Compare commits

..

5 Commits

Author SHA1 Message Date
Igor Loskutov
8373874cbd feat: add LLM_ENABLE_THINKING env var for thinking-mode LLMs
Some LLMs (e.g. GLM-4.5-Air) default to thinking mode which returns
content in reasoning_content instead of content field, breaking
structured output parsing. This setting passes enable_thinking through
extra_body to control the behavior per deployment.

Three states: None (default, don't send), True, False.
2026-02-06 20:19:53 -05:00
cd2255cfbc chore(main): release 0.33.0 (#847) 2026-02-06 18:12:06 -05:00
15ab2e306e feat: Daily+hatchet default (#846)
* feat: set Daily as default video platform

Daily.co has been battle-tested and is ready to be the default.
Whereby remains available for rooms that explicitly set it.

* feat: enforce Hatchet for all multitrack processing

Remove use_celery option from rooms - multitrack (Daily) recordings
now always use Hatchet workflows. Celery remains for single-track
(Whereby) file processing only.

- Remove use_celery column from room table
- Simplify dispatch logic to always use Hatchet for multitracks
- Update tests to mock Hatchet instead of Celery

* fix: update whereby test to patch Hatchet instead of removed Celery import

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2026-02-05 18:38:08 -05:00
1ce1c7a910 fix: websocket tests (#825)
* fix websocket tests

* fix: restore timeout and fix celery test infrastructure

- Re-add timeout=1.0 to ws_manager pubsub loop (prevents CPU spin?)
- Use Redis for Celery tests (memory:// broker doesn't support chords)
- Add timeout param to in-memory subscriber mock
- Remove duplicate celery_includes fixture from rtc_ws tests

* fix: remove redundant inline imports in test files

* fix: update gitleaks ignore for moved s3_key line

---------

Co-authored-by: Igor Loskutov <igor.loskutoff@gmail.com>
2026-02-05 14:23:31 -05:00
Rémi Pauchet
984795357e - fix nvidia repo blocked by apt (sha1) (#845)
- use build cache for apt and uv
- limit concurency for uv to prevent crashes with too many cores
2026-02-05 13:59:34 -05:00
16 changed files with 335 additions and 274 deletions

View File

@@ -4,3 +4,4 @@ docs/docs/installation/daily-setup.md:curl-auth-header:277
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:74
gpu/self_hosted/DEV_SETUP.md:curl-auth-header:83
server/reflector/worker/process.py:generic-api-key:465
server/reflector/worker/process.py:generic-api-key:594

View File

@@ -1,5 +1,17 @@
# Changelog
## [0.33.0](https://github.com/Monadical-SAS/reflector/compare/v0.32.2...v0.33.0) (2026-02-05)
### Features
* Daily+hatchet default ([#846](https://github.com/Monadical-SAS/reflector/issues/846)) ([15ab2e3](https://github.com/Monadical-SAS/reflector/commit/15ab2e306eacf575494b4b5d2b2ad779d44a1c7f))
### Bug Fixes
* websocket tests ([#825](https://github.com/Monadical-SAS/reflector/issues/825)) ([1ce1c7a](https://github.com/Monadical-SAS/reflector/commit/1ce1c7a910b6c374115d2437b17f9d288ef094dc))
## [0.32.2](https://github.com/Monadical-SAS/reflector/compare/v0.32.1...v0.32.2) (2026-02-03)

View File

@@ -4,27 +4,31 @@ ENV PYTHONUNBUFFERED=1 \
UV_LINK_MODE=copy \
UV_NO_CACHE=1
# patch until nvidia updates the sha1 repo
ADD sequoia.config /etc/crypto-policies/back-ends/sequoia.config
WORKDIR /tmp
RUN apt-get update \
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update \
&& apt-get install -y \
ffmpeg \
curl \
ca-certificates \
gnupg \
wget \
&& apt-get clean
wget
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
RUN dpkg -i /cuda-keyring.deb \
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
dpkg -i /cuda-keyring.deb \
&& rm /cuda-keyring.deb \
&& apt-get update \
&& apt-get install -y --no-install-recommends \
cuda-cudart-12-6 \
libcublas-12-6 \
libcudnn9-cuda-12 \
libcudnn9-dev-cuda-12 \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
libcudnn9-dev-cuda-12
ADD https://astral.sh/uv/install.sh /uv-installer.sh
RUN sh /uv-installer.sh && rm /uv-installer.sh
ENV PATH="/root/.local/bin/:$PATH"
@@ -39,6 +43,13 @@ COPY ./app /app/app
COPY ./main.py /app/
COPY ./runserver.sh /app/
# prevent uv failing with too many open files on big cpus
ENV UV_CONCURRENT_INSTALLS=16
# first install
RUN --mount=type=cache,target=/root/.cache/uv \
uv sync --compile-bytecode --locked
EXPOSE 8000
CMD ["sh", "/app/runserver.sh"]

