enable_recording_ui: bool,
user_id: NonEmptyString | None = None,
is_owner: bool = False,
) -> NonEmptyString:
properties = MeetingTokenProperties(
room_name=room_name,
user_id=user_id,
start_cloud_recording=enable_recording,
enable_recording_ui=False,
start_cloud_recording=start_cloud_recording,
enable_recording_ui=enable_recording_ui,
is_owner=is_owner,
)
request = CreateMeetingTokenRequest(properties=properties)

View File

@@ -89,7 +89,7 @@ class CreateRoom(BaseModel):
ics_url: Optional[str] = None
ics_fetch_interval: int = 300
ics_enabled: bool = False
platform: Optional[Platform] = None
platform: Platform
class UpdateRoom(BaseModel):
@@ -248,7 +248,7 @@ async def rooms_create(
ics_url=room.ics_url,
ics_fetch_interval=room.ics_fetch_interval,
ics_enabled=room.ics_enabled,
platform=room.platform or settings.DEFAULT_VIDEO_PLATFORM,
platform=room.platform,
)
@@ -310,6 +310,22 @@ async def rooms_create_meeting(
room=room, current_time=current_time
)
if meeting is not None:
settings_match = (
meeting.is_locked == room.is_locked
and meeting.room_mode == room.room_mode
and meeting.recording_type == room.recording_type
and meeting.recording_trigger == room.recording_trigger
and meeting.platform == room.platform
)
if not settings_match:
logger.info(
f"Room settings changed for {room_name}, creating new meeting",
room_id=room.id,
old_meeting_id=meeting.id,
)
meeting = None
if meeting is None:
end_date = current_time + timedelta(hours=8)
@@ -549,21 +565,16 @@ async def rooms_join_meeting(
if meeting.end_date <= current_time:
raise HTTPException(status_code=400, detail="Meeting has ended")
if meeting.platform == "daily":
if meeting.platform == "daily" and user_id is not None:
client = create_platform_client(meeting.platform)
enable_recording = room.recording_trigger != "none"
token = await client.create_meeting_token(
meeting.room_name,
enable_recording=enable_recording,
start_cloud_recording=meeting.recording_type == "cloud",
enable_recording_ui=meeting.recording_type == "local",
user_id=user_id,
is_owner=user_id == room.user_id,
)
meeting = meeting.model_copy()
meeting.room_url = add_query_param(meeting.room_url, "t", token)
if meeting.host_room_url:
meeting.host_room_url = add_query_param(meeting.host_room_url, "t", token)
if user_id != room.user_id and meeting.platform == "whereby":
meeting.host_room_url = ""
return meeting

Some files were not shown because too many files have changed in this diff Show More