Compare commits

...

25 Commits

Author SHA1 Message Date
893d02075f chore(main): release 0.24.1 2025-12-19 10:19:40 -06:00
f0ee7b531a fix: logout redirect (#802) 2025-12-19 17:19:09 +01:00
37a454f283 chore(main): release 0.24.0 (#793) 2025-12-19 15:00:43 +01:00
964cd78bb6 feat: identify action items (#790)
* Identify action items

* Add action items to mock summary

* Add action items validator

* Remove final prefix from action items

* Make on action items callback required

* Don't mutation action items response

* Assign action items to none on error

* Use timeout constant

* Exclude action items from transcript list
2025-12-18 21:13:47 +01:00
5f458aa4a7 fix: automatically reprocess daily recordings (#797)
* Automatically reprocess recordings

* Restore the comments

* Remove redundant check

* Fix indent

* Add comment about cyclic import
2025-12-18 21:10:04 +01:00
5f7dfadabd fix: retry on workflow timeout (#798) 2025-12-18 20:49:06 +01:00
0bc971ba96 fix: main menu login (#800) 2025-12-18 20:48:39 +01:00
Igor Monadical
c62e3c0753 incorporate daily api undocumented feature (#796)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-17 09:51:55 -05:00
Igor Monadical
16284e1ac3 fix: daily video optimisation (#789)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 15:00:53 -05:00
Igor Monadical
443982617d coolify pull policy (#792)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 14:54:05 -05:00
Igor Monadical
23023b3cdb update nextjs (#791)
Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-15 13:58:34 -05:00
90c3ecc9c3 chore(main): release 0.23.2 (#786) 2025-12-11 13:37:41 +01:00
d7f140b7d1 fix: build on push tags (#785) 2025-12-11 13:30:36 +01:00
a47a5f5781 chore(main): release 0.23.1 (#784) 2025-12-11 12:43:25 +01:00
0eba147018 fix: populate room_name in transcript GET endpoint (#783)
Fixes monadical/internalai#14
2025-12-11 12:37:59 +01:00
18a27f7b45 Fix image tags (#781) 2025-12-10 13:57:13 -05:00
32a049c134 chore(main): release 0.23.0 (#770) 2025-12-10 13:42:28 +01:00
91650ec65f fix: deploy frontend to coolify (#779)
* Ignore act secrets

* Deploy frontend container to ECR

* Use published image

* Remove ecr workflows

* Trigger coolify deployment

* Deploy on release please pr merge

* Upgrade nextjs

* Update secrets example
2025-12-10 13:35:53 +01:00
Igor Monadical
61f0e29d4c feat: llm retries (#739)
* llm retries no-mistakes

* self-review (no-mistakes)

* self-review (no-mistakes)

* bigger retry intervals by default

* tests and dry

* restore to main state

* parse retries

* json retries (no-mistakes)

* json retries (no-mistakes)

* json retries (no-mistakes)

* json retries (no-mistakes) self-review

* additional network retry test

* more lindt

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-05 12:08:21 -05:00
Igor Monadical
ec17ed7b58 fix: celery inspect bug sidestep in restart script (#766)
* celery bug sidestep

* Update server/reflector/services/transcript_process.py

Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
Co-authored-by: pr-agent-monadical[bot] <198624643+pr-agent-monadical[bot]@users.noreply.github.com>
2025-12-04 09:22:51 -05:00
Igor Monadical
00549f153a feat: dockerhub ci (#772)
* dockerhub ci

* ci test

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-03 13:26:08 -05:00
3ad78be762 fix: hide rooms settings instead of disabling (#763)
* Hide rooms settings instead of disabling

* Reset recording trigger
2025-12-03 16:49:17 +01:00
d3a5cd12d2 fix: return participant emails from transcript endpoint (#769)
* Return participant emails from transcript endpoint

* Fix broken test
2025-12-03 16:47:56 +01:00
af921ce927 chore(main): release 0.22.4 (#765) 2025-12-02 17:11:48 -05:00
Igor Monadical
bd5df1ce2e fix: Multitrack mixdown optimisation 2 (#764)
* Revert "fix: Skip mixdown for multitrack (#760)"

This reverts commit b51b7aa917.

* multitrack mixdown optimisation

* return the "good" ui part of "skip mixdown"

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2025-12-02 17:10:06 -05:00
40 changed files with 1950 additions and 560 deletions

View File

@@ -1,90 +0,0 @@
name: Build container/push to container registry
on: [workflow_dispatch]
env:
# 950402358378.dkr.ecr.us-east-1.amazonaws.com/reflector
AWS_REGION: us-east-1
ECR_REPOSITORY: reflector
jobs:
build:
strategy:
matrix:
include:
- platform: linux/amd64
runner: linux-amd64
arch: amd64
- platform: linux/arm64
runner: linux-arm64
arch: arm64
runs-on: ${{ matrix.runner }}
permissions:
contents: read
outputs:
registry: ${{ steps.login-ecr.outputs.registry }}
steps:
- uses: actions/checkout@v4
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build and push ${{ matrix.arch }}
uses: docker/build-push-action@v5
with:
context: server
platforms: ${{ matrix.platform }}
push: true
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
cache-from: type=gha,scope=${{ matrix.arch }}
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
provenance: false
create-manifest:
runs-on: ubuntu-latest
needs: [build]
permissions:
deployments: write
contents: read
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ env.AWS_REGION }}
- name: Login to Amazon ECR
uses: aws-actions/amazon-ecr-login@v2
- name: Create and push multi-arch manifest
run: |
# Get the registry URL (since we can't easily access job outputs in matrix)
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
docker manifest create \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"

View File

@@ -1,35 +1,31 @@
name: Build and Push Frontend Docker Image
name: Build and Push Backend Docker Image (Docker Hub)
on:
push:
branches:
- main
paths:
- 'www/**'
- '.github/workflows/docker-frontend.yml'
tags:
- "v*"
workflow_dispatch:
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}-frontend
REGISTRY: docker.io
IMAGE_NAME: monadicalsas/reflector-backend
jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to GitHub Container Registry
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
username: monadicalsas
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata
id: meta
@@ -38,7 +34,7 @@ jobs:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=sha,prefix={{branch}}-
type=ref,event=tag
type=raw,value=latest,enable={{is_default_branch}}
- name: Set up Docker Buildx
@@ -47,11 +43,11 @@ jobs:
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: ./www
file: ./www/Dockerfile
context: ./server
file: ./server/Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64
platforms: linux/amd64,linux/arm64

View File

@@ -0,0 +1,70 @@
name: Build and Push Frontend Docker Image
on:
push:
tags:
- "v*"
workflow_dispatch:
env:
REGISTRY: docker.io
IMAGE_NAME: monadicalsas/reflector-frontend
jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: monadicalsas
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=ref,event=tag
type=raw,value=latest,enable={{is_default_branch}}
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: ./www
file: ./www/Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64
deploy:
needs: build-and-push
runs-on: ubuntu-latest
if: success()
strategy:
matrix:
environment: [reflector-monadical, reflector-media]
environment: ${{ matrix.environment }}
steps:
- name: Trigger Coolify deployment
run: |
curl -X POST "${{ secrets.COOLIFY_WEBHOOK_URL }}" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${{ secrets.COOLIFY_WEBHOOK_TOKEN }}" \
-f || (echo "Failed to trigger Coolify deployment for ${{ matrix.environment }}" && exit 1)

1
.gitignore vendored
View File

@@ -18,3 +18,4 @@ CLAUDE.local.md
www/.env.development
www/.env.production
.playwright-mcp
.secrets

24
.secrets.example Normal file
View File

@@ -0,0 +1,24 @@
# Example secrets file for GitHub Actions workflows
# Copy this to .secrets and fill in your values
# These secrets should be configured in GitHub repository settings:
# Settings > Secrets and variables > Actions
# DockerHub Configuration (required for frontend and backend deployment)
# Create a Docker Hub access token at https://hub.docker.com/settings/security
# Username: monadicalsas
DOCKERHUB_TOKEN=your-dockerhub-access-token
# GitHub Token (required for frontend and backend deployment)
# Used by docker/metadata-action for extracting image metadata
# Can use the default GITHUB_TOKEN or create a personal access token
GITHUB_TOKEN=your-github-token-or-use-default-GITHUB_TOKEN
# Coolify Deployment Webhook (required for frontend deployment)
# Used to trigger automatic deployment after image push
# Configure these secrets in GitHub Environments:
# Each environment should have:
# - COOLIFY_WEBHOOK_URL: The webhook URL for that specific deployment
# - COOLIFY_WEBHOOK_TOKEN: The webhook token (can be the same for both if using same token)
# Optional: GitHub Actions Cache Token (for local testing with act)
GHA_CACHE_TOKEN=your-github-token-or-empty