View File

@@ -0,0 +1,2 @@
[hash_algorithms]
sha1 = "always"

View File

@@ -0,0 +1,35 @@
"""drop_use_celery_column
Revision ID: 3aa20b96d963
Revises: e69f08ead8ea
Create Date: 2026-02-05 10:12:44.065279
"""
from typing import Sequence, Union
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision: str = "3aa20b96d963"
down_revision: Union[str, None] = "e69f08ead8ea"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.drop_column("use_celery")
def downgrade() -> None:
with op.batch_alter_table("room", schema=None) as batch_op:
batch_op.add_column(
sa.Column(
"use_celery",
sa.Boolean(),
server_default=sa.text("false"),
nullable=False,
)
)

View File

@@ -57,12 +57,6 @@ rooms = sqlalchemy.Table(
sqlalchemy.String,
nullable=False,
),
sqlalchemy.Column(
"use_celery",
sqlalchemy.Boolean,
nullable=False,
server_default=false(),
),
sqlalchemy.Column(
"skip_consent",
sqlalchemy.Boolean,
@@ -97,7 +91,6 @@ class Room(BaseModel):
ics_last_sync: datetime | None = None
ics_last_etag: str | None = None
platform: Platform = Field(default_factory=lambda: settings.DEFAULT_VIDEO_PLATFORM)
use_celery: bool = False
skip_consent: bool = False

View File

@@ -206,6 +206,12 @@ class LLM:
"""Configure llamaindex Settings with OpenAILike LLM"""
session_id = llm_session_id.get() or f"fallback-{uuid4().hex}"
extra_body: dict = {"litellm_session_id": session_id}
# Only send enable_thinking when explicitly set (not None/unset).
# Models that don't support it will ignore the param.
if self.settings_obj.LLM_ENABLE_THINKING is not None:
extra_body["enable_thinking"] = self.settings_obj.LLM_ENABLE_THINKING
Settings.llm = OpenAILike(
model=self.model_name,
api_base=self.url,
@@ -215,7 +221,7 @@ class LLM:
is_function_calling_model=False,
temperature=self.temperature,
max_tokens=self.max_tokens,
additional_kwargs={"extra_body": {"litellm_session_id": session_id}},
additional_kwargs={"extra_body": extra_body},
)
async def get_response(

View File

@@ -15,14 +15,10 @@ from hatchet_sdk.clients.rest.exceptions import ApiException, NotFoundException
from hatchet_sdk.clients.rest.models import V1TaskStatus
from reflector.db.recordings import recordings_controller
from reflector.db.rooms import rooms_controller
from reflector.db.transcripts import Transcript, transcripts_controller
from reflector.hatchet.client import HatchetClientManager
from reflector.logger import logger
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
from reflector.pipelines.main_multitrack_pipeline import (
task_pipeline_multitrack_process,
)
from reflector.utils.string import NonEmptyString
@@ -181,21 +177,7 @@ async def dispatch_transcript_processing(
Returns AsyncResult for Celery tasks, None for Hatchet workflows.
"""
if isinstance(config, MultitrackProcessingConfig):
use_celery = False
if config.room_id:
room = await rooms_controller.get_by_id(config.room_id)
use_celery = room.use_celery if room else False
use_hatchet = not use_celery
if use_celery:
logger.info(
"Room uses legacy Celery processing",
room_id=config.room_id,
transcript_id=config.transcript_id,
)
if use_hatchet:
# Multitrack processing always uses Hatchet (no Celery fallback)
# First check if we can replay (outside transaction since it's read-only)
transcript = await transcripts_controller.get_by_id(config.transcript_id)
if transcript and transcript.workflow_run_id and not force:
@@ -203,9 +185,7 @@ async def dispatch_transcript_processing(
transcript.workflow_run_id
)
if can_replay:
await HatchetClientManager.replay_workflow(
transcript.workflow_run_id
)
await HatchetClientManager.replay_workflow(transcript.workflow_run_id)
logger.info(
"Replaying Hatchet workflow",
workflow_id=transcript.workflow_run_id,
@@ -233,9 +213,7 @@ async def dispatch_transcript_processing(
# Force: cancel old workflow if exists
if force and transcript and transcript.workflow_run_id:
try:
await HatchetClientManager.cancel_workflow(
transcript.workflow_run_id
)
await HatchetClientManager.cancel_workflow(transcript.workflow_run_id)
logger.info(
"Cancelled old workflow (--force)",
workflow_id=transcript.workflow_run_id,
@@ -245,9 +223,7 @@ async def dispatch_transcript_processing(
"Old workflow already deleted (--force)",
workflow_id=transcript.workflow_run_id,
)
await transcripts_controller.update(
transcript, {"workflow_run_id": None}
)
await transcripts_controller.update(transcript, {"workflow_run_id": None})
# Re-fetch and check for concurrent dispatch (optimistic approach).
# No database lock - worst case is duplicate dispatch, but Hatchet
@@ -293,12 +269,6 @@ async def dispatch_transcript_processing(
logger.info("Hatchet workflow dispatched", workflow_id=workflow_id)
return None
# Celery pipeline (durable workflows disabled)
return task_pipeline_multitrack_process.delay(
transcript_id=config.transcript_id,
bucket_name=config.bucket_name,
track_keys=config.track_keys,
)
elif isinstance(config, FileProcessingConfig):
return task_pipeline_file_process.delay(transcript_id=config.transcript_id)
else:

View File

@@ -1,7 +1,7 @@
from pydantic.types import PositiveInt
from pydantic_settings import BaseSettings, SettingsConfigDict
from reflector.schemas.platform import WHEREBY_PLATFORM, Platform
from reflector.schemas.platform import DAILY_PLATFORM, Platform
from reflector.utils.string import NonEmptyString
@@ -75,6 +75,7 @@ class Settings(BaseSettings):
LLM_URL: str | None = None
LLM_API_KEY: str | None = None
LLM_CONTEXT_WINDOW: int = 16000
LLM_ENABLE_THINKING: bool | None = None
LLM_PARSE_MAX_RETRIES: int = (
3 # Max retries for JSON/validation errors (total attempts = retries + 1)
@@ -155,7 +156,7 @@ class Settings(BaseSettings):
None # Webhook UUID for this environment. Not used by production code
)
# Platform Configuration
DEFAULT_VIDEO_PLATFORM: Platform = WHEREBY_PLATFORM
DEFAULT_VIDEO_PLATFORM: Platform = DAILY_PLATFORM
# Zulip integration
ZULIP_REALM: str | None = None

View File

@@ -27,9 +27,6 @@ from reflector.db.transcripts import (
from reflector.hatchet.client import HatchetClientManager
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
from reflector.pipelines.main_live_pipeline import asynctask
from reflector.pipelines.main_multitrack_pipeline import (
task_pipeline_multitrack_process,
)
from reflector.pipelines.topic_processing import EmptyPipeline
from reflector.processors import AudioFileWriterProcessor
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
@@ -351,17 +348,7 @@ async def _process_multitrack_recording_inner(
room_id=room.id,
)
use_celery = room and room.use_celery
use_hatchet = not use_celery
if use_celery:
logger.info(
"Room uses legacy Celery processing",
room_id=room.id,
transcript_id=transcript.id,
)
if use_hatchet:
# Multitrack processing always uses Hatchet (no Celery fallback)
workflow_id = await HatchetClientManager.start_workflow(
workflow_name="DiarizationPipeline",
input_data={
@@ -383,17 +370,7 @@ async def _process_multitrack_recording_inner(
transcript_id=transcript.id,
)
await transcripts_controller.update(
transcript, {"workflow_run_id": workflow_id}
)
return
# Celery pipeline (runs when durable workflows disabled)
task_pipeline_multitrack_process.delay(
transcript_id=transcript.id,
bucket_name=bucket_name,
track_keys=filter_cam_audio_tracks(track_keys),
)
await transcripts_controller.update(transcript, {"workflow_run_id": workflow_id})
@shared_task
@@ -1072,10 +1049,7 @@ async def reprocess_failed_daily_recordings():
)
continue
use_celery = room and room.use_celery
use_hatchet = not use_celery
if use_hatchet:
# Multitrack reprocessing always uses Hatchet (no Celery fallback)
if not transcript:
logger.warning(
"No transcript for Hatchet reprocessing, skipping",
@@ -1112,26 +1086,6 @@ async def reprocess_failed_daily_recordings():
room_name=meeting.room_name,
track_count=len(recording.track_keys),
)
else:
logger.info(
"Queueing Daily recording for Celery reprocessing",
recording_id=recording.id,
room_name=meeting.room_name,
track_count=len(recording.track_keys),
transcript_status=transcript.status if transcript else None,
)
# For reprocessing, pass actual recording time (though it's ignored - see _process_multitrack_recording_inner)
# Reprocessing uses recording.meeting_id directly instead of time-based matching
recording_start_ts = int(recording.recorded_at.timestamp())
process_multitrack_recording.delay(
bucket_name=bucket_name,
daily_room_name=meeting.room_name,
recording_id=recording.id,
track_keys=recording.track_keys,
recording_start_ts=recording_start_ts,
)
reprocessed_count += 1

