Compare commits

..

37 Commits

Author SHA1 Message Date
Igor Loskutov
42bde5adb6 comments 2025-12-22 15:59:52 -05:00
Igor Loskutov
b9698c2aaf dry (no-mistakes) (minimal) 2025-12-22 15:58:13 -05:00
Igor Loskutov
1f41f16928 parallelize hatchet (no-mistakes) 2025-12-22 15:23:54 -05:00
7c2d0698ed chore(main): release 0.25.0 (#803) 2025-12-22 12:18:35 -05:00
Igor Monadical
1dac999b56 feat: durable (#794)
* durable (no-mistakes)

* hatchet no-mistake

* hatchet no-mistake

* hatchet no-mistake, better logging

* remove conductor and add hatchet tests (no-mistakes)

* self-review (no-mistakes)

* hatched logs

* remove shadow mode for hatchet

* and add hatchet processor setting to room

* .

* cleanup

* hatchet init db

* self-review (no-mistakes)

* self-review (no-mistakes)

* hatchet: restore zullip report

* self-review round

* self-review round

* self-review round

* dry hatchet with celery

* dry hatched with celery - 2

* self-review round

* more NES instead of str

* self-review wip

* self-review round

* self-review round

* self-review round

* can_replay cancelled

* add forgotten file

* pr autoreviewer fixes

* better log webhook events

* durable_started return

* migration sync

* latest changes feature parity

* migration merge

* pr review

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-22 12:09:20 -05:00
Igor Monadical
f580b996ee feat: increase daily recording max duration (#801)
* increate daily recording max duration

* recording end time: 3h min

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-22 09:02:14 -05:00
Igor Monadical
225783496f feat: consent disable feature (#799)
* consent disable feature (no-mistakes)

* sync migration

* consent disable refactor

* daily backend code refactor

* consent skip feature

* consent skip feature

* no forced whereby recording indicator

* active meetings type precision

* cleanup

* cleanup

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-22 08:47:07 -05:00
f0ee7b531a fix: logout redirect (#802) 2025-12-19 17:19:09 +01:00
37a454f283 chore(main): release 0.24.0 (#793) 2025-12-19 15:00:43 +01:00
964cd78bb6 feat: identify action items (#790)
* Identify action items

* Add action items to mock summary

* Add action items validator

* Remove final prefix from action items

* Make on action items callback required

* Don't mutation action items response

* Assign action items to none on error

* Use timeout constant

* Exclude action items from transcript list
2025-12-18 21:13:47 +01:00
5f458aa4a7 fix: automatically reprocess daily recordings (#797)
* Automatically reprocess recordings

* Restore the comments

* Remove redundant check

* Fix indent

* Add comment about cyclic import
2025-12-18 21:10:04 +01:00
5f7dfadabd fix: retry on workflow timeout (#798) 2025-12-18 20:49:06 +01:00
0bc971ba96 fix: main menu login (#800) 2025-12-18 20:48:39 +01:00
Igor Monadical
c62e3c0753 incorporate daily api undocumented feature (#796)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-17 09:51:55 -05:00
Igor Monadical
16284e1ac3 fix: daily video optimisation (#789)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 15:00:53 -05:00
Igor Monadical
443982617d coolify pull policy (#792)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 14:54:05 -05:00
Igor Monadical
23023b3cdb update nextjs (#791)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 13:58:34 -05:00
90c3ecc9c3 chore(main): release 0.23.2 (#786) 2025-12-11 13:37:41 +01:00
d7f140b7d1 fix: build on push tags (#785) 2025-12-11 13:30:36 +01:00
a47a5f5781 chore(main): release 0.23.1 (#784) 2025-12-11 12:43:25 +01:00
0eba147018 fix: populate room_name in transcript GET endpoint (#783)
Fixes monadical/internalai#14
2025-12-11 12:37:59 +01:00
18a27f7b45 Fix image tags (#781) 2025-12-10 13:57:13 -05:00
32a049c134 chore(main): release 0.23.0 (#770) 2025-12-10 13:42:28 +01:00
91650ec65f fix: deploy frontend to coolify (#779)
* Ignore act secrets

* Deploy frontend container to ECR

* Use published image

* Remove ecr workflows

* Trigger coolify deployment

* Deploy on release please pr merge

* Upgrade nextjs

* Update secrets example
2025-12-10 13:35:53 +01:00
Igor Monadical
61f0e29d4c feat: llm retries (#739)
* llm retries no-mistakes

* self-review (no-mistakes)

* self-review (no-mistakes)

* bigger retry intervals by default

* tests and dry

* restore to main state

* parse retries

* json retries (no-mistakes)

* json retries (no-mistakes)

* json retries (no-mistakes)

* json retries (no-mistakes) self-review

* additional network retry test

* more lindt

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-05 12:08:21 -05:00
Igor Monadical
ec17ed7b58 fix: celery inspect bug sidestep in restart script (#766)
* celery bug sidestep

* Update server/reflector/services/transcript_process.py

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-12-04 09:22:51 -05:00
Igor Monadical
00549f153a feat: dockerhub ci (#772)
* dockerhub ci

* ci test

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-03 13:26:08 -05:00
3ad78be762 fix: hide rooms settings instead of disabling (#763)
* Hide rooms settings instead of disabling

* Reset recording trigger
2025-12-03 16:49:17 +01:00
d3a5cd12d2 fix: return participant emails from transcript endpoint (#769)
* Return participant emails from transcript endpoint

* Fix broken test
2025-12-03 16:47:56 +01:00
af921ce927 chore(main): release 0.22.4 (#765) 2025-12-02 17:11:48 -05:00
Igor Monadical
bd5df1ce2e fix: Multitrack mixdown optimisation 2 (#764)
* Revert "fix: Skip mixdown for multitrack (#760)"

This reverts commit b51b7aa917.

* multitrack mixdown optimisation

* return the "good" ui part of "skip mixdown"

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-02 17:10:06 -05:00
c8024484b3 chore(main): release 0.22.3 (#761) 2025-12-02 09:08:22 +01:00
28f87c09dc fix: align daily room settings (#759)
* Switch platform ui

* Update room settings based on platform

* Add local and none recording options to daily

* Don't create tokens for unauthentikated users

* Enable knocking for private rooms

* Create new meeting on room settings change

* Always use 2-200 option for daily

* Show recording start trigger for daily

* Fix broken test
2025-12-02 09:06:36 +01:00
dabf7251db chore(main): release 0.22.2 (#756) 2025-12-01 23:39:32 -05:00
Igor Monadical
b51b7aa917 fix: Skip mixdown for multitrack (#760)
* multitrack mixdown optimisation

* skip mixdown for multitrack

* skip mixdown for multitrack

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-01 23:35:12 -05:00
Igor Monadical
a8983b4e7e daily auth hotfix (#757)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-11-28 14:52:59 -05:00
Igor Monadical
fe47c46489 fix: daily auto refresh fix (#755)
* daily auto refresh fix

* Update www/app/lib/AuthProvider.tsx

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* Update www/app/[roomName]/components/DailyRoom.tsx

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

* fix bot lint

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-11-27 18:31:03 -05:00
95 changed files with 8250 additions and 2794 deletions

View File

@@ -1,90 +0,0 @@
name: Build container/push to container registry
on: [workflow_dispatch]
env:
# 950402358378.dkr.ecr.us-east-1.amazonaws.com/reflector
AWS_REGION: us-east-1
ECR_REPOSITORY: reflector
jobs:
build:
strategy:
matrix:
include:
- platform: linux/amd64
runner: linux-amd64
arch: amd64
- platform: linux/arm64
runner: linux-arm64
arch: arm64
runs-on: ${{ matrix.runner }}
permissions:
contents: read
outputs:
registry: ${{ steps.login-ecr.outputs.registry }}
steps:
- uses: actions/checkout@v4
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build and push ${{ matrix.arch }}
uses: docker/build-push-action@v5
with:
context: server
platforms: ${{ matrix.platform }}
push: true
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
cache-from: type=gha,scope=${{ matrix.arch }}
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
provenance: false
create-manifest:
runs-on: ubuntu-latest
needs: [build]
permissions:
deployments: write
contents: read
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Login to Amazon ECR
uses: aws-actions/amazon-ecr-login@v2
- name: Create and push multi-arch manifest
run: |
# Get the registry URL (since we can't easily access job outputs in matrix)
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
docker manifest create \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"

View File

@@ -1,35 +1,31 @@
name: Build and Push Frontend Docker Image
name: Build and Push Backend Docker Image (Docker Hub)
on:
push:
branches:
- main
paths:
- 'www/**'
- '.github/workflows/docker-frontend.yml'
tags:
- "v*"
workflow_dispatch:
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}-frontend
REGISTRY: docker.io
IMAGE_NAME: monadicalsas/reflector-backend
jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to GitHub Container Registry
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
username: monadicalsas
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata
id: meta
@@ -38,7 +34,7 @@ jobs:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=sha,prefix={{branch}}-
type=ref,event=tag
type=raw,value=latest,enable={{is_default_branch}}
- name: Set up Docker Buildx
@@ -47,11 +43,11 @@ jobs:
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: ./www
file: ./www/Dockerfile
context: ./server
file: ./server/Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64
platforms: linux/amd64,linux/arm64

View File

@@ -0,0 +1,70 @@
name: Build and Push Frontend Docker Image
on:
push:
tags:
- "v*"
workflow_dispatch:
env:
REGISTRY: docker.io
IMAGE_NAME: monadicalsas/reflector-frontend
jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: monadicalsas
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=ref,event=tag
type=raw,value=latest,enable={{is_default_branch}}
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: ./www
file: ./www/Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64
deploy:
needs: build-and-push
runs-on: ubuntu-latest
if: success()
strategy:
matrix:
environment: [reflector-monadical, reflector-media]
environment: ${{ matrix.environment }}
steps:
- name: Trigger Coolify deployment
run: |
curl -X POST "${{ secrets.COOLIFY_WEBHOOK_URL }}" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${{ secrets.COOLIFY_WEBHOOK_TOKEN }}" \
-f || (echo "Failed to trigger Coolify deployment for ${{ matrix.environment }}" && exit 1)

1
.gitignore vendored
View File

@@ -18,3 +18,4 @@ CLAUDE.local.md
www/.env.development
www/.env.production
.playwright-mcp
.secrets

24
.secrets.example Normal file
View File

@@ -0,0 +1,24 @@
# Example secrets file for GitHub Actions workflows
# Copy this to .secrets and fill in your values
# These secrets should be configured in GitHub repository settings:
# Settings > Secrets and variables > Actions
# DockerHub Configuration (required for frontend and backend deployment)
# Create a Docker Hub access token at https://hub.docker.com/settings/security
# Username: monadicalsas
DOCKERHUB_TOKEN=your-dockerhub-access-token
# GitHub Token (required for frontend and backend deployment)
# Used by docker/metadata-action for extracting image metadata
# Can use the default GITHUB_TOKEN or create a personal access token
GITHUB_TOKEN=your-github-token-or-use-default-GITHUB_TOKEN
# Coolify Deployment Webhook (required for frontend deployment)
# Used to trigger automatic deployment after image push
# Configure these secrets in GitHub Environments:
# Each environment should have:
# - COOLIFY_WEBHOOK_URL: The webhook URL for that specific deployment
# - COOLIFY_WEBHOOK_TOKEN: The webhook token (can be the same for both if using same token)
# Optional: GitHub Actions Cache Token (for local testing with act)
GHA_CACHE_TOKEN=your-github-token-or-empty

View File

@@ -1,5 +1,86 @@
# Changelog
## [0.25.0](https://github.com/Monadical-SAS/reflector/compare/v0.24.0...v0.25.0) (2025-12-22)
### Features
* consent disable feature ([#799](https://github.com/Monadical-SAS/reflector/issues/799)) ([2257834](https://github.com/Monadical-SAS/reflector/commit/225783496f2e265d5cb58e3539a20bf6b55589b8))
* durable ([#794](https://github.com/Monadical-SAS/reflector/issues/794)) ([1dac999](https://github.com/Monadical-SAS/reflector/commit/1dac999b56997582ce400e7d56e915adc1e4728d))
* increase daily recording max duration ([#801](https://github.com/Monadical-SAS/reflector/issues/801)) ([f580b99](https://github.com/Monadical-SAS/reflector/commit/f580b996eef49cce16433c505abfc6454dd45de1))
### Bug Fixes
* logout redirect ([#802](https://github.com/Monadical-SAS/reflector/issues/802)) ([f0ee7b5](https://github.com/Monadical-SAS/reflector/commit/f0ee7b531a0911f214ccbb84d399e9a6c9b700c0))
## [0.24.0](https://github.com/Monadical-SAS/reflector/compare/v0.23.2...v0.24.0) (2025-12-18)
### Features
* identify action items ([#790](https://github.com/Monadical-SAS/reflector/issues/790)) ([964cd78](https://github.com/Monadical-SAS/reflector/commit/964cd78bb699d83d012ae4b8c96565df25b90a5d))
### Bug Fixes
* automatically reprocess daily recordings ([#797](https://github.com/Monadical-SAS/reflector/issues/797)) ([5f458aa](https://github.com/Monadical-SAS/reflector/commit/5f458aa4a7ec3d00ca5ec49d62fcc8ad232b138e))
* daily video optimisation ([#789](https://github.com/Monadical-SAS/reflector/issues/789)) ([16284e1](https://github.com/Monadical-SAS/reflector/commit/16284e1ac3faede2b74f0d91b50c0b5612af2c35))
* main menu login ([#800](https://github.com/Monadical-SAS/reflector/issues/800)) ([0bc971b](https://github.com/Monadical-SAS/reflector/commit/0bc971ba966a52d719c8c240b47dc7b3bdea4391))
* retry on workflow timeout ([#798](https://github.com/Monadical-SAS/reflector/issues/798)) ([5f7dfad](https://github.com/Monadical-SAS/reflector/commit/5f7dfadabd3e8017406ad3720ba495a59963ee34))
## [0.23.2](https://github.com/Monadical-SAS/reflector/compare/v0.23.1...v0.23.2) (2025-12-11)
### Bug Fixes
* build on push tags ([#785](https://github.com/Monadical-SAS/reflector/issues/785)) ([d7f140b](https://github.com/Monadical-SAS/reflector/commit/d7f140b7d1f4660d5da7a0da1357f68869e0b5cd))
## [0.23.1](https://github.com/Monadical-SAS/reflector/compare/v0.23.0...v0.23.1) (2025-12-11)
### Bug Fixes
* populate room_name in transcript GET endpoint ([#783](https://github.com/Monadical-SAS/reflector/issues/783)) ([0eba147](https://github.com/Monadical-SAS/reflector/commit/0eba1470181c7b9e0a79964a1ef28c09bcbdd9d7))
## [0.23.0](https://github.com/Monadical-SAS/reflector/compare/v0.22.4...v0.23.0) (2025-12-10)
### Features
* dockerhub ci ([#772](https://github.com/Monadical-SAS/reflector/issues/772)) ([00549f1](https://github.com/Monadical-SAS/reflector/commit/00549f153ade922cf4cb6c5358a7d11a39c426d2))
* llm retries ([#739](https://github.com/Monadical-SAS/reflector/issues/739)) ([61f0e29](https://github.com/Monadical-SAS/reflector/commit/61f0e29d4c51eab54ee67af92141fbb171e8ccaa))
### Bug Fixes
* celery inspect bug sidestep in restart script ([#766](https://github.com/Monadical-SAS/reflector/issues/766)) ([ec17ed7](https://github.com/Monadical-SAS/reflector/commit/ec17ed7b587cf6ee143646baaee67a7c017044d4))
* deploy frontend to coolify ([#779](https://github.com/Monadical-SAS/reflector/issues/779)) ([91650ec](https://github.com/Monadical-SAS/reflector/commit/91650ec65f65713faa7ee0dcfb75af427b7c4ba0))
* hide rooms settings instead of disabling ([#763](https://github.com/Monadical-SAS/reflector/issues/763)) ([3ad78be](https://github.com/Monadical-SAS/reflector/commit/3ad78be7628c0d029296b301a0e87236c76b7598))
* return participant emails from transcript endpoint ([#769](https://github.com/Monadical-SAS/reflector/issues/769)) ([d3a5cd1](https://github.com/Monadical-SAS/reflector/commit/d3a5cd12d2d0d9c32af2d5bd9322e030ef69b85d))
## [0.22.4](https://github.com/Monadical-SAS/reflector/compare/v0.22.3...v0.22.4) (2025-12-02)
### Bug Fixes
* Multitrack mixdown optimisation 2 ([#764](https://github.com/Monadical-SAS/reflector/issues/764)) ([bd5df1c](https://github.com/Monadical-SAS/reflector/commit/bd5df1ce2ebf35d7f3413b295e56937a9a28ef7b))
## [0.22.3](https://github.com/Monadical-SAS/reflector/compare/v0.22.2...v0.22.3) (2025-12-02)
### Bug Fixes
* align daily room settings ([#759](https://github.com/Monadical-SAS/reflector/issues/759)) ([28f87c0](https://github.com/Monadical-SAS/reflector/commit/28f87c09dc459846873d0dde65b03e3d7b2b9399))
## [0.22.2](https://github.com/Monadical-SAS/reflector/compare/v0.22.1...v0.22.2) (2025-12-02)
### Bug Fixes
* daily auto refresh fix ([#755](https://github.com/Monadical-SAS/reflector/issues/755)) ([fe47c46](https://github.com/Monadical-SAS/reflector/commit/fe47c46489c5aa0cc538109f7559cc9accb35c01))
* Skip mixdown for multitrack ([#760](https://github.com/Monadical-SAS/reflector/issues/760)) ([b51b7aa](https://github.com/Monadical-SAS/reflector/commit/b51b7aa9176c1a53ba57ad99f5e976c804a1e80c))
## [0.22.1](https://github.com/Monadical-SAS/reflector/compare/v0.22.0...v0.22.1) (2025-11-27)

View File

@@ -3,10 +3,8 @@
services:
web:
build:
context: ./www
dockerfile: Dockerfile
image: reflector-frontend:latest
image: monadicalsas/reflector-frontend:latest
pull_policy: always
environment:
- KV_URL=${KV_URL:-redis://redis:6379}
- SITE_URL=${SITE_URL}
@@ -36,4 +34,4 @@ services:
- redis_data:/data
volumes:
redis_data:
redis_data:

View File

@@ -34,6 +34,20 @@ services:
environment:
ENTRYPOINT: beat
hatchet-worker:
build:
context: server
volumes:
- ./server/:/app/
- /app/.venv
env_file:
- ./server/.env
environment:
ENTRYPOINT: hatchet-worker
depends_on:
hatchet:
condition: service_healthy
redis:
image: redis:7.2
ports:
@@ -55,6 +69,7 @@ services:
postgres:
image: postgres:17
command: postgres -c 'max_connections=200'
ports:
- 5432:5432
environment:
@@ -63,6 +78,42 @@ services:
POSTGRES_DB: reflector
volumes:
- ./data/postgres:/var/lib/postgresql/data
- ./server/docker/init-hatchet-db.sql:/docker-entrypoint-initdb.d/init-hatchet-db.sql:ro
healthcheck:
test: ["CMD-SHELL", "pg_isready -d reflector -U reflector"]
interval: 10s
timeout: 10s
retries: 5
start_period: 10s
hatchet:
image: ghcr.io/hatchet-dev/hatchet/hatchet-lite:latest
ports:
- "8889:8888"
- "7078:7077"
depends_on:
postgres:
condition: service_healthy
environment:
DATABASE_URL: "postgresql://reflector:reflector@postgres:5432/hatchet?sslmode=disable"
SERVER_AUTH_COOKIE_DOMAIN: localhost
SERVER_AUTH_COOKIE_INSECURE: "t"
SERVER_GRPC_BIND_ADDRESS: "0.0.0.0"
SERVER_GRPC_INSECURE: "t"
SERVER_GRPC_BROADCAST_ADDRESS: hatchet:7077
SERVER_GRPC_PORT: "7077"
SERVER_URL: http://localhost:8889
SERVER_AUTH_SET_EMAIL_VERIFIED: "t"
# SERVER_DEFAULT_ENGINE_VERSION: "V1" # default
SERVER_INTERNAL_CLIENT_INTERNAL_GRPC_BROADCAST_ADDRESS: hatchet:7077
volumes:
- ./data/hatchet-config:/config
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8888/api/live"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
networks:
default:

View File

@@ -53,6 +53,36 @@ response = sqs.receive_message(QueueUrl=queue_url, ...)
uv run /app/requeue_uploaded_file.py TRANSCRIPT_ID
```
## Hatchet Setup (Fresh DB)
After resetting the Hatchet database:
### Option A: Automatic (CLI)
```bash
# Get default tenant ID and create token in one command
TENANT_ID=$(docker compose exec -T postgres psql -U reflector -d hatchet -t -c \
"SELECT id FROM \"Tenant\" WHERE slug = 'default';" | tr -d ' \n') && \
TOKEN=$(docker compose exec -T hatchet /hatchet-admin token create \
--config /config --tenant-id "$TENANT_ID" 2>/dev/null | tr -d '\n') && \
echo "HATCHET_CLIENT_TOKEN=$TOKEN"
```
Copy the output to `server/.env`.
### Option B: Manual (UI)
1. Create API token at http://localhost:8889 → Settings → API Tokens
2. Update `server/.env`: `HATCHET_CLIENT_TOKEN=<new-token>`
### Then restart workers
```bash
docker compose restart server hatchet-worker
```
Workflows register automatically when hatchet-worker starts.
## Pipeline Management
### Continue stuck pipeline from final summaries (identify_participants) step:

View File

@@ -0,0 +1,2 @@
-- Create hatchet database for Hatchet workflow engine
CREATE DATABASE hatchet;

View File

@@ -0,0 +1,26 @@
"""add_action_items
Revision ID: 05f8688d6895
Revises: bbafedfa510c
Create Date: 2025-12-12 11:57:50.209658
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "05f8688d6895"
down_revision: Union[str, None] = "bbafedfa510c"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
op.add_column("transcript", sa.Column("action_items", sa.JSON(), nullable=True))
def downgrade() -> None:
op.drop_column("transcript", "action_items")

View File

@@ -0,0 +1,28 @@
"""add workflow_run_id to transcript
Revision ID: 0f943fede0e0
Revises: 20251217000000
Create Date: 2025-12-16 01:54:13.855106
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "0f943fede0e0"
down_revision: Union[str, None] = "20251217000000"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
with op.batch_alter_table("transcript", schema=None) as batch_op:
batch_op.add_column(sa.Column("workflow_run_id", sa.String(), nullable=True))
def downgrade() -> None:
with op.batch_alter_table("transcript", schema=None) as batch_op:
batch_op.drop_column("workflow_run_id")

View File

@@ -0,0 +1,35 @@
"""add skip_consent to room
Revision ID: 20251217000000
Revises: 05f8688d6895
Create Date: 2025-12-17 00:00:00.000000
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "20251217000000"
down_revision: Union[str, None] = "05f8688d6895"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(
sa.Column(
"skip_consent",
sa.Boolean(),
nullable=False,
server_default=sa.text("false"),
)
)
def downgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.drop_column("skip_consent")

View File

@@ -0,0 +1,35 @@
"""add use_hatchet to room
Revision ID: bd3a729bb379
Revises: 0f943fede0e0
Create Date: 2025-12-16 16:34:03.594231
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "bd3a729bb379"
down_revision: Union[str, None] = "0f943fede0e0"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(
sa.Column(
"use_hatchet",
sa.Boolean(),
server_default=sa.text("false"),
nullable=False,
)
)
def downgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.drop_column("use_hatchet")

View File

@@ -39,6 +39,7 @@ dependencies = [
"pytest-env>=1.1.5",
"webvtt-py>=0.5.0",
"icalendar>=6.0.0",
"hatchet-sdk>=0.47.0",
]
[dependency-groups]
@@ -126,6 +127,7 @@ markers = [
select = [
"I", # isort - import sorting
"F401", # unused imports
"E402", # module level import not at top of file
"PLC0415", # import-outside-top-level - detect inline imports
]

View File

@@ -1,13 +1,19 @@
import asyncio
import functools
from uuid import uuid4
from celery import current_task
from reflector.db import get_database
from reflector.llm import llm_session_id
def asynctask(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
async def run_with_db():
task_id = current_task.request.id if current_task else None
llm_session_id.set(task_id or f"random-{uuid4().hex}")
database = get_database()
await database.connect()
try:

View File

@@ -18,6 +18,7 @@ from .requests import (
# Response models
from .responses import (
FinishedRecordingResponse,
MeetingParticipant,
MeetingParticipantsResponse,
MeetingResponse,
@@ -79,6 +80,7 @@ __all__ = [
"MeetingParticipant",
"MeetingResponse",
"RecordingResponse",
"FinishedRecordingResponse",
"RecordingS3Info",
"MeetingTokenResponse",
"WebhookResponse",

View File

@@ -47,7 +47,7 @@ class DailyApiError(Exception):
)
super().__init__(
f"Daily.co API error: {operation} failed with status {self.status_code}"
f"Daily.co API error: {operation} failed with status {self.status_code}: {response.text}"
)

View File

@@ -40,6 +40,10 @@ class RoomProperties(BaseModel):
)
enable_chat: bool = Field(default=True, description="Enable in-meeting chat")
enable_screenshare: bool = Field(default=True, description="Enable screen sharing")
enable_knocking: bool = Field(
default=False,
description="Enable knocking for private rooms (allows participants to request access)",
)
start_video_off: bool = Field(
default=False, description="Start with video off for all participants"
)
@@ -87,6 +91,10 @@ class MeetingTokenProperties(BaseModel):
start_cloud_recording: bool = Field(
default=False, description="Automatically start cloud recording on join"
)
start_cloud_recording_opts: dict | None = Field(
default=None,
description="Options for startRecording when start_cloud_recording is true (e.g., maxDuration)",
)
enable_recording_ui: bool = Field(
default=True, description="Show recording controls in UI"
)

View File

@@ -121,7 +121,10 @@ class RecordingS3Info(BaseModel):
class RecordingResponse(BaseModel):
"""
Response from recording retrieval endpoint.
Response from recording retrieval endpoint (network layer).
Duration may be None for recordings still being processed by Daily.
Use FinishedRecordingResponse for recordings ready for processing.
Reference: https://docs.daily.co/reference/rest-api/recordings
"""
@@ -135,7 +138,9 @@ class RecordingResponse(BaseModel):
max_participants: int | None = Field(
None, description="Maximum participants during recording (may be missing)"
)
duration: int = Field(description="Recording duration in seconds")
duration: int | None = Field(
None, description="Recording duration in seconds (None if still processing)"
)
share_token: NonEmptyString | None = Field(
None, description="Token for sharing recording"
)
@@ -149,6 +154,25 @@ class RecordingResponse(BaseModel):
None, description="Meeting session identifier (may be missing)"
)
def to_finished(self) -> "FinishedRecordingResponse | None":
"""Convert to FinishedRecordingResponse if duration is available and status is finished."""
if self.duration is None or self.status != "finished":
return None
return FinishedRecordingResponse(**self.model_dump())
class FinishedRecordingResponse(RecordingResponse):
"""
Recording with confirmed duration - ready for processing.
This model guarantees duration is present and status is finished.
"""
status: Literal["finished"] = Field(
description="Recording status (always 'finished')"
)
duration: int = Field(description="Recording duration in seconds")
class MeetingTokenResponse(BaseModel):
"""

View File

@@ -3,6 +3,7 @@ from typing import Literal
import sqlalchemy as sa
from pydantic import BaseModel, Field
from sqlalchemy import or_
from reflector.db import get_database, metadata
from reflector.utils import generate_uuid4
@@ -79,5 +80,35 @@ class RecordingController:
results = await get_database().fetch_all(query)
return [Recording(**row) for row in results]
async def get_multitrack_needing_reprocessing(
self, bucket_name: str
) -> list[Recording]:
"""
Get multitrack recordings that need reprocessing:
- Have track_keys (multitrack)
- Either have no transcript OR transcript has error status
This is more efficient than fetching all recordings and filtering in Python.
"""
from reflector.db.transcripts import (
transcripts, # noqa: PLC0415 cyclic import
)
query = (
recordings.select()
.outerjoin(transcripts, recordings.c.id == transcripts.c.recording_id)
.where(
recordings.c.bucket_name == bucket_name,
recordings.c.track_keys.isnot(None),
or_(
transcripts.c.id.is_(None),
transcripts.c.status == "error",
),
)
)
results = await get_database().fetch_all(query)
recordings_list = [Recording(**row) for row in results]
return [r for r in recordings_list if r.is_multitrack]
recordings_controller = RecordingController()

View File

@@ -57,6 +57,18 @@ rooms = sqlalchemy.Table(
sqlalchemy.String,
nullable=False,
),
sqlalchemy.Column(
"use_hatchet",
sqlalchemy.Boolean,
nullable=False,
server_default=false(),
),
sqlalchemy.Column(
"skip_consent",
sqlalchemy.Boolean,
nullable=False,
server_default=sqlalchemy.sql.false(),
),
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
)
@@ -85,6 +97,8 @@ class Room(BaseModel):
ics_last_sync: datetime | None = None
ics_last_etag: str | None = None
platform: Platform = Field(default_factory=lambda: settings.DEFAULT_VIDEO_PLATFORM)
use_hatchet: bool = False
skip_consent: bool = False
class RoomController:
@@ -139,6 +153,7 @@ class RoomController:
ics_fetch_interval: int = 300,
ics_enabled: bool = False,
platform: Platform = settings.DEFAULT_VIDEO_PLATFORM,
skip_consent: bool = False,
):
"""
Add a new room
@@ -163,6 +178,7 @@ class RoomController:
"ics_fetch_interval": ics_fetch_interval,
"ics_enabled": ics_enabled,
"platform": platform,
"skip_consent": skip_consent,
}
room = Room(**room_data)

View File

@@ -44,6 +44,7 @@ transcripts = sqlalchemy.Table(
sqlalchemy.Column("title", sqlalchemy.String),
sqlalchemy.Column("short_summary", sqlalchemy.String),
sqlalchemy.Column("long_summary", sqlalchemy.String),
sqlalchemy.Column("action_items", sqlalchemy.JSON),
sqlalchemy.Column("topics", sqlalchemy.JSON),
sqlalchemy.Column("events", sqlalchemy.JSON),
sqlalchemy.Column("participants", sqlalchemy.JSON),
@@ -83,6 +84,8 @@ transcripts = sqlalchemy.Table(
sqlalchemy.Column("audio_deleted", sqlalchemy.Boolean),
sqlalchemy.Column("room_id", sqlalchemy.String),
sqlalchemy.Column("webvtt", sqlalchemy.Text),
# Hatchet workflow run ID for resumption of failed workflows
sqlalchemy.Column("workflow_run_id", sqlalchemy.String),
sqlalchemy.Index("idx_transcript_recording_id", "recording_id"),
sqlalchemy.Index("idx_transcript_user_id", "user_id"),
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
@@ -164,6 +167,10 @@ class TranscriptFinalLongSummary(BaseModel):
long_summary: str
class TranscriptActionItems(BaseModel):
action_items: dict
class TranscriptFinalTitle(BaseModel):
title: str
@@ -204,6 +211,7 @@ class Transcript(BaseModel):
locked: bool = False
short_summary: str | None = None
long_summary: str | None = None
action_items: dict | None = None
topics: list[TranscriptTopic] = []
events: list[TranscriptEvent] = []
participants: list[TranscriptParticipant] | None = []
@@ -217,6 +225,7 @@ class Transcript(BaseModel):
zulip_message_id: int | None = None
audio_deleted: bool | None = None
webvtt: str | None = None
workflow_run_id: str | None = None # Hatchet workflow run ID for resumption
@field_serializer("created_at", when_used="json")
def serialize_datetime(self, dt: datetime) -> str:
@@ -368,7 +377,12 @@ class TranscriptController:
room_id: str | None = None,
search_term: str | None = None,
return_query: bool = False,
exclude_columns: list[str] = ["topics", "events", "participants"],
exclude_columns: list[str] = [
"topics",
"events",
"participants",
"action_items",
],
) -> list[Transcript]:
"""
Get all transcripts

View File

@@ -88,5 +88,11 @@ class UserController:
results = await get_database().fetch_all(query)
return [User(**r) for r in results]
@staticmethod
async def get_by_ids(user_ids: list[NonEmptyString]) -> dict[str, User]:
query = users.select().where(users.c.id.in_(user_ids))
results = await get_database().fetch_all(query)
return {user.id: User(**user) for user in results}
user_controller = UserController()

View File

@@ -0,0 +1,5 @@
"""Hatchet workflow orchestration for Reflector."""
from reflector.hatchet.client import HatchetClientManager
__all__ = ["HatchetClientManager"]

View File

@@ -0,0 +1,98 @@
"""WebSocket broadcasting helpers for Hatchet workflows.
DUPLICATION NOTE: To be kept when Celery is deprecated. Currently dupes Celery logic.
Provides WebSocket broadcasting for Hatchet that matches Celery's @broadcast_to_sockets
decorator behavior. Events are broadcast to transcript rooms and user rooms.
"""
from typing import Any
import structlog
from reflector.db.transcripts import Transcript, TranscriptEvent, transcripts_controller
from reflector.utils.string import NonEmptyString
from reflector.ws_manager import get_ws_manager
# Events that should also be sent to user room (matches Celery behavior)
USER_ROOM_EVENTS = {"STATUS", "FINAL_TITLE", "DURATION"}
async def broadcast_event(
transcript_id: NonEmptyString,
event: TranscriptEvent,
logger: structlog.BoundLogger,
) -> None:
"""Broadcast a TranscriptEvent to WebSocket subscribers.
Fire-and-forget: errors are logged but don't interrupt workflow execution.
"""
logger.info(
"Broadcasting event",
transcript_id=transcript_id,
event_type=event.event,
)
try:
ws_manager = get_ws_manager()
await ws_manager.send_json(
room_id=f"ts:{transcript_id}",
message=event.model_dump(mode="json"),
)
logger.info(
"Event sent to transcript room",
transcript_id=transcript_id,
event_type=event.event,
)
if event.event in USER_ROOM_EVENTS:
transcript = await transcripts_controller.get_by_id(transcript_id)
if transcript and transcript.user_id:
await ws_manager.send_json(
room_id=f"user:{transcript.user_id}",
message={
"event": f"TRANSCRIPT_{event.event}",
"data": {"id": transcript_id, **event.data},
},
)
except Exception as e:
logger.warning(
"Failed to broadcast event",
error=str(e),
transcript_id=transcript_id,
event_type=event.event,
)
async def set_status_and_broadcast(
transcript_id: NonEmptyString,
status: str,
logger: structlog.BoundLogger,
) -> None:
"""Set transcript status and broadcast to WebSocket.
Wrapper around transcripts_controller.set_status that adds WebSocket broadcasting.
"""
event = await transcripts_controller.set_status(transcript_id, status)
if event:
await broadcast_event(transcript_id, event, logger=logger)
async def append_event_and_broadcast(
transcript_id: NonEmptyString,
transcript: Transcript,
event_name: str,
data: Any,
logger: structlog.BoundLogger,
) -> TranscriptEvent:
"""Append event to transcript and broadcast to WebSocket.
Wrapper around transcripts_controller.append_event that adds WebSocket broadcasting.
"""
event = await transcripts_controller.append_event(
transcript=transcript,
event=event_name,
data=data,
)
await broadcast_event(transcript_id, event, logger=logger)
return event

View File

@@ -0,0 +1,115 @@
"""Hatchet Python client wrapper.
Uses singleton pattern because:
1. Hatchet client maintains persistent gRPC connections for workflow registration
2. Creating multiple clients would cause registration conflicts and resource leaks
3. The SDK is designed for a single client instance per process
4. Tests use `HatchetClientManager.reset()` to isolate state between tests
"""
import logging
import threading
from hatchet_sdk import ClientConfig, Hatchet
from hatchet_sdk.clients.rest.models import V1TaskStatus
from reflector.logger import logger
from reflector.settings import settings
class HatchetClientManager:
"""Singleton manager for Hatchet client connections.
See module docstring for rationale. For test isolation, use `reset()`.
"""
_instance: Hatchet | None = None
_lock = threading.Lock()
@classmethod
def get_client(cls) -> Hatchet:
"""Get or create the Hatchet client (thread-safe singleton)."""
if cls._instance is None:
with cls._lock:
if cls._instance is None:
if not settings.HATCHET_CLIENT_TOKEN:
raise ValueError("HATCHET_CLIENT_TOKEN must be set")
# Pass root logger to Hatchet so workflow logs appear in dashboard
root_logger = logging.getLogger()
cls._instance = Hatchet(
debug=settings.HATCHET_DEBUG,
config=ClientConfig(logger=root_logger),
)
return cls._instance
@classmethod
async def start_workflow(
cls,
workflow_name: str,
input_data: dict,
additional_metadata: dict | None = None,
) -> str:
"""Start a workflow and return the workflow run ID.
Args:
workflow_name: Name of the workflow to trigger.
input_data: Input data for the workflow run.
additional_metadata: Optional metadata for filtering in dashboard
(e.g., transcript_id, recording_id).
"""
client = cls.get_client()
result = await client.runs.aio_create(
workflow_name,
input_data,
additional_metadata=additional_metadata,
)
return result.run.metadata.id
@classmethod
async def get_workflow_run_status(cls, workflow_run_id: str) -> V1TaskStatus:
client = cls.get_client()
return await client.runs.aio_get_status(workflow_run_id)
@classmethod
async def cancel_workflow(cls, workflow_run_id: str) -> None:
client = cls.get_client()
await client.runs.aio_cancel(workflow_run_id)
logger.info("[Hatchet] Cancelled workflow", workflow_run_id=workflow_run_id)
@classmethod
async def replay_workflow(cls, workflow_run_id: str) -> None:
client = cls.get_client()
await client.runs.aio_replay(workflow_run_id)
logger.info("[Hatchet] Replaying workflow", workflow_run_id=workflow_run_id)
@classmethod
async def can_replay(cls, workflow_run_id: str) -> bool:
"""Check if workflow can be replayed (is FAILED only).
CANCELLED workflows should start fresh (new run ID) rather than replay,
since cancellation indicates user intent to abort.
"""
try:
status = await cls.get_workflow_run_status(workflow_run_id)
return status == V1TaskStatus.FAILED
except Exception as e:
logger.warning(
"[Hatchet] Failed to check replay status",
workflow_run_id=workflow_run_id,
error=str(e),
)
return False
@classmethod
async def get_workflow_status(cls, workflow_run_id: str) -> dict:
"""Get the full workflow run details as dict."""
client = cls.get_client()
run = await client.runs.aio_get(workflow_run_id)
return run.to_dict()
@classmethod
def reset(cls) -> None:
"""Reset the client instance (for testing)."""
with cls._lock:
cls._instance = None

View File

@@ -0,0 +1,70 @@
"""
Run Hatchet workers for the diarization pipeline.
Runs as a separate process, just like Celery workers.
Usage:
uv run -m reflector.hatchet.run_workers
# Or via docker:
docker compose exec server uv run -m reflector.hatchet.run_workers
"""
import signal
import sys
from reflector.logger import logger
from reflector.settings import settings
def main() -> None:
"""Start Hatchet worker polling."""
if not settings.HATCHET_ENABLED:
logger.error("HATCHET_ENABLED is False, not starting workers")
sys.exit(1)
if not settings.HATCHET_CLIENT_TOKEN:
logger.error("HATCHET_CLIENT_TOKEN is not set")
sys.exit(1)
logger.info(
"Starting Hatchet workers",
debug=settings.HATCHET_DEBUG,
)
# Import here (not top-level) - workflow modules call HatchetClientManager.get_client()
# at module level because Hatchet SDK decorators (@workflow.task) bind at import time.
# Can't use lazy init: decorators need the client object when function is defined.
from reflector.hatchet.client import HatchetClientManager # noqa: PLC0415
from reflector.hatchet.workflows import ( # noqa: PLC0415
diarization_pipeline,
subject_workflow,
topic_chunk_workflow,
track_workflow,
)
hatchet = HatchetClientManager.get_client()
worker = hatchet.worker(
"reflector-diarization-worker",
workflows=[
diarization_pipeline,
subject_workflow,
topic_chunk_workflow,
track_workflow,
],
)
def shutdown_handler(signum: int, frame) -> None:
logger.info("Received shutdown signal, stopping workers...")
# Worker cleanup happens automatically on exit
sys.exit(0)
signal.signal(signal.SIGINT, shutdown_handler)
signal.signal(signal.SIGTERM, shutdown_handler)
logger.info("Starting Hatchet worker polling...")
worker.start()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,26 @@
"""Hatchet workflow definitions."""
from reflector.hatchet.workflows.diarization_pipeline import (
PipelineInput,
diarization_pipeline,
)
from reflector.hatchet.workflows.subject_processing import (
SubjectInput,
subject_workflow,
)
from reflector.hatchet.workflows.topic_chunk_processing import (
TopicChunkInput,
topic_chunk_workflow,
)
from reflector.hatchet.workflows.track_processing import TrackInput, track_workflow
__all__ = [
"diarization_pipeline",
"subject_workflow",
"topic_chunk_workflow",
"track_workflow",
"PipelineInput",
"SubjectInput",
"TopicChunkInput",
"TrackInput",
]

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,164 @@
"""
Pydantic models for Hatchet workflow task return types.
Provides static typing for all task outputs, enabling type checking
and better IDE support.
"""
from typing import Any
from pydantic import BaseModel
from reflector.utils.string import NonEmptyString
class PadTrackResult(BaseModel):
"""Result from pad_track task."""
padded_key: NonEmptyString # S3 key (not presigned URL) - presign on demand to avoid stale URLs on replay
bucket_name: (
NonEmptyString | None
) # None means use default transcript storage bucket
size: int
track_index: int
class TranscribeTrackResult(BaseModel):
"""Result from transcribe_track task."""
words: list[dict[str, Any]]
track_index: int
class RecordingResult(BaseModel):
"""Result from get_recording task."""
id: NonEmptyString | None
mtg_session_id: NonEmptyString | None
duration: float
class ParticipantsResult(BaseModel):
"""Result from get_participants task."""
participants: list[dict[str, Any]]
num_tracks: int
source_language: NonEmptyString
target_language: NonEmptyString
class PaddedTrackInfo(BaseModel):
"""Info for a padded track - S3 key + bucket for on-demand presigning."""
key: NonEmptyString
bucket_name: NonEmptyString | None # None = use default storage bucket
class ProcessTracksResult(BaseModel):
"""Result from process_tracks task."""
all_words: list[dict[str, Any]]
padded_tracks: list[PaddedTrackInfo] # S3 keys, not presigned URLs
word_count: int
num_tracks: int
target_language: NonEmptyString
created_padded_files: list[NonEmptyString]
class MixdownResult(BaseModel):
"""Result from mixdown_tracks task."""
audio_key: NonEmptyString
duration: float
tracks_mixed: int
class WaveformResult(BaseModel):
"""Result from generate_waveform task."""
waveform_generated: bool
class TopicChunkResult(BaseModel):
"""Result from topic chunk child workflow."""
chunk_index: int
title: str
summary: str
timestamp: float
duration: float
words: list[dict[str, Any]]
class TopicsResult(BaseModel):
"""Result from detect_topics task."""
topics: list[dict[str, Any]]
class TitleResult(BaseModel):
"""Result from generate_title task."""
title: str | None
class SubjectsResult(BaseModel):
"""Result from extract_subjects task."""
subjects: list[str]
transcript_text: str # Formatted transcript for LLM consumption
participant_names: list[str]
participant_name_to_id: dict[str, str]
class SubjectSummaryResult(BaseModel):
"""Result from subject summary child workflow."""
subject: str
subject_index: int
detailed_summary: str
paragraph_summary: str
class ProcessSubjectsResult(BaseModel):
"""Result from process_subjects fan-out task."""
subject_summaries: list[dict[str, Any]] # List of SubjectSummaryResult dicts
class RecapResult(BaseModel):
"""Result from generate_recap task."""
short_summary: str # Recap paragraph
long_summary: str # Full markdown summary
class ActionItemsResult(BaseModel):
"""Result from identify_action_items task."""
action_items: dict # ActionItemsResponse as dict (may have empty lists)
class FinalizeResult(BaseModel):
"""Result from finalize task."""
status: NonEmptyString
class ConsentResult(BaseModel):
"""Result from cleanup_consent task."""
class ZulipResult(BaseModel):
"""Result from post_zulip task."""
zulip_message_id: int | None = None
skipped: bool = False
class WebhookResult(BaseModel):
"""Result from send_webhook task."""
webhook_sent: bool
skipped: bool = False
response_code: int | None = None

View File

@@ -0,0 +1,101 @@
"""
Hatchet child workflow: SubjectProcessing
Handles individual subject/topic summary generation.
Spawned dynamically by the main diarization pipeline for each extracted subject
via aio_run_many() for parallel processing.
"""
from datetime import timedelta
from hatchet_sdk import Context
from pydantic import BaseModel
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.workflows.models import SubjectSummaryResult
from reflector.logger import logger
from reflector.processors.summary.prompts import (
DETAILED_SUBJECT_PROMPT_TEMPLATE,
PARAGRAPH_SUMMARY_PROMPT,
build_participant_instructions,
)
class SubjectInput(BaseModel):
"""Input for individual subject processing."""
subject: str
subject_index: int
transcript_text: str
participant_names: list[str]
participant_name_to_id: dict[str, str]
hatchet = HatchetClientManager.get_client()
subject_workflow = hatchet.workflow(
name="SubjectProcessing", input_validator=SubjectInput
)
@subject_workflow.task(execution_timeout=timedelta(seconds=120), retries=3)
async def generate_detailed_summary(
input: SubjectInput, ctx: Context
) -> SubjectSummaryResult:
"""Generate detailed analysis for a single subject, then condense to paragraph."""
ctx.log(
f"generate_detailed_summary: subject '{input.subject}' (index {input.subject_index})"
)
logger.info(
"[Hatchet] generate_detailed_summary",
subject=input.subject,
subject_index=input.subject_index,
)
# Deferred imports: Hatchet workers fork processes, fresh imports ensure
# LLM HTTP connection pools aren't shared across forks
from reflector.llm import LLM # noqa: PLC0415
from reflector.settings import settings # noqa: PLC0415
llm = LLM(settings=settings)
participant_instructions = build_participant_instructions(input.participant_names)
detailed_prompt = DETAILED_SUBJECT_PROMPT_TEMPLATE.format(subject=input.subject)
if participant_instructions:
detailed_prompt = f"{detailed_prompt}\n\n{participant_instructions}"
ctx.log("generate_detailed_summary: calling LLM for detailed analysis")
detailed_response = await llm.get_response(
detailed_prompt,
[input.transcript_text],
tone_name="Topic assistant",
)
detailed_summary = str(detailed_response)
paragraph_prompt = PARAGRAPH_SUMMARY_PROMPT
if participant_instructions:
paragraph_prompt = f"{paragraph_prompt}\n\n{participant_instructions}"
ctx.log("generate_detailed_summary: calling LLM for paragraph summary")
paragraph_response = await llm.get_response(
paragraph_prompt,
[detailed_summary],
tone_name="Topic summarizer",
)
paragraph_summary = str(paragraph_response)
ctx.log(f"generate_detailed_summary complete: subject '{input.subject}'")
logger.info(
"[Hatchet] generate_detailed_summary complete",
subject=input.subject,
subject_index=input.subject_index,
detailed_len=len(detailed_summary),
paragraph_len=len(paragraph_summary),
)
return SubjectSummaryResult(
subject=input.subject,
subject_index=input.subject_index,
detailed_summary=detailed_summary,
paragraph_summary=paragraph_summary,
)

View File

@@ -0,0 +1,85 @@
"""
Hatchet child workflow: TopicChunkProcessing
Handles topic detection for individual transcript chunks.
Spawned dynamically by detect_topics via aio_run_many() for parallel processing.
"""
from datetime import timedelta
from typing import Any
from hatchet_sdk import Context
from pydantic import BaseModel
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.workflows.models import TopicChunkResult
from reflector.logger import logger
from reflector.processors.prompts import TOPIC_PROMPT
class TopicChunkInput(BaseModel):
"""Input for individual topic chunk processing."""
chunk_index: int
chunk_text: str
timestamp: float
duration: float
words: list[dict[str, Any]]
hatchet = HatchetClientManager.get_client()
topic_chunk_workflow = hatchet.workflow(
name="TopicChunkProcessing", input_validator=TopicChunkInput
)
@topic_chunk_workflow.task(execution_timeout=timedelta(seconds=60), retries=3)
async def detect_chunk_topic(input: TopicChunkInput, ctx: Context) -> TopicChunkResult:
"""Detect topic for a single transcript chunk."""
ctx.log(f"detect_chunk_topic: chunk {input.chunk_index}")
logger.info(
"[Hatchet] detect_chunk_topic",