View File

@@ -1,5 +1,64 @@
# Changelog
## [0.24.1](https://github.com/Monadical-SAS/reflector/compare/v0.24.0...v0.24.1) (2025-12-19)
### Bug Fixes
* logout redirect ([#802](https://github.com/Monadical-SAS/reflector/issues/802)) ([f0ee7b5](https://github.com/Monadical-SAS/reflector/commit/f0ee7b531a0911f214ccbb84d399e9a6c9b700c0))
## [0.24.0](https://github.com/Monadical-SAS/reflector/compare/v0.23.2...v0.24.0) (2025-12-18)
### Features
* identify action items ([#790](https://github.com/Monadical-SAS/reflector/issues/790)) ([964cd78](https://github.com/Monadical-SAS/reflector/commit/964cd78bb699d83d012ae4b8c96565df25b90a5d))
### Bug Fixes
* automatically reprocess daily recordings ([#797](https://github.com/Monadical-SAS/reflector/issues/797)) ([5f458aa](https://github.com/Monadical-SAS/reflector/commit/5f458aa4a7ec3d00ca5ec49d62fcc8ad232b138e))
* daily video optimisation ([#789](https://github.com/Monadical-SAS/reflector/issues/789)) ([16284e1](https://github.com/Monadical-SAS/reflector/commit/16284e1ac3faede2b74f0d91b50c0b5612af2c35))
* main menu login ([#800](https://github.com/Monadical-SAS/reflector/issues/800)) ([0bc971b](https://github.com/Monadical-SAS/reflector/commit/0bc971ba966a52d719c8c240b47dc7b3bdea4391))
* retry on workflow timeout ([#798](https://github.com/Monadical-SAS/reflector/issues/798)) ([5f7dfad](https://github.com/Monadical-SAS/reflector/commit/5f7dfadabd3e8017406ad3720ba495a59963ee34))
## [0.23.2](https://github.com/Monadical-SAS/reflector/compare/v0.23.1...v0.23.2) (2025-12-11)
### Bug Fixes
* build on push tags ([#785](https://github.com/Monadical-SAS/reflector/issues/785)) ([d7f140b](https://github.com/Monadical-SAS/reflector/commit/d7f140b7d1f4660d5da7a0da1357f68869e0b5cd))
## [0.23.1](https://github.com/Monadical-SAS/reflector/compare/v0.23.0...v0.23.1) (2025-12-11)
### Bug Fixes
* populate room_name in transcript GET endpoint ([#783](https://github.com/Monadical-SAS/reflector/issues/783)) ([0eba147](https://github.com/Monadical-SAS/reflector/commit/0eba1470181c7b9e0a79964a1ef28c09bcbdd9d7))
## [0.23.0](https://github.com/Monadical-SAS/reflector/compare/v0.22.4...v0.23.0) (2025-12-10)
### Features
* dockerhub ci ([#772](https://github.com/Monadical-SAS/reflector/issues/772)) ([00549f1](https://github.com/Monadical-SAS/reflector/commit/00549f153ade922cf4cb6c5358a7d11a39c426d2))
* llm retries ([#739](https://github.com/Monadical-SAS/reflector/issues/739)) ([61f0e29](https://github.com/Monadical-SAS/reflector/commit/61f0e29d4c51eab54ee67af92141fbb171e8ccaa))
### Bug Fixes
* celery inspect bug sidestep in restart script ([#766](https://github.com/Monadical-SAS/reflector/issues/766)) ([ec17ed7](https://github.com/Monadical-SAS/reflector/commit/ec17ed7b587cf6ee143646baaee67a7c017044d4))
* deploy frontend to coolify ([#779](https://github.com/Monadical-SAS/reflector/issues/779)) ([91650ec](https://github.com/Monadical-SAS/reflector/commit/91650ec65f65713faa7ee0dcfb75af427b7c4ba0))
* hide rooms settings instead of disabling ([#763](https://github.com/Monadical-SAS/reflector/issues/763)) ([3ad78be](https://github.com/Monadical-SAS/reflector/commit/3ad78be7628c0d029296b301a0e87236c76b7598))
* return participant emails from transcript endpoint ([#769](https://github.com/Monadical-SAS/reflector/issues/769)) ([d3a5cd1](https://github.com/Monadical-SAS/reflector/commit/d3a5cd12d2d0d9c32af2d5bd9322e030ef69b85d))
## [0.22.4](https://github.com/Monadical-SAS/reflector/compare/v0.22.3...v0.22.4) (2025-12-02)
### Bug Fixes
* Multitrack mixdown optimisation 2 ([#764](https://github.com/Monadical-SAS/reflector/issues/764)) ([bd5df1c](https://github.com/Monadical-SAS/reflector/commit/bd5df1ce2ebf35d7f3413b295e56937a9a28ef7b))
## [0.22.3](https://github.com/Monadical-SAS/reflector/compare/v0.22.2...v0.22.3) (2025-12-02)

View File

@@ -3,10 +3,8 @@
services:
web:
build:
context: ./www
dockerfile: Dockerfile
image: reflector-frontend:latest
image: monadicalsas/reflector-frontend:latest
pull_policy: always
environment:
- KV_URL=${KV_URL:-redis://redis:6379}
- SITE_URL=${SITE_URL}
@@ -36,4 +34,4 @@ services:
- redis_data:/data
volumes:
redis_data:
redis_data:

View File

@@ -0,0 +1,26 @@
"""add_action_items
Revision ID: 05f8688d6895
Revises: bbafedfa510c
Create Date: 2025-12-12 11:57:50.209658
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "05f8688d6895"
down_revision: Union[str, None] = "bbafedfa510c"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
op.add_column("transcript", sa.Column("action_items", sa.JSON(), nullable=True))
def downgrade() -> None:
op.drop_column("transcript", "action_items")

View File

@@ -126,6 +126,7 @@ markers = [
select = [
"I", # isort - import sorting
"F401", # unused imports
"E402", # module level import not at top of file
"PLC0415", # import-outside-top-level - detect inline imports
]

View File

@@ -1,13 +1,19 @@
import asyncio
import functools
from uuid import uuid4
from celery import current_task
from reflector.db import get_database
from reflector.llm import llm_session_id
def asynctask(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
async def run_with_db():
task_id = current_task.request.id if current_task else None
llm_session_id.set(task_id or f"random-{uuid4().hex}")
database = get_database()
await database.connect()
try:

View File

@@ -18,6 +18,7 @@ from .requests import (
# Response models
from .responses import (
FinishedRecordingResponse,
MeetingParticipant,
MeetingParticipantsResponse,
MeetingResponse,
@@ -79,6 +80,7 @@ __all__ = [
"MeetingParticipant",
"MeetingResponse",
"RecordingResponse",
"FinishedRecordingResponse",
"RecordingS3Info",
"MeetingTokenResponse",
"WebhookResponse",

View File

@@ -121,7 +121,10 @@ class RecordingS3Info(BaseModel):
class RecordingResponse(BaseModel):
"""
Response from recording retrieval endpoint.
Response from recording retrieval endpoint (network layer).
Duration may be None for recordings still being processed by Daily.
Use FinishedRecordingResponse for recordings ready for processing.
Reference: https://docs.daily.co/reference/rest-api/recordings
"""
@@ -135,7 +138,9 @@ class RecordingResponse(BaseModel):
max_participants: int | None = Field(
None, description="Maximum participants during recording (may be missing)"
)
duration: int = Field(description="Recording duration in seconds")
duration: int | None = Field(
None, description="Recording duration in seconds (None if still processing)"
)
share_token: NonEmptyString | None = Field(
None, description="Token for sharing recording"
)
@@ -149,6 +154,25 @@ class RecordingResponse(BaseModel):
None, description="Meeting session identifier (may be missing)"
)
def to_finished(self) -> "FinishedRecordingResponse | None":
"""Convert to FinishedRecordingResponse if duration is available and status is finished."""
if self.duration is None or self.status != "finished":
return None
return FinishedRecordingResponse(**self.model_dump())
class FinishedRecordingResponse(RecordingResponse):
"""
Recording with confirmed duration - ready for processing.
This model guarantees duration is present and status is finished.
"""
status: Literal["finished"] = Field(
description="Recording status (always 'finished')"
)
duration: int = Field(description="Recording duration in seconds")
class MeetingTokenResponse(BaseModel):
"""

View File

@@ -3,6 +3,7 @@ from typing import Literal
import sqlalchemy as sa
from pydantic import BaseModel, Field
from sqlalchemy import or_
from reflector.db import get_database, metadata
from reflector.utils import generate_uuid4
@@ -79,5 +80,35 @@ class RecordingController:
results = await get_database().fetch_all(query)
return [Recording(**row) for row in results]
async def get_multitrack_needing_reprocessing(
self, bucket_name: str
) -> list[Recording]:
"""
Get multitrack recordings that need reprocessing:
- Have track_keys (multitrack)
- Either have no transcript OR transcript has error status
This is more efficient than fetching all recordings and filtering in Python.
"""
from reflector.db.transcripts import (
transcripts, # noqa: PLC0415 cyclic import
)
query = (
recordings.select()
.outerjoin(transcripts, recordings.c.id == transcripts.c.recording_id)
.where(
recordings.c.bucket_name == bucket_name,
recordings.c.track_keys.isnot(None),
or_(
transcripts.c.id.is_(None),
transcripts.c.status == "error",
),
)
)
results = await get_database().fetch_all(query)
recordings_list = [Recording(**row) for row in results]
return [r for r in recordings_list if r.is_multitrack]
recordings_controller = RecordingController()

View File

@@ -44,6 +44,7 @@ transcripts = sqlalchemy.Table(
sqlalchemy.Column("title", sqlalchemy.String),
sqlalchemy.Column("short_summary", sqlalchemy.String),
sqlalchemy.Column("long_summary", sqlalchemy.String),
sqlalchemy.Column("action_items", sqlalchemy.JSON),
sqlalchemy.Column("topics", sqlalchemy.JSON),
sqlalchemy.Column("events", sqlalchemy.JSON),
sqlalchemy.Column("participants", sqlalchemy.JSON),
@@ -164,6 +165,10 @@ class TranscriptFinalLongSummary(BaseModel):
long_summary: str
class TranscriptActionItems(BaseModel):
action_items: dict
class TranscriptFinalTitle(BaseModel):
title: str
@@ -204,6 +209,7 @@ class Transcript(BaseModel):
locked: bool = False
short_summary: str | None = None
long_summary: str | None = None
action_items: dict | None = None
topics: list[TranscriptTopic] = []
events: list[TranscriptEvent] = []
participants: list[TranscriptParticipant] | None = []
@@ -368,7 +374,12 @@ class TranscriptController:
room_id: str | None = None,
search_term: str | None = None,
return_query: bool = False,
exclude_columns: list[str] = ["topics", "events", "participants"],
exclude_columns: list[str] = [
"topics",
"events",
"participants",
"action_items",
],
) -> list[Transcript]:
"""
Get all transcripts