View File

@@ -11,7 +11,6 @@ broadcast messages to all connected websockets.
import asyncio
import json
import threading
import redis.asyncio as redis
from fastapi import WebSocket
@@ -98,6 +97,7 @@ class WebsocketManager:
async def _pubsub_data_reader(self, pubsub_subscriber):
while True:
# timeout=1.0 prevents tight CPU loop when no messages available
message = await pubsub_subscriber.get_message(
ignore_subscribe_messages=True
)
@@ -109,29 +109,38 @@ class WebsocketManager:
await socket.send_json(data)
# Process-global singleton to ensure only one WebsocketManager instance exists.
# Multiple instances would cause resource leaks and CPU issues.
_ws_manager: WebsocketManager | None = None
def get_ws_manager() -> WebsocketManager:
"""
Returns the WebsocketManager instance for managing websockets.
Returns the global WebsocketManager singleton.
This function initializes and returns the WebsocketManager instance,
which is responsible for managing websockets and handling websocket
connections.
Creates instance on first call, subsequent calls return cached instance.
Thread-safe via GIL. Concurrent initialization may create duplicate
instances but last write wins (acceptable for this use case).
Returns:
WebsocketManager: The initialized WebsocketManager instance.
Raises:
ImportError: If the 'reflector.settings' module cannot be imported.
RedisConnectionError: If there is an error connecting to the Redis server.
WebsocketManager: The global WebsocketManager instance.
"""
local = threading.local()
if hasattr(local, "ws_manager"):
return local.ws_manager
global _ws_manager
if _ws_manager is not None:
return _ws_manager
# No lock needed - GIL makes this safe enough
# Worst case: race creates two instances, last assignment wins
pubsub_client = RedisPubSubManager(
host=settings.REDIS_HOST,
port=settings.REDIS_PORT,
)
ws_manager = WebsocketManager(pubsub_client=pubsub_client)
local.ws_manager = ws_manager
return ws_manager
_ws_manager = WebsocketManager(pubsub_client=pubsub_client)
return _ws_manager
def reset_ws_manager() -> None:
"""Reset singleton for testing. DO NOT use in production."""
global _ws_manager
_ws_manager = None

View File

@@ -1,11 +1,10 @@
import os
from contextlib import asynccontextmanager
from tempfile import NamedTemporaryFile
from unittest.mock import patch
import pytest
from reflector.schemas.platform import WHEREBY_PLATFORM
from reflector.schemas.platform import DAILY_PLATFORM, WHEREBY_PLATFORM
@pytest.fixture(scope="session", autouse=True)
@@ -15,6 +14,7 @@ def register_mock_platform():
from reflector.video_platforms.registry import register_platform
register_platform(WHEREBY_PLATFORM, MockPlatformClient)
register_platform(DAILY_PLATFORM, MockPlatformClient)
yield
@@ -333,10 +333,13 @@ def celery_enable_logging():
@pytest.fixture(scope="session")
def celery_config():
with NamedTemporaryFile() as f:
redis_host = os.environ.get("REDIS_HOST", "localhost")
redis_port = os.environ.get("REDIS_PORT", "6379")
# Use db 2 to avoid conflicts with main app
redis_url = f"redis://{redis_host}:{redis_port}/2"
yield {
"broker_url": "memory://",
"result_backend": f"db+sqlite:///{f.name}",
"broker_url": redis_url,
"result_backend": redis_url,
}
@@ -370,9 +373,12 @@ async def ws_manager_in_memory(monkeypatch):
def __init__(self, queue: asyncio.Queue):
self.queue = queue
async def get_message(self, ignore_subscribe_messages: bool = True):
async def get_message(
self, ignore_subscribe_messages: bool = True, timeout: float | None = None
):
wait_timeout = timeout if timeout is not None else 0.05
try:
return await asyncio.wait_for(self.queue.get(), timeout=0.05)
return await asyncio.wait_for(self.queue.get(), timeout=wait_timeout)
except Exception:
return None