chunk_index=input.chunk_index,
text_length=len(input.chunk_text),
)
# Deferred imports: Hatchet workers fork processes, fresh imports avoid
# sharing LLM HTTP connection pools across forks
from reflector.llm import LLM # noqa: PLC0415
from reflector.processors.transcript_topic_detector import ( # noqa: PLC0415
TopicResponse,
)
from reflector.settings import settings # noqa: PLC0415
from reflector.utils.text import clean_title # noqa: PLC0415
llm = LLM(settings=settings, temperature=0.9, max_tokens=500)
prompt = TOPIC_PROMPT.format(text=input.chunk_text)
response = await llm.get_structured_response(
prompt,
[input.chunk_text],
TopicResponse,
tone_name="Topic analyzer",
timeout=settings.LLM_STRUCTURED_RESPONSE_TIMEOUT,
)
title = clean_title(response.title)
ctx.log(
f"detect_chunk_topic complete: chunk {input.chunk_index}, title='{title[:50]}'"
)
logger.info(
"[Hatchet] detect_chunk_topic complete",
chunk_index=input.chunk_index,
title=title[:50],
)
return TopicChunkResult(
chunk_index=input.chunk_index,
title=title,
summary=response.summary,
timestamp=input.timestamp,
duration=input.duration,
words=input.words,
)

View File

@@ -0,0 +1,222 @@
"""
Hatchet child workflow: TrackProcessing
Handles individual audio track processing: padding and transcription.
Spawned dynamically by the main diarization pipeline for each track.
Architecture note: This is a separate workflow (not inline tasks in DiarizationPipeline)
because Hatchet workflow DAGs are defined statically, but the number of tracks varies
at runtime. Child workflow spawning via `aio_run()` + `asyncio.gather()` is the
standard pattern for dynamic fan-out. See `process_tracks` in diarization_pipeline.py.
Note: This file uses deferred imports (inside tasks) intentionally.
Hatchet workers run in forked processes; fresh imports per task ensure
storage/DB connections are not shared across forks.
"""
import tempfile
from datetime import timedelta
from pathlib import Path
import av
from hatchet_sdk import Context
from pydantic import BaseModel
from reflector.hatchet.client import HatchetClientManager
from reflector.hatchet.workflows.models import PadTrackResult, TranscribeTrackResult
from reflector.logger import logger
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
from reflector.utils.audio_padding import (
apply_audio_padding_to_file,
extract_stream_start_time_from_container,
)
class TrackInput(BaseModel):
"""Input for individual track processing."""
track_index: int
s3_key: str
bucket_name: str
transcript_id: str
language: str = "en"
hatchet = HatchetClientManager.get_client()
track_workflow = hatchet.workflow(name="TrackProcessing", input_validator=TrackInput)
@track_workflow.task(execution_timeout=timedelta(seconds=300), retries=3)
async def pad_track(input: TrackInput, ctx: Context) -> PadTrackResult:
"""Pad single audio track with silence for alignment.
Extracts stream.start_time from WebM container metadata and applies
silence padding using PyAV filter graph (adelay).
"""
ctx.log(f"pad_track: track {input.track_index}, s3_key={input.s3_key}")
logger.info(
"[Hatchet] pad_track",
track_index=input.track_index,
s3_key=input.s3_key,
transcript_id=input.transcript_id,
)
try:
# Create fresh storage instance to avoid aioboto3 fork issues
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
source_url = await storage.get_file_url(
input.s3_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=input.bucket_name,
)
with av.open(source_url) as in_container:
start_time_seconds = extract_stream_start_time_from_container(
in_container, input.track_index, logger=logger
)
# If no padding needed, return original S3 key
if start_time_seconds <= 0:
logger.info(
f"Track {input.track_index} requires no padding",
track_index=input.track_index,
)
return PadTrackResult(
padded_key=input.s3_key,
bucket_name=input.bucket_name,
size=0,
track_index=input.track_index,
)
with tempfile.NamedTemporaryFile(suffix=".webm", delete=False) as temp_file:
temp_path = temp_file.name
try:
apply_audio_padding_to_file(
in_container,
temp_path,
start_time_seconds,
input.track_index,
logger=logger,
)
file_size = Path(temp_path).stat().st_size
storage_path = f"file_pipeline_hatchet/{input.transcript_id}/tracks/padded_{input.track_index}.webm"
logger.info(
f"About to upload padded track",
key=storage_path,
size=file_size,
)
with open(temp_path, "rb") as padded_file:
await storage.put_file(storage_path, padded_file)
logger.info(
f"Uploaded padded track to S3",
key=storage_path,
size=file_size,
)
finally:
Path(temp_path).unlink(missing_ok=True)
ctx.log(f"pad_track complete: track {input.track_index} -> {storage_path}")
logger.info(
"[Hatchet] pad_track complete",
track_index=input.track_index,
padded_key=storage_path,
)
# Return S3 key (not presigned URL) - consumer tasks presign on demand
# This avoids stale URLs when workflow is replayed
return PadTrackResult(
padded_key=storage_path,
bucket_name=None, # None = use default transcript storage bucket
size=file_size,
track_index=input.track_index,
)
except Exception as e:
logger.error("[Hatchet] pad_track failed", error=str(e), exc_info=True)
raise
@track_workflow.task(
parents=[pad_track], execution_timeout=timedelta(seconds=600), retries=3
)
async def transcribe_track(input: TrackInput, ctx: Context) -> TranscribeTrackResult:
"""Transcribe audio track using GPU (Modal.com) or local Whisper."""
ctx.log(f"transcribe_track: track {input.track_index}, language={input.language}")
logger.info(
"[Hatchet] transcribe_track",
track_index=input.track_index,
language=input.language,
)
try:
pad_result = ctx.task_output(pad_track)
padded_key = pad_result.padded_key
bucket_name = pad_result.bucket_name
if not padded_key:
raise ValueError("Missing padded_key from pad_track")
# Presign URL on demand (avoids stale URLs on workflow replay)
from reflector.settings import settings # noqa: PLC0415
from reflector.storage.storage_aws import AwsStorage # noqa: PLC0415
storage = AwsStorage(
aws_bucket_name=settings.TRANSCRIPT_STORAGE_AWS_BUCKET_NAME,
aws_region=settings.TRANSCRIPT_STORAGE_AWS_REGION,
aws_access_key_id=settings.TRANSCRIPT_STORAGE_AWS_ACCESS_KEY_ID,
aws_secret_access_key=settings.TRANSCRIPT_STORAGE_AWS_SECRET_ACCESS_KEY,
)
audio_url = await storage.get_file_url(
padded_key,
operation="get_object",
expires_in=PRESIGNED_URL_EXPIRATION_SECONDS,
bucket=bucket_name,
)
from reflector.pipelines.transcription_helpers import ( # noqa: PLC0415
transcribe_file_with_processor,
)
transcript = await transcribe_file_with_processor(audio_url, input.language)
# Tag all words with speaker index
words = []
for word in transcript.words:
word_dict = word.model_dump()
word_dict["speaker"] = input.track_index
words.append(word_dict)
ctx.log(
f"transcribe_track complete: track {input.track_index}, {len(words)} words"
)
logger.info(
"[Hatchet] transcribe_track complete",
track_index=input.track_index,
word_count=len(words),
)
return TranscribeTrackResult(
words=words,
track_index=input.track_index,
)
except Exception as e:
logger.error("[Hatchet] transcribe_track failed", error=str(e), exc_info=True)
raise

View File

@@ -1,14 +1,32 @@
import logging
from typing import Type, TypeVar
from contextvars import ContextVar
from typing import Generic, Type, TypeVar
from uuid import uuid4
from llama_index.core import Settings
from llama_index.core.output_parsers import PydanticOutputParser
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.workflow import (
Context,
Event,
StartEvent,
StopEvent,
Workflow,
step,
)
from llama_index.llms.openai_like import OpenAILike
from pydantic import BaseModel, ValidationError
from workflows.errors import WorkflowTimeoutError
from reflector.utils.retry import retry
T = TypeVar("T", bound=BaseModel)
OutputT = TypeVar("OutputT", bound=BaseModel)
# Session ID for LiteLLM request grouping - set per processing run
llm_session_id: ContextVar[str | None] = ContextVar("llm_session_id", default=None)
logger = logging.getLogger(__name__)
STRUCTURED_RESPONSE_PROMPT_TEMPLATE = """
Based on the following analysis, provide the information in the requested JSON format:
@@ -20,6 +38,158 @@ Analysis:
"""
class LLMParseError(Exception):
"""Raised when LLM output cannot be parsed after retries."""
def __init__(self, output_cls: Type[BaseModel], error_msg: str, attempts: int):
self.output_cls = output_cls
self.error_msg = error_msg
self.attempts = attempts
super().__init__(
f"Failed to parse {output_cls.__name__} after {attempts} attempts: {error_msg}"
)
class ExtractionDone(Event):
"""Event emitted when LLM JSON formatting completes."""
output: str
class ValidationErrorEvent(Event):
"""Event emitted when validation fails."""
error: str
wrong_output: str
class StructuredOutputWorkflow(Workflow, Generic[OutputT]):
"""Workflow for structured output extraction with validation retry.
This workflow handles parse/validation retries only. Network error retries
are handled internally by Settings.llm (OpenAILike max_retries=3).
The caller should NOT wrap this workflow in additional retry logic.
"""
def __init__(
self,
output_cls: Type[OutputT],
max_retries: int = 3,
**kwargs,
):
super().__init__(**kwargs)
self.output_cls: Type[OutputT] = output_cls
self.max_retries = max_retries
self.output_parser = PydanticOutputParser(output_cls)
@step
async def extract(
self, ctx: Context, ev: StartEvent | ValidationErrorEvent
) -> StopEvent | ExtractionDone:
"""Extract structured data from text using two-step LLM process.
Step 1 (first call only): TreeSummarize generates text analysis
Step 2 (every call): Settings.llm.acomplete formats analysis as JSON
"""
current_retries = await ctx.store.get("retries", default=0)
await ctx.store.set("retries", current_retries + 1)
if current_retries >= self.max_retries:
last_error = await ctx.store.get("last_error", default=None)
logger.error(
f"Max retries ({self.max_retries}) reached for {self.output_cls.__name__}"
)
return StopEvent(result={"error": last_error, "attempts": current_retries})
if isinstance(ev, StartEvent):
# First call: run TreeSummarize to get analysis, store in context
prompt = ev.get("prompt")
texts = ev.get("texts")
tone_name = ev.get("tone_name")
if not prompt or not isinstance(texts, list):
raise ValueError(
"StartEvent must contain 'prompt' (str) and 'texts' (list)"
)
summarizer = TreeSummarize(verbose=False)
analysis = await summarizer.aget_response(
prompt, texts, tone_name=tone_name
)
await ctx.store.set("analysis", str(analysis))
reflection = ""
else:
# Retry: reuse analysis from context
analysis = await ctx.store.get("analysis")
if not analysis:
raise RuntimeError("Internal error: analysis not found in context")
wrong_output = ev.wrong_output
if len(wrong_output) > 2000:
wrong_output = wrong_output[:2000] + "... [truncated]"
reflection = (
f"\n\nYour previous response could not be parsed:\n{wrong_output}\n\n"
f"Error:\n{ev.error}\n\n"
"Please try again. Return ONLY valid JSON matching the schema above, "
"with no markdown formatting or extra text."
)
# Step 2: Format analysis as JSON using LLM completion
format_instructions = self.output_parser.format(
"Please structure the above information in the following JSON format:"
)
json_prompt = STRUCTURED_RESPONSE_PROMPT_TEMPLATE.format(
analysis=analysis,
format_instructions=format_instructions + reflection,
)
# Network retries handled by OpenAILike (max_retries=3)
response = await Settings.llm.acomplete(json_prompt)
return ExtractionDone(output=response.text)
@step
async def validate(
self, ctx: Context, ev: ExtractionDone
) -> StopEvent | ValidationErrorEvent:
"""Validate extracted output against Pydantic schema."""
raw_output = ev.output
retries = await ctx.store.get("retries", default=0)
try:
parsed = self.output_parser.parse(raw_output)
if retries > 1:
logger.info(
f"LLM parse succeeded on attempt {retries}/{self.max_retries} "
f"for {self.output_cls.__name__}"
)
return StopEvent(result={"success": parsed})
except (ValidationError, ValueError) as e:
error_msg = self._format_error(e, raw_output)
await ctx.store.set("last_error", error_msg)
logger.error(
f"LLM parse error (attempt {retries}/{self.max_retries}): "
f"{type(e).__name__}: {e}\nRaw response: {raw_output[:500]}"
)
return ValidationErrorEvent(
error=error_msg,
wrong_output=raw_output,
)
def _format_error(self, error: Exception, raw_output: str) -> str:
"""Format error for LLM feedback."""
if isinstance(error, ValidationError):
error_messages = []
for err in error.errors():
field = ".".join(str(loc) for loc in err["loc"])
error_messages.append(f"- {err['msg']} in field '{field}'")
return "Schema validation errors:\n" + "\n".join(error_messages)
else:
return f"Parse error: {str(error)}"
class LLM:
def __init__(self, settings, temperature: float = 0.4, max_tokens: int = 2048):
self.settings_obj = settings
@@ -30,11 +200,12 @@ class LLM:
self.temperature = temperature
self.max_tokens = max_tokens
# Configure llamaindex Settings
self._configure_llamaindex()
def _configure_llamaindex(self):
"""Configure llamaindex Settings with OpenAILike LLM"""
session_id = llm_session_id.get() or f"fallback-{uuid4().hex}"
Settings.llm = OpenAILike(
model=self.model_name,
api_base=self.url,
@@ -44,6 +215,7 @@ class LLM:
is_function_calling_model=False,
temperature=self.temperature,
max_tokens=self.max_tokens,
additional_kwargs={"extra_body": {"litellm_session_id": session_id}},
)
async def get_response(
@@ -60,44 +232,38 @@ class LLM:
texts: list[str],
output_cls: Type[T],
tone_name: str | None = None,
timeout: int | None = None,
) -> T:
"""Get structured output from LLM for non-function-calling models"""
logger = logging.getLogger(__name__)
"""Get structured output from LLM with validation retry via Workflow."""
if timeout is None:
timeout = self.settings_obj.LLM_STRUCTURED_RESPONSE_TIMEOUT
summarizer = TreeSummarize(verbose=True)
response = await summarizer.aget_response(prompt, texts, tone_name=tone_name)
output_parser = PydanticOutputParser(output_cls)
program = LLMTextCompletionProgram.from_defaults(
output_parser=output_parser,
prompt_template_str=STRUCTURED_RESPONSE_PROMPT_TEMPLATE,
verbose=False,
)
format_instructions = output_parser.format(
"Please structure the above information in the following JSON format:"
)
try:
output = await program.acall(
analysis=str(response), format_instructions=format_instructions
async def run_workflow():
workflow = StructuredOutputWorkflow(
output_cls=output_cls,
max_retries=self.settings_obj.LLM_PARSE_MAX_RETRIES + 1,
timeout=timeout,
)
except ValidationError as e:
# Extract the raw JSON from the error details
errors = e.errors()
if errors and "input" in errors[0]:
raw_json = errors[0]["input"]
logger.error(
f"JSON validation failed for {output_cls.__name__}. "
f"Full raw JSON output:\n{raw_json}\n"
f"Validation errors: {errors}"
)
else:
logger.error(
f"JSON validation failed for {output_cls.__name__}. "
f"Validation errors: {errors}"
)
raise
return output
result = await workflow.run(
prompt=prompt,
texts=texts,
tone_name=tone_name,
)
if "error" in result:
error_msg = result["error"] or "Max retries exceeded"
raise LLMParseError(
output_cls=output_cls,
error_msg=error_msg,
attempts=result.get("attempts", 0),
)
return result["success"]
return await retry(run_workflow)(
retry_attempts=3,
retry_backoff_interval=1.0,
retry_backoff_max=30.0,
retry_ignore_exc_types=(WorkflowTimeoutError,),
)

View File

@@ -97,13 +97,8 @@ class PipelineMainFile(PipelineMainBase):
},
)
# Extract audio and write to transcript location
audio_path = await self.extract_and_write_audio(file_path, transcript)
# Upload for processing
audio_url = await self.upload_audio(audio_path, transcript)
# Run parallel processing
await self.run_parallel_processing(
audio_path,
audio_url,
@@ -197,7 +192,6 @@ class PipelineMainFile(PipelineMainBase):
transcript_result = results[0]
diarization_result = results[1]
# Handle errors - raise any exception that occurred
self._handle_gather_exceptions(results, "parallel processing")
for result in results:
if isinstance(result, Exception):
@@ -212,7 +206,6 @@ class PipelineMainFile(PipelineMainBase):
transcript=transcript_result, diarization=diarization_result or []
)
# Store result for retrieval
diarized_transcript: Transcript | None = None
async def capture_result(transcript):
@@ -309,6 +302,7 @@ class PipelineMainFile(PipelineMainBase):
transcript,
on_long_summary_callback=self.on_long_summary,
on_short_summary_callback=self.on_short_summary,
on_action_items_callback=self.on_action_items,
empty_pipeline=self.empty_pipeline,
logger=self.logger,
)
@@ -340,7 +334,6 @@ async def task_send_webhook_if_needed(*, transcript_id: str):
@asynctask
async def task_pipeline_file_process(*, transcript_id: str):
"""Celery task for file pipeline processing"""
transcript = await transcripts_controller.get_by_id(transcript_id)
if not transcript:
raise Exception(f"Transcript {transcript_id} not found")
@@ -349,7 +342,6 @@ async def task_pipeline_file_process(*, transcript_id: str):
try:
await pipeline.set_status(transcript_id, "processing")
# Find the file to process
audio_file = next(transcript.data_path.glob("upload.*"), None)
if not audio_file:
audio_file = next(transcript.data_path.glob("audio.*"), None)

View File

@@ -27,6 +27,7 @@ from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import (
Transcript,
TranscriptActionItems,
TranscriptDuration,
TranscriptFinalLongSummary,
TranscriptFinalShortSummary,
@@ -111,7 +112,7 @@ def get_transcript(func):
transcript_id = kwargs.pop("transcript_id")
transcript = await transcripts_controller.get_by_id(transcript_id=transcript_id)
if not transcript:
raise Exception("Transcript {transcript_id} not found")
raise Exception(f"Transcript {transcript_id} not found")
# Enhanced logger with Celery task context
tlogger = logger.bind(transcript_id=transcript.id)
@@ -306,6 +307,23 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
data=final_short_summary,
)
@broadcast_to_sockets
async def on_action_items(self, data):
action_items = TranscriptActionItems(action_items=data.action_items)
async with self.transaction():
transcript = await self.get_transcript()
await transcripts_controller.update(
transcript,
{
"action_items": action_items.action_items,
},
)
return await transcripts_controller.append_event(
transcript=transcript,
event="ACTION_ITEMS",
data=action_items,
)
@broadcast_to_sockets
async def on_duration(self, data):
async with self.transaction():
@@ -465,6 +483,7 @@ class PipelineMainFinalSummaries(PipelineMainFromTopics):
transcript=self._transcript,
callback=self.on_long_summary,
on_short_summary=self.on_short_summary,
on_action_items=self.on_action_items,
),
]

View File

@@ -1,11 +1,8 @@
import asyncio
import math
import tempfile
from fractions import Fraction
from pathlib import Path
import av
from av.audio.resampler import AudioResampler
from celery import chain, shared_task
from reflector.asynctask import asynctask
@@ -32,6 +29,15 @@ from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
from reflector.processors.types import TitleSummary
from reflector.processors.types import Transcript as TranscriptType
from reflector.storage import Storage, get_transcripts_storage
from reflector.utils.audio_constants import PRESIGNED_URL_EXPIRATION_SECONDS
from reflector.utils.audio_mixdown import (
detect_sample_rate_from_tracks,
mixdown_tracks_pyav,
)
from reflector.utils.audio_padding import (
apply_audio_padding_to_file,
extract_stream_start_time_from_container,
)
from reflector.utils.daily import (
filter_cam_audio_tracks,
parse_daily_recording_filename,
@@ -39,13 +45,6 @@ from reflector.utils.daily import (
from reflector.utils.string import NonEmptyString
from reflector.video_platforms.factory import create_platform_client
# Audio encoding constants
OPUS_STANDARD_SAMPLE_RATE = 48000
OPUS_DEFAULT_BIT_RATE = 128000
# Storage operation constants
PRESIGNED_URL_EXPIRATION_SECONDS = 7200 # 2 hours
class PipelineMainMultitrack(PipelineMainBase):
def __init__(self, transcript_id: str):
@@ -125,8 +124,8 @@ class PipelineMainMultitrack(PipelineMainBase):
try:
# PyAV streams input from S3 URL efficiently (2-5MB fixed overhead for codec/filters)
with av.open(track_url) as in_container:
start_time_seconds = self._extract_stream_start_time_from_container(
in_container, track_idx
start_time_seconds = extract_stream_start_time_from_container(
in_container, track_idx, logger=self.logger
)
if start_time_seconds <= 0:
@@ -144,8 +143,12 @@ class PipelineMainMultitrack(PipelineMainBase):
temp_path = temp_file.name
try:
self._apply_audio_padding_to_file(
in_container, temp_path, start_time_seconds, track_idx
apply_audio_padding_to_file(
in_container,
temp_path,
start_time_seconds,
track_idx,
logger=self.logger,
)
storage_path = (
@@ -156,7 +159,6 @@ class PipelineMainMultitrack(PipelineMainBase):
with open(temp_path, "rb") as padded_file:
await storage.put_file(storage_path, padded_file)
finally:
# Clean up temp file
Path(temp_path).unlink(missing_ok=True)
padded_url = await storage.get_file_url(
@@ -186,309 +188,28 @@ class PipelineMainMultitrack(PipelineMainBase):
f"Track {track_idx} padding failed - transcript would have incorrect timestamps"
) from e
def _extract_stream_start_time_from_container(
self, container, track_idx: int
) -> float:
"""
Extract meeting-relative start time from WebM stream metadata.
Uses PyAV to read stream.start_time from WebM container.
More accurate than filename timestamps by ~209ms due to network/encoding delays.
"""
start_time_seconds = 0.0
try:
audio_streams = [s for s in container.streams if s.type == "audio"]
stream = audio_streams[0] if audio_streams else container.streams[0]
# 1) Try stream-level start_time (most reliable for Daily.co tracks)
if stream.start_time is not None and stream.time_base is not None:
start_time_seconds = float(stream.start_time * stream.time_base)
# 2) Fallback to container-level start_time (in av.time_base units)
if (start_time_seconds <= 0) and (container.start_time is not None):
start_time_seconds = float(container.start_time * av.time_base)
# 3) Fallback to first packet DTS in stream.time_base
if start_time_seconds <= 0:
for packet in container.demux(stream):
if packet.dts is not None:
start_time_seconds = float(packet.dts * stream.time_base)
break
except Exception as e:
self.logger.warning(
"PyAV metadata read failed; assuming 0 start_time",
track_idx=track_idx,
error=str(e),
)
start_time_seconds = 0.0
self.logger.info(
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s",
track_idx=track_idx,
)
return start_time_seconds
def _apply_audio_padding_to_file(
self,
in_container,
output_path: str,
start_time_seconds: float,
track_idx: int,
) -> None:
"""Apply silence padding to audio track using PyAV filter graph, writing to file"""
delay_ms = math.floor(start_time_seconds * 1000)
self.logger.info(
f"Padding track {track_idx} with {delay_ms}ms delay using PyAV",
track_idx=track_idx,
delay_ms=delay_ms,
)
try:
with av.open(output_path, "w", format="webm") as out_container:
in_stream = next(
(s for s in in_container.streams if s.type == "audio"), None
)
if in_stream is None:
raise Exception("No audio stream in input")
out_stream = out_container.add_stream(
"libopus", rate=OPUS_STANDARD_SAMPLE_RATE
)
out_stream.bit_rate = OPUS_DEFAULT_BIT_RATE
graph = av.filter.Graph()
abuf_args = (
f"time_base=1/{OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_rate={OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_fmt=s16:"
f"channel_layout=stereo"
)
src = graph.add("abuffer", args=abuf_args, name="src")
aresample_f = graph.add("aresample", args="async=1", name="ares")
# adelay requires one delay value per channel separated by '|'
delays_arg = f"{delay_ms}|{delay_ms}"
adelay_f = graph.add(
"adelay", args=f"delays={delays_arg}:all=1", name="delay"
)
sink = graph.add("abuffersink", name="sink")
src.link_to(aresample_f)
aresample_f.link_to(adelay_f)
adelay_f.link_to(sink)
graph.configure()
resampler = AudioResampler(
format="s16", layout="stereo", rate=OPUS_STANDARD_SAMPLE_RATE
)
# Decode -> resample -> push through graph -> encode Opus
for frame in in_container.decode(in_stream):
out_frames = resampler.resample(frame) or []
for rframe in out_frames:
rframe.sample_rate = OPUS_STANDARD_SAMPLE_RATE
rframe.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
src.push(rframe)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
src.push(None)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
for packet in out_stream.encode(None):
out_container.mux(packet)
except Exception as e:
self.logger.error(
"PyAV padding failed for track",
track_idx=track_idx,
delay_ms=delay_ms,
error=str(e),
exc_info=True,
)
raise
async def mixdown_tracks(
self,
track_urls: list[str],
writer: AudioFileWriterProcessor,
offsets_seconds: list[float] | None = None,
) -> None:
"""Multi-track mixdown using PyAV filter graph (amix), reading from S3 presigned URLs"""
target_sample_rate: int | None = None
for url in track_urls:
if not url:
continue
container = None
try:
container = av.open(url)
for frame in container.decode(audio=0):
target_sample_rate = frame.sample_rate
break
except Exception:
continue
finally:
if container is not None:
container.close()
if target_sample_rate:
break
"""Multi-track mixdown using PyAV filter graph (amix), reading from S3 presigned URLs."""
target_sample_rate = detect_sample_rate_from_tracks(
track_urls, logger=self.logger
)
if not target_sample_rate:
self.logger.error("Mixdown failed - no decodable audio frames found")
raise Exception("Mixdown failed: No decodable audio frames in any track")
# Build PyAV filter graph:
# N abuffer (s32/stereo)
# -> optional adelay per input (for alignment)
# -> amix (s32)
# -> aformat(s16)
# -> sink
graph = av.filter.Graph()
inputs = []
valid_track_urls = [url for url in track_urls if url]
input_offsets_seconds = None
if offsets_seconds is not None:
input_offsets_seconds = [
offsets_seconds[i] for i, url in enumerate(track_urls) if url
]
for idx, url in enumerate(valid_track_urls):
args = (
f"time_base=1/{target_sample_rate}:"
f"sample_rate={target_sample_rate}:"
f"sample_fmt=s32:"
f"channel_layout=stereo"
)
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
inputs.append(in_ctx)
if not inputs:
self.logger.error("Mixdown failed - no valid inputs for graph")
raise Exception("Mixdown failed: No valid inputs for filter graph")
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
fmt = graph.add(
"aformat",
args=(
f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}"
),
name="fmt",
await mixdown_tracks_pyav(
track_urls,
writer,
target_sample_rate,
offsets_seconds=offsets_seconds,
logger=self.logger,
)
sink = graph.add("abuffersink", name="out")
# Optional per-input delay before mixing
delays_ms: list[int] = []
if input_offsets_seconds is not None:
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
delays_ms = [
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
]
else:
delays_ms = [0 for _ in inputs]
for idx, in_ctx in enumerate(inputs):
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
if delay_ms > 0:
# adelay requires one value per channel; use same for stereo
adelay = graph.add(
"adelay",
args=f"delays={delay_ms}|{delay_ms}:all=1",
name=f"delay{idx}",
)
in_ctx.link_to(adelay)
adelay.link_to(mixer, 0, idx)
else:
in_ctx.link_to(mixer, 0, idx)
mixer.link_to(fmt)
fmt.link_to(sink)
graph.configure()
containers = []
try:
# Open all containers with cleanup guaranteed
for i, url in enumerate(valid_track_urls):
try:
c = av.open(url)
containers.append(c)
except Exception as e:
self.logger.warning(
"Mixdown: failed to open container from URL",
input=i,
url=url,
error=str(e),
)
if not containers:
self.logger.error("Mixdown failed - no valid containers opened")
raise Exception("Mixdown failed: Could not open any track containers")
decoders = [c.decode(audio=0) for c in containers]
active = [True] * len(decoders)
resamplers = [
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
for _ in decoders
]
while any(active):
for i, (dec, is_active) in enumerate(zip(decoders, active)):
if not is_active:
continue
try:
frame = next(dec)
except StopIteration:
active[i] = False
continue
if frame.sample_rate != target_sample_rate:
continue
out_frames = resamplers[i].resample(frame) or []
for rf in out_frames:
rf.sample_rate = target_sample_rate
rf.time_base = Fraction(1, target_sample_rate)
inputs[i].push(rf)
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
for in_ctx in inputs:
in_ctx.push(None)
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
finally:
# Cleanup all containers, even if processing failed
for c in containers:
if c is not None:
try:
c.close()
except Exception:
pass # Best effort cleanup
@broadcast_to_sockets
async def set_status(self, transcript_id: str, status: TranscriptStatus):
async with self.lock_transaction():
@@ -764,6 +485,7 @@ class PipelineMainMultitrack(PipelineMainBase):
transcript,
on_long_summary_callback=self.on_long_summary,
on_short_summary_callback=self.on_short_summary,
on_action_items_callback=self.on_action_items,
empty_pipeline=self.empty_pipeline,
logger=self.logger,
)

View File

@@ -18,6 +18,7 @@ from reflector.processors import (
)
from reflector.processors.types import TitleSummary
from reflector.processors.types import Transcript as TranscriptType
from reflector.utils.transcript_constants import TOPIC_CHUNK_WORD_COUNT
class EmptyPipeline:
@@ -38,7 +39,7 @@ async def detect_topics(
on_topic_callback: Callable,
empty_pipeline: EmptyPipeline,
) -> list[TitleSummary]:
chunk_size = 300
chunk_size = TOPIC_CHUNK_WORD_COUNT
topics: list[TitleSummary] = []
async def on_topic(topic: TitleSummary):
@@ -74,13 +75,24 @@ async def generate_title(
logger.warning("No topics for title generation")
return
logger.info(
"generate_title: creating TranscriptFinalTitleProcessor",
topic_count=len(topics),
)
processor = TranscriptFinalTitleProcessor(callback=on_title_callback)
processor.set_pipeline(empty_pipeline)
for topic in topics:
for i, topic in enumerate(topics):
logger.info(
"generate_title: pushing topic to processor",
topic_index=i,
topic_title=topic.title[:50] if topic.title else None,
)
await processor.push(topic)
logger.info("generate_title: calling processor.flush() - this triggers LLM call")
await processor.flush()
logger.info("generate_title: processor.flush() completed")
async def generate_summaries(
@@ -89,6 +101,7 @@ async def generate_summaries(
*,
on_long_summary_callback: Callable,
on_short_summary_callback: Callable,
on_action_items_callback: Callable,
empty_pipeline: EmptyPipeline,
logger: structlog.BoundLogger,
):
@@ -96,14 +109,30 @@ async def generate_summaries(
logger.warning("No topics for summary generation")
return
processor = TranscriptFinalSummaryProcessor(
transcript=transcript,
callback=on_long_summary_callback,
on_short_summary=on_short_summary_callback,
logger.info(
"generate_summaries: creating TranscriptFinalSummaryProcessor",
topic_count=len(topics),
)
processor_kwargs = {
"transcript": transcript,
"callback": on_long_summary_callback,
"on_short_summary": on_short_summary_callback,
"on_action_items": on_action_items_callback,
}
processor = TranscriptFinalSummaryProcessor(**processor_kwargs)
processor.set_pipeline(empty_pipeline)
for topic in topics:
for i, topic in enumerate(topics):
logger.info(
"generate_summaries: pushing topic to processor",
topic_index=i,
topic_title=topic.title[:50] if topic.title else None,
)
await processor.push(topic)
logger.info(
"generate_summaries: calling processor.flush() - this triggers LLM calls"
)
await processor.flush()
logger.info("generate_summaries: processor.flush() completed")

View File

@@ -0,0 +1,30 @@
"""
LLM prompts for transcript processing.
Extracted to a separate module to avoid circular imports when importing
from processor modules (which import LLM/settings at module level).
"""
from textwrap import dedent
TOPIC_PROMPT = dedent(
"""
Analyze the following transcript segment and extract the main topic being discussed.
Focus on the substantive content and ignore small talk or administrative chatter.
Create a title that:
- Captures the specific subject matter being discussed
- Is descriptive and self-explanatory
- Uses professional language
- Is specific rather than generic
For the summary:
- Summarize the key points in maximum two sentences
- Focus on what was discussed, decided, or accomplished
- Be concise but informative
<transcript>
{text}
</transcript>
"""
).strip()

View File

@@ -0,0 +1,91 @@
"""
LLM prompts for summary generation.
Extracted to a separate module to avoid circular imports when importing
from summary_builder.py (which imports LLM/settings at module level).
"""
from textwrap import dedent
def build_participant_instructions(participant_names: list[str]) -> str:
"""Build participant context instructions for LLM prompts."""
if not participant_names:
return ""
participants_list = ", ".join(participant_names)
return dedent(
f"""
# IMPORTANT: Participant Names
The following participants are identified in this conversation: {participants_list}
You MUST use these specific participant names when referring to people in your response.
Do NOT use generic terms like "a participant", "someone", "attendee", "Speaker 1", "Speaker 2", etc.
Always refer to people by their actual names (e.g., "John suggested..." not "A participant suggested...").
"""
).strip()
DETAILED_SUBJECT_PROMPT_TEMPLATE = dedent(
"""
Get me information about the topic "{subject}"
# RESPONSE GUIDELINES
Follow this structured approach to create the topic summary:
- Highlight important arguments, insights, or data presented.
- Outline decisions made.
- Indicate any decisions reached, including any rationale or key factors
that influenced these decisions.
- Detail action items and responsibilities.
- For each decision or unresolved issue, list specific action items agreed
upon, along with assigned individuals or teams responsible for each task.
- Specify deadlines or timelines if mentioned. For each action item,
include any deadlines or timeframes discussed for completion or follow-up.
- Mention unresolved issues or topics needing further discussion, aiding in
planning future meetings or follow-up actions.
- Do not include topic unrelated to {subject}.
# OUTPUT
Your summary should be clear, concise, and structured, covering all major
points, decisions, and action items from the meeting. It should be easy to
understand for someone not present, providing a comprehensive understanding
of what transpired and what needs to be done next. The summary should not
exceed one page to ensure brevity and focus.
"""
).strip()
PARAGRAPH_SUMMARY_PROMPT = dedent(
"""
Summarize the mentioned topic in 1 paragraph.
It will be integrated into the final summary, so just for this topic.
"""
).strip()
RECAP_PROMPT = dedent(
"""
Provide a high-level quick recap of the following meeting, fitting in one paragraph.
Do not include decisions, action items or unresolved issue, just highlight the high moments.
Just dive into the meeting, be concise and do not include unnecessary details.
As we already know it is a meeting, do not start with 'During the meeting' or equivalent.
"""
).strip()
def build_summary_markdown(recap: str, summaries: list[dict[str, str]]) -> str:
"""Build markdown summary from recap and subject summaries."""
lines: list[str] = []
if recap:
lines.append("# Quick recap")
lines.append("")
lines.append(recap)
lines.append("")
if summaries:
lines.append("# Summary")
lines.append("")
for summary in summaries:
lines.append(f"**{summary['subject']}**")
lines.append(summary["summary"])
lines.append("")
return "\n".join(lines)

View File

@@ -15,6 +15,13 @@ import structlog
from pydantic import BaseModel, Field
from reflector.llm import LLM
from reflector.processors.summary.prompts import (
DETAILED_SUBJECT_PROMPT_TEMPLATE,
PARAGRAPH_SUMMARY_PROMPT,
RECAP_PROMPT,
build_participant_instructions,
build_summary_markdown,
)
from reflector.settings import settings
T = TypeVar("T", bound=BaseModel)
@@ -52,47 +59,33 @@ SUBJECTS_PROMPT = dedent(
"""
).strip()
DETAILED_SUBJECT_PROMPT_TEMPLATE = dedent(
ACTION_ITEMS_PROMPT = dedent(
"""
Get me information about the topic "{subject}"
Identify action items from this meeting transcript. Your goal is to identify what was decided and what needs to happen next.
# RESPONSE GUIDELINES
Follow this structured approach to create the topic summary:
- Highlight important arguments, insights, or data presented.
- Outline decisions made.
- Indicate any decisions reached, including any rationale or key factors
that influenced these decisions.
- Detail action items and responsibilities.
- For each decision or unresolved issue, list specific action items agreed
upon, along with assigned individuals or teams responsible for each task.
- Specify deadlines or timelines if mentioned. For each action item,
include any deadlines or timeframes discussed for completion or follow-up.
- Mention unresolved issues or topics needing further discussion, aiding in
planning future meetings or follow-up actions.
- Do not include topic unrelated to {subject}.
Look for:
# OUTPUT
Your summary should be clear, concise, and structured, covering all major
points, decisions, and action items from the meeting. It should be easy to
understand for someone not present, providing a comprehensive understanding
of what transpired and what needs to be done next. The summary should not
exceed one page to ensure brevity and focus.
"""
).strip()
1. **Decisions Made**: Any decisions, choices, or conclusions reached during the meeting. For each decision:
- What was decided? (be specific)
- Who made the decision or was involved? (use actual participant names)
- Why was this decision made? (key factors, reasoning, or rationale)
PARAGRAPH_SUMMARY_PROMPT = dedent(
"""
Summarize the mentioned topic in 1 paragraph.
It will be integrated into the final summary, so just for this topic.
"""
).strip()
2. **Next Steps / Action Items**: Any tasks, follow-ups, or actions that were mentioned or assigned. For each action item:
- What specific task needs to be done? (be concrete and actionable)
- Who is responsible? (use actual participant names if mentioned, or "team" if unclear)
- When is it due? (any deadlines, timeframes, or "by next meeting" type commitments)
- What context is needed? (any additional details that help understand the task)
RECAP_PROMPT = dedent(
"""
Provide a high-level quick recap of the following meeting, fitting in one paragraph.
Do not include decisions, action items or unresolved issue, just highlight the high moments.
Just dive into the meeting, be concise and do not include unnecessary details.
As we already know it is a meeting, do not start with 'During the meeting' or equivalent.
Guidelines:
- Be thorough and identify all action items, even if they seem minor
- Include items that were agreed upon, assigned, or committed to
- Include decisions even if they seem obvious or implicit
- If someone says "I'll do X" or "We should do Y", that's an action item
- If someone says "Let's go with option A", that's a decision
- Use the exact participant names from the transcript
- If no participant name is mentioned, you can leave assigned_to/decided_by as null
Only return empty lists if the transcript contains NO decisions and NO action items whatsoever.
"""
).strip()
@@ -155,6 +148,53 @@ class SubjectsResponse(BaseModel):
)
class ActionItem(BaseModel):
"""A single action item from the meeting"""
task: str = Field(description="The task or action item to be completed")
assigned_to: str | None = Field(
default=None, description="Person or team assigned to this task (name)"
)
assigned_to_participant_id: str | None = Field(
default=None, description="Participant ID if assigned_to matches a participant"
)
deadline: str | None = Field(
default=None, description="Deadline or timeframe mentioned for this task"
)
context: str | None = Field(
default=None, description="Additional context or notes about this task"
)
class Decision(BaseModel):
"""A decision made during the meeting"""
decision: str = Field(description="What was decided")
rationale: str | None = Field(
default=None,
description="Reasoning or key factors that influenced this decision",
)
decided_by: str | None = Field(
default=None, description="Person or group who made the decision (name)"
)
decided_by_participant_id: str | None = Field(
default=None, description="Participant ID if decided_by matches a participant"
)
class ActionItemsResponse(BaseModel):
"""Pydantic model for identified action items"""
decisions: list[Decision] = Field(
default_factory=list,
description="List of decisions made during the meeting",
)
next_steps: list[ActionItem] = Field(
default_factory=list,
description="List of action items and next steps to be taken",
)
class SummaryBuilder:
def __init__(self, llm: LLM, filename: str | None = None, logger=None) -> None:
self.transcript: str | None = None
@@ -166,6 +206,8 @@ class SummaryBuilder:
self.model_name: str = llm.model_name
self.logger = logger or structlog.get_logger()
self.participant_instructions: str | None = None
self.action_items: ActionItemsResponse | None = None
self.participant_name_to_id: dict[str, str] = {}
if filename:
self.read_transcript_from_file(filename)
@@ -189,13 +231,20 @@ class SummaryBuilder:
self.llm = llm
async def _get_structured_response(
self, prompt: str, output_cls: Type[T], tone_name: str | None = None
self,
prompt: str,
output_cls: Type[T],
tone_name: str | None = None,
timeout: int | None = None,
) -> T:
"""Generic function to get structured output from LLM for non-function-calling models."""
# Add participant instructions to the prompt if available
enhanced_prompt = self._enhance_prompt_with_participants(prompt)
return await self.llm.get_structured_response(
enhanced_prompt, [self.transcript], output_cls, tone_name=tone_name
enhanced_prompt,
[self.transcript],
output_cls,
tone_name=tone_name,
timeout=timeout,
)
async def _get_response(
@@ -216,11 +265,19 @@ class SummaryBuilder:
# Participants
# ----------------------------------------------------------------------------
def set_known_participants(self, participants: list[str]) -> None:
def set_known_participants(
self,
participants: list[str],
participant_name_to_id: dict[str, str] | None = None,
) -> None:
"""
Set known participants directly without LLM identification.
This is used when participants are already identified and stored.
They are appended at the end of the transcript, providing more context for the assistant.
Args:
participants: List of participant names
participant_name_to_id: Optional mapping of participant names to their IDs
"""
if not participants:
self.logger.warning("No participants provided")
@@ -231,21 +288,13 @@ class SummaryBuilder:
participants=participants,
)
if participant_name_to_id:
self.participant_name_to_id = participant_name_to_id
participants_md = self.format_list_md(participants)
self.transcript += f"\n\n# Participants\n\n{participants_md}"
# Set instructions that will be automatically added to all prompts
participants_list = ", ".join(participants)
self.participant_instructions = dedent(
f"""
# IMPORTANT: Participant Names
The following participants are identified in this conversation: {participants_list}
You MUST use these specific participant names when referring to people in your response.
Do NOT use generic terms like "a participant", "someone", "attendee", "Speaker 1", "Speaker 2", etc.
Always refer to people by their actual names (e.g., "John suggested..." not "A participant suggested...").
"""
).strip()
self.participant_instructions = build_participant_instructions(participants)
async def identify_participants(self) -> None:
"""
@@ -281,18 +330,9 @@ class SummaryBuilder:
participants_md = self.format_list_md(unique_participants)
self.transcript += f"\n\n# Participants\n\n{participants_md}"
# Set instructions that will be automatically added to all prompts
participants_list = ", ".join(unique_participants)
self.participant_instructions = dedent(
f"""
# IMPORTANT: Participant Names
The following participants are identified in this conversation: {participants_list}
You MUST use these specific participant names when referring to people in your response.
Do NOT use generic terms like "a participant", "someone", "attendee", "Speaker 1", "Speaker 2", etc.
Always refer to people by their actual names (e.g., "John suggested..." not "A participant suggested...").
"""
).strip()
self.participant_instructions = build_participant_instructions(
unique_participants
)
else:
self.logger.warning("No participants identified in the transcript")
@@ -413,6 +453,92 @@ class SummaryBuilder:
self.recap = str(recap_response)
self.logger.info(f"Quick recap: {self.recap}")
def _map_participant_names_to_ids(
self, response: ActionItemsResponse
) -> ActionItemsResponse:
"""Map participant names in action items to participant IDs."""
if not self.participant_name_to_id:
return response
decisions = []
for decision in response.decisions:
new_decision = decision.model_copy()
if (
decision.decided_by
and decision.decided_by in self.participant_name_to_id
):
new_decision.decided_by_participant_id = self.participant_name_to_id[
decision.decided_by
]
decisions.append(new_decision)
next_steps = []
for item in response.next_steps:
new_item = item.model_copy()
if item.assigned_to and item.assigned_to in self.participant_name_to_id:
new_item.assigned_to_participant_id = self.participant_name_to_id[
item.assigned_to
]
next_steps.append(new_item)
return ActionItemsResponse(decisions=decisions, next_steps=next_steps)
async def identify_action_items(self) -> ActionItemsResponse | None:
"""Identify action items (decisions and next steps) from the transcript."""
self.logger.info("--- identify action items using TreeSummarize")
if not self.transcript:
self.logger.warning(
"No transcript available for action items identification"
)
self.action_items = None
return None
action_items_prompt = ACTION_ITEMS_PROMPT
try:
response = await self._get_structured_response(
action_items_prompt,
ActionItemsResponse,
tone_name="Action item identifier",
timeout=settings.LLM_STRUCTURED_RESPONSE_TIMEOUT,
)
response = self._map_participant_names_to_ids(response)
self.action_items = response
self.logger.info(
f"Identified {len(response.decisions)} decisions and {len(response.next_steps)} action items",
decisions_count=len(response.decisions),
next_steps_count=len(response.next_steps),
)
if response.decisions:
self.logger.debug(
"Decisions identified",
decisions=[d.decision for d in response.decisions],
)
if response.next_steps:
self.logger.debug(
"Action items identified",
tasks=[item.task for item in response.next_steps],
)
if not response.decisions and not response.next_steps:
self.logger.warning(
"No action items identified from transcript",
transcript_length=len(self.transcript),
)
return response
except Exception as e:
self.logger.error(
f"Error identifying action items: {e}",
exc_info=True,
)
self.action_items = None
return None
async def generate_summary(self, only_subjects: bool = False) -> None:
"""
Generate summary by extracting subjects, creating summaries for each, and generating a recap.
@@ -424,28 +550,14 @@ class SummaryBuilder:
await self.generate_subject_summaries()
await self.generate_recap()
await self.identify_action_items()
# ----------------------------------------------------------------------------
# Markdown
# ----------------------------------------------------------------------------
def as_markdown(self) -> str:
lines: list[str] = []
if self.recap:
lines.append("# Quick recap")
lines.append("")
lines.append(self.recap)
lines.append("")
if self.summaries:
lines.append("# Summary")
lines.append("")
for summary in self.summaries:
lines.append(f"**{summary['subject']}**")
lines.append(summary["summary"])
lines.append("")
return "\n".join(lines)
return build_summary_markdown(self.recap, self.summaries)
def format_list_md(self, data: list[str]) -> str:
return "\n".join([f"- {item}" for item in data])
@@ -526,8 +638,6 @@ if __name__ == "__main__":
if args.summary:
await sm.generate_summary()
# Note: action items generation has been removed
print("")
print("-" * 80)
print("")

View File

@@ -1,7 +1,12 @@
from reflector.llm import LLM
from reflector.processors.base import Processor
from reflector.processors.summary.summary_builder import SummaryBuilder
from reflector.processors.types import FinalLongSummary, FinalShortSummary, TitleSummary
from reflector.processors.types import (
ActionItems,
FinalLongSummary,
FinalShortSummary,
TitleSummary,
)
from reflector.settings import settings
@@ -27,15 +32,20 @@ class TranscriptFinalSummaryProcessor(Processor):
builder = SummaryBuilder(self.llm, logger=self.logger)
builder.set_transcript(text)
# Use known participants if available, otherwise identify them
if self.transcript and self.transcript.participants:
# Extract participant names from the stored participants
participant_names = [p.name for p in self.transcript.participants if p.name]
if participant_names:
self.logger.info(
f"Using {len(participant_names)} known participants from transcript"
)
builder.set_known_participants(participant_names)
participant_name_to_id = {
p.name: p.id
for p in self.transcript.participants
if p.name and p.id
}
builder.set_known_participants(
participant_names, participant_name_to_id=participant_name_to_id
)
else:
self.logger.info(
"Participants field exists but is empty, identifying participants"
@@ -63,7 +73,6 @@ class TranscriptFinalSummaryProcessor(Processor):
self.logger.warning("No summary to output")
return
# build the speakermap from the transcript
speakermap = {}
if self.transcript:
speakermap = {
@@ -76,8 +85,6 @@ class TranscriptFinalSummaryProcessor(Processor):
speakermap=speakermap,
)
# build the transcript as a single string
# Replace speaker IDs with actual participant names if available
text_transcript = []
unique_speakers = set()
for topic in self.chunks:
@@ -111,4 +118,9 @@ class TranscriptFinalSummaryProcessor(Processor):
)
await self.emit(final_short_summary, name="short_summary")
if self.builder and self.builder.action_items:
action_items = self.builder.action_items.model_dump()
action_items = ActionItems(action_items=action_items)
await self.emit(action_items, name="action_items")
await self.emit(final_long_summary)

View File

@@ -1,35 +1,12 @@
from textwrap import dedent
from pydantic import AliasChoices, BaseModel, Field
from reflector.llm import LLM
from reflector.processors.base import Processor
from reflector.processors.prompts import TOPIC_PROMPT
from reflector.processors.types import TitleSummary, Transcript
from reflector.settings import settings
from reflector.utils.text import clean_title
TOPIC_PROMPT = dedent(
"""
Analyze the following transcript segment and extract the main topic being discussed.
Focus on the substantive content and ignore small talk or administrative chatter.
Create a title that:
- Captures the specific subject matter being discussed
- Is descriptive and self-explanatory
- Uses professional language
- Is specific rather than generic
For the summary:
- Summarize the key points in maximum two sentences
- Focus on what was discussed, decided, or accomplished
- Be concise but informative
<transcript>
{text}
</transcript>
"""
).strip()
class TopicResponse(BaseModel):
"""Structured response for topic detection"""
@@ -78,7 +55,11 @@ class TranscriptTopicDetectorProcessor(Processor):
"""
prompt = TOPIC_PROMPT.format(text=text)
response = await self.llm.get_structured_response(
prompt, [text], TopicResponse, tone_name="Topic analyzer"
prompt,
[text],
TopicResponse,
tone_name="Topic analyzer",
timeout=settings.LLM_STRUCTURED_RESPONSE_TIMEOUT,
)
return response

View File

@@ -264,6 +264,10 @@ class FinalShortSummary(BaseModel):
duration: float
class ActionItems(BaseModel):
action_items: dict # JSON-serializable dict from ActionItemsResponse
class FinalTitle(BaseModel):
title: str

View File

@@ -11,13 +11,19 @@ from typing import Literal, Union, assert_never
import celery
from celery.result import AsyncResult
from hatchet_sdk.clients.rest.exceptions import ApiException
from hatchet_sdk.clients.rest.models import V1TaskStatus
from reflector.db.recordings import recordings_controller
from reflector.db.transcripts import Transcript
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import Transcript, transcripts_controller
from reflector.hatchet.client import HatchetClientManager
from reflector.logger import logger
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
from reflector.pipelines.main_multitrack_pipeline import (
task_pipeline_multitrack_process,
)
from reflector.settings import settings
from reflector.utils.string import NonEmptyString
@@ -37,6 +43,8 @@ class MultitrackProcessingConfig:
transcript_id: NonEmptyString
bucket_name: NonEmptyString
track_keys: list[str]
recording_id: NonEmptyString | None = None
room_id: NonEmptyString | None = None
mode: Literal["multitrack"] = "multitrack"
@@ -49,6 +57,7 @@ class ValidationOk:
# transcript currently doesnt always have recording_id
recording_id: NonEmptyString | None
transcript_id: NonEmptyString
room_id: NonEmptyString | None = None
@dataclass
@@ -93,9 +102,11 @@ async def validate_transcript_for_processing(
if transcript.locked:
return ValidationLocked(detail="Recording is locked")
if transcript.status == "idle":
# hatchet is idempotent anyways + if it wasn't dispatched successfully
if transcript.status == "idle" and not settings.HATCHET_ENABLED:
return ValidationNotReady(detail="Recording is not ready for processing")
# Check Celery tasks
if task_is_scheduled_or_active(
"reflector.pipelines.main_file_pipeline.task_pipeline_file_process",
transcript_id=transcript.id,
@@ -105,8 +116,23 @@ async def validate_transcript_for_processing(
):
return ValidationAlreadyScheduled(detail="already running")
if settings.HATCHET_ENABLED and transcript.workflow_run_id:
try:
status = await HatchetClientManager.get_workflow_run_status(
transcript.workflow_run_id
)
if status in (V1TaskStatus.RUNNING, V1TaskStatus.QUEUED):
return ValidationAlreadyScheduled(
detail="Hatchet workflow already running"
)
except ApiException:
# Workflow might be gone (404) or API issue - allow processing
pass
return ValidationOk(
recording_id=transcript.recording_id, transcript_id=transcript.id
recording_id=transcript.recording_id,
transcript_id=transcript.id,
room_id=transcript.room_id,
)
@@ -116,6 +142,7 @@ async def prepare_transcript_processing(validation: ValidationOk) -> PrepareResu
"""
bucket_name: str | None = None
track_keys: list[str] | None = None
recording_id: str | None = validation.recording_id
if validation.recording_id:
recording = await recordings_controller.get_by_id(validation.recording_id)
@@ -137,6 +164,8 @@ async def prepare_transcript_processing(validation: ValidationOk) -> PrepareResu
bucket_name=bucket_name, # type: ignore (validated above)
track_keys=track_keys,
transcript_id=validation.transcript_id,
recording_id=recording_id,
room_id=validation.room_id,
)
return FileProcessingConfig(
@@ -144,8 +173,115 @@ async def prepare_transcript_processing(validation: ValidationOk) -> PrepareResu
)
def dispatch_transcript_processing(config: ProcessingConfig) -> AsyncResult:
async def dispatch_transcript_processing(
config: ProcessingConfig, force: bool = False
) -> AsyncResult | None:
"""Dispatch transcript processing to appropriate backend (Hatchet or Celery).
Returns AsyncResult for Celery tasks, None for Hatchet workflows.
"""
if isinstance(config, MultitrackProcessingConfig):
# Check if room has use_hatchet=True (overrides env vars)
room_forces_hatchet = False
if config.room_id:
room = await rooms_controller.get_by_id(config.room_id)
room_forces_hatchet = room.use_hatchet if room else False
# Start durable workflow if enabled (Hatchet)
# or if room has use_hatchet=True
use_hatchet = settings.HATCHET_ENABLED or room_forces_hatchet
if room_forces_hatchet:
logger.info(
"Room forces Hatchet workflow",
room_id=config.room_id,
transcript_id=config.transcript_id,
)
if use_hatchet:
# First check if we can replay (outside transaction since it's read-only)
transcript = await transcripts_controller.get_by_id(config.transcript_id)
if transcript and transcript.workflow_run_id and not force:
can_replay = await HatchetClientManager.can_replay(