View File

@@ -88,5 +88,11 @@ class UserController:
results = await get_database().fetch_all(query)
return [User(**r) for r in results]
@staticmethod
async def get_by_ids(user_ids: list[NonEmptyString]) -> dict[str, User]:
query = users.select().where(users.c.id.in_(user_ids))
results = await get_database().fetch_all(query)
return {user.id: User(**user) for user in results}
user_controller = UserController()

View File

@@ -1,14 +1,32 @@
import logging
from typing import Type, TypeVar
from contextvars import ContextVar
from typing import Generic, Type, TypeVar
from uuid import uuid4
from llama_index.core import Settings
from llama_index.core.output_parsers import PydanticOutputParser
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.workflow import (
Context,
Event,
StartEvent,
StopEvent,
Workflow,
step,
)
from llama_index.llms.openai_like import OpenAILike
from pydantic import BaseModel, ValidationError
from workflows.errors import WorkflowTimeoutError
from reflector.utils.retry import retry
T = TypeVar("T", bound=BaseModel)
OutputT = TypeVar("OutputT", bound=BaseModel)
# Session ID for LiteLLM request grouping - set per processing run
llm_session_id: ContextVar[str | None] = ContextVar("llm_session_id", default=None)
logger = logging.getLogger(__name__)
STRUCTURED_RESPONSE_PROMPT_TEMPLATE = """
Based on the following analysis, provide the information in the requested JSON format:
@@ -20,6 +38,158 @@ Analysis:
"""
class LLMParseError(Exception):
"""Raised when LLM output cannot be parsed after retries."""
def __init__(self, output_cls: Type[BaseModel], error_msg: str, attempts: int):
self.output_cls = output_cls
self.error_msg = error_msg
self.attempts = attempts
super().__init__(
f"Failed to parse {output_cls.__name__} after {attempts} attempts: {error_msg}"
)
class ExtractionDone(Event):
"""Event emitted when LLM JSON formatting completes."""
output: str
class ValidationErrorEvent(Event):
"""Event emitted when validation fails."""
error: str
wrong_output: str
class StructuredOutputWorkflow(Workflow, Generic[OutputT]):
"""Workflow for structured output extraction with validation retry.
This workflow handles parse/validation retries only. Network error retries
are handled internally by Settings.llm (OpenAILike max_retries=3).
The caller should NOT wrap this workflow in additional retry logic.
"""
def __init__(
self,
output_cls: Type[OutputT],
max_retries: int = 3,
**kwargs,
):
super().__init__(**kwargs)
self.output_cls: Type[OutputT] = output_cls
self.max_retries = max_retries
self.output_parser = PydanticOutputParser(output_cls)
@step
async def extract(
self, ctx: Context, ev: StartEvent | ValidationErrorEvent
) -> StopEvent | ExtractionDone:
"""Extract structured data from text using two-step LLM process.
Step 1 (first call only): TreeSummarize generates text analysis
Step 2 (every call): Settings.llm.acomplete formats analysis as JSON
"""
current_retries = await ctx.store.get("retries", default=0)
await ctx.store.set("retries", current_retries + 1)
if current_retries >= self.max_retries:
last_error = await ctx.store.get("last_error", default=None)
logger.error(
f"Max retries ({self.max_retries}) reached for {self.output_cls.__name__}"
)
return StopEvent(result={"error": last_error, "attempts": current_retries})
if isinstance(ev, StartEvent):
# First call: run TreeSummarize to get analysis, store in context
prompt = ev.get("prompt")
texts = ev.get("texts")
tone_name = ev.get("tone_name")
if not prompt or not isinstance(texts, list):
raise ValueError(
"StartEvent must contain 'prompt' (str) and 'texts' (list)"
)
summarizer = TreeSummarize(verbose=False)
analysis = await summarizer.aget_response(
prompt, texts, tone_name=tone_name
)
await ctx.store.set("analysis", str(analysis))
reflection = ""
else:
# Retry: reuse analysis from context
analysis = await ctx.store.get("analysis")
if not analysis:
raise RuntimeError("Internal error: analysis not found in context")
wrong_output = ev.wrong_output
if len(wrong_output) > 2000:
wrong_output = wrong_output[:2000] + "... [truncated]"
reflection = (
f"\n\nYour previous response could not be parsed:\n{wrong_output}\n\n"
f"Error:\n{ev.error}\n\n"
"Please try again. Return ONLY valid JSON matching the schema above, "
"with no markdown formatting or extra text."
)
# Step 2: Format analysis as JSON using LLM completion
format_instructions = self.output_parser.format(
"Please structure the above information in the following JSON format:"
)
json_prompt = STRUCTURED_RESPONSE_PROMPT_TEMPLATE.format(
analysis=analysis,
format_instructions=format_instructions + reflection,
)
# Network retries handled by OpenAILike (max_retries=3)
response = await Settings.llm.acomplete(json_prompt)
return ExtractionDone(output=response.text)
@step
async def validate(
self, ctx: Context, ev: ExtractionDone
) -> StopEvent | ValidationErrorEvent:
"""Validate extracted output against Pydantic schema."""
raw_output = ev.output
retries = await ctx.store.get("retries", default=0)
try:
parsed = self.output_parser.parse(raw_output)
if retries > 1:
logger.info(
f"LLM parse succeeded on attempt {retries}/{self.max_retries} "
f"for {self.output_cls.__name__}"
)
return StopEvent(result={"success": parsed})
except (ValidationError, ValueError) as e:
error_msg = self._format_error(e, raw_output)
await ctx.store.set("last_error", error_msg)
logger.error(
f"LLM parse error (attempt {retries}/{self.max_retries}): "
f"{type(e).__name__}: {e}\nRaw response: {raw_output[:500]}"
)
return ValidationErrorEvent(
error=error_msg,
wrong_output=raw_output,
)
def _format_error(self, error: Exception, raw_output: str) -> str:
"""Format error for LLM feedback."""
if isinstance(error, ValidationError):
error_messages = []
for err in error.errors():
field = ".".join(str(loc) for loc in err["loc"])
error_messages.append(f"- {err['msg']} in field '{field}'")
return "Schema validation errors:\n" + "\n".join(error_messages)
else:
return f"Parse error: {str(error)}"
class LLM:
def __init__(self, settings, temperature: float = 0.4, max_tokens: int = 2048):
self.settings_obj = settings
@@ -30,11 +200,12 @@ class LLM:
self.temperature = temperature
self.max_tokens = max_tokens
# Configure llamaindex Settings
self._configure_llamaindex()
def _configure_llamaindex(self):
"""Configure llamaindex Settings with OpenAILike LLM"""
session_id = llm_session_id.get() or f"fallback-{uuid4().hex}"
Settings.llm = OpenAILike(
model=self.model_name,
api_base=self.url,
@@ -44,6 +215,7 @@ class LLM:
is_function_calling_model=False,
temperature=self.temperature,
max_tokens=self.max_tokens,
additional_kwargs={"extra_body": {"litellm_session_id": session_id}},
)
async def get_response(
@@ -60,44 +232,38 @@ class LLM:
texts: list[str],
output_cls: Type[T],
tone_name: str | None = None,
timeout: int | None = None,
) -> T:
"""Get structured output from LLM for non-function-calling models"""
logger = logging.getLogger(__name__)
"""Get structured output from LLM with validation retry via Workflow."""
if timeout is None:
timeout = self.settings_obj.LLM_STRUCTURED_RESPONSE_TIMEOUT
summarizer = TreeSummarize(verbose=True)
response = await summarizer.aget_response(prompt, texts, tone_name=tone_name)
output_parser = PydanticOutputParser(output_cls)
program = LLMTextCompletionProgram.from_defaults(
output_parser=output_parser,
prompt_template_str=STRUCTURED_RESPONSE_PROMPT_TEMPLATE,
verbose=False,
)
format_instructions = output_parser.format(
"Please structure the above information in the following JSON format:"
)
try:
output = await program.acall(
analysis=str(response), format_instructions=format_instructions
async def run_workflow():
workflow = StructuredOutputWorkflow(
output_cls=output_cls,
max_retries=self.settings_obj.LLM_PARSE_MAX_RETRIES + 1,
timeout=timeout,
)
except ValidationError as e:
# Extract the raw JSON from the error details
errors = e.errors()
if errors and "input" in errors[0]:
raw_json = errors[0]["input"]
logger.error(
f"JSON validation failed for {output_cls.__name__}. "
f"Full raw JSON output:\n{raw_json}\n"
f"Validation errors: {errors}"
)
else:
logger.error(
f"JSON validation failed for {output_cls.__name__}. "
f"Validation errors: {errors}"
)
raise
return output
result = await workflow.run(
prompt=prompt,
texts=texts,
tone_name=tone_name,
)
if "error" in result:
error_msg = result["error"] or "Max retries exceeded"
raise LLMParseError(
output_cls=output_cls,
error_msg=error_msg,
attempts=result.get("attempts", 0),
)
return result["success"]
return await retry(run_workflow)(
retry_attempts=3,
retry_backoff_interval=1.0,
retry_backoff_max=30.0,
retry_ignore_exc_types=(WorkflowTimeoutError,),
)