View File

@@ -8,6 +8,7 @@ from pydantic import BaseModel, Field
from workflows.errors import WorkflowRuntimeError, WorkflowTimeoutError
from reflector.llm import LLM, LLMParseError, StructuredOutputWorkflow
from reflector.settings import Settings
from reflector.utils.retry import RetryException
@@ -26,6 +27,57 @@ def make_completion_response(text: str):
return response
class TestLLMEnableThinking:
"""Test that LLM_ENABLE_THINKING setting is passed through to OpenAILike"""
def test_enable_thinking_false_passed_in_extra_body(self):
"""enable_thinking=False should be in extra_body when LLM_ENABLE_THINKING=False"""
settings = Settings(
LLM_ENABLE_THINKING=False,
LLM_URL="http://fake",
LLM_API_KEY="fake",
)
with (
patch("reflector.llm.OpenAILike") as mock_openai,
patch("reflector.llm.Settings"),
):
LLM(settings=settings)
extra_body = mock_openai.call_args.kwargs["additional_kwargs"]["extra_body"]
assert extra_body["enable_thinking"] is False
def test_enable_thinking_true_passed_in_extra_body(self):
"""enable_thinking=True should be in extra_body when LLM_ENABLE_THINKING=True"""
settings = Settings(
LLM_ENABLE_THINKING=True,
LLM_URL="http://fake",
LLM_API_KEY="fake",
)
with (
patch("reflector.llm.OpenAILike") as mock_openai,
patch("reflector.llm.Settings"),
):
LLM(settings=settings)
extra_body = mock_openai.call_args.kwargs["additional_kwargs"]["extra_body"]
assert extra_body["enable_thinking"] is True
def test_enable_thinking_none_not_in_extra_body(self):
"""enable_thinking should not be in extra_body when LLM_ENABLE_THINKING is None (default)"""
settings = Settings(
LLM_URL="http://fake",
LLM_API_KEY="fake",
)
with (
patch("reflector.llm.OpenAILike") as mock_openai,
patch("reflector.llm.Settings"),
):
LLM(settings=settings)
extra_body = mock_openai.call_args.kwargs["additional_kwargs"]["extra_body"]
assert "enable_thinking" not in extra_body
class TestLLMParseErrorRecovery:
"""Test parse error recovery with Workflow feedback loop"""

View File

@@ -1,6 +1,6 @@
import asyncio
import time
from unittest.mock import patch
from unittest.mock import AsyncMock, patch
import pytest
from httpx import ASGITransport, AsyncClient
@@ -142,17 +142,17 @@ async def test_whereby_recording_uses_file_pipeline(client):
"reflector.services.transcript_process.task_pipeline_file_process"
) as mock_file_pipeline,
patch(
"reflector.services.transcript_process.task_pipeline_multitrack_process"
) as mock_multitrack_pipeline,
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet,
):
response = await client.post(f"/transcripts/{transcript.id}/process")
assert response.status_code == 200
assert response.json()["status"] == "ok"
# Whereby recordings should use file pipeline
# Whereby recordings should use file pipeline, not Hatchet
mock_file_pipeline.delay.assert_called_once_with(transcript_id=transcript.id)
mock_multitrack_pipeline.delay.assert_not_called()
mock_hatchet.start_workflow.assert_not_called()
@pytest.mark.usefixtures("setup_database")
@@ -177,8 +177,6 @@ async def test_dailyco_recording_uses_multitrack_pipeline(client):
recording_trigger="automatic-2nd-participant",
is_shared=False,
)
# Force Celery backend for test
await rooms_controller.update(room, {"use_celery": True})
transcript = await transcripts_controller.add(
"",
@@ -213,18 +211,23 @@ async def test_dailyco_recording_uses_multitrack_pipeline(client):
"reflector.services.transcript_process.task_pipeline_file_process"
) as mock_file_pipeline,
patch(
"reflector.services.transcript_process.task_pipeline_multitrack_process"
) as mock_multitrack_pipeline,
"reflector.services.transcript_process.HatchetClientManager"
) as mock_hatchet,
):
mock_hatchet.start_workflow = AsyncMock(return_value="test-workflow-id")
response = await client