transcript.workflow_run_id
)
if can_replay:
await HatchetClientManager.replay_workflow(
transcript.workflow_run_id
)
logger.info(
"Replaying Hatchet workflow",
workflow_id=transcript.workflow_run_id,
)
return None
else:
# Workflow exists but can't replay (CANCELLED, COMPLETED, etc.)
# Log and proceed to start new workflow
status = await HatchetClientManager.get_workflow_run_status(
transcript.workflow_run_id
)
logger.info(
"Old workflow not replayable, starting new",
old_workflow_id=transcript.workflow_run_id,
old_status=status.value,
)
# Force: cancel old workflow if exists
if force and transcript and transcript.workflow_run_id:
await HatchetClientManager.cancel_workflow(transcript.workflow_run_id)
logger.info(
"Cancelled old workflow (--force)",
workflow_id=transcript.workflow_run_id,
)
await transcripts_controller.update(
transcript, {"workflow_run_id": None}
)
# Re-fetch and check for concurrent dispatch (optimistic approach).
# No database lock - worst case is duplicate dispatch, but Hatchet
# workflows are idempotent so this is acceptable.
transcript = await transcripts_controller.get_by_id(config.transcript_id)
if transcript and transcript.workflow_run_id:
# Another process started a workflow between validation and now
try:
status = await HatchetClientManager.get_workflow_run_status(
transcript.workflow_run_id
)
if status in (V1TaskStatus.RUNNING, V1TaskStatus.QUEUED):
logger.info(
"Concurrent workflow detected, skipping dispatch",
workflow_id=transcript.workflow_run_id,
)
return None
except ApiException:
# Workflow might be gone (404) or API issue - proceed with new workflow
pass
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": config.recording_id,
"tracks": [{"s3_key": k} for k in config.track_keys],
"bucket_name": config.bucket_name,
"transcript_id": config.transcript_id,
"room_id": config.room_id,
},
additional_metadata={
"transcript_id": config.transcript_id,
"recording_id": config.recording_id,
"daily_recording_id": config.recording_id,
},
)
if transcript:
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
logger.info("Hatchet workflow dispatched", workflow_id=workflow_id)
return None
# Celery pipeline (durable workflows disabled)
return task_pipeline_multitrack_process.delay(
transcript_id=config.transcript_id,
bucket_name=config.bucket_name,
@@ -160,7 +296,10 @@ def dispatch_transcript_processing(config: ProcessingConfig) -> AsyncResult:
def task_is_scheduled_or_active(task_name: str, **kwargs):
inspect = celery.current_app.control.inspect()
for worker, tasks in (inspect.scheduled() | inspect.active()).items():
scheduled = inspect.scheduled() or {}
active = inspect.active() or {}
all = scheduled | active
for worker, tasks in all.items():
for task in tasks:
if task["name"] == task_name and task["kwargs"] == kwargs:
return True

View File

@@ -74,6 +74,13 @@ class Settings(BaseSettings):
LLM_API_KEY: str | None = None
LLM_CONTEXT_WINDOW: int = 16000
LLM_PARSE_MAX_RETRIES: int = (
3 # Max retries for JSON/validation errors (total attempts = retries + 1)
)
LLM_STRUCTURED_RESPONSE_TIMEOUT: int = (
300 # Timeout in seconds for structured responses (5 minutes)
)
# Diarization
DIARIZATION_ENABLED: bool = True
DIARIZATION_BACKEND: str = "modal"
@@ -146,5 +153,19 @@ class Settings(BaseSettings):
ZULIP_API_KEY: str | None = None
ZULIP_BOT_EMAIL: str | None = None
# Durable workflow orchestration
# Provider: "hatchet" (or "none" to disable)
DURABLE_WORKFLOW_PROVIDER: str = "none"
# Hatchet workflow orchestration
HATCHET_CLIENT_TOKEN: str | None = None
HATCHET_CLIENT_TLS_STRATEGY: str = "none" # none, tls, mtls
HATCHET_DEBUG: bool = False
@property
def HATCHET_ENABLED(self) -> bool:
"""True if Hatchet is the active provider."""
return self.DURABLE_WORKFLOW_PROVIDER == "hatchet"
settings = Settings()

View File

@@ -15,8 +15,11 @@ import time
from typing import Callable
from celery.result import AsyncResult
from hatchet_sdk.clients.rest.models import V1TaskStatus
from reflector.db import get_database
from reflector.db.transcripts import Transcript, transcripts_controller
from reflector.hatchet.client import HatchetClientManager
from reflector.services.transcript_process import (
FileProcessingConfig,
MultitrackProcessingConfig,
@@ -34,24 +37,26 @@ async def process_transcript_inner(
transcript: Transcript,
on_validation: Callable[[ValidationResult], None],
on_preprocess: Callable[[PrepareResult], None],
) -> AsyncResult:
force: bool = False,
) -> AsyncResult | None:
validation = await validate_transcript_for_processing(transcript)
on_validation(validation)
config = await prepare_transcript_processing(validation)
on_preprocess(config)
return dispatch_transcript_processing(config)
return await dispatch_transcript_processing(config, force=force)
async def process_transcript(transcript_id: str, sync: bool = False) -> None:
async def process_transcript(
transcript_id: str, sync: bool = False, force: bool = False
) -> None:
"""
Process a transcript by ID, auto-detecting multitrack vs file pipeline.
Args:
transcript_id: The transcript UUID
sync: If True, wait for task completion. If False, dispatch and exit.
force: If True, cancel old workflow and start new (latest code). If False, replay failed workflow.
"""
from reflector.db import get_database
database = get_database()
await database.connect()
@@ -82,10 +87,42 @@ async def process_transcript(transcript_id: str, sync: bool = False) -> None:
print(f"Dispatching file pipeline", file=sys.stderr)
result = await process_transcript_inner(
transcript, on_validation=on_validation, on_preprocess=on_preprocess
transcript,
on_validation=on_validation,
on_preprocess=on_preprocess,
force=force,
)
if sync:
if result is None:
# Hatchet workflow dispatched
if sync:
# Re-fetch transcript to get workflow_run_id
transcript = await transcripts_controller.get_by_id(transcript_id)
if not transcript or not transcript.workflow_run_id:
print("Error: workflow_run_id not found", file=sys.stderr)
sys.exit(1)
print("Waiting for Hatchet workflow...", file=sys.stderr)
while True:
status = await HatchetClientManager.get_workflow_run_status(
transcript.workflow_run_id
)
print(f" Status: {status.value}", file=sys.stderr)
if status == V1TaskStatus.COMPLETED:
print("Workflow completed successfully", file=sys.stderr)
break
elif status in (V1TaskStatus.FAILED, V1TaskStatus.CANCELLED):
print(f"Workflow failed: {status}", file=sys.stderr)
sys.exit(1)
await asyncio.sleep(5)
else:
print(
"Task dispatched (use --sync to wait for completion)",
file=sys.stderr,
)
elif sync:
print("Waiting for task completion...", file=sys.stderr)
while not result.ready():
print(f" Status: {result.state}", file=sys.stderr)
@@ -118,9 +155,16 @@ def main():
action="store_true",
help="Wait for task completion instead of just dispatching",
)
parser.add_argument(
"--force",
action="store_true",
help="Cancel old workflow and start new (uses latest code instead of replaying)",
)
args = parser.parse_args()
asyncio.run(process_transcript(args.transcript_id, sync=args.sync))
asyncio.run(
process_transcript(args.transcript_id, sync=args.sync, force=args.force)
)
if __name__ == "__main__":

View File

@@ -0,0 +1,15 @@
"""
Shared audio processing constants.
Used by both Hatchet workflows and Celery pipelines for consistent audio encoding.
"""
# Opus codec settings
OPUS_STANDARD_SAMPLE_RATE = 48000
OPUS_DEFAULT_BIT_RATE = 128000 # 128kbps for good speech quality
# S3 presigned URL expiration
PRESIGNED_URL_EXPIRATION_SECONDS = 7200 # 2 hours
# Waveform visualization
WAVEFORM_SEGMENTS = 255

View File

@@ -0,0 +1,227 @@
"""
Audio track mixdown utilities.
Shared PyAV-based functions for mixing multiple audio tracks into a single output.
Used by both Hatchet workflows and Celery pipelines.
"""
from fractions import Fraction
import av
from av.audio.resampler import AudioResampler
def detect_sample_rate_from_tracks(track_urls: list[str], logger=None) -> int | None:
"""Detect sample rate from first decodable audio frame.
Args:
track_urls: List of URLs to audio files (S3 presigned or local)
logger: Optional logger instance
Returns:
Sample rate in Hz, or None if no decodable frames found
"""
for url in track_urls:
if not url:
continue
container = None
try:
container = av.open(url)
for frame in container.decode(audio=0):
return frame.sample_rate
except Exception:
continue
finally:
if container is not None:
container.close()
return None
async def mixdown_tracks_pyav(
track_urls: list[str],
writer,
target_sample_rate: int,
offsets_seconds: list[float] | None = None,
logger=None,
) -> None:
"""Multi-track mixdown using PyAV filter graph (amix).
Builds a filter graph: N abuffer -> optional adelay -> amix -> aformat -> sink
Reads from S3 presigned URLs or local files, pushes mixed frames to writer.
Args:
track_urls: List of URLs to audio tracks (S3 presigned or local)
writer: AudioFileWriterProcessor instance with async push() method
target_sample_rate: Sample rate for output (Hz)
offsets_seconds: Optional per-track delays in seconds for alignment.
If provided, must have same length as track_urls. Delays are relative
to the minimum offset (earliest track has delay=0).
logger: Optional logger instance
Raises:
ValueError: If offsets_seconds length doesn't match track_urls,
no valid tracks provided, or no containers can be opened
"""
if offsets_seconds is not None and len(offsets_seconds) != len(track_urls):
raise ValueError(
f"offsets_seconds length ({len(offsets_seconds)}) must match track_urls ({len(track_urls)})"
)
valid_track_urls = [url for url in track_urls if url]
if not valid_track_urls:
if logger:
logger.error("Mixdown failed - no valid track URLs provided")
raise ValueError("Mixdown failed: No valid track URLs")
# Calculate per-input delays if offsets provided
input_offsets_seconds = None
if offsets_seconds is not None:
input_offsets_seconds = [
offsets_seconds[i] for i, url in enumerate(track_urls) if url
]
# Build PyAV filter graph:
# N abuffer (s32/stereo)
# -> optional adelay per input (for alignment)
# -> amix (s32)
# -> aformat(s16)
# -> sink
graph = av.filter.Graph()
inputs = []
for idx, url in enumerate(valid_track_urls):
args = (
f"time_base=1/{target_sample_rate}:"
f"sample_rate={target_sample_rate}:"
f"sample_fmt=s32:"
f"channel_layout=stereo"
)
in_ctx = graph.add("abuffer", args=args, name=f"in{idx}")
inputs.append(in_ctx)
if not inputs:
if logger:
logger.error("Mixdown failed - no valid inputs for graph")
raise ValueError("Mixdown failed: No valid inputs for filter graph")
mixer = graph.add("amix", args=f"inputs={len(inputs)}:normalize=0", name="mix")
fmt = graph.add(
"aformat",
args=f"sample_fmts=s32:channel_layouts=stereo:sample_rates={target_sample_rate}",
name="fmt",
)
sink = graph.add("abuffersink", name="out")
# Optional per-input delay before mixing
delays_ms: list[int] = []
if input_offsets_seconds is not None:
base = min(input_offsets_seconds) if input_offsets_seconds else 0.0
delays_ms = [
max(0, int(round((o - base) * 1000))) for o in input_offsets_seconds
]
else:
delays_ms = [0 for _ in inputs]
for idx, in_ctx in enumerate(inputs):
delay_ms = delays_ms[idx] if idx < len(delays_ms) else 0
if delay_ms > 0:
# adelay requires one value per channel; use same for stereo
adelay = graph.add(
"adelay",
args=f"delays={delay_ms}|{delay_ms}:all=1",
name=f"delay{idx}",
)
in_ctx.link_to(adelay)
adelay.link_to(mixer, 0, idx)
else:
in_ctx.link_to(mixer, 0, idx)
mixer.link_to(fmt)
fmt.link_to(sink)
graph.configure()
containers = []
try:
# Open all containers with cleanup guaranteed
for i, url in enumerate(valid_track_urls):
try:
c = av.open(
url,
options={
# S3 streaming options
"reconnect": "1",
"reconnect_streamed": "1",
"reconnect_delay_max": "5",
},
)
containers.append(c)
except Exception as e:
if logger:
logger.warning(
"Mixdown: failed to open container from URL",
input=i,
url=url,
error=str(e),
)
if not containers:
if logger:
logger.error("Mixdown failed - no valid containers opened")
raise ValueError("Mixdown failed: Could not open any track containers")
decoders = [c.decode(audio=0) for c in containers]
active = [True] * len(decoders)
resamplers = [
AudioResampler(format="s32", layout="stereo", rate=target_sample_rate)
for _ in decoders
]
while any(active):
for i, (dec, is_active) in enumerate(zip(decoders, active)):
if not is_active:
continue
try:
frame = next(dec)
except StopIteration:
active[i] = False
# Signal end of stream to filter graph
inputs[i].push(None)
continue
if frame.sample_rate != target_sample_rate:
continue
out_frames = resamplers[i].resample(frame) or []
for rf in out_frames:
rf.sample_rate = target_sample_rate
rf.time_base = Fraction(1, target_sample_rate)
inputs[i].push(rf)
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
# Flush remaining frames from filter graph
while True:
try:
mixed = sink.pull()
except Exception:
break
mixed.sample_rate = target_sample_rate
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
finally:
# Cleanup all containers, even if processing failed
for c in containers:
if c is not None:
try:
c.close()
except Exception:
pass # Best effort cleanup

View File

@@ -0,0 +1,186 @@
"""
Audio track padding utilities.
Shared PyAV-based functions for extracting stream metadata and applying
silence padding to audio tracks. Used by both Hatchet workflows and Celery pipelines.
"""
import math
from fractions import Fraction
import av
from av.audio.resampler import AudioResampler
from reflector.utils.audio_constants import (
OPUS_DEFAULT_BIT_RATE,
OPUS_STANDARD_SAMPLE_RATE,
)
def extract_stream_start_time_from_container(
container,
track_idx: int,
logger=None,
) -> float:
"""Extract meeting-relative start time from WebM stream metadata.
Uses PyAV to read stream.start_time from WebM container.
More accurate than filename timestamps by ~209ms due to network/encoding delays.
Args:
container: PyAV container opened from audio file/URL
track_idx: Track index for logging context
logger: Optional logger instance (structlog or stdlib compatible)
Returns:
Start time in seconds (0.0 if extraction fails)
"""
start_time_seconds = 0.0
try:
audio_streams = [s for s in container.streams if s.type == "audio"]
stream = audio_streams[0] if audio_streams else container.streams[0]
# 1) Try stream-level start_time (most reliable for Daily.co tracks)
if stream.start_time is not None and stream.time_base is not None:
start_time_seconds = float(stream.start_time * stream.time_base)
# 2) Fallback to container-level start_time (in av.time_base units)
if (start_time_seconds <= 0) and (container.start_time is not None):
start_time_seconds = float(container.start_time * av.time_base)
# 3) Fallback to first packet DTS in stream.time_base
if start_time_seconds <= 0:
for packet in container.demux(stream):
if packet.dts is not None:
start_time_seconds = float(packet.dts * stream.time_base)
break
except Exception as e:
if logger:
logger.warning(
"PyAV metadata read failed; assuming 0 start_time",
track_idx=track_idx,
error=str(e),
)
start_time_seconds = 0.0
if logger:
logger.info(
f"Track {track_idx} stream metadata: start_time={start_time_seconds:.3f}s",
track_idx=track_idx,
)
return start_time_seconds
def apply_audio_padding_to_file(
in_container,
output_path: str,
start_time_seconds: float,
track_idx: int,
logger=None,
) -> None:
"""Apply silence padding to audio track using PyAV filter graph.
Uses adelay filter to prepend silence, aligning track to meeting start time.
Output is WebM/Opus format.
Args:
in_container: PyAV container opened from source audio
output_path: Path for output WebM file
start_time_seconds: Amount of silence to prepend (in seconds)
track_idx: Track index for logging context
logger: Optional logger instance (structlog or stdlib compatible)
Raises:
Exception: If no audio stream found or PyAV processing fails
"""
delay_ms = math.floor(start_time_seconds * 1000)
if logger:
logger.info(
f"Padding track {track_idx} with {delay_ms}ms delay using PyAV",
track_idx=track_idx,
delay_ms=delay_ms,
)
try:
with av.open(output_path, "w", format="webm") as out_container:
in_stream = next(
(s for s in in_container.streams if s.type == "audio"), None
)
if in_stream is None:
raise Exception("No audio stream in input")
out_stream = out_container.add_stream(
"libopus", rate=OPUS_STANDARD_SAMPLE_RATE
)
out_stream.bit_rate = OPUS_DEFAULT_BIT_RATE
graph = av.filter.Graph()
abuf_args = (
f"time_base=1/{OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_rate={OPUS_STANDARD_SAMPLE_RATE}:"
f"sample_fmt=s16:"
f"channel_layout=stereo"
)
src = graph.add("abuffer", args=abuf_args, name="src")
aresample_f = graph.add("aresample", args="async=1", name="ares")
# adelay requires one delay value per channel separated by '|'
delays_arg = f"{delay_ms}|{delay_ms}"
adelay_f = graph.add(
"adelay", args=f"delays={delays_arg}:all=1", name="delay"
)
sink = graph.add("abuffersink", name="sink")
src.link_to(aresample_f)
aresample_f.link_to(adelay_f)
adelay_f.link_to(sink)
graph.configure()
resampler = AudioResampler(
format="s16", layout="stereo", rate=OPUS_STANDARD_SAMPLE_RATE
)
# Decode -> resample -> push through graph -> encode Opus
for frame in in_container.decode(in_stream):
out_frames = resampler.resample(frame) or []
for rframe in out_frames:
rframe.sample_rate = OPUS_STANDARD_SAMPLE_RATE
rframe.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
src.push(rframe)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
# Flush remaining frames from filter graph
src.push(None)
while True:
try:
f_out = sink.pull()
except Exception:
break
f_out.sample_rate = OPUS_STANDARD_SAMPLE_RATE
f_out.time_base = Fraction(1, OPUS_STANDARD_SAMPLE_RATE)
for packet in out_stream.encode(f_out):
out_container.mux(packet)
# Flush encoder
for packet in out_stream.encode(None):
out_container.mux(packet)
except Exception as e:
if logger:
logger.error(
"PyAV padding failed for track",
track_idx=track_idx,
delay_ms=delay_ms,
error=str(e),
exc_info=True,
)
raise

View File

@@ -0,0 +1,4 @@
def assert_not_none[T](value: T | None, message: str = "Value is None") -> T:
if value is None:
raise ValueError(message)
return value

View File

@@ -2,6 +2,17 @@ from typing import Annotated, TypeVar
from pydantic import Field, TypeAdapter, constr
T_NotNone = TypeVar("T_NotNone")
def assert_not_none(
value: T_NotNone | None, message: str = "Value is None"
) -> T_NotNone:
if value is None:
raise ValueError(message)
return value
NonEmptyStringBase = constr(min_length=1, strip_whitespace=False)
NonEmptyString = Annotated[
NonEmptyStringBase,
@@ -23,10 +34,18 @@ def try_parse_non_empty_string(s: str) -> NonEmptyString | None:
return parse_non_empty_string(s)
T = TypeVar("T", bound=str)
T_Str = TypeVar("T_Str", bound=str)
def assert_equal[T](s1: T, s2: T) -> T:
def assert_equal(s1: T_Str, s2: T_Str) -> T_Str:
if s1 != s2:
raise ValueError(f"assert_equal: {s1} != {s2}")
return s1
def assert_non_none_and_non_empty(
value: str | None, error: str | None = None
) -> NonEmptyString:
return parse_non_empty_string(
assert_not_none(value, error or "Value is None"), error
)

View File

@@ -0,0 +1,8 @@
"""
Shared transcript processing constants.
Used by both Hatchet workflows and Celery pipelines for consistent processing.
"""
# Topic detection: number of words per chunk for topic extraction
TOPIC_CHUNK_WORD_COUNT = 300

View File

@@ -31,6 +31,7 @@ class DailyClient(VideoPlatformClient):
PLATFORM_NAME: Platform = "daily"
TIMESTAMP_FORMAT = "%Y%m%d%H%M%S"
RECORDING_NONE: RecordingType = "none"
RECORDING_LOCAL: RecordingType = "local"
RECORDING_CLOUD: RecordingType = "cloud"
def __init__(self, config: VideoPlatformConfig):
@@ -54,19 +55,23 @@ class DailyClient(VideoPlatformClient):
timestamp = datetime.now().strftime(self.TIMESTAMP_FORMAT)
room_name = f"{room_name_prefix}{ROOM_PREFIX_SEPARATOR}{timestamp}"
enable_recording = None
if room.recording_type == self.RECORDING_LOCAL:
enable_recording = "local"
elif room.recording_type == self.RECORDING_CLOUD:
enable_recording = "raw-tracks"
properties = RoomProperties(
enable_recording="raw-tracks"
if room.recording_type != self.RECORDING_NONE
else False,
enable_recording=enable_recording,
enable_chat=True,
enable_screenshare=True,
enable_knocking=room.is_locked,
start_video_off=False,
start_audio_off=False,
exp=int(end_date.timestamp()),
)
# Only configure recordings_bucket if recording is enabled
if room.recording_type != self.RECORDING_NONE:
if room.recording_type == self.RECORDING_CLOUD:
daily_storage = get_dailyco_storage()
assert daily_storage.bucket_name, "S3 bucket must be configured"
properties.recordings_bucket = RecordingsBucketConfig(
@@ -172,15 +177,22 @@ class DailyClient(VideoPlatformClient):
async def create_meeting_token(
self,
room_name: DailyRoomName,
enable_recording: bool,
start_cloud_recording: bool,
enable_recording_ui: bool,
user_id: NonEmptyString | None = None,
is_owner: bool = False,
max_recording_duration_seconds: int | None = None,
) -> NonEmptyString:
start_cloud_recording_opts = None
if start_cloud_recording and max_recording_duration_seconds:
start_cloud_recording_opts = {"maxDuration": max_recording_duration_seconds}
properties = MeetingTokenProperties(
room_name=room_name,
user_id=user_id,
start_cloud_recording=enable_recording,
enable_recording_ui=False,
start_cloud_recording=start_cloud_recording,
start_cloud_recording_opts=start_cloud_recording_opts,
enable_recording_ui=enable_recording_ui,
is_owner=is_owner,
)
request = CreateMeetingTokenRequest(properties=properties)

View File

@@ -44,6 +44,7 @@ class Room(BaseModel):
ics_last_sync: Optional[datetime] = None
ics_last_etag: Optional[str] = None
platform: Platform
skip_consent: bool = False
class RoomDetails(Room):
@@ -89,7 +90,8 @@ class CreateRoom(BaseModel):
ics_url: Optional[str] = None
ics_fetch_interval: int = 300
ics_enabled: bool = False
platform: Optional[Platform] = None
platform: Platform
skip_consent: bool = False
class UpdateRoom(BaseModel):
@@ -108,6 +110,7 @@ class UpdateRoom(BaseModel):
ics_fetch_interval: Optional[int] = None
ics_enabled: Optional[bool] = None
platform: Optional[Platform] = None
skip_consent: Optional[bool] = None
class CreateRoomMeeting(BaseModel):
@@ -248,7 +251,8 @@ async def rooms_create(
ics_url=room.ics_url,
ics_fetch_interval=room.ics_fetch_interval,
ics_enabled=room.ics_enabled,
platform=room.platform or settings.DEFAULT_VIDEO_PLATFORM,
platform=room.platform,
skip_consent=room.skip_consent,
)
@@ -310,6 +314,22 @@ async def rooms_create_meeting(
room=room, current_time=current_time
)
if meeting is not None:
settings_match = (
meeting.is_locked == room.is_locked
and meeting.room_mode == room.room_mode
and meeting.recording_type == room.recording_type
and meeting.recording_trigger == room.recording_trigger
and meeting.platform == room.platform
)
if not settings_match:
logger.info(
f"Room settings changed for {room_name}, creating new meeting",
room_id=room.id,
old_meeting_id=meeting.id,
)
meeting = None
if meeting is None:
end_date = current_time + timedelta(hours=8)
@@ -549,21 +569,30 @@ async def rooms_join_meeting(
if meeting.end_date <= current_time:
raise HTTPException(status_code=400, detail="Meeting has ended")
if meeting.platform == "daily":
if meeting.platform == "daily" and user_id is not None:
client = create_platform_client(meeting.platform)
enable_recording = room.recording_trigger != "none"
# Show Daily's built-in recording UI when:
# - local recording (user controls when to record), OR
# - cloud recording with consent disabled (skip_consent=True)
# Hide it when cloud recording with consent enabled (we show custom consent UI)
enable_recording_ui = meeting.recording_type == "local" or (
meeting.recording_type == "cloud" and room.skip_consent
)
end_date = meeting.end_date
if end_date.tzinfo is None:
end_date = end_date.replace(tzinfo=timezone.utc)
remaining_seconds = min(
3 * 60 * 60, int((end_date - current_time).total_seconds())
)
token = await client.create_meeting_token(
meeting.room_name,
enable_recording=enable_recording,
start_cloud_recording=meeting.recording_type == "cloud",
enable_recording_ui=enable_recording_ui,
user_id=user_id,
is_owner=user_id == room.user_id,
max_recording_duration_seconds=remaining_seconds,
)
meeting = meeting.model_copy()
meeting.room_url = add_query_param(meeting.room_url, "t", token)
if meeting.host_room_url:
meeting.host_room_url = add_query_param(meeting.host_room_url, "t", token)
if user_id != room.user_id and meeting.platform == "whereby":
meeting.host_room_url = ""
return meeting

View File

@@ -17,6 +17,7 @@ from pydantic import (
import reflector.auth as auth
from reflector.db import get_database
from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
from reflector.db.search import (
DEFAULT_SEARCH_LIMIT,
SearchLimit,
@@ -37,6 +38,7 @@ from reflector.db.transcripts import (
TranscriptTopic,
transcripts_controller,
)
from reflector.db.users import user_controller
from reflector.processors.types import Transcript as ProcessorTranscript
from reflector.processors.types import Word
from reflector.schemas.transcript_formats import TranscriptFormat, TranscriptSegment
@@ -111,8 +113,12 @@ class GetTranscriptMinimal(BaseModel):
audio_deleted: bool | None = None
class TranscriptParticipantWithEmail(TranscriptParticipant):
email: str | None = None
class GetTranscriptWithParticipants(GetTranscriptMinimal):
participants: list[TranscriptParticipant] | None
participants: list[TranscriptParticipantWithEmail] | None
class GetTranscriptWithText(GetTranscriptWithParticipants):
@@ -468,6 +474,23 @@ async def transcript_get(
is_multitrack = await _get_is_multitrack(transcript)
room_name = None
if transcript.room_id:
room = await rooms_controller.get_by_id(transcript.room_id)
room_name = room.name if room else None
participants = []
if transcript.participants:
user_ids = [p.user_id for p in transcript.participants if p.user_id is not None]
users_dict = await user_controller.get_by_ids(user_ids) if user_ids else {}
for p in transcript.participants:
user = users_dict.get(p.user_id) if p.user_id else None
participants.append(
TranscriptParticipantWithEmail(
**p.model_dump(), email=user.email if user else None
)
)
base_data = {
"id": transcript.id,
"user_id": transcript.user_id,
@@ -478,6 +501,7 @@ async def transcript_get(
"title": transcript.title,
"short_summary": transcript.short_summary,
"long_summary": transcript.long_summary,
"action_items": transcript.action_items,
"created_at": transcript.created_at,
"share_mode": transcript.share_mode,
"source_language": transcript.source_language,
@@ -486,8 +510,9 @@ async def transcript_get(
"meeting_id": transcript.meeting_id,
"source_kind": transcript.source_kind,
"room_id": transcript.room_id,
"room_name": room_name,
"audio_deleted": transcript.audio_deleted,
"participants": transcript.participants,
"participants": participants,
}
if transcript_format == "text":

View File

@@ -50,5 +50,5 @@ async def transcript_process(
if isinstance(config, ProcessError):
raise HTTPException(status_code=500, detail=config.detail)
else:
dispatch_transcript_processing(config)
await dispatch_transcript_processing(config)
return ProcessStatus(status="ok")

View File

@@ -38,6 +38,10 @@ else:
"task": "reflector.worker.process.reprocess_failed_recordings",
"schedule": crontab(hour=5, minute=0), # Midnight EST
},
"reprocess_failed_daily_recordings": {
"task": "reflector.worker.process.reprocess_failed_daily_recordings",
"schedule": crontab(hour=5, minute=0), # Midnight EST
},
"poll_daily_recordings": {
"task": "reflector.worker.process.poll_daily_recordings",
"schedule": 180.0, # Every 3 minutes (configurable lookback window)

View File

@@ -7,6 +7,12 @@ from reflector.settings import settings
logger = structlog.get_logger(__name__)
@shared_task(name="celery.ping")
def celery_ping():
"""Compatibility task for Celery 5.x - celery.ping was removed but monitoring tools still call it."""
return "pong"
@shared_task
def healthcheck_ping():
url = settings.HEALTHCHECK_URL

View File

@@ -12,7 +12,7 @@ from celery import shared_task
from celery.utils.log import get_task_logger
from pydantic import ValidationError
from reflector.dailyco_api import RecordingResponse