View File

@@ -309,6 +309,7 @@ class PipelineMainFile(PipelineMainBase):
transcript,
on_long_summary_callback=self.on_long_summary,
on_short_summary_callback=self.on_short_summary,
on_action_items_callback=self.on_action_items,
empty_pipeline=self.empty_pipeline,
logger=self.logger,
)
@@ -340,7 +341,6 @@ async def task_send_webhook_if_needed(*, transcript_id: str):
@asynctask
async def task_pipeline_file_process(*, transcript_id: str):
"""Celery task for file pipeline processing"""
transcript = await transcripts_controller.get_by_id(transcript_id)
if not transcript:
raise Exception(f"Transcript {transcript_id} not found")

View File

@@ -27,6 +27,7 @@ from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import (
Transcript,
TranscriptActionItems,
TranscriptDuration,
TranscriptFinalLongSummary,
TranscriptFinalShortSummary,
@@ -306,6 +307,23 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
data=final_short_summary,
)
@broadcast_to_sockets
async def on_action_items(self, data):
action_items = TranscriptActionItems(action_items=data.action_items)
async with self.transaction():
transcript = await self.get_transcript()
await transcripts_controller.update(
transcript,
{
"action_items": action_items.action_items,
},
)
return await transcripts_controller.append_event(
transcript=transcript,
event="ACTION_ITEMS",
data=action_items,
)
@broadcast_to_sockets
async def on_duration(self, data):
async with self.transaction():
@@ -465,6 +483,7 @@ class PipelineMainFinalSummaries(PipelineMainFromTopics):
transcript=self._transcript,
callback=self.on_long_summary,
on_short_summary=self.on_short_summary,
on_action_items=self.on_action_items,
),
]

View File

@@ -31,7 +31,6 @@ from reflector.processors import AudioFileWriterProcessor
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
from reflector.processors.types import TitleSummary
from reflector.processors.types import Transcript as TranscriptType
from reflector.settings import settings
from reflector.storage import Storage, get_transcripts_storage
from reflector.utils.daily import (
filter_cam_audio_tracks,
@@ -423,7 +422,15 @@ class PipelineMainMultitrack(PipelineMainBase):
# Open all containers with cleanup guaranteed
for i, url in enumerate(valid_track_urls):
try:
c = av.open(url)
c = av.open(
url,
options={
# it's trying to stream from s3 by default
"reconnect": "1",
"reconnect_streamed": "1",
"reconnect_delay_max": "5",
},
)
containers.append(c)
except Exception as e:
self.logger.warning(
@@ -452,6 +459,8 @@ class PipelineMainMultitrack(PipelineMainBase):
frame = next(dec)
except StopIteration:
active[i] = False
# causes stream to move on / unclogs memory
inputs[i].push(None)
continue
if frame.sample_rate != target_sample_rate:
@@ -471,8 +480,6 @@ class PipelineMainMultitrack(PipelineMainBase):
mixed.time_base = Fraction(1, target_sample_rate)
await writer.push(mixed)
for in_ctx in inputs:
in_ctx.push(None)
while True:
try:
mixed = sink.pull()
@@ -632,55 +639,43 @@ class PipelineMainMultitrack(PipelineMainBase):
transcript.data_path.mkdir(parents=True, exist_ok=True)
if settings.SKIP_MIXDOWN:
self.logger.warning(
"SKIP_MIXDOWN enabled: Skipping mixdown and waveform generation. "
"UI will have no audio playback or waveform.",
num_tracks=len(padded_track_urls),
transcript_id=transcript.id,
)
else:
mp3_writer = AudioFileWriterProcessor(
path=str(transcript.audio_mp3_filename),
on_duration=self.on_duration,
)
await self.mixdown_tracks(
padded_track_urls, mp3_writer, offsets_seconds=None
)
await mp3_writer.flush()
mp3_writer = AudioFileWriterProcessor(
path=str(transcript.audio_mp3_filename),
on_duration=self.on_duration,
)
await self.mixdown_tracks(padded_track_urls, mp3_writer, offsets_seconds=None)
await mp3_writer.flush()
if not transcript.audio_mp3_filename.exists():
raise Exception(
"Mixdown failed - no MP3 file generated. Cannot proceed without playable audio."
)
storage_path = f"{transcript.id}/audio.mp3"
# Use file handle streaming to avoid loading entire MP3 into memory
mp3_size = transcript.audio_mp3_filename.stat().st_size
with open(transcript.audio_mp3_filename, "rb") as mp3_file:
await transcript_storage.put_file(storage_path, mp3_file)
mp3_url = await transcript_storage.get_file_url(storage_path)
await transcripts_controller.update(
transcript, {"audio_location": "storage"}
if not transcript.audio_mp3_filename.exists():
raise Exception(
"Mixdown failed - no MP3 file generated. Cannot proceed without playable audio."
)
self.logger.info(
f"Uploaded mixed audio to storage",
storage_path=storage_path,
size=mp3_size,
url=mp3_url,
)
storage_path = f"{transcript.id}/audio.mp3"
# Use file handle streaming to avoid loading entire MP3 into memory
mp3_size = transcript.audio_mp3_filename.stat().st_size
with open(transcript.audio_mp3_filename, "rb") as mp3_file:
await transcript_storage.put_file(storage_path, mp3_file)
mp3_url = await transcript_storage.get_file_url(storage_path)
self.logger.info("Generating waveform from mixed audio")
waveform_processor = AudioWaveformProcessor(
audio_path=transcript.audio_mp3_filename,
waveform_path=transcript.audio_waveform_filename,
on_waveform=self.on_waveform,
)
waveform_processor.set_pipeline(self.empty_pipeline)
await waveform_processor.flush()
self.logger.info("Waveform generated successfully")
await transcripts_controller.update(transcript, {"audio_location": "storage"})
self.logger.info(
f"Uploaded mixed audio to storage",
storage_path=storage_path,
size=mp3_size,
url=mp3_url,
)
self.logger.info("Generating waveform from mixed audio")
waveform_processor = AudioWaveformProcessor(
audio_path=transcript.audio_mp3_filename,
waveform_path=transcript.audio_waveform_filename,
on_waveform=self.on_waveform,
)
waveform_processor.set_pipeline(self.empty_pipeline)
await waveform_processor.flush()
self.logger.info("Waveform generated successfully")
speaker_transcripts: list[TranscriptType] = []
for idx, padded_url in enumerate(padded_track_urls):
@@ -777,6 +772,7 @@ class PipelineMainMultitrack(PipelineMainBase):
transcript,
on_long_summary_callback=self.on_long_summary,
on_short_summary_callback=self.on_short_summary,
on_action_items_callback=self.on_action_items,
empty_pipeline=self.empty_pipeline,
logger=self.logger,
)

View File

@@ -89,6 +89,7 @@ async def generate_summaries(
*,
on_long_summary_callback: Callable,
on_short_summary_callback: Callable,
on_action_items_callback: Callable,
empty_pipeline: EmptyPipeline,
logger: structlog.BoundLogger,
):
@@ -96,11 +97,14 @@ async def generate_summaries(
logger.warning("No topics for summary generation")
return
processor = TranscriptFinalSummaryProcessor(
transcript=transcript,
callback=on_long_summary_callback,
on_short_summary=on_short_summary_callback,
)
processor_kwargs = {
"transcript": transcript,
"callback": on_long_summary_callback,
"on_short_summary": on_short_summary_callback,
"on_action_items": on_action_items_callback,
}
processor = TranscriptFinalSummaryProcessor(**processor_kwargs)
processor.set_pipeline(empty_pipeline)
for topic in topics:

View File

@@ -96,6 +96,36 @@ RECAP_PROMPT = dedent(
"""
).strip()
ACTION_ITEMS_PROMPT = dedent(
"""
Identify action items from this meeting transcript. Your goal is to identify what was decided and what needs to happen next.
Look for:
1. **Decisions Made**: Any decisions, choices, or conclusions reached during the meeting. For each decision:
- What was decided? (be specific)
- Who made the decision or was involved? (use actual participant names)
- Why was this decision made? (key factors, reasoning, or rationale)
2. **Next Steps / Action Items**: Any tasks, follow-ups, or actions that were mentioned or assigned. For each action item:
- What specific task needs to be done? (be concrete and actionable)
- Who is responsible? (use actual participant names if mentioned, or "team" if unclear)
- When is it due? (any deadlines, timeframes, or "by next meeting" type commitments)
- What context is needed? (any additional details that help understand the task)
Guidelines:
- Be thorough and identify all action items, even if they seem minor
- Include items that were agreed upon, assigned, or committed to
- Include decisions even if they seem obvious or implicit
- If someone says "I'll do X" or "We should do Y", that's an action item
- If someone says "Let's go with option A", that's a decision
- Use the exact participant names from the transcript
- If no participant name is mentioned, you can leave assigned_to/decided_by as null
Only return empty lists if the transcript contains NO decisions and NO action items whatsoever.
"""
).strip()
STRUCTURED_RESPONSE_PROMPT_TEMPLATE = dedent(
"""
Based on the following analysis, provide the information in the requested JSON format:
@@ -155,6 +185,53 @@ class SubjectsResponse(BaseModel):
)
class ActionItem(BaseModel):
"""A single action item from the meeting"""
task: str = Field(description="The task or action item to be completed")
assigned_to: str | None = Field(
default=None, description="Person or team assigned to this task (name)"
)
assigned_to_participant_id: str | None = Field(
default=None, description="Participant ID if assigned_to matches a participant"
)
deadline: str | None = Field(
default=None, description="Deadline or timeframe mentioned for this task"
)
context: str | None = Field(
default=None, description="Additional context or notes about this task"
)
class Decision(BaseModel):
"""A decision made during the meeting"""
decision: str = Field(description="What was decided")
rationale: str | None = Field(
default=None,
description="Reasoning or key factors that influenced this decision",
)
decided_by: str | None = Field(
default=None, description="Person or group who made the decision (name)"
)
decided_by_participant_id: str | None = Field(
default=None, description="Participant ID if decided_by matches a participant"
)
class ActionItemsResponse(BaseModel):
"""Pydantic model for identified action items"""
decisions: list[Decision] = Field(
default_factory=list,
description="List of decisions made during the meeting",
)
next_steps: list[ActionItem] = Field(
default_factory=list,
description="List of action items and next steps to be taken",
)
class SummaryBuilder:
def __init__(self, llm: LLM, filename: str | None = None, logger=None) -> None:
self.transcript: str | None = None
@@ -166,6 +243,8 @@ class SummaryBuilder:
self.model_name: str = llm.model_name
self.logger = logger or structlog.get_logger()
self.participant_instructions: str | None = None
self.action_items: ActionItemsResponse | None = None
self.participant_name_to_id: dict[str, str] = {}
if filename:
self.read_transcript_from_file(filename)
@@ -189,13 +268,20 @@ class SummaryBuilder:
self.llm = llm
async def _get_structured_response(
self, prompt: str, output_cls: Type[T], tone_name: str | None = None
self,
prompt: str,
output_cls: Type[T],
tone_name: str | None = None,
timeout: int | None = None,
) -> T:
"""Generic function to get structured output from LLM for non-function-calling models."""
# Add participant instructions to the prompt if available
enhanced_prompt = self._enhance_prompt_with_participants(prompt)
return await self.llm.get_structured_response(
enhanced_prompt, [self.transcript], output_cls, tone_name=tone_name
enhanced_prompt,
[self.transcript],
output_cls,
tone_name=tone_name,
timeout=timeout,
)
async def _get_response(
@@ -216,11 +302,19 @@ class SummaryBuilder:
# Participants
# ----------------------------------------------------------------------------
def set_known_participants(self, participants: list[str]) -> None:
def set_known_participants(
self,
participants: list[str],
participant_name_to_id: dict[str, str] | None = None,
) -> None:
"""
Set known participants directly without LLM identification.
This is used when participants are already identified and stored.
They are appended at the end of the transcript, providing more context for the assistant.
Args:
participants: List of participant names
participant_name_to_id: Optional mapping of participant names to their IDs
"""
if not participants:
self.logger.warning("No participants provided")
@@ -231,10 +325,12 @@ class SummaryBuilder:
participants=participants,
)
if participant_name_to_id:
self.participant_name_to_id = participant_name_to_id
participants_md = self.format_list_md(participants)
self.transcript += f"\n\n# Participants\n\n{participants_md}"
# Set instructions that will be automatically added to all prompts
participants_list = ", ".join(participants)
self.participant_instructions = dedent(
f"""
@@ -413,6 +509,92 @@ class SummaryBuilder:
self.recap = str(recap_response)
self.logger.info(f"Quick recap: {self.recap}")
def _map_participant_names_to_ids(
self, response: ActionItemsResponse
) -> ActionItemsResponse:
"""Map participant names in action items to participant IDs."""
if not self.participant_name_to_id:
return response
decisions = []
for decision in response.decisions:
new_decision = decision.model_copy()
if (
decision.decided_by
and decision.decided_by in self.participant_name_to_id
):
new_decision.decided_by_participant_id = self.participant_name_to_id[
decision.decided_by
]
decisions.append(new_decision)
next_steps = []
for item in response.next_steps:
new_item = item.model_copy()
if item.assigned_to and item.assigned_to in self.participant_name_to_id:
new_item.assigned_to_participant_id = self.participant_name_to_id[
item.assigned_to
]
next_steps.append(new_item)
return ActionItemsResponse(decisions=decisions, next_steps=next_steps)
async def identify_action_items(self) -> ActionItemsResponse | None:
"""Identify action items (decisions and next steps) from the transcript."""
self.logger.info("--- identify action items using TreeSummarize")
if not self.transcript:
self.logger.warning(
"No transcript available for action items identification"
)
self.action_items = None
return None
action_items_prompt = ACTION_ITEMS_PROMPT
try:
response = await self._get_structured_response(
action_items_prompt,
ActionItemsResponse,
tone_name="Action item identifier",
timeout=settings.LLM_STRUCTURED_RESPONSE_TIMEOUT,
)
response = self._map_participant_names_to_ids(response)
self.action_items = response
self.logger.info(
f"Identified {len(response.decisions)} decisions and {len(response.next_steps)} action items",
decisions_count=len(response.decisions),
next_steps_count=len(response.next_steps),
)
if response.decisions:
self.logger.debug(
"Decisions identified",
decisions=[d.decision for d in response.decisions],
)
if response.next_steps:
self.logger.debug(
"Action items identified",
tasks=[item.task for item in response.next_steps],
)
if not response.decisions and not response.next_steps:
self.logger.warning(
"No action items identified from transcript",
transcript_length=len(self.transcript),
)
return response
except Exception as e:
self.logger.error(
f"Error identifying action items: {e}",
exc_info=True,
)
self.action_items = None
return None
async def generate_summary(self, only_subjects: bool = False) -> None:
"""
Generate summary by extracting subjects, creating summaries for each, and generating a recap.
@@ -424,6 +606,7 @@ class SummaryBuilder:
await self.generate_subject_summaries()
await self.generate_recap()
await self.identify_action_items()
# ----------------------------------------------------------------------------
# Markdown
@@ -526,8 +709,6 @@ if __name__ == "__main__":
if args.summary:
await sm.generate_summary()
# Note: action items generation has been removed
print("")
print("-" * 80)
print("")

View File

@@ -1,7 +1,12 @@
from reflector.llm import LLM
from reflector.processors.base import Processor
from reflector.processors.summary.summary_builder import SummaryBuilder
from reflector.processors.types import FinalLongSummary, FinalShortSummary, TitleSummary
from reflector.processors.types import (
ActionItems,
FinalLongSummary,
FinalShortSummary,
TitleSummary,
)
from reflector.settings import settings
@@ -27,15 +32,20 @@ class TranscriptFinalSummaryProcessor(Processor):
builder = SummaryBuilder(self.llm, logger=self.logger)
builder.set_transcript(text)
# Use known participants if available, otherwise identify them
if self.transcript and self.transcript.participants:
# Extract participant names from the stored participants
participant_names = [p.name for p in self.transcript.participants if p.name]
if participant_names:
self.logger.info(
f"Using {len(participant_names)} known participants from transcript"
)
builder.set_known_participants(participant_names)
participant_name_to_id = {
p.name: p.id
for p in self.transcript.participants
if p.name and p.id
}
builder.set_known_participants(
participant_names, participant_name_to_id=participant_name_to_id
)
else:
self.logger.info(
"Participants field exists but is empty, identifying participants"
@@ -63,7 +73,6 @@ class TranscriptFinalSummaryProcessor(Processor):
self.logger.warning("No summary to output")
return
# build the speakermap from the transcript
speakermap = {}
if self.transcript:
speakermap = {
@@ -76,8 +85,6 @@ class TranscriptFinalSummaryProcessor(Processor):
speakermap=speakermap,
)
# build the transcript as a single string
# Replace speaker IDs with actual participant names if available
text_transcript = []
unique_speakers = set()
for topic in self.chunks:
@@ -111,4 +118,9 @@ class TranscriptFinalSummaryProcessor(Processor):
)
await self.emit(final_short_summary, name="short_summary")
if self.builder and self.builder.action_items:
action_items = self.builder.action_items.model_dump()
action_items = ActionItems(action_items=action_items)
await self.emit(action_items, name="action_items")
await self.emit(final_long_summary)

View File

@@ -78,7 +78,11 @@ class TranscriptTopicDetectorProcessor(Processor):
"""
prompt = TOPIC_PROMPT.format(text=text)
response = await self.llm.get_structured_response(
prompt, [text], TopicResponse, tone_name="Topic analyzer"
prompt,
[text],
TopicResponse,
tone_name="Topic analyzer",
timeout=settings.LLM_STRUCTURED_RESPONSE_TIMEOUT,
)
return response

View File

@@ -264,6 +264,10 @@ class FinalShortSummary(BaseModel):
duration: float
class ActionItems(BaseModel):
action_items: dict # JSON-serializable dict from ActionItemsResponse
class FinalTitle(BaseModel):
title: str

View File

@@ -160,7 +160,10 @@ def dispatch_transcript_processing(config: ProcessingConfig) -> AsyncResult:
def task_is_scheduled_or_active(task_name: str, **kwargs):
inspect = celery.current_app.control.inspect()
for worker, tasks in (inspect.scheduled() | inspect.active()).items():
scheduled = inspect.scheduled() or {}
active = inspect.active() or {}
all = scheduled | active
for worker, tasks in all.items():
for task in tasks:
if task["name"] == task_name and task["kwargs"] == kwargs:
return True

View File

@@ -74,6 +74,13 @@ class Settings(BaseSettings):
LLM_API_KEY: str | None = None
LLM_CONTEXT_WINDOW: int = 16000
LLM_PARSE_MAX_RETRIES: int = (
3 # Max retries for JSON/validation errors (total attempts = retries + 1)
)
LLM_STRUCTURED_RESPONSE_TIMEOUT: int = (
300 # Timeout in seconds for structured responses (5 minutes)
)
# Diarization
DIARIZATION_ENABLED: bool = True
DIARIZATION_BACKEND: str = "modal"
@@ -138,14 +145,6 @@ class Settings(BaseSettings):
DAILY_WEBHOOK_UUID: str | None = (
None # Webhook UUID for this environment. Not used by production code
)
# Multitrack processing
# SKIP_MIXDOWN: When True, skips audio mixdown and waveform generation.
# Transcription still works using individual tracks. Useful for:
# - Diagnosing OOM issues in mixdown
# - Fast processing when audio playback is not needed
# Note: UI will have no audio playback or waveform when enabled.
SKIP_MIXDOWN: bool = True
# Platform Configuration
DEFAULT_VIDEO_PLATFORM: Platform = WHEREBY_PLATFORM

View File

@@ -17,6 +17,7 @@ from pydantic import (
import reflector.auth as auth
from reflector.db import get_database
from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
from reflector.db.search import (
DEFAULT_SEARCH_LIMIT,
SearchLimit,
@@ -37,6 +38,7 @@ from reflector.db.transcripts import (
TranscriptTopic,
transcripts_controller,
)
from reflector.db.users import user_controller
from reflector.processors.types import Transcript as ProcessorTranscript
from reflector.processors.types import Word
from reflector.schemas.transcript_formats import TranscriptFormat, TranscriptSegment
@@ -111,8 +113,12 @@ class GetTranscriptMinimal(BaseModel):
audio_deleted: bool | None = None
class TranscriptParticipantWithEmail(TranscriptParticipant):
email: str | None = None
class GetTranscriptWithParticipants(GetTranscriptMinimal):
participants: list[TranscriptParticipant] | None
participants: list[TranscriptParticipantWithEmail] | None
class GetTranscriptWithText(GetTranscriptWithParticipants):
@@ -468,6 +474,23 @@ async def transcript_get(
is_multitrack = await _get_is_multitrack(transcript)
room_name = None
if transcript.room_id:
room = await rooms_controller.get_by_id(transcript.room_id)
room_name = room.name if room else None
participants = []
if transcript.participants:
user_ids = [p.user_id for p in transcript.participants if p.user_id is not None]
users_dict = await user_controller.get_by_ids(user_ids) if user_ids else {}
for p in transcript.participants:
user = users_dict.get(p.user_id) if p.user_id else None
participants.append(
TranscriptParticipantWithEmail(
**p.model_dump(), email=user.email if user else None
)
)
base_data = {
"id": transcript.id,
"user_id": transcript.user_id,
@@ -478,6 +501,7 @@ async def transcript_get(
"title": transcript.title,
"short_summary": transcript.short_summary,
"long_summary": transcript.long_summary,
"action_items": transcript.action_items,
"created_at": transcript.created_at,
"share_mode": transcript.share_mode,
"source_language": transcript.source_language,
@@ -486,8 +510,9 @@ async def transcript_get(
"meeting_id": transcript.meeting_id,
"source_kind": transcript.source_kind,
"room_id": transcript.room_id,
"room_name": room_name,
"audio_deleted": transcript.audio_deleted,
"participants": transcript.participants,
"participants": participants,
}
if transcript_format == "text":

View File

@@ -38,6 +38,10 @@ else:
"task": "reflector.worker.process.reprocess_failed_recordings",
"schedule": crontab(hour=5, minute=0), # Midnight EST
},
"reprocess_failed_daily_recordings": {
"task": "reflector.worker.process.reprocess_failed_daily_recordings",
"schedule": crontab(hour=5, minute=0), # Midnight EST
},
"poll_daily_recordings": {
"task": "reflector.worker.process.poll_daily_recordings",
"schedule": 180.0, # Every 3 minutes (configurable lookback window)

View File

@@ -12,7 +12,7 @@ from celery import shared_task
from celery.utils.log import get_task_logger
from pydantic import ValidationError
from reflector.dailyco_api import RecordingResponse
from reflector.dailyco_api import FinishedRecordingResponse, RecordingResponse
from reflector.db.daily_participant_sessions import (
DailyParticipantSession,
daily_participant_sessions_controller,
@@ -322,16 +322,38 @@ async def poll_daily_recordings():
)
return
recording_ids = [rec.id for rec in api_recordings]
finished_recordings: List[FinishedRecordingResponse] = []
for rec in api_recordings:
finished = rec.to_finished()
if finished is None:
logger.debug(
"Skipping unfinished recording",
recording_id=rec.id,
room_name=rec.room_name,
status=rec.status,
)
continue
finished_recordings.append(finished)
if not finished_recordings:
logger.debug(
"No finished recordings found from Daily.co API",
total_api_count=len(api_recordings),
)
return
recording_ids = [rec.id for rec in finished_recordings]
existing_recordings = await recordings_controller.get_by_ids(recording_ids)
existing_ids = {rec.id for rec in existing_recordings}
missing_recordings = [rec for rec in api_recordings if rec.id not in existing_ids]
missing_recordings = [
rec for rec in finished_recordings if rec.id not in existing_ids
]
if not missing_recordings:
logger.debug(
"All recordings already in DB",
api_count=len(api_recordings),
api_count=len(finished_recordings),
existing_count=len(existing_recordings),
)
return
@@ -339,7 +361,7 @@ async def poll_daily_recordings():
logger.info(
"Found recordings missing from DB",
missing_count=len(missing_recordings),
total_api_count=len(api_recordings),
total_api_count=len(finished_recordings),
existing_count=len(existing_recordings),
)
@@ -649,7 +671,7 @@ async def reprocess_failed_recordings():
Find recordings in Whereby S3 bucket and check if they have proper transcriptions.
If not, requeue them for processing.
Note: Daily.co recordings are processed via webhooks, not this cron job.
Note: Daily.co multitrack recordings are handled by reprocess_failed_daily_recordings.
"""
logger.info("Checking Whereby recordings that need processing or reprocessing")
@@ -702,6 +724,103 @@ async def reprocess_failed_recordings():
return reprocessed_count
@shared_task
@asynctask
async def reprocess_failed_daily_recordings():
"""
Find Daily.co multitrack recordings in the database and check if they have proper transcriptions.
If not, requeue them for processing.
"""
logger.info(
"Checking Daily.co multitrack recordings that need processing or reprocessing"
)
if not settings.DAILYCO_STORAGE_AWS_BUCKET_NAME:
logger.debug(
"DAILYCO_STORAGE_AWS_BUCKET_NAME not configured; skipping Daily recording reprocessing"
)
return 0
bucket_name = settings.DAILYCO_STORAGE_AWS_BUCKET_NAME
reprocessed_count = 0
try:
multitrack_recordings = (
await recordings_controller.get_multitrack_needing_reprocessing(bucket_name)
)
logger.info(
"Found multitrack recordings needing reprocessing",
count=len(multitrack_recordings),
bucket=bucket_name,
)
for recording in multitrack_recordings:
if not recording.meeting_id:
logger.debug(
"Skipping recording without meeting_id",
recording_id=recording.id,
)
continue
meeting = await meetings_controller.get_by_id(recording.meeting_id)
if not meeting:
logger.warning(
"Meeting not found for recording",
recording_id=recording.id,
meeting_id=recording.meeting_id,
)
continue
transcript = None
try:
transcript = await transcripts_controller.get_by_recording_id(
recording.id
)
except ValidationError:
await transcripts_controller.remove_by_recording_id(recording.id)
logger.warning(
"Removed invalid transcript for recording",
recording_id=recording.id,
)
if not recording.track_keys:
logger.warning(
"Recording has no track_keys, cannot reprocess",
recording_id=recording.id,
)
continue
logger.info(
"Queueing Daily recording for reprocessing",
recording_id=recording.id,
room_name=meeting.room_name,
track_count=len(recording.track_keys),
transcript_status=transcript.status if transcript else None,
)
process_multitrack_recording.delay(
bucket_name=bucket_name,
daily_room_name=meeting.room_name,
recording_id=recording.id,
track_keys=recording.track_keys,
)
reprocessed_count += 1
except Exception as e:
logger.error(
"Error checking Daily multitrack recordings",
error=str(e),
exc_info=True,
)
logger.info(
"Daily reprocessing complete",
requeued_count=reprocessed_count,
)
return reprocessed_count
@shared_task
@asynctask
async def trigger_daily_reconciliation() -> None:

View File

@@ -123,6 +123,7 @@ async def send_transcript_webhook(
"target_language": transcript.target_language,
"status": transcript.status,
"frontend_url": frontend_url,
"action_items": transcript.action_items,
},
"room": {
"id": room.id,

View File

@@ -318,6 +318,14 @@ async def dummy_storage():
yield
@pytest.fixture
def test_settings():
"""Provide isolated settings for tests to avoid modifying global settings"""
from reflector.settings import Settings
return Settings()
@pytest.fixture(scope="session")
def celery_enable_logging():
return True

View File

@@ -0,0 +1,488 @@
"""Tests for LLM parse error recovery using llama-index Workflow"""
from time import monotonic
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from pydantic import BaseModel, Field
from workflows.errors import WorkflowRuntimeError, WorkflowTimeoutError
from reflector.llm import LLM, LLMParseError, StructuredOutputWorkflow
from reflector.utils.retry import RetryException
class TestResponse(BaseModel):
"""Test response model for structured output"""
title: str = Field(description="A title")
summary: str = Field(description="A summary")
confidence: float = Field(description="Confidence score", ge=0, le=1)
def make_completion_response(text: str):
"""Create a mock CompletionResponse with .text attribute"""
response = MagicMock()
response.text = text
return response
class TestLLMParseErrorRecovery:
"""Test parse error recovery with Workflow feedback loop"""
@pytest.mark.asyncio
async def test_parse_error_recovery_with_feedback(self, test_settings):
"""Test that parse errors trigger retry with error feedback"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
# TreeSummarize returns plain text analysis (step 1)
mock_summarizer.aget_response = AsyncMock(
return_value="The analysis shows a test with summary and high confidence."
)
call_count = {"count": 0}
async def acomplete_handler(prompt, *args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
# First JSON formatting call returns invalid JSON
return make_completion_response('{"title": "Test"}')
else:
# Second call should have error feedback in prompt
assert "Your previous response could not be parsed:" in prompt
assert '{"title": "Test"}' in prompt
assert "Error:" in prompt
assert "Please try again" in prompt
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert result.summary == "Summary"
assert result.confidence == 0.95
# TreeSummarize called once, Settings.llm.acomplete called twice
assert mock_summarizer.aget_response.call_count == 1
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_max_parse_retry_attempts(self, test_settings):
"""Test that parse error retry stops after max attempts"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Always return invalid JSON from acomplete
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"invalid": "missing required fields"}'
)
)
with pytest.raises(LLMParseError, match="Failed to parse"):
await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
expected_attempts = test_settings.LLM_PARSE_MAX_RETRIES + 1
# TreeSummarize called once, acomplete called max_retries times
assert mock_summarizer.aget_response.call_count == 1
assert mock_settings.llm.acomplete.call_count == expected_attempts
@pytest.mark.asyncio
async def test_raw_response_logging_on_parse_error(self, test_settings, caplog):
"""Test that raw response is logged when parse error occurs"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
caplog.at_level("ERROR"),
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
call_count = {"count": 0}
async def acomplete_handler(*args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
return make_completion_response('{"title": "Test"}') # Invalid
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
error_logs = [r for r in caplog.records if r.levelname == "ERROR"]
raw_response_logged = any("Raw response:" in r.message for r in error_logs)
assert raw_response_logged, "Raw response should be logged on parse error"
@pytest.mark.asyncio
async def test_multiple_validation_errors_in_feedback(self, test_settings):
"""Test that validation errors are included in feedback"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
call_count = {"count": 0}
async def acomplete_handler(prompt, *args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
# Missing title and summary
return make_completion_response('{"confidence": 0.5}')
else:
# Should have schema validation errors in prompt
assert (
"Schema validation errors" in prompt
or "error" in prompt.lower()
)
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_success_on_first_attempt(self, test_settings):
"""Test that no retry happens when first attempt succeeds"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert result.summary == "Summary"
assert result.confidence == 0.95
assert mock_summarizer.aget_response.call_count == 1
assert mock_settings.llm.acomplete.call_count == 1
class TestStructuredOutputWorkflow:
"""Direct tests for the StructuredOutputWorkflow"""
@pytest.mark.asyncio
async def test_workflow_retries_on_validation_error(self):
"""Test workflow retries when validation fails"""
workflow = StructuredOutputWorkflow(
output_cls=TestResponse,
max_retries=3,
timeout=30,
)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
call_count = {"count": 0}
async def acomplete_handler(*args, **kwargs):
call_count["count"] += 1
if call_count["count"] < 2:
return make_completion_response('{"title": "Only title"}')
return make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.9}'
)
mock_settings.llm.acomplete = AsyncMock(side_effect=acomplete_handler)
result = await workflow.run(
prompt="Extract data",
texts=["Some text"],
tone_name=None,
)
assert "success" in result
assert result["success"].title == "Test"
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_workflow_returns_error_after_max_retries(self):
"""Test workflow returns error after exhausting retries"""
workflow = StructuredOutputWorkflow(
output_cls=TestResponse,
max_retries=2,
timeout=30,
)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Always return invalid JSON
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response('{"invalid": true}')
)
result = await workflow.run(
prompt="Extract data",
texts=["Some text"],
tone_name=None,
)
assert "error" in result
# TreeSummarize called once, acomplete called max_retries times
assert mock_summarizer.aget_response.call_count == 1
assert mock_settings.llm.acomplete.call_count == 2
class TestNetworkErrorRetries:
"""Test that network error retries are handled by OpenAILike, not Workflow"""
@pytest.mark.asyncio
async def test_network_error_propagates_after_openai_retries(self, test_settings):
"""Test that network errors are retried by OpenAILike and then propagate.
Network retries are handled by OpenAILike (max_retries=3), not by our
StructuredOutputWorkflow. This test verifies that network errors propagate
up after OpenAILike exhausts its retries.
"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Simulate network error from acomplete (after OpenAILike retries exhausted)
network_error = ConnectionError("Connection refused")
mock_settings.llm.acomplete = AsyncMock(side_effect=network_error)
# Network error wrapped in WorkflowRuntimeError
with pytest.raises(WorkflowRuntimeError, match="Connection refused"):
await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
# acomplete called only once - network error propagates, not retried by Workflow
assert mock_settings.llm.acomplete.call_count == 1
@pytest.mark.asyncio
async def test_network_error_not_retried_by_workflow(self, test_settings):
"""Test that Workflow does NOT retry network errors (OpenAILike handles those).
This verifies the separation of concerns:
- StructuredOutputWorkflow: retries parse/validation errors
- OpenAILike: retries network errors (internally, max_retries=3)
"""
workflow = StructuredOutputWorkflow(
output_cls=TestResponse,
max_retries=3,
timeout=30,
)
with (
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
# Network error should propagate immediately, not trigger Workflow retry
mock_settings.llm.acomplete = AsyncMock(
side_effect=TimeoutError("Request timed out")
)
# Network error wrapped in WorkflowRuntimeError
with pytest.raises(WorkflowRuntimeError, match="Request timed out"):
await workflow.run(
prompt="Extract data",
texts=["Some text"],
tone_name=None,
)
# Only called once - Workflow doesn't retry network errors
assert mock_settings.llm.acomplete.call_count == 1
class TestWorkflowTimeoutRetry:
"""Test timeout retry mechanism in get_structured_response"""
@pytest.mark.asyncio
async def test_timeout_retry_succeeds_on_retry(self, test_settings):
"""Test that WorkflowTimeoutError triggers retry and succeeds"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
call_count = {"count": 0}
async def workflow_run_side_effect(*args, **kwargs):
call_count["count"] += 1
if call_count["count"] == 1:
raise WorkflowTimeoutError("Operation timed out after 120 seconds")
return {
"success": TestResponse(
title="Test", summary="Summary", confidence=0.95
)
}
with (
patch("reflector.llm.StructuredOutputWorkflow") as mock_workflow_class,
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_workflow = MagicMock()
mock_workflow.run = AsyncMock(side_effect=workflow_run_side_effect)
mock_workflow_class.return_value = mock_workflow
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
assert result.summary == "Summary"
assert call_count["count"] == 2
@pytest.mark.asyncio
async def test_timeout_retry_exhausts_after_max_attempts(self, test_settings):
"""Test that timeout retry stops after max attempts"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
call_count = {"count": 0}
async def workflow_run_side_effect(*args, **kwargs):
call_count["count"] += 1
raise WorkflowTimeoutError("Operation timed out after 120 seconds")
with (
patch("reflector.llm.StructuredOutputWorkflow") as mock_workflow_class,
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_workflow = MagicMock()
mock_workflow.run = AsyncMock(side_effect=workflow_run_side_effect)
mock_workflow_class.return_value = mock_workflow
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
with pytest.raises(RetryException, match="Retry attempts exceeded"):
await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert call_count["count"] == 3
@pytest.mark.asyncio
async def test_timeout_retry_with_backoff(self, test_settings):
"""Test that exponential backoff is applied between retries"""
llm = LLM(settings=test_settings, temperature=0.4, max_tokens=100)
call_times = []
async def workflow_run_side_effect(*args, **kwargs):
call_times.append(monotonic())
if len(call_times) < 3:
raise WorkflowTimeoutError("Operation timed out after 120 seconds")
return {
"success": TestResponse(
title="Test", summary="Summary", confidence=0.95
)
}
with (
patch("reflector.llm.StructuredOutputWorkflow") as mock_workflow_class,
patch("reflector.llm.TreeSummarize") as mock_summarize,
patch("reflector.llm.Settings") as mock_settings,
):
mock_workflow = MagicMock()
mock_workflow.run = AsyncMock(side_effect=workflow_run_side_effect)
mock_workflow_class.return_value = mock_workflow
mock_summarizer = MagicMock()
mock_summarize.return_value = mock_summarizer
mock_summarizer.aget_response = AsyncMock(return_value="Some analysis")
mock_settings.llm.acomplete = AsyncMock(
return_value=make_completion_response(
'{"title": "Test", "summary": "Summary", "confidence": 0.95}'
)
)
result = await llm.get_structured_response(
prompt="Test prompt", texts=["Test text"], output_cls=TestResponse
)
assert result.title == "Test"
if len(call_times) >= 2:
time_between_calls = call_times[1] - call_times[0]
assert (
time_between_calls >= 1.5
), f"Expected ~2s backoff, got {time_between_calls}s"

View File

@@ -266,7 +266,11 @@ async def mock_summary_processor():
# When flush is called, simulate summary generation by calling the callbacks
async def flush_with_callback():
mock_summary.flush_called = True
from reflector.processors.types import FinalLongSummary, FinalShortSummary
from reflector.processors.types import (
ActionItems,
FinalLongSummary,
FinalShortSummary,
)
if hasattr(mock_summary, "_callback"):
await mock_summary._callback(
@@ -276,12 +280,19 @@ async def mock_summary_processor():
await mock_summary._on_short_summary(
FinalShortSummary(short_summary="Test short summary", duration=10.0)
)
if hasattr(mock_summary, "_on_action_items"):
await mock_summary._on_action_items(
ActionItems(action_items={"test": "action item"})
)
mock_summary.flush = flush_with_callback
def init_with_callback(transcript=None, callback=None, on_short_summary=None):
def init_with_callback(
transcript=None, callback=None, on_short_summary=None, on_action_items=None
):
mock_summary._callback = callback
mock_summary._on_short_summary = on_short_summary
mock_summary._on_action_items = on_action_items
return mock_summary
mock_summary_class.side_effect = init_with_callback