from reflector.dailyco_api import FinishedRecordingResponse, RecordingResponse
from reflector.db.daily_participant_sessions import (
DailyParticipantSession,
daily_participant_sessions_controller,
@@ -24,6 +24,7 @@ from reflector.db.transcripts import (
SourceKind,
transcripts_controller,
)
from reflector.hatchet.client import HatchetClientManager
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
from reflector.pipelines.main_live_pipeline import asynctask
from reflector.pipelines.main_multitrack_pipeline import (
@@ -286,6 +287,45 @@ async def _process_multitrack_recording_inner(
room_id=room.id,
)
# Start durable workflow if enabled (Hatchet) or room overrides it
durable_started = False
use_hatchet = settings.HATCHET_ENABLED or (room and room.use_hatchet)
if room and room.use_hatchet and not settings.HATCHET_ENABLED:
logger.info(
"Room forces Hatchet workflow",
room_id=room.id,
transcript_id=transcript.id,
)
if use_hatchet:
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": recording_id,
"tracks": [{"s3_key": k} for k in filter_cam_audio_tracks(track_keys)],
"bucket_name": bucket_name,
"transcript_id": transcript.id,
"room_id": room.id,
},
additional_metadata={
"transcript_id": transcript.id,
"recording_id": recording_id,
"daily_recording_id": recording_id,
},
)
logger.info(
"Started Hatchet workflow",
workflow_id=workflow_id,
transcript_id=transcript.id,
)
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
return
# Celery pipeline (runs when durable workflows disabled)
task_pipeline_multitrack_process.delay(
transcript_id=transcript.id,
bucket_name=bucket_name,
@@ -322,16 +362,38 @@ async def poll_daily_recordings():
)
return
recording_ids = [rec.id for rec in api_recordings]
finished_recordings: List[FinishedRecordingResponse] = []
for rec in api_recordings:
finished = rec.to_finished()
if finished is None:
logger.debug(
"Skipping unfinished recording",
recording_id=rec.id,
room_name=rec.room_name,
status=rec.status,
)
continue
finished_recordings.append(finished)
if not finished_recordings:
logger.debug(
"No finished recordings found from Daily.co API",
total_api_count=len(api_recordings),
)
return
recording_ids = [rec.id for rec in finished_recordings]
existing_recordings = await recordings_controller.get_by_ids(recording_ids)
existing_ids = {rec.id for rec in existing_recordings}
missing_recordings = [rec for rec in api_recordings if rec.id not in existing_ids]
missing_recordings = [
rec for rec in finished_recordings if rec.id not in existing_ids
]
if not missing_recordings:
logger.debug(
"All recordings already in DB",
api_count=len(api_recordings),
api_count=len(finished_recordings),
existing_count=len(existing_recordings),
)
return
@@ -339,7 +401,7 @@ async def poll_daily_recordings():
logger.info(
"Found recordings missing from DB",
missing_count=len(missing_recordings),
total_api_count=len(api_recordings),
total_api_count=len(finished_recordings),
existing_count=len(existing_recordings),
)
@@ -548,12 +610,12 @@ async def process_meetings():
client = create_platform_client(meeting.platform)
room_sessions = await client.get_room_sessions(meeting.room_name)
has_active_sessions = room_sessions and any(
s.ended_at is None for s in room_sessions
has_active_sessions = bool(
room_sessions and any(s.ended_at is None for s in room_sessions)
)
has_had_sessions = bool(room_sessions)
logger_.info(
f"found {has_active_sessions} active sessions, had {has_had_sessions}"
f"has_active_sessions={has_active_sessions}, has_had_sessions={has_had_sessions}"
)
if has_active_sessions:
@@ -649,7 +711,7 @@ async def reprocess_failed_recordings():
Find recordings in Whereby S3 bucket and check if they have proper transcriptions.
If not, requeue them for processing.
Note: Daily.co recordings are processed via webhooks, not this cron job.
Note: Daily.co multitrack recordings are handled by reprocess_failed_daily_recordings.
"""
logger.info("Checking Whereby recordings that need processing or reprocessing")
@@ -702,6 +764,150 @@ async def reprocess_failed_recordings():
return reprocessed_count
@shared_task
@asynctask
async def reprocess_failed_daily_recordings():
"""
Find Daily.co multitrack recordings in the database and check if they have proper transcriptions.
If not, requeue them for processing.
"""
logger.info(
"Checking Daily.co multitrack recordings that need processing or reprocessing"
)
if not settings.DAILYCO_STORAGE_AWS_BUCKET_NAME:
logger.debug(
"DAILYCO_STORAGE_AWS_BUCKET_NAME not configured; skipping Daily recording reprocessing"
)
return 0
bucket_name = settings.DAILYCO_STORAGE_AWS_BUCKET_NAME
reprocessed_count = 0
try:
multitrack_recordings = (
await recordings_controller.get_multitrack_needing_reprocessing(bucket_name)
)
logger.info(
"Found multitrack recordings needing reprocessing",
count=len(multitrack_recordings),
bucket=bucket_name,
)
for recording in multitrack_recordings:
if not recording.meeting_id:
logger.debug(
"Skipping recording without meeting_id",
recording_id=recording.id,
)
continue
meeting = await meetings_controller.get_by_id(recording.meeting_id)
if not meeting:
logger.warning(
"Meeting not found for recording",
recording_id=recording.id,
meeting_id=recording.meeting_id,
)
continue
# Fetch room to check use_hatchet flag
room = None
if meeting.room_id:
room = await rooms_controller.get_by_id(meeting.room_id)
transcript = None
try:
transcript = await transcripts_controller.get_by_recording_id(
recording.id
)
except ValidationError:
await transcripts_controller.remove_by_recording_id(recording.id)
logger.warning(
"Removed invalid transcript for recording",
recording_id=recording.id,
)
if not recording.track_keys:
logger.warning(
"Recording has no track_keys, cannot reprocess",
recording_id=recording.id,
)
continue
use_hatchet = settings.HATCHET_ENABLED or (room and room.use_hatchet)
if use_hatchet:
# Hatchet requires a transcript for workflow_run_id tracking
if not transcript:
logger.warning(
"No transcript for Hatchet reprocessing, skipping",
recording_id=recording.id,
)
continue
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
"recording_id": recording.id,
"tracks": [
{"s3_key": k}
for k in filter_cam_audio_tracks(recording.track_keys)
],
"bucket_name": bucket_name,
"transcript_id": transcript.id,
"room_id": room.id if room else None,
},
additional_metadata={
"transcript_id": transcript.id,
"recording_id": recording.id,
"reprocess": True,
},
)
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
logger.info(
"Queued Daily recording for Hatchet reprocessing",
recording_id=recording.id,
workflow_id=workflow_id,
room_name=meeting.room_name,
track_count=len(recording.track_keys),
)
else:
logger.info(
"Queueing Daily recording for Celery reprocessing",
recording_id=recording.id,
room_name=meeting.room_name,
track_count=len(recording.track_keys),
transcript_status=transcript.status if transcript else None,
)
process_multitrack_recording.delay(
bucket_name=bucket_name,
daily_room_name=meeting.room_name,
recording_id=recording.id,
track_keys=recording.track_keys,
)
reprocessed_count += 1
except Exception as e:
logger.error(
"Error checking Daily multitrack recordings",
error=str(e),
exc_info=True,
)
logger.info(
"Daily reprocessing complete",
requeued_count=reprocessed_count,
)
return reprocessed_count
@shared_task
@asynctask
async def trigger_daily_reconciliation() -> None:

View File

@@ -123,6 +123,7 @@ async def send_transcript_webhook(
"target_language": transcript.target_language,
"status": transcript.status,
"frontend_url": frontend_url,
"action_items": transcript.action_items,
},
"room": {
"id": room.id,

View File

@@ -3,7 +3,8 @@ from urllib.parse import urlparse
import httpx
from reflector.db.transcripts import Transcript
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import Transcript, transcripts_controller
from reflector.settings import settings
@@ -113,6 +114,49 @@ def get_zulip_message(transcript: Transcript, include_topics: bool):
return message
async def post_transcript_notification(transcript: Transcript) -> int | None:
"""Post or update transcript notification in Zulip.
Uses transcript.room_id directly (Hatchet flow).
Celery's pipeline_post_to_zulip uses recording→meeting→room path instead.
DUPLICATION NOTE: This function will stay when we use Celery no more, and Celery one will be removed.
"""
if not transcript.room_id:
return None
room = await rooms_controller.get_by_id(transcript.room_id)
if not room or not room.zulip_stream or not room.zulip_auto_post:
return None
message = get_zulip_message(transcript=transcript, include_topics=True)
message_updated = False
if transcript.zulip_message_id:
try:
await update_zulip_message(
transcript.zulip_message_id,
room.zulip_stream,
room.zulip_topic,
message,
)
message_updated = True
except Exception:
pass
if not message_updated:
response = await send_message_to_zulip(
room.zulip_stream, room.zulip_topic, message
)
message_id = response.get("id")
if message_id:
await transcripts_controller.update(
transcript, {"zulip_message_id": message_id}
)
return message_id
return transcript.zulip_message_id
def extract_domain(url: str) -> str:
return urlparse(url).netloc

View File

@@ -7,6 +7,8 @@ elif [ "${ENTRYPOINT}" = "worker" ]; then
uv run celery -A reflector.worker.app worker --loglevel=info
elif [ "${ENTRYPOINT}" = "beat" ]; then
uv run celery -A reflector.worker.app beat --loglevel=info
elif [ "${ENTRYPOINT}" = "hatchet-worker" ]; then
uv run python -m reflector.hatchet.run_workers
else
echo "Unknown command"
fi

View File

@@ -318,6 +318,14 @@ async def dummy_storage():
yield
@pytest.fixture
def test_settings():
"""Provide isolated settings for tests to avoid modifying global settings"""
from reflector.settings import Settings
return Settings()
@pytest.fixture(scope="session")
def celery_enable_logging():
return True
@@ -519,6 +527,22 @@ def fake_mp3_upload():
yield
@pytest.fixture(autouse=True)
def reset_hatchet_client():
"""Reset HatchetClientManager singleton before and after each test.
This ensures test isolation - each test starts with a fresh client state.
The fixture is autouse=True so it applies to all tests automatically.
"""
from reflector.hatchet.client import HatchetClientManager
# Reset before test
HatchetClientManager.reset()
yield
# Reset after test to clean up
HatchetClientManager.reset()
@pytest.fixture
async def fake_transcript_with_topics(tmpdir, client):
import shutil

View File

@@ -0,0 +1,54 @@
"""
Tests for HatchetClientManager error handling and validation.
Only tests that catch real bugs - not mock verification tests.
Note: The `reset_hatchet_client` fixture (autouse=True in conftest.py)
automatically resets the singleton before and after each test.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
@pytest.mark.asyncio
async def test_hatchet_client_can_replay_handles_exception():
"""Test can_replay returns False when status check fails.
Useful: Ensures network/API errors don't crash the system and
gracefully allow reprocessing when workflow state is unknown.
"""
from reflector.hatchet.client import HatchetClientManager
with patch("reflector.hatchet.client.settings") as mock_settings:
mock_settings.HATCHET_CLIENT_TOKEN = "test-token"
mock_settings.HATCHET_DEBUG = False
with patch("reflector.hatchet.client.Hatchet") as mock_hatchet_class:
mock_client = MagicMock()
mock_hatchet_class.return_value = mock_client
mock_client.runs.aio_get_status = AsyncMock(
side_effect=Exception("Network error")
)
can_replay = await HatchetClientManager.can_replay("workflow-123")
# Should return False on error (workflow might be gone)
assert can_replay is False
def test_hatchet_client_raises_without_token():
"""Test that get_client raises ValueError without token.
Useful: Catches if someone removes the token validation,
which would cause cryptic errors later.
"""
from reflector.hatchet.client import HatchetClientManager
with patch("reflector.hatchet.client.settings") as mock_settings:
mock_settings.HATCHET_CLIENT_TOKEN = None
with pytest.raises(ValueError, match="HATCHET_CLIENT_TOKEN must be set"):
HatchetClientManager.get_client()

View File

@@ -0,0 +1,398 @@
"""
Tests for Hatchet workflow dispatch and routing logic.
These tests verify:
1. Routing to Hatchet when HATCHET_ENABLED=True
2. Replay logic for failed workflows
3. Force flag to cancel and restart
4. Validation prevents concurrent workflows
"""
from unittest.mock import AsyncMock, patch
import pytest
from hatchet_sdk.clients.rest.exceptions import ApiException
from hatchet_sdk.clients.rest.models import V1TaskStatus
from reflector.db.transcripts import Transcript
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_hatchet_validation_blocks_running_workflow():
"""Test that validation blocks reprocessing when workflow is running."""
from reflector.services.transcript_process import (
ValidationAlreadyScheduled,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="processing",
source_kind="room",
workflow_run_id="running-workflow-123",
)
with patch("reflector.services.transcript_process.settings") as mock_settings:
mock_settings.HATCHET_ENABLED = True
with patch(
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet:
mock_hatchet.get_workflow_run_status = AsyncMock(
return_value=V1TaskStatus.RUNNING
)
with patch(
"reflector.services.transcript_process.task_is_scheduled_or_active"
) as mock_celery_check:
mock_celery_check.return_value = False
result = await validate_transcript_for_processing(mock_transcript)
assert isinstance(result, ValidationAlreadyScheduled)
assert "running" in result.detail.lower()
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_hatchet_validation_blocks_queued_workflow():
"""Test that validation blocks reprocessing when workflow is queued."""
from reflector.services.transcript_process import (
ValidationAlreadyScheduled,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="processing",
source_kind="room",
workflow_run_id="queued-workflow-123",
)
with patch("reflector.services.transcript_process.settings") as mock_settings:
mock_settings.HATCHET_ENABLED = True
with patch(
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet:
mock_hatchet.get_workflow_run_status = AsyncMock(
return_value=V1TaskStatus.QUEUED
)
with patch(
"reflector.services.transcript_process.task_is_scheduled_or_active"
) as mock_celery_check:
mock_celery_check.return_value = False
result = await validate_transcript_for_processing(mock_transcript)
assert isinstance(result, ValidationAlreadyScheduled)
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_hatchet_validation_allows_failed_workflow():
"""Test that validation allows reprocessing when workflow has failed."""
from reflector.services.transcript_process import (
ValidationOk,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="error",
source_kind="room",
workflow_run_id="failed-workflow-123",
recording_id="test-recording-id",
)
with patch("reflector.services.transcript_process.settings") as mock_settings:
mock_settings.HATCHET_ENABLED = True
with patch(
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet:
mock_hatchet.get_workflow_run_status = AsyncMock(
return_value=V1TaskStatus.FAILED
)
with patch(
"reflector.services.transcript_process.task_is_scheduled_or_active"
) as mock_celery_check:
mock_celery_check.return_value = False
result = await validate_transcript_for_processing(mock_transcript)
assert isinstance(result, ValidationOk)
assert result.transcript_id == "test-transcript-id"
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_hatchet_validation_allows_completed_workflow():
"""Test that validation allows reprocessing when workflow has completed."""
from reflector.services.transcript_process import (
ValidationOk,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="ended",
source_kind="room",
workflow_run_id="completed-workflow-123",
recording_id="test-recording-id",
)
with patch("reflector.services.transcript_process.settings") as mock_settings:
mock_settings.HATCHET_ENABLED = True
with patch(
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet:
mock_hatchet.get_workflow_run_status = AsyncMock(
return_value=V1TaskStatus.COMPLETED
)
with patch(
"reflector.services.transcript_process.task_is_scheduled_or_active"
) as mock_celery_check:
mock_celery_check.return_value = False
result = await validate_transcript_for_processing(mock_transcript)
assert isinstance(result, ValidationOk)
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_hatchet_validation_allows_when_status_check_fails():
"""Test that validation allows reprocessing when status check fails (workflow might be gone)."""
from reflector.services.transcript_process import (
ValidationOk,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="error",
source_kind="room",
workflow_run_id="old-workflow-123",
recording_id="test-recording-id",
)
with patch("reflector.services.transcript_process.settings") as mock_settings:
mock_settings.HATCHET_ENABLED = True
with patch(
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet:
# Status check fails (workflow might be deleted)
mock_hatchet.get_workflow_run_status = AsyncMock(
side_effect=ApiException("Workflow not found")
)
with patch(
"reflector.services.transcript_process.task_is_scheduled_or_active"
) as mock_celery_check:
mock_celery_check.return_value = False
result = await validate_transcript_for_processing(mock_transcript)
# Should allow processing when we can't get status
assert isinstance(result, ValidationOk)
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_hatchet_validation_skipped_when_no_workflow_id():
"""Test that Hatchet validation is skipped when transcript has no workflow_run_id."""
from reflector.services.transcript_process import (
ValidationOk,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="uploaded",
source_kind="room",
workflow_run_id=None, # No workflow yet
recording_id="test-recording-id",
)
with patch("reflector.services.transcript_process.settings") as mock_settings:
mock_settings.HATCHET_ENABLED = True
with patch(
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet:
# Should not be called
mock_hatchet.get_workflow_run_status = AsyncMock()
with patch(
"reflector.services.transcript_process.task_is_scheduled_or_active"
) as mock_celery_check:
mock_celery_check.return_value = False
result = await validate_transcript_for_processing(mock_transcript)
# Should not check Hatchet status
mock_hatchet.get_workflow_run_status.assert_not_called()
assert isinstance(result, ValidationOk)
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_hatchet_validation_skipped_when_disabled():
"""Test that Hatchet validation is skipped when HATCHET_ENABLED is False."""
from reflector.services.transcript_process import (
ValidationOk,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="uploaded",
source_kind="room",
workflow_run_id="some-workflow-123",
recording_id="test-recording-id",
)
with patch("reflector.services.transcript_process.settings") as mock_settings:
mock_settings.HATCHET_ENABLED = False # Hatchet disabled
with patch(
"reflector.services.transcript_process.task_is_scheduled_or_active"
) as mock_celery_check:
mock_celery_check.return_value = False
result = await validate_transcript_for_processing(mock_transcript)
# Should not check Hatchet at all
assert isinstance(result, ValidationOk)
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_validation_locked_transcript():
"""Test that validation rejects locked transcripts."""
from reflector.services.transcript_process import (
ValidationLocked,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="ended",
source_kind="room",
locked=True,
)
result = await validate_transcript_for_processing(mock_transcript)
assert isinstance(result, ValidationLocked)
assert "locked" in result.detail.lower()
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_validation_idle_transcript():
"""Test that validation rejects idle transcripts (not ready)."""
from reflector.services.transcript_process import (
ValidationNotReady,
validate_transcript_for_processing,
)
mock_transcript = Transcript(
id="test-transcript-id",
name="Test",
status="idle",
source_kind="room",
)
result = await validate_transcript_for_processing(mock_transcript)
assert isinstance(result, ValidationNotReady)
assert "not ready" in result.detail.lower()
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_prepare_multitrack_config():
"""Test preparing multitrack processing config."""
from reflector.db.recordings import Recording
from reflector.services.transcript_process import (
MultitrackProcessingConfig,
ValidationOk,
prepare_transcript_processing,
)
validation = ValidationOk(
recording_id="test-recording-id",
transcript_id="test-transcript-id",
)
mock_recording = Recording(
id="test-recording-id",
bucket_name="test-bucket",
object_key="recordings/test",
recorded_at="2024-01-01T00:00:00Z",
track_keys=["track1.webm", "track2.webm"],
)
with patch(
"reflector.services.transcript_process.recordings_controller"
) as mock_rc:
mock_rc.get_by_id = AsyncMock(return_value=mock_recording)
result = await prepare_transcript_processing(validation)
assert isinstance(result, MultitrackProcessingConfig)
assert result.bucket_name == "test-bucket"
assert result.track_keys == ["track1.webm", "track2.webm"]
assert result.transcript_id == "test-transcript-id"
assert result.room_id is None # ValidationOk didn't specify room_id
@pytest.mark.usefixtures("setup_database")
@pytest.mark.asyncio
async def test_prepare_file_config():
"""Test preparing file processing config (no track keys)."""
from reflector.db.recordings import Recording
from reflector.services.transcript_process import (
FileProcessingConfig,
ValidationOk,
prepare_transcript_processing,
)
validation = ValidationOk(
recording_id="test-recording-id",
transcript_id="test-transcript-id",
)
mock_recording = Recording(
id="test-recording-id",
bucket_name="test-bucket",
object_key="recordings/test.mp4",
recorded_at="2024-01-01T00:00:00Z",
track_keys=None, # No track keys = file pipeline
)
with patch(
"reflector.services.transcript_process.recordings_controller"
) as mock_rc:
mock_rc.get_by_id = AsyncMock(return_value=mock_recording)
result = await prepare_transcript_processing(validation)
assert isinstance(result, FileProcessingConfig)
assert result.transcript_id == "test-transcript-id"

View File

@@ -0,0 +1,488 @@
"""Tests for LLM parse error recovery using llama-index Workflow"""
from time import monotonic
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from pydantic import BaseModel, Field
from workflows.errors import WorkflowRuntimeError, WorkflowTimeoutError
from reflector.llm import LLM, LLMParseError, StructuredOutputWorkflow
from reflector.utils.retry import RetryException
class TestResponse(BaseModel):
"""Test response model for structured output"""
title: str = Field(description="A title")
summary: str = Field(description="A summary")
confidence: float = Field(description="Confidence score", ge=0, le=1)
def make_completion_response(text: str):
"""Create a mock CompletionResponse with .text attribute"""
response = MagicMock()
response.text = text
return response
class TestLLMParseErrorRecovery:
"""Test parse error recovery with Workflow feedback loop"""
@pytest.mark.asyncio
async def test_parse_error_recovery_with_feedback(self, test_settings):
"""Test that parse errors trigger retry with error feedback"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
# TreeSummarize returns plain text analysis (step 1)
mock_summarizer.aget_response = AsyncMock(
return_value="The analysis shows a test with summary and high confidence."
)
call_count = {"count": 0}
async def acomplete_handler(prompt, *args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
# First JSON formatting call returns invalid JSON
return make_completion_response('{"title": "Test"}')
else:
# Second call should have error feedback in prompt
assert "Your previous response could not be parsed:" in prompt
assert '{"title": "Test"}' in prompt
assert "Error:" in prompt
assert "Please try again" in prompt
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert result.summary == "Summary"
assert result.confidence == 0.95
# TreeSummarize called once, Settings.llm.acomplete called twice
assert mock_summarizer.aget_response.call_count == 1
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_max_parse_retry_attempts(self, test_settings):
"""Test that parse error retry stops after max attempts"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Always return invalid JSON from acomplete
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"invalid": "missing required fields"}'
)
)
with pytest.raises(LLMParseError, match="Failed to parse"):
await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
expected_attempts = test_settings.LLM_PARSE_MAX_RETRIES + 1
# TreeSummarize called once, acomplete called max_retries times
assert mock_summarizer.aget_response.call_count == 1
assert mock_settings.llm.acomplete.call_count == expected_attempts
@pytest.mark.asyncio
async def test_raw_response_logging_on_parse_error(self, test_settings, caplog):
"""Test that raw response is logged when parse error occurs"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
caplog.at_level("ERROR"),
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
call_count = {"count": 0}
async def acomplete_handler(*args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
return make_completion_response('{"title": "Test"}') # Invalid
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
error_logs = [r for r in caplog.records if r.levelname == "ERROR"]
raw_response_logged = any("Raw response:" in r.message for r in error_logs)
assert raw_response_logged, "Raw response should be logged on parse error"
@pytest.mark.asyncio
async def test_multiple_validation_errors_in_feedback(self, test_settings):
"""Test that validation errors are included in feedback"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
call_count = {"count": 0}
async def acomplete_handler(prompt, *args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
# Missing title and summary
return make_completion_response('{"confidence": 0.5}')
else:
# Should have schema validation errors in prompt
assert (
"Schema validation errors" in prompt
or "error" in prompt.lower()
)
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_success_on_first_attempt(self, test_settings):
"""Test that no retry happens when first attempt succeeds"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert result.summary == "Summary"
assert result.confidence == 0.95
assert mock_summarizer.aget_response.call_count == 1
assert mock_settings.llm.acomplete.call_count == 1
class TestStructuredOutputWorkflow:
"""Direct tests for the StructuredOutputWorkflow"""
@pytest.mark.asyncio
async def test_workflow_retries_on_validation_error(self):
"""Test workflow retries when validation fails"""
workflow = StructuredOutputWorkflow(
output_cls=TestResponse,
max_retries=3,
timeout=30,
)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
call_count = {"count": 0}
async def acomplete_handler(*args, **kwargs):
call_count["count"] += 1
if call_count["count"] < 2:
return make_completion_response('{"title": "Only title"}')
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.9}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await workflow.run(
prompt="Extract data",
texts=["Some text"],
tone_name=None,
)
assert "success" in result
assert result["success"].title == "Test"
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_workflow_returns_error_after_max_retries(self):
"""Test workflow returns error after exhausting retries"""
workflow = StructuredOutputWorkflow(
output_cls=TestResponse,
max_retries=2,
timeout=30,
)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Always return invalid JSON
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response('{"invalid": true}')
)
result = await workflow.run(
prompt="Extract data",
texts=["Some text"],
tone_name=None,
)
assert "error" in result
# TreeSummarize called once, acomplete called max_retries times
assert mock_summarizer.aget_response.call_count == 1
assert mock_settings.llm.acomplete.call_count == 2
class TestNetworkErrorRetries:
"""Test that network error retries are handled by OpenAILike, not Workflow"""
@pytest.mark.asyncio
async def test_network_error_propagates_after_openai_retries(self, test_settings):
"""Test that network errors are retried by OpenAILike and then propagate.
Network retries are handled by OpenAILike (max_retries=3), not by our
StructuredOutputWorkflow. This test verifies that network errors propagate
up after OpenAILike exhausts its retries.
"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Simulate network error from acomplete (after OpenAILike retries exhausted)
network_error = ConnectionError("Connection refused")
mock_settings.llm.acomplete = AsyncMock(side_effect=network_error)
# Network error wrapped in WorkflowRuntimeError
with pytest.raises(WorkflowRuntimeError, match="Connection refused"):
await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
# acomplete called only once - network error propagates, not retried by Workflow
assert mock_settings.llm.acomplete.call_count == 1
@pytest.mark.asyncio
async def test_network_error_not_retried_by_workflow(self, test_settings):
"""Test that Workflow does NOT retry network errors (OpenAILike handles those).
This verifies the separation of concerns:
- StructuredOutputWorkflow: retries parse/validation errors
- OpenAILike: retries network errors (internally, max_retries=3)
"""
workflow = StructuredOutputWorkflow(
output_cls=TestResponse,
max_retries=3,
timeout=30,
)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Network error should propagate immediately, not trigger Workflow retry
mock_settings.llm.acomplete = AsyncMock(
side_effect=TimeoutError("Request timed out")
)
# Network error wrapped in WorkflowRuntimeError
with pytest.raises(WorkflowRuntimeError, match="Request timed out"):
await workflow.run(
prompt="Extract data",
texts=["Some text"],
tone_name=None,
)
# Only called once - Workflow doesn't retry network errors
assert mock_settings.llm.acomplete.call_count == 1
class TestWorkflowTimeoutRetry:
"""Test timeout retry mechanism in get_structured_response"""
@pytest.mark.asyncio
async def test_timeout_retry_succeeds_on_retry(self, test_settings):
"""Test that WorkflowTimeoutError triggers retry and succeeds"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
call_count = {"count": 0}
async def workflow_run_side_effect(*args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
raise WorkflowTimeoutError("Operation timed out after 120 seconds")
return {
"success": TestResponse(
title="Test", summary="Summary", confidence=0.95
)
}
with (
patch("reflector.llm.StructuredOutputWorkflow") as mock_workflow_class,
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_workflow = MagicMock()
mock_workflow.run = AsyncMock(side_effect=workflow_run_side_effect)
mock_workflow_class.return_value = mock_workflow
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert result.summary == "Summary"
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_timeout_retry_exhausts_after_max_attempts(self, test_settings):
"""Test that timeout retry stops after max attempts"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
call_count = {"count": 0}
async def workflow_run_side_effect(*args, **kwargs):
call_count["count"] += 1
raise WorkflowTimeoutError("Operation timed out after 120 seconds")
with (
patch("reflector.llm.StructuredOutputWorkflow") as mock_workflow_class,
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_workflow = MagicMock()
mock_workflow.run = AsyncMock(side_effect=workflow_run_side_effect)
mock_workflow_class.return_value = mock_workflow
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
with pytest.raises(RetryException, match="Retry attempts exceeded"):
await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert call_count["count"] == 3
@pytest.mark.asyncio
async def test_timeout_retry_with_backoff(self, test_settings):
"""Test that exponential backoff is applied between retries"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
call_times = []
async def workflow_run_side_effect(*args, **kwargs):
call_times.append(monotonic())
if len(call_times) < 3:
raise WorkflowTimeoutError("Operation timed out after 120 seconds")
return {
"success": TestResponse(
title="Test", summary="Summary", confidence=0.95
)
}
with (
patch("reflector.llm.StructuredOutputWorkflow") as mock_workflow_class,
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_workflow = MagicMock()
mock_workflow.run = AsyncMock(side_effect=workflow_run_side_effect)
mock_workflow_class.return_value = mock_workflow
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
if len(call_times) >= 2:
time_between_calls = call_times[1] - call_times[0]
assert (
time_between_calls >= 1.5
), f"Expected ~2s backoff, got {time_between_calls}s"

View File

@@ -266,7 +266,11 @@ async def mock_summary_processor():
# When flush is called, simulate summary generation by calling the callbacks
async def flush_with_callback():
mock_summary.flush_called = True
from reflector.processors.types import FinalLongSummary, FinalShortSummary
from reflector.processors.types import (
ActionItems,
FinalLongSummary,
FinalShortSummary,
)
if hasattr(mock_summary, "_callback"):
await mock_summary._callback(
@@ -276,12 +280,19 @@ async def mock_summary_processor():
await mock_summary._on_short_summary(
FinalShortSummary(short_summary="Test short summary", duration=10.0)
)
if hasattr(mock_summary, "_on_action_items"):
await mock_summary._on_action_items(
ActionItems(action_items={"test": "action item"})
)
mock_summary.flush = flush_with_callback
def init_with_callback(transcript=None, callback=None, on_short_summary=None):
def init_with_callback(
transcript=None, callback=None, on_short_summary=None, on_action_items=None
):
mock_summary._callback = callback
mock_summary._on_short_summary = on_short_summary
mock_summary._on_action_items = on_action_items
return mock_summary
mock_summary_class.side_effect = init_with_callback

View File

@@ -1,5 +1,8 @@
import pytest
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import transcripts_controller
@pytest.mark.asyncio
async def test_transcript_create(client):
@@ -182,3 +185,51 @@ async def test_transcript_mark_reviewed(authenticated_client, client):
response = await client.get(f"/transcripts/{tid}")
assert response.status_code == 200
assert response.json()["reviewed"] is True
@pytest.mark.asyncio
async def test_transcript_get_returns_room_name(authenticated_client, client):
"""Test that getting a transcript returns its room_name when linked to a room."""
# Create a room
room = await rooms_controller.add(
name="test-room-for-transcript",
user_id="test-user",
zulip_auto_post=False,
zulip_stream="",
zulip_topic="",
is_locked=False,
room_mode="normal",
recording_type="cloud",
recording_trigger="automatic-2nd-participant",
is_shared=False,
webhook_url="",
webhook_secret="",
)
# Create a transcript linked to the room
transcript = await transcripts_controller.add(
name="transcript-with-room",
source_kind="file",
room_id=room.id,
)
# Get the transcript and verify room_name is returned
response = await client.get(f"/transcripts/{transcript.id}")
assert response.status_code == 200
assert response.json()["room_id"] == room.id
assert response.json()["room_name"] == "test-room-for-transcript"
@pytest.mark.asyncio
async def test_transcript_get_returns_null_room_name_when_no_room(
authenticated_client, client
):
"""Test that room_name is null when transcript has no room."""
response = await client.post("/transcripts", json={"name": "no-room-transcript"})
assert response.status_code == 200
tid = response.json()["id"]
response = await client.get(f"/transcripts/{tid}")
assert response.status_code == 200
assert response.json()["room_id"] is None
assert response.json()["room_name"] is None

3416
server/uv.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -15,9 +15,12 @@ import {
createListCollection,
useDisclosure,
Tabs,
Popover,
Text,
HStack,
} from "@chakra-ui/react";
import { useEffect, useMemo, useState } from "react";
import { LuEye, LuEyeOff } from "react-icons/lu";
import { LuEye, LuEyeOff, LuInfo } from "react-icons/lu";
import useRoomList from "./useRoomList";
import type { components } from "../../reflector-api";
import {
@@ -67,6 +70,11 @@ const recordingTypeOptions: SelectOption[] = [
{ label: "Cloud", value: "cloud" },
];
const platformOptions: SelectOption[] = [
{ label: "Whereby", value: "whereby" },
{ label: "Daily", value: "daily" },
];
const roomInitialState = {
name: "",
zulipAutoPost: false,
@@ -82,6 +90,8 @@ const roomInitialState = {
icsUrl: "",
icsEnabled: false,
icsFetchInterval: 5,
platform: "whereby",
skipConsent: false,
};
export default function RoomsList() {
@@ -99,6 +109,11 @@ export default function RoomsList() {
const recordingTypeCollection = createListCollection({
items: recordingTypeOptions,
});
const platformCollection = createListCollection({
items: platformOptions,
});
const [roomInput, setRoomInput] = useState<null | typeof roomInitialState>(
null,
);
@@ -143,15 +158,25 @@ export default function RoomsList() {
zulipStream: detailedEditedRoom.zulip_stream,
zulipTopic: detailedEditedRoom.zulip_topic,
isLocked: detailedEditedRoom.is_locked,
roomMode: detailedEditedRoom.room_mode,
roomMode:
detailedEditedRoom.platform === "daily"
? "group"
: detailedEditedRoom.room_mode,
recordingType: detailedEditedRoom.recording_type,
recordingTrigger: detailedEditedRoom.recording_trigger,
recordingTrigger:
detailedEditedRoom.platform === "daily"
? detailedEditedRoom.recording_type === "cloud"
? "automatic-2nd-participant"
: "none"
: detailedEditedRoom.recording_trigger,
isShared: detailedEditedRoom.is_shared,
webhookUrl: detailedEditedRoom.webhook_url || "",
webhookSecret: detailedEditedRoom.webhook_secret || "",
icsUrl: detailedEditedRoom.ics_url || "",
icsEnabled: detailedEditedRoom.ics_enabled || false,
icsFetchInterval: detailedEditedRoom.ics_fetch_interval || 5,
platform: detailedEditedRoom.platform,
skipConsent: detailedEditedRoom.skip_consent || false,
}
: null,
[detailedEditedRoom],
@@ -277,21 +302,33 @@ export default function RoomsList() {
return;
}
const platform: "whereby" | "daily" | null =
room.platform === "whereby" || room.platform === "daily"
? room.platform
: null;
const roomData = {
name: room.name,
zulip_auto_post: room.zulipAutoPost,
zulip_stream: room.zulipStream,
zulip_topic: room.zulipTopic,
is_locked: room.isLocked,
room_mode: room.roomMode,
room_mode: platform === "daily" ? "group" : room.roomMode,
recording_type: room.recordingType,
recording_trigger: room.recordingTrigger,
recording_trigger:
platform === "daily"
? room.recordingType === "cloud"
? "automatic-2nd-participant"
: "none"
: room.recordingTrigger,
is_shared: room.isShared,
webhook_url: room.webhookUrl,
webhook_secret: room.webhookSecret,
ics_url: room.icsUrl,
ics_enabled: room.icsEnabled,
ics_fetch_interval: room.icsFetchInterval,
platform,
skip_consent: room.skipConsent,
};
if (isEditing) {
@@ -339,15 +376,22 @@ export default function RoomsList() {
zulipStream: roomData.zulip_stream,
zulipTopic: roomData.zulip_topic,
isLocked: roomData.is_locked,
roomMode: roomData.room_mode,
roomMode: roomData.platform === "daily" ? "group" : roomData.room_mode, // Daily always uses 2-200
recordingType: roomData.recording_type,
recordingTrigger: roomData.recording_trigger,
recordingTrigger:
roomData.platform === "daily"
? roomData.recording_type === "cloud"
? "automatic-2nd-participant"
: "none"
: roomData.recording_trigger,
isShared: roomData.is_shared,
webhookUrl: roomData.webhook_url || "",
webhookSecret: roomData.webhook_secret || "",
icsUrl: roomData.ics_url || "",
icsEnabled: roomData.ics_enabled || false,
icsFetchInterval: roomData.ics_fetch_interval || 5,
platform: roomData.platform,
skipConsent: roomData.skip_consent || false,
});
setEditRoomId(roomId);
setIsEditing(true);
@@ -482,6 +526,52 @@ export default function RoomsList() {
)}
</Field.Root>
<Field.Root mt={4}>
<Field.Label>Platform</Field.Label>
<Select.Root
value={[room.platform]}
onValueChange={(e) => {
const newPlatform = e.value[0] as "whereby" | "daily";
const updates: Partial<typeof room> = {
platform: newPlatform,
};
if (newPlatform === "daily") {
updates.roomMode = "group";
updates.recordingTrigger =
room.recordingType === "cloud"
? "automatic-2nd-participant"
: "none";
} else {
if (room.recordingType !== "cloud") {
updates.recordingTrigger = "none";
}
}
setRoomInput({ ...room, ...updates });
}}
collection={platformCollection}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select platform" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{platformOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
<Field.Root mt={4}>
<Checkbox.Root
name="isLocked"
@@ -504,50 +594,95 @@ export default function RoomsList() {
<Checkbox.Label>Locked room</Checkbox.Label>
</Checkbox.Root>
</Field.Root>
{room.platform !== "daily" && (
<Field.Root mt={4}>
<Field.Label>Room size</Field.Label>
<Select.Root
value={[room.roomMode]}
onValueChange={(e) =>
setRoomInput({ ...room, roomMode: e.value[0] })
}
collection={roomModeCollection}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select room size" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{roomModeOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
)}
<Field.Root mt={4}>
<Field.Label>Room size</Field.Label>
<Select.Root
value={[room.roomMode]}
onValueChange={(e) =>
setRoomInput({ ...room, roomMode: e.value[0] })
}
collection={roomModeCollection}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select room size" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{roomModeOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
<Field.Root mt={4}>
<Field.Label>Recording type</Field.Label>
<HStack gap={2} alignItems="center">
<Field.Label>Recording type</Field.Label>
<Popover.Root>
<Popover.Trigger asChild>
<IconButton
aria-label="Recording type help"
variant="ghost"
size="xs"
colorPalette="gray"
>
<LuInfo />
</IconButton>
</Popover.Trigger>
<Popover.Positioner>
<Popover.Content>
<Popover.Arrow />
<Popover.Body>
<Text fontSize="sm" lineHeight="1.6">
<strong>None:</strong> No recording will be
created.
<br />
<br />
<strong>Local:</strong> Recording happens on
each participant's device. Files are saved
locally.
<br />
<br />
<strong>Cloud:</strong> Recording happens on
the platform's servers and is available after
the meeting ends.
</Text>
</Popover.Body>
</Popover.Content>
</Popover.Positioner>
</Popover.Root>
</HStack>
<Select.Root
value={[room.recordingType]}
onValueChange={(e) =>
setRoomInput({
...room,
recordingType: e.value[0],
recordingTrigger:
e.value[0] !== "cloud"
onValueChange={(e) => {
const newRecordingType = e.value[0];
const updates: Partial<typeof room> = {
recordingType: newRecordingType,
};
if (room.platform === "daily") {
updates.recordingTrigger =
newRecordingType === "cloud"
? "automatic-2nd-participant"
: "none";
} else {
updates.recordingTrigger =
newRecordingType !== "cloud"
? "none"
: room.recordingTrigger,
})
}
: room.recordingTrigger;
}
setRoomInput({ ...room, ...updates });
}}
collection={recordingTypeCollection}
>
<Select.HiddenSelect />
@@ -571,40 +706,77 @@ export default function RoomsList() {
</Select.Positioner>
</Select.Root>
</Field.Root>
<Field.Root mt={4}>
<Field.Label>Cloud recording start trigger</Field.Label>
<Select.Root
value={[room.recordingTrigger]}
onValueChange={(e) =>
setRoomInput({
...room,
recordingTrigger: e.value[0],
})
}
collection={recordingTriggerCollection}
disabled={room.recordingType !== "cloud"}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select trigger" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{recordingTriggerOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
{room.recordingType === "cloud" &&
room.platform !== "daily" && (
<Field.Root mt={4}>
<HStack gap={2} alignItems="center">
<Field.Label>Recording start trigger</Field.Label>
<Popover.Root>
<Popover.Trigger asChild>
<IconButton
aria-label="Recording start trigger help"
variant="ghost"
size="xs"
colorPalette="gray"
>
<LuInfo />
</IconButton>
</Popover.Trigger>
<Popover.Positioner>
<Popover.Content>
<Popover.Arrow />
<Popover.Body>
<Text fontSize="sm" lineHeight="1.6">
<strong>None:</strong> Recording must be
started manually by a participant.
<br />
<br />
<strong>Prompt:</strong> Participants will
be prompted to start recording when they
join.
<br />
<br />
<strong>Automatic:</strong> Recording
starts automatically when a second
participant joins.
</Text>
</Popover.Body>
</Popover.Content>
</Popover.Positioner>
</Popover.Root>
</HStack>
<Select.Root
value={[room.recordingTrigger]}
onValueChange={(e) =>
setRoomInput({
...room,
recordingTrigger: e.value[0],
})
}
collection={recordingTriggerCollection}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select trigger" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{recordingTriggerOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
)}
<Field.Root mt={4}>
<Checkbox.Root
@@ -628,6 +800,34 @@ export default function RoomsList() {
<Checkbox.Label>Shared room</Checkbox.Label>
</Checkbox.Root>
</Field.Root>
{room.recordingType === "cloud" && (
<Field.Root mt={4}>
<Checkbox.Root
name="skipConsent"
checked={room.skipConsent}
onCheckedChange={(e) => {
const syntheticEvent = {
target: {
name: "skipConsent",
type: "checkbox",
checked: e.checked,
},
};
handleRoomChange(syntheticEvent);
}}
>
<Checkbox.HiddenInput />
<Checkbox.Control>
<Checkbox.Indicator />
</Checkbox.Control>
<Checkbox.Label>Skip consent dialog</Checkbox.Label>
</Checkbox.Root>
<Field.HelperText>
When enabled, participants won't be asked for
recording consent. Audio will be stored automatically.
</Field.HelperText>
</Field.Root>
)}
</Tabs.Content>
<Tabs.Content value="share" pt={6}>

View File

@@ -117,15 +117,6 @@ export default function TranscriptDetails(details: TranscriptDetails) {
return <Modal title="Loading" text={"Loading transcript..."} />;
}
if (mp3.error) {
return (
<Modal
title="Transcription error"
text={`There was an error loading the recording. Error: ${mp3.error}`}
/>
);
}
return (
<>
<Grid
@@ -147,7 +138,12 @@ export default function TranscriptDetails(details: TranscriptDetails) {
/>
) : !mp3.loading && (waveform.error || mp3.error) ? (
<Box p={4} bg="red.100" borderRadius="md">
<Text>Error loading this recording</Text>
<Text>
Error loading{" "}
{[waveform.error && "waveform", mp3.error && "mp3"]
.filter(Boolean)
.join(" and ")}
</Text>
</Box>
) : (
<Skeleton h={14} />

View File

@@ -2,20 +2,29 @@
import { Spinner, Link } from "@chakra-ui/react";
import { useAuth } from "../lib/AuthProvider";
import { usePathname } from "next/navigation";
import { getLogoutRedirectUrl } from "../lib/auth";
export default function UserInfo() {
const auth = useAuth();
const pathname = usePathname();
const status = auth.status;
const isLoading = status === "loading";
const isAuthenticated = status === "authenticated";
const isRefreshing = status === "refreshing";
const callbackUrl = getLogoutRedirectUrl(pathname);
return isLoading ? (
<Spinner size="xs" className="mx-3" />
) : !isAuthenticated && !isRefreshing ? (
<Link
href="/"
href="#"
className="font-light px-2"
onClick={() => auth.signIn("authentik")}
onClick={(e) => {
e.preventDefault();
auth.signIn("authentik");
}}
>
Log in
</Link>
@@ -23,7 +32,7 @@ export default function UserInfo() {
<Link
href="#"
className="font-light px-2"
onClick={() => auth.signOut({ callbackUrl: "/" })}
onClick={() => auth.signOut({ callbackUrl })}
>
Log out
</Link>

View File

@@ -26,6 +26,7 @@ import { useRouter } from "next/navigation";
import { formatDateTime, formatStartedAgo } from "../lib/timeUtils";
import MeetingMinimalHeader from "../components/MeetingMinimalHeader";
import { NonEmptyString } from "../lib/utils";
import { MeetingId } from "../lib/types";
type Meeting = components["schemas"]["Meeting"];
@@ -98,7 +99,7 @@ export default function MeetingSelection({
onMeetingSelect(meeting);
};
const handleEndMeeting = async (meetingId: string) => {
const handleEndMeeting = async (meetingId: MeetingId) => {
try {
await deactivateMeetingMutation.mutateAsync({
params: {

View File

@@ -1,37 +1,196 @@
"use client";
import { useCallback, useEffect, useRef, useState } from "react";
import {
RefObject,
useCallback,
useEffect,
useMemo,
useRef,
useState,
} from "react";
import { Box, Spinner, Center, Text } from "@chakra-ui/react";
import { useRouter, useParams } from "next/navigation";
import DailyIframe, { DailyCall } from "@daily-co/daily-js";
import DailyIframe, {
DailyCall,
DailyCallOptions,
DailyCustomTrayButton,
DailyCustomTrayButtons,
DailyEventObjectCustomButtonClick,
DailyFactoryOptions,
DailyParticipantsObject,
} from "@daily-co/daily-js";
import type { components } from "../../reflector-api";
import { useAuth } from "../../lib/AuthProvider";
import {
ConsentDialogButton,
recordingTypeRequiresConsent,
} from "../../lib/consent";
import { useConsentDialog } from "../../lib/consent";
import { useRoomJoinMeeting } from "../../lib/apiHooks";
import { omit } from "remeda";
import { assertExists } from "../../lib/utils";
import { assertMeetingId } from "../../lib/types";
const CONSENT_BUTTON_ID = "recording-consent";
const RECORDING_INDICATOR_ID = "recording-indicator";
type Meeting = components["schemas"]["Meeting"];
type Room = components["schemas"]["RoomDetails"];
interface DailyRoomProps {
type DailyRoomProps = {
meeting: Meeting;
}
room: Room;
};
export default function DailyRoom({ meeting }: DailyRoomProps) {
const useCustomTrayButtons = (
frame: {
updateCustomTrayButtons: (
customTrayButtons: DailyCustomTrayButtons,
) => void;
joined: boolean;
} | null,
) => {
const [, setCustomTrayButtons] = useState<DailyCustomTrayButtons>({});
return useCallback(
(id: string, button: DailyCustomTrayButton | null) => {
setCustomTrayButtons((prev) => {
// would blink state when frame blinks but it's ok here
const state =
button === null ? omit(prev, [id]) : { ...prev, [id]: button };
if (frame !== null && frame.joined)
frame.updateCustomTrayButtons(state);
return state;
});
},
[setCustomTrayButtons, frame],
);
};
const USE_FRAME_INIT_STATE = {
frame: null as DailyCall | null,
joined: false as boolean,
} as const;
// Daily js and not Daily react used right now because daily-js allows for prebuild interface vs. -react is customizable but has no nice defaults
const useFrame = (
container: HTMLDivElement | null,
cbs: {
onLeftMeeting: () => void;
onCustomButtonClick: (ev: DailyEventObjectCustomButtonClick) => void;
onJoinMeeting: (
startRecording: (args: { type: "raw-tracks" }) => void,
) => void;
},
) => {
const [{ frame, joined }, setState] = useState(USE_FRAME_INIT_STATE);
const setJoined = useCallback(
(joined: boolean) => setState((prev) => ({ ...prev, joined })),
[setState],
);
const setFrame = useCallback(
(frame: DailyCall | null) => setState((prev) => ({ ...prev, frame })),
[setState],
);
useEffect(() => {
if (!container) return;
const init = async () => {
const existingFrame = DailyIframe.getCallInstance();
if (existingFrame) {
console.error("existing daily frame present");
await existingFrame.destroy();
}
const frameOptions: DailyFactoryOptions = {
iframeStyle: {
width: "100vw",
height: "100vh",
border: "none",
},
showLeaveButton: true,
showFullscreenButton: true,
};
const frame = DailyIframe.createFrame(container, frameOptions);
setFrame(frame);
};
init().catch(
console.error.bind(console, "Failed to initialize daily frame:"),
);
return () => {
frame
?.destroy()
.catch(console.error.bind(console, "Failed to destroy daily frame:"));
setState(USE_FRAME_INIT_STATE);
};
}, [container]);
useEffect(() => {
if (!frame) return;
frame.on("left-meeting", cbs.onLeftMeeting);
frame.on("custom-button-click", cbs.onCustomButtonClick);
const joinCb = () => {
if (!frame) {
console.error("frame is null in joined-meeting callback");
return;
}
cbs.onJoinMeeting(frame.startRecording.bind(frame));
};
frame.on("joined-meeting", joinCb);
return () => {
frame.off("left-meeting", cbs.onLeftMeeting);
frame.off("custom-button-click", cbs.onCustomButtonClick);
frame.off("joined-meeting", joinCb);
};
}, [frame, cbs]);
const frame_ = useMemo(() => {
if (frame === null) return frame;
return {
join: async (
properties?: DailyCallOptions,
): Promise<DailyParticipantsObject | void> => {
await frame.join(properties);
setJoined(!frame.isDestroyed());
},
updateCustomTrayButtons: (
customTrayButtons: DailyCustomTrayButtons,
): DailyCall => frame.updateCustomTrayButtons(customTrayButtons),
};
}, [frame]);
const setCustomTrayButton = useCustomTrayButtons(
useMemo(() => {
if (frame_ === null) return null;
return {
updateCustomTrayButtons: frame_.updateCustomTrayButtons,
joined,
};
}, [frame_, joined]),
);
return [
frame_,
{
setCustomTrayButton,
},
] as const;
};
export default function DailyRoom({ meeting, room }: DailyRoomProps) {
const router = useRouter();
const params = useParams();
const auth = useAuth();
const status = auth.status;
const containerRef = useRef<HTMLDivElement>(null);
const authLastUserId = auth.lastUserId;
const [container, setContainer] = useState<HTMLDivElement | null>(null);
const joinMutation = useRoomJoinMeeting();
const [joinedMeeting, setJoinedMeeting] = useState<Meeting | null>(null);
const roomName = params?.roomName as string;
// Always call /join to get a fresh token with user_id
const {
showConsentModal,
showRecordingIndicator: showRecordingInTray,
showConsentButton,
} = useConsentDialog({
meetingId: assertMeetingId(meeting.id),
recordingType: meeting.recording_type,
skipConsent: room.skip_consent,
});
const showConsentModalRef = useRef(showConsentModal);
showConsentModalRef.current = showConsentModal;
useEffect(() => {
if (status === "loading" || !meeting?.id || !roomName) return;
if (authLastUserId === undefined || !meeting?.id || !roomName) return;
const join = async () => {
try {
@@ -49,74 +208,97 @@ export default function DailyRoom({ meeting }: DailyRoomProps) {
}
};
join();
}, [meeting?.id, roomName, status]);
join().catch(console.error.bind(console, "Failed to join meeting:"));
}, [meeting?.id, roomName, authLastUserId]);
const roomUrl = joinedMeeting?.host_room_url || joinedMeeting?.room_url;
const isLoading =
status === "loading" || joinMutation.isPending || !joinedMeeting;
const roomUrl = joinedMeeting?.room_url;
const handleLeave = useCallback(() => {
router.push("/browse");
}, [router]);
useEffect(() => {
if (isLoading || !roomUrl || !containerRef.current) return;
const handleCustomButtonClick = useCallback(
(ev: DailyEventObjectCustomButtonClick) => {
if (ev.button_id === CONSENT_BUTTON_ID) {
showConsentModalRef.current();
}
},
[
/*keep static; iframe recreation depends on it*/
],
);
let frame: DailyCall | null = null;
let destroyed = false;
const createAndJoin = async () => {
const handleFrameJoinMeeting = useCallback(
(startRecording: (args: { type: "raw-tracks" }) => void) => {
try {
const existingFrame = DailyIframe.getCallInstance();
if (existingFrame) {
await existingFrame.destroy();
if (meeting.recording_type === "cloud") {
console.log("Starting cloud recording");
startRecording({ type: "raw-tracks" });
}
frame = DailyIframe.createFrame(containerRef.current!, {
iframeStyle: {
width: "100vw",
height: "100vh",
border: "none",
},
showLeaveButton: true,
showFullscreenButton: true,
});
if (destroyed) {
await frame.destroy();
return;
}
frame.on("left-meeting", handleLeave);
frame.on("joined-meeting", async () => {
try {
await frame.startRecording({ type: "raw-tracks" });
} catch (error) {
console.error("Failed to start recording:", error);
}
});
await frame.join({ url: roomUrl });
} catch (error) {
console.error("Error creating Daily frame:", error);
console.error("Failed to start recording:", error);
}
};
},
[meeting.recording_type],
);
createAndJoin();
const recordingIconUrl = useMemo(
() => new URL("/recording-icon.svg", window.location.origin),
[],
);
return () => {
destroyed = true;
if (frame) {
frame.destroy().catch((e) => {
console.error("Error destroying frame:", e);
});
}
};
}, [roomUrl, isLoading, handleLeave]);
const [frame, { setCustomTrayButton }] = useFrame(container, {