View File

@@ -1,5 +1,8 @@
import pytest
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import transcripts_controller
@pytest.mark.asyncio
async def test_transcript_create(client):
@@ -182,3 +185,51 @@ async def test_transcript_mark_reviewed(authenticated_client, client):
response = await client.get(f"/transcripts/{tid}")
assert response.status_code == 200
assert response.json()["reviewed"] is True
@pytest.mark.asyncio
async def test_transcript_get_returns_room_name(authenticated_client, client):
"""Test that getting a transcript returns its room_name when linked to a room."""
# Create a room
room = await rooms_controller.add(
name="test-room-for-transcript",
user_id="test-user",
zulip_auto_post=False,
zulip_stream="",
zulip_topic="",
is_locked=False,
room_mode="normal",
recording_type="cloud",
recording_trigger="automatic-2nd-participant",
is_shared=False,
webhook_url="",
webhook_secret="",
)
# Create a transcript linked to the room
transcript = await transcripts_controller.add(
name="transcript-with-room",
source_kind="file",
room_id=room.id,
)
# Get the transcript and verify room_name is returned
response = await client.get(f"/transcripts/{transcript.id}")
assert response.status_code == 200
assert response.json()["room_id"] == room.id
assert response.json()["room_name"] == "test-room-for-transcript"
@pytest.mark.asyncio
async def test_transcript_get_returns_null_room_name_when_no_room(
authenticated_client, client
):
"""Test that room_name is null when transcript has no room."""
response = await client.post("/transcripts", json={"name": "no-room-transcript"})
assert response.status_code == 200
tid = response.json()["id"]
response = await client.get(f"/transcripts/{tid}")
assert response.status_code == 200
assert response.json()["room_id"] is None
assert response.json()["room_name"] is None

View File

@@ -15,9 +15,12 @@ import {
createListCollection,
useDisclosure,
Tabs,
Popover,
Text,
HStack,
} from "@chakra-ui/react";
import { useEffect, useMemo, useState } from "react";
import { LuEye, LuEyeOff } from "react-icons/lu";
import { LuEye, LuEyeOff, LuInfo } from "react-icons/lu";
import useRoomList from "./useRoomList";
import type { components } from "../../reflector-api";
import {
@@ -534,6 +537,10 @@ export default function RoomsList() {
room.recordingType === "cloud"
? "automatic-2nd-participant"
: "none";
} else {
if (room.recordingType !== "cloud") {
updates.recordingTrigger = "none";
}
}
setRoomInput({ ...room, ...updates });
}}
@@ -583,39 +590,75 @@ export default function RoomsList() {
<Checkbox.Label>Locked room</Checkbox.Label>
</Checkbox.Root>
</Field.Root>
{room.platform !== "daily" && (
<Field.Root mt={4}>
<Field.Label>Room size</Field.Label>
<Select.Root
value={[room.roomMode]}
onValueChange={(e) =>
setRoomInput({ ...room, roomMode: e.value[0] })
}
collection={roomModeCollection}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select room size" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{roomModeOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
)}
<Field.Root mt={4}>
<Field.Label>Room size</Field.Label>
<Select.Root
value={[room.roomMode]}
onValueChange={(e) =>
setRoomInput({ ...room, roomMode: e.value[0] })
}
collection={roomModeCollection}
disabled={room.platform === "daily"}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select room size" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{roomModeOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
<Field.Root mt={4}>
<Field.Label>Recording type</Field.Label>
<HStack gap={2} alignItems="center">
<Field.Label>Recording type</Field.Label>
<Popover.Root>
<Popover.Trigger asChild>
<IconButton
aria-label="Recording type help"
variant="ghost"
size="xs"
colorPalette="gray"
>
<LuInfo />
</IconButton>
</Popover.Trigger>
<Popover.Positioner>
<Popover.Content>
<Popover.Arrow />
<Popover.Body>
<Text fontSize="sm" lineHeight="1.6">
<strong>None:</strong> No recording will be
created.
<br />
<br />
<strong>Local:</strong> Recording happens on
each participant's device. Files are saved
locally.
<br />
<br />
<strong>Cloud:</strong> Recording happens on
the platform's servers and is available after
the meeting ends.
</Text>
</Popover.Body>
</Popover.Content>
</Popover.Positioner>
</Popover.Root>
</HStack>
<Select.Root
value={[room.recordingType]}
onValueChange={(e) => {
@@ -623,14 +666,12 @@ export default function RoomsList() {
const updates: Partial<typeof room> = {
recordingType: newRecordingType,
};
// For Daily: if cloud, use automatic; otherwise none
if (room.platform === "daily") {
updates.recordingTrigger =
newRecordingType === "cloud"
? "automatic-2nd-participant"
: "none";
} else {
// For Whereby: if not cloud, set to none
updates.recordingTrigger =
newRecordingType !== "cloud"
? "none"
@@ -661,44 +702,77 @@ export default function RoomsList() {
</Select.Positioner>
</Select.Root>
</Field.Root>
<Field.Root mt={4}>
<Field.Label>Recording start trigger</Field.Label>
<Select.Root
value={[room.recordingTrigger]}
onValueChange={(e) =>
setRoomInput({
...room,
recordingTrigger: e.value[0],
})
}
collection={recordingTriggerCollection}
disabled={
room.recordingType !== "cloud" ||
(room.platform === "daily" &&
room.recordingType === "cloud")
}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select trigger" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{recordingTriggerOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
{room.recordingType === "cloud" &&
room.platform !== "daily" && (
<Field.Root mt={4}>
<HStack gap={2} alignItems="center">
<Field.Label>Recording start trigger</Field.Label>
<Popover.Root>
<Popover.Trigger asChild>
<IconButton
aria-label="Recording start trigger help"
variant="ghost"
size="xs"
colorPalette="gray"
>
<LuInfo />
</IconButton>
</Popover.Trigger>
<Popover.Positioner>
<Popover.Content>
<Popover.Arrow />
<Popover.Body>
<Text fontSize="sm" lineHeight="1.6">
<strong>None:</strong> Recording must be
started manually by a participant.
<br />
<br />
<strong>Prompt:</strong> Participants will
be prompted to start recording when they
join.
<br />
<br />
<strong>Automatic:</strong> Recording
starts automatically when a second
participant joins.
</Text>
</Popover.Body>
</Popover.Content>
</Popover.Positioner>
</Popover.Root>
</HStack>
<Select.Root
value={[room.recordingTrigger]}
onValueChange={(e) =>
setRoomInput({
...room,
recordingTrigger: e.value[0],
})
}
collection={recordingTriggerCollection}
>
<Select.HiddenSelect />
<Select.Control>
<Select.Trigger>
<Select.ValueText placeholder="Select trigger" />
</Select.Trigger>
<Select.IndicatorGroup>
<Select.Indicator />
</Select.IndicatorGroup>
</Select.Control>
<Select.Positioner>
<Select.Content>
{recordingTriggerOptions.map((option) => (
<Select.Item key={option.value} item={option}>
{option.label}
<Select.ItemIndicator />
</Select.Item>
))}
</Select.Content>
</Select.Positioner>
</Select.Root>
</Field.Root>
)}
<Field.Root mt={4}>
<Checkbox.Root

View File

@@ -2,20 +2,29 @@
import { Spinner, Link } from "@chakra-ui/react";
import { useAuth } from "../lib/AuthProvider";
import { usePathname } from "next/navigation";
import { getLogoutRedirectUrl } from "../lib/auth";
export default function UserInfo() {
const auth = useAuth();
const pathname = usePathname();
const status = auth.status;
const isLoading = status === "loading";
const isAuthenticated = status === "authenticated";
const isRefreshing = status === "refreshing";
const callbackUrl = getLogoutRedirectUrl(pathname);
return isLoading ? (
<Spinner size="xs" className="mx-3" />
) : !isAuthenticated && !isRefreshing ? (
<Link
href="/"
href="#"
className="font-light px-2"
onClick={() => auth.signIn("authentik")}
onClick={(e) => {
e.preventDefault();
auth.signIn("authentik");
}}
>
Log in
</Link>
@@ -23,7 +32,7 @@ export default function UserInfo() {
<Link
href="#"
className="font-light px-2"
onClick={() => auth.signOut({ callbackUrl: "/" })}
onClick={() => auth.signOut({ callbackUrl })}
>
Log out
</Link>

View File

@@ -105,7 +105,19 @@ export default function DailyRoom({ meeting }: DailyRoomProps) {
}
});
await frame.join({ url: roomUrl });
await frame.join({
url: roomUrl,
sendSettings: {
video: {
// Optimize bandwidth for camera video
// allowAdaptiveLayers automatically adjusts quality based on network conditions
allowAdaptiveLayers: true,
// Use bandwidth-optimized preset as fallback for browsers without adaptive support
maxQuality: "medium",
},
// Note: screenVideo intentionally not configured to preserve full quality for screen shares
},
});
} catch (error) {
console.error("Error creating Daily frame:", error);
}

View File

@@ -18,3 +18,8 @@ export const LOGIN_REQUIRED_PAGES = [
export const PROTECTED_PAGES = new RegExp(
LOGIN_REQUIRED_PAGES.map((page) => `^${page}$`).join("|"),
);
export function getLogoutRedirectUrl(pathname: string): string {
const transcriptPagePattern = /^\/transcripts\/[^/]+$/;
return transcriptPagePattern.test(pathname) ? pathname : "/";
}

View File

@@ -31,7 +31,7 @@
"ioredis": "^5.7.0",
"jest-worker": "^29.6.2",
"lucide-react": "^0.525.0",
"next": "^15.5.3",
"next": "^15.5.9",
"next-auth": "^4.24.7",
"next-themes": "^0.4.6",
"nuqs": "^2.4.3",

508
www/pnpm-lock.yaml generated

File diff suppressed because it is too large Load Diff