onLeftMeeting: handleLeave,
onCustomButtonClick: handleCustomButtonClick,
onJoinMeeting: handleFrameJoinMeeting,
});
if (isLoading) {
useEffect(() => {
if (!frame || !roomUrl) return;
frame
.join({
url: roomUrl,
sendSettings: {
video: {
// Optimize bandwidth for camera video
// allowAdaptiveLayers automatically adjusts quality based on network conditions
allowAdaptiveLayers: true,
// Use bandwidth-optimized preset as fallback for browsers without adaptive support
maxQuality: "medium",
},
// Note: screenVideo intentionally not configured to preserve full quality for screen shares
},
})
.catch(console.error.bind(console, "Failed to join daily room:"));
}, [frame, roomUrl]);
useEffect(() => {
setCustomTrayButton(
RECORDING_INDICATOR_ID,
showRecordingInTray
? {
iconPath: recordingIconUrl.href,
label: "Recording",
tooltip: "Recording in progress",
}
: null,
);
}, [showRecordingInTray, recordingIconUrl, setCustomTrayButton]);
useEffect(() => {
setCustomTrayButton(
CONSENT_BUTTON_ID,
showConsentButton
? {
iconPath: recordingIconUrl.href,
label: "Recording (click to consent)",
tooltip: "Recording (click to consent)",
}
: null,
);
}, [showConsentButton, recordingIconUrl, setCustomTrayButton]);
if (authLastUserId === undefined) {
return (
<Center width="100vw" height="100vh">
<Spinner size="xl" />
@@ -138,10 +320,7 @@ export default function DailyRoom({ meeting }: DailyRoomProps) {
return (
<Box position="relative" width="100vw" height="100vh">
<div ref={containerRef} style={{ width: "100%", height: "100%" }} />
{meeting.recording_type &&
recordingTypeRequiresConsent(meeting.recording_type) &&
meeting.id && <ConsentDialogButton meetingId={meeting.id} />}
<div ref={setContainer} style={{ width: "100%", height: "100%" }} />
</Box>
);
}

View File

@@ -18,6 +18,7 @@ import { useAuth } from "../../lib/AuthProvider";
import { useError } from "../../(errors)/errorContext";
import { parseNonEmptyString } from "../../lib/utils";
import { printApiError } from "../../api/_error";
import { assertMeetingId } from "../../lib/types";
type Meeting = components["schemas"]["Meeting"];
@@ -67,7 +68,10 @@ export default function RoomContainer(details: RoomDetails) {
room && !room.ics_enabled && !pageMeetingId ? roomName : null,
);
const explicitMeeting = useRoomGetMeeting(roomName, pageMeetingId || null);
const explicitMeeting = useRoomGetMeeting(
roomName,
pageMeetingId ? assertMeetingId(pageMeetingId) : null,
);
const meeting = explicitMeeting.data || defaultMeeting.response;
@@ -192,9 +196,9 @@ export default function RoomContainer(details: RoomDetails) {
switch (platform) {
case "daily":
return <DailyRoom meeting={meeting} />;
return <DailyRoom meeting={meeting} room={room} />;
case "whereby":
return <WherebyRoom meeting={meeting} />;
return <WherebyRoom meeting={meeting} room={room} />;
default: {
const _exhaustive: never = platform;
return (

View File

@@ -5,24 +5,29 @@ import { useRouter } from "next/navigation";
import type { components } from "../../reflector-api";
import { useAuth } from "../../lib/AuthProvider";
import { getWherebyUrl, useWhereby } from "../../lib/wherebyClient";
import { assertExistsAndNonEmptyString, NonEmptyString } from "../../lib/utils";
import {
ConsentDialogButton as BaseConsentDialogButton,
useConsentDialog,
recordingTypeRequiresConsent,
} from "../../lib/consent";
import { assertMeetingId, MeetingId } from "../../lib/types";
type Meeting = components["schemas"]["Meeting"];
type Room = components["schemas"]["RoomDetails"];
interface WherebyRoomProps {
meeting: Meeting;
room: Room;
}
function WherebyConsentDialogButton({
meetingId,
recordingType,
skipConsent,
wherebyRef,
}: {
meetingId: NonEmptyString;
meetingId: MeetingId;
recordingType: Meeting["recording_type"];
skipConsent: boolean;
wherebyRef: React.RefObject<HTMLElement>;
}) {
const previousFocusRef = useRef<HTMLElement | null>(null);
@@ -45,10 +50,16 @@ function WherebyConsentDialogButton({
};
}, [wherebyRef]);
return <BaseConsentDialogButton meetingId={meetingId} />;
return (
<BaseConsentDialogButton
meetingId={meetingId}
recordingType={recordingType}
skipConsent={skipConsent}
/>
);
}
export default function WherebyRoom({ meeting }: WherebyRoomProps) {
export default function WherebyRoom({ meeting, room }: WherebyRoomProps) {
const wherebyLoaded = useWhereby();
const wherebyRef = useRef<HTMLElement>(null);
const router = useRouter();
@@ -57,9 +68,14 @@ export default function WherebyRoom({ meeting }: WherebyRoomProps) {
const isAuthenticated = status === "authenticated";
const wherebyRoomUrl = getWherebyUrl(meeting);
const recordingType = meeting.recording_type;
const meetingId = meeting.id;
const { showConsentButton } = useConsentDialog({
meetingId: assertMeetingId(meetingId),
recordingType: meeting.recording_type,
skipConsent: room.skip_consent,
});
const isLoading = status === "loading";
const handleLeave = useCallback(() => {
@@ -88,14 +104,14 @@ export default function WherebyRoom({ meeting }: WherebyRoomProps) {
room={wherebyRoomUrl}
style={{ width: "100vw", height: "100vh" }}
/>
{recordingType &&
recordingTypeRequiresConsent(recordingType) &&
meetingId && (
<WherebyConsentDialogButton
meetingId={assertExistsAndNonEmptyString(meetingId)}
wherebyRef={wherebyRef}
/>
)}
{showConsentButton && (
<WherebyConsentDialogButton
meetingId={assertMeetingId(meetingId)}
recordingType={meeting.recording_type}
skipConsent={room.skip_consent}
wherebyRef={wherebyRef}
/>
)}
</>
);
}

View File

@@ -6,7 +6,6 @@ import {
useEffect,
useRef,
useState,
useContext,
RefObject,
use,
} from "react";
@@ -25,8 +24,6 @@ import { useRecordingConsent } from "../recordingConsentContext";
import {
useMeetingAudioConsent,
useRoomGetByName,
useRoomActiveMeetings,
useRoomUpcomingMeetings,
useRoomsCreateMeeting,
useRoomGetMeeting,
} from "../lib/apiHooks";
@@ -39,12 +36,9 @@ import { FaBars } from "react-icons/fa6";
import { useAuth } from "../lib/AuthProvider";
import { getWherebyUrl, useWhereby } from "../lib/wherebyClient";
import { useError } from "../(errors)/errorContext";
import {
assertExistsAndNonEmptyString,
NonEmptyString,
parseNonEmptyString,
} from "../lib/utils";
import { parseNonEmptyString } from "../lib/utils";
import { printApiError } from "../api/_error";
import { assertMeetingId, MeetingId } from "../lib/types";
export type RoomDetails = {
params: Promise<{
@@ -92,16 +86,16 @@ const useConsentWherebyFocusManagement = (
};
const useConsentDialog = (
meetingId: string,
meetingId: MeetingId,
wherebyRef: RefObject<HTMLElement> /*accessibility*/,
) => {
const { state: consentState, touch, hasConsent } = useRecordingConsent();
const { state: consentState, touch, hasAnswered } = useRecordingConsent();
// toast would open duplicates, even with using "id=" prop
const [modalOpen, setModalOpen] = useState(false);
const audioConsentMutation = useMeetingAudioConsent();
const handleConsent = useCallback(
async (meetingId: string, given: boolean) => {
async (meetingId: MeetingId, given: boolean) => {
try {
await audioConsentMutation.mutateAsync({
params: {
@@ -114,7 +108,7 @@ const useConsentDialog = (
},
});
touch(meetingId);
touch(meetingId, given);
} catch (error) {
console.error("Error submitting consent:", error);
}
@@ -216,7 +210,7 @@ const useConsentDialog = (
return {
showConsentModal,
consentState,
hasConsent,
hasAnswered,
consentLoading: audioConsentMutation.isPending,
};
};
@@ -225,13 +219,13 @@ function ConsentDialogButton({
meetingId,
wherebyRef,
}: {
meetingId: NonEmptyString;
meetingId: MeetingId;
wherebyRef: React.RefObject<HTMLElement>;
}) {
const { showConsentModal, consentState, hasConsent, consentLoading } =
const { showConsentModal, consentState, hasAnswered, consentLoading } =
useConsentDialog(meetingId, wherebyRef);
if (!consentState.ready || hasConsent(meetingId) || consentLoading) {
if (!consentState.ready || hasAnswered(meetingId) || consentLoading) {
return null;
}
@@ -284,7 +278,10 @@ export default function Room(details: RoomDetails) {
room && !room.ics_enabled && !pageMeetingId ? roomName : null,
);
const explicitMeeting = useRoomGetMeeting(roomName, pageMeetingId || null);
const explicitMeeting = useRoomGetMeeting(
roomName,
pageMeetingId ? assertMeetingId(pageMeetingId) : null,
);
const wherebyRoomUrl = explicitMeeting.data
? getWherebyUrl(explicitMeeting.data)
: defaultMeeting.response
@@ -437,7 +434,7 @@ export default function Room(details: RoomDetails) {
recordingTypeRequiresConsent(recordingType) &&
meetingId && (
<ConsentDialogButton
meetingId={assertExistsAndNonEmptyString(meetingId)}
meetingId={assertMeetingId(meetingId)}
wherebyRef={wherebyRef}
/>
)}

View File

@@ -1,6 +1,6 @@
"use client";
import { createContext, useContext } from "react";
import { createContext, useContext, useRef } from "react";
import { useSession as useNextAuthSession } from "next-auth/react";
import { signOut, signIn } from "next-auth/react";
import { configureApiAuth } from "./apiClient";
@@ -25,6 +25,9 @@ type AuthContextType = (
update: () => Promise<Session | null>;
signIn: typeof signIn;
signOut: typeof signOut;
// TODO probably rename isLoading to isReloading and make THIS field "isLoading"
// undefined is "not known", null is "is certainly logged out"
lastUserId: CustomSession["user"]["id"] | null | undefined;
};
const AuthContext = createContext<AuthContextType | undefined>(undefined);
@@ -41,10 +44,15 @@ const noopAuthContext: AuthContextType = {
signOut: async () => {
throw new Error("signOut not supposed to be called");
},
lastUserId: undefined,
};
export function AuthProvider({ children }: { children: React.ReactNode }) {
const { data: session, status, update } = useNextAuthSession();
// referential comparison done in component, must be primitive /or cached
const lastUserId = useRef<CustomSession["user"]["id"] | null | undefined>(
null,
);
const contextValue: AuthContextType = isAuthEnabled
? {
@@ -73,11 +81,16 @@ export function AuthProvider({ children }: { children: React.ReactNode }) {
case "authenticated": {
const customSession = assertCustomSession(session);
if (customSession?.error === REFRESH_ACCESS_TOKEN_ERROR) {
// warning: call order-dependent
lastUserId.current = null;
// token had expired but next auth still returns "authenticated" so show user unauthenticated state
return {
status: "unauthenticated" as const,
};
} else if (customSession?.accessToken) {
// updates anyways with updated properties below
// warning! execution order conscience, must be ran before reading lastUserId.current below
lastUserId.current = customSession.user.id;
return {
status,
accessToken: customSession.accessToken,
@@ -92,6 +105,8 @@ export function AuthProvider({ children }: { children: React.ReactNode }) {
}
}
case "unauthenticated": {
// warning: call order-dependent
lastUserId.current = null;
return { status: "unauthenticated" as const };
}
default: {
@@ -103,6 +118,8 @@ export function AuthProvider({ children }: { children: React.ReactNode }) {
update,
signIn,
signOut,
// for optimistic cases when we assume "loading" doesn't immediately invalidate the user
lastUserId: lastUserId.current,
}
: noopAuthContext;

View File

@@ -5,6 +5,7 @@ import { useError } from "../(errors)/errorContext";
import { QueryClient, useQueryClient } from "@tanstack/react-query";
import type { components } from "../reflector-api";
import { useAuth } from "./AuthProvider";
import { MeetingId } from "./types";
/*
* XXX error types returned from the hooks are not always correct; declared types are ValidationError but real type could be string or any other
@@ -718,7 +719,7 @@ export function useRoomActiveMeetings(roomName: string | null) {
export function useRoomGetMeeting(
roomName: string | null,
meetingId: string | null,
meetingId: MeetingId | null,
) {
return $api.useQuery(
"get",

View File

@@ -18,3 +18,8 @@ export const LOGIN_REQUIRED_PAGES = [
export const PROTECTED_PAGES = new RegExp(
LOGIN_REQUIRED_PAGES.map((page) => `^${page}$`).join("|"),
);
export function getLogoutRedirectUrl(pathname: string): string {
const transcriptPagePattern = /^\/transcripts\/[^/]+$/;
return transcriptPagePattern.test(pathname) ? pathname : "/";
}

View File

@@ -148,7 +148,7 @@ export const authOptions = (): AuthOptions =>
},
async session({ session, token }) {
const extendedToken = token as JWTWithAccessToken;
console.log("extendedToken", extendedToken);
const userId = await getUserId(extendedToken.accessToken);
return {

View File

@@ -1,5 +1,6 @@
"use client";
import { useState, useEffect } from "react";
import { Box, Button, Text, VStack, HStack } from "@chakra-ui/react";
import { CONSENT_DIALOG_TEXT } from "./constants";
@@ -9,6 +10,15 @@ interface ConsentDialogProps {
}
export function ConsentDialog({ onAccept, onReject }: ConsentDialogProps) {
const [acceptButton, setAcceptButton] = useState<HTMLButtonElement | null>(
null,
);
useEffect(() => {
// Auto-focus accept button so Escape key works (Daily iframe captures keyboard otherwise)
acceptButton?.focus();
}, [acceptButton]);
return (
<Box
p={6}
@@ -26,7 +36,12 @@ export function ConsentDialog({ onAccept, onReject }: ConsentDialogProps) {
<Button variant="ghost" size="sm" onClick={onReject}>
{CONSENT_DIALOG_TEXT.rejectButton}
</Button>
<Button colorPalette="primary" size="sm" onClick={onAccept}>
<Button
ref={setAcceptButton}
colorPalette="primary"
size="sm"
onClick={onAccept}
>
{CONSENT_DIALOG_TEXT.acceptButton}
</Button>
</HStack>

View File

@@ -9,16 +9,26 @@ import {
CONSENT_BUTTON_Z_INDEX,
CONSENT_DIALOG_TEXT,
} from "./constants";
import { MeetingId } from "../types";
import type { components } from "../../reflector-api";
interface ConsentDialogButtonProps {
meetingId: string;
}
type Meeting = components["schemas"]["Meeting"];
export function ConsentDialogButton({ meetingId }: ConsentDialogButtonProps) {
const { showConsentModal, consentState, hasConsent, consentLoading } =
useConsentDialog(meetingId);
type ConsentDialogButtonProps = {
meetingId: MeetingId;
recordingType: Meeting["recording_type"];
skipConsent: boolean;
};
if (!consentState.ready || hasConsent(meetingId) || consentLoading) {
export function ConsentDialogButton({
meetingId,
recordingType,
skipConsent,
}: ConsentDialogButtonProps) {
const { showConsentModal, consentState, showConsentButton, consentLoading } =
useConsentDialog({ meetingId, recordingType, skipConsent });
if (!consentState.ready || !showConsentButton || consentLoading) {
return null;
}

View File

@@ -0,0 +1,33 @@
"use client";
import { Box, Text } from "@chakra-ui/react";
import { FaCircle } from "react-icons/fa6";
import {
CONSENT_BUTTON_TOP_OFFSET,
CONSENT_BUTTON_LEFT_OFFSET,
CONSENT_BUTTON_Z_INDEX,
} from "./constants";
export function RecordingIndicator() {
return (
<Box
position="absolute"
top={CONSENT_BUTTON_TOP_OFFSET}
left={CONSENT_BUTTON_LEFT_OFFSET}
zIndex={CONSENT_BUTTON_Z_INDEX}
display="flex"
alignItems="center"
gap={2}
bg="red.500"
color="white"
px={3}
py={1.5}
borderRadius="md"
fontSize="sm"
fontWeight="medium"
>
<FaCircle size={8} />
<Text>Recording</Text>
</Box>
);
}

View File

@@ -2,6 +2,7 @@
export { ConsentDialogButton } from "./ConsentDialogButton";
export { ConsentDialog } from "./ConsentDialog";
export { RecordingIndicator } from "./RecordingIndicator";
export { useConsentDialog } from "./useConsentDialog";
export { recordingTypeRequiresConsent } from "./utils";
export * from "./constants";

View File

@@ -1,9 +1,14 @@
export interface ConsentDialogResult {
import { MeetingId } from "../types";
export type ConsentDialogResult = {
showConsentModal: () => void;
consentState: {
ready: boolean;
consentAnsweredForMeetings?: Set<string>;
consentForMeetings?: Map<MeetingId, boolean>;
};
hasConsent: (meetingId: string) => boolean;
hasAnswered: (meetingId: MeetingId) => boolean;
hasAccepted: (meetingId: MeetingId) => boolean;
consentLoading: boolean;
}
showRecordingIndicator: boolean;
showConsentButton: boolean;
};

View File

@@ -7,9 +7,29 @@ import { useMeetingAudioConsent } from "../apiHooks";
import { ConsentDialog } from "./ConsentDialog";
import { TOAST_CHECK_INTERVAL_MS } from "./constants";
import type { ConsentDialogResult } from "./types";
import { MeetingId } from "../types";
import { recordingTypeRequiresConsent } from "./utils";
import type { components } from "../../reflector-api";
export function useConsentDialog(meetingId: string): ConsentDialogResult {
const { state: consentState, touch, hasConsent } = useRecordingConsent();
type Meeting = components["schemas"]["Meeting"];
type UseConsentDialogParams = {
meetingId: MeetingId;
recordingType: Meeting["recording_type"];
skipConsent: boolean;
};
export function useConsentDialog({
meetingId,
recordingType,
skipConsent,
}: UseConsentDialogParams): ConsentDialogResult {
const {
state: consentState,
touch,
hasAnswered,
hasAccepted,
} = useRecordingConsent();
const [modalOpen, setModalOpen] = useState(false);
const audioConsentMutation = useMeetingAudioConsent();
const intervalRef = useRef<NodeJS.Timeout | null>(null);
@@ -42,7 +62,7 @@ export function useConsentDialog(meetingId: string): ConsentDialogResult {
},
});
touch(meetingId);
touch(meetingId, given);
} catch (error) {
console.error("Error submitting consent:", error);
}
@@ -100,10 +120,23 @@ export function useConsentDialog(meetingId: string): ConsentDialogResult {
});
}, [handleConsent, modalOpen]);
const requiresConsent = Boolean(
recordingType && recordingTypeRequiresConsent(recordingType),
);
const showRecordingIndicator =
requiresConsent && (skipConsent || hasAccepted(meetingId));
const showConsentButton =
requiresConsent && !skipConsent && !hasAnswered(meetingId);
return {
showConsentModal,
consentState,
hasConsent,
hasAnswered,
hasAccepted,
consentLoading: audioConsentMutation.isPending,
showRecordingIndicator,
showConsentButton,
};
}

View File

@@ -1,6 +1,10 @@
import type { Session } from "next-auth";
import type { JWT } from "next-auth/jwt";
import { parseMaybeNonEmptyString } from "./utils";
import {
assertExistsAndNonEmptyString,
NonEmptyString,
parseMaybeNonEmptyString,
} from "./utils";
export interface JWTWithAccessToken extends JWT {
accessToken: string;
@@ -78,3 +82,10 @@ export const assertCustomSession = <T extends Session>(
export type Mutable<T> = {
-readonly [P in keyof T]: T[P];
};
export type MeetingId = NonEmptyString & { __type: "MeetingId" };
export const assertMeetingId = (s: string): MeetingId => {
const nes = assertExistsAndNonEmptyString(s);
// just cast for now
return nes as MeetingId;
};

View File

@@ -1,18 +1,22 @@
"use client";
import React, { createContext, useContext, useEffect, useState } from "react";
import { MeetingId } from "./lib/types";
type ConsentMap = Map<MeetingId, boolean>;
type ConsentContextState =
| { ready: false }
| {
ready: true;
consentAnsweredForMeetings: Set<string>;
consentForMeetings: ConsentMap;
};
interface RecordingConsentContextValue {
state: ConsentContextState;
touch: (meetingId: string) => void;
hasConsent: (meetingId: string) => boolean;
touch: (meetingId: MeetingId, accepted: boolean) => void;
hasAnswered: (meetingId: MeetingId) => boolean;
hasAccepted: (meetingId: MeetingId) => boolean;
}
const RecordingConsentContext = createContext<
@@ -35,81 +39,116 @@ interface RecordingConsentProviderProps {
const LOCAL_STORAGE_KEY = "recording_consent_meetings";
const ACCEPTED = "T" as const;
type Accepted = typeof ACCEPTED;
const REJECTED = "F" as const;
type Rejected = typeof REJECTED;
type Consent = Accepted | Rejected;
const SEPARATOR = "|" as const;
type Separator = typeof SEPARATOR;
const DEFAULT_CONSENT = ACCEPTED;
type Entry = `${MeetingId}${Separator}${Consent}`;
type EntryAndDefault = Entry | MeetingId;
// Format: "meetingId|T" or "meetingId|F", legacy format "meetingId" is treated as accepted
const encodeEntry = (meetingId: MeetingId, accepted: boolean): Entry =>
`${meetingId}|${accepted ? ACCEPTED : REJECTED}`;
const decodeEntry = (
entry: EntryAndDefault,
): { meetingId: MeetingId; accepted: boolean } | null => {
const pipeIndex = entry.lastIndexOf(SEPARATOR);
if (pipeIndex === -1) {
// Legacy format: no pipe means accepted (backward compat)
return { meetingId: entry as MeetingId, accepted: true };
}
const suffix = entry.slice(pipeIndex + 1);
const meetingId = entry.slice(0, pipeIndex) as MeetingId;
// T = accepted, F = rejected, anything else = accepted (safe default)
const accepted = suffix !== REJECTED;
return { meetingId, accepted };
};
export const RecordingConsentProvider: React.FC<
RecordingConsentProviderProps
> = ({ children }) => {
const [state, setState] = useState<ConsentContextState>({ ready: false });
const safeWriteToStorage = (meetingIds: string[]): void => {
const safeWriteToStorage = (consentMap: ConsentMap): void => {
try {
if (typeof window !== "undefined" && window.localStorage) {
localStorage.setItem(LOCAL_STORAGE_KEY, JSON.stringify(meetingIds));
const entries = Array.from(consentMap.entries())
.slice(-5)
.map(([id, accepted]) => encodeEntry(id, accepted));
localStorage.setItem(LOCAL_STORAGE_KEY, JSON.stringify(entries));
}
} catch (error) {
console.error("Failed to save consent data to localStorage:", error);
}
};
// writes to local storage and to the state of context both
const touch = (meetingId: string): void => {
const touch = (meetingId: MeetingId, accepted: boolean): void => {
if (!state.ready) {
console.warn("Attempted to touch consent before context is ready");
return;
}
// has success regardless local storage write success: we don't handle that
// and don't want to crash anything with just consent functionality
const newSet = state.consentAnsweredForMeetings.has(meetingId)
? state.consentAnsweredForMeetings
: new Set([...state.consentAnsweredForMeetings, meetingId]);
// note: preserves the set insertion order
const array = Array.from(newSet).slice(-5); // Keep latest 5
safeWriteToStorage(array);
setState({ ready: true, consentAnsweredForMeetings: newSet });
const newMap = new Map(state.consentForMeetings);
newMap.set(meetingId, accepted);
safeWriteToStorage(newMap);
setState({ ready: true, consentForMeetings: newMap });
};
const hasConsent = (meetingId: string): boolean => {
const hasAnswered = (meetingId: MeetingId): boolean => {
if (!state.ready) return false;
return state.consentAnsweredForMeetings.has(meetingId);
return state.consentForMeetings.has(meetingId);
};
const hasAccepted = (meetingId: MeetingId): boolean => {
if (!state.ready) return false;
return state.consentForMeetings.get(meetingId) === true;
};
// initialize on mount
useEffect(() => {
try {
if (typeof window === "undefined" || !window.localStorage) {
setState({ ready: true, consentAnsweredForMeetings: new Set() });
setState({ ready: true, consentForMeetings: new Map() });
return;
}
const stored = localStorage.getItem(LOCAL_STORAGE_KEY);
if (!stored) {
setState({ ready: true, consentAnsweredForMeetings: new Set() });
setState({ ready: true, consentForMeetings: new Map() });
return;
}
const parsed = JSON.parse(stored);
if (!Array.isArray(parsed)) {
console.warn("Invalid consent data format in localStorage, resetting");
setState({ ready: true, consentAnsweredForMeetings: new Set() });
setState({ ready: true, consentForMeetings: new Map() });
return;
}
// pre-historic way of parsing!
const consentAnsweredForMeetings = new Set(
parsed.filter((id) => !!id && typeof id === "string"),
);
setState({ ready: true, consentAnsweredForMeetings });
const consentForMeetings = new Map<MeetingId, boolean>();
for (const entry of parsed) {
const decoded = decodeEntry(entry);
if (decoded) {
consentForMeetings.set(decoded.meetingId, decoded.accepted);
}
}
setState({ ready: true, consentForMeetings });
} catch (error) {
// we don't want to fail the page here; the component is not essential.
console.error("Failed to parse consent data from localStorage:", error);
setState({ ready: true, consentAnsweredForMeetings: new Set() });
setState({ ready: true, consentForMeetings: new Map() });
}
}, []);
const value: RecordingConsentContextValue = {
state,
touch,
hasConsent,
hasAnswered,
hasAccepted,
};
return (

View File

@@ -893,8 +893,16 @@ export interface components {
* @default false
*/
ics_enabled: boolean;
/** Platform */
platform?: ("whereby" | "daily") | null;
/**
* Platform
* @enum {string}
*/
platform: "whereby" | "daily";
/**
* Skip Consent
* @default false
*/
skip_consent: boolean;
};
/** CreateRoomMeeting */
CreateRoomMeeting: {
@@ -1123,7 +1131,9 @@ export interface components {
/** Audio Deleted */
audio_deleted?: boolean | null;
/** Participants */
participants: components["schemas"]["TranscriptParticipant"][] | null;
participants:
| components["schemas"]["TranscriptParticipantWithEmail"][]
| null;
/**
* @description discriminator enum property added by openapi-typescript
* @enum {string}
@@ -1184,7 +1194,9 @@ export interface components {
/** Audio Deleted */
audio_deleted?: boolean | null;
/** Participants */
participants: components["schemas"]["TranscriptParticipant"][] | null;
participants:
| components["schemas"]["TranscriptParticipantWithEmail"][]
| null;
};
/**
* GetTranscriptWithText
@@ -1246,7 +1258,9 @@ export interface components {
/** Audio Deleted */
audio_deleted?: boolean | null;
/** Participants */
participants: components["schemas"]["TranscriptParticipant"][] | null;
participants:
| components["schemas"]["TranscriptParticipantWithEmail"][]
| null;
/**
* @description discriminator enum property added by openapi-typescript
* @enum {string}
@@ -1315,7 +1329,9 @@ export interface components {
/** Audio Deleted */
audio_deleted?: boolean | null;
/** Participants */
participants: components["schemas"]["TranscriptParticipant"][] | null;
participants:
| components["schemas"]["TranscriptParticipantWithEmail"][]
| null;
/**
* @description discriminator enum property added by openapi-typescript
* @enum {string}
@@ -1386,7 +1402,9 @@ export interface components {
/** Audio Deleted */
audio_deleted?: boolean | null;
/** Participants */
participants: components["schemas"]["TranscriptParticipant"][] | null;
participants:
| components["schemas"]["TranscriptParticipantWithEmail"][]
| null;
/**
* @description discriminator enum property added by openapi-typescript
* @enum {string}
@@ -1567,6 +1585,11 @@ export interface components {
/** Name */
name: string;
};
/** ProcessStatus */
ProcessStatus: {
/** Status */
status: string;
};
/** Room */
Room: {
/** Id */
@@ -1617,6 +1640,11 @@ export interface components {
* @enum {string}
*/
platform: "whereby" | "daily";
/**
* Skip Consent
* @default false
*/
skip_consent: boolean;
};
/** RoomDetails */
RoomDetails: {
@@ -1668,6 +1696,11 @@ export interface components {
* @enum {string}
*/
platform: "whereby" | "daily";
/**
* Skip Consent
* @default false
*/
skip_consent: boolean;
/** Webhook Url */
webhook_url: string | null;
/** Webhook Secret */
@@ -1813,6 +1846,19 @@ export interface components {
/** User Id */
user_id?: string | null;
};
/** TranscriptParticipantWithEmail */
TranscriptParticipantWithEmail: {
/** Id */
id?: string;
/** Speaker */
speaker: number | null;
/** Name */
name: string;
/** User Id */
user_id?: string | null;
/** Email */
email?: string | null;
};
/**
* TranscriptSegment
* @description A single transcript segment with speaker and timing information.
@@ -1868,6 +1914,8 @@ export interface components {
ics_enabled?: boolean | null;
/** Platform */
platform?: ("whereby" | "daily") | null;
/** Skip Consent */
skip_consent?: boolean | null;
};
/** UpdateTranscript */
UpdateTranscript: {
@@ -3362,7 +3410,7 @@ export interface operations {
[name: string]: unknown;
};
content: {
"application/json": unknown;
"application/json": components["schemas"]["ProcessStatus"];
};
};
/** @description Validation Error */

View File

@@ -31,7 +31,7 @@
"ioredis": "^5.7.0",
"jest-worker": "^29.6.2",
"lucide-react": "^0.525.0",
"next": "^15.5.3",
"next": "^15.5.9",
"next-auth": "^4.24.7",
"next-themes": "^0.4.6",
"nuqs": "^2.4.3",

508
www/pnpm-lock.yaml generated

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,3 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="#ef4444" stroke="none">
<circle cx="12" cy="12" r="8"/>
</svg>

After

Width:  |  Height:  |  Size: 131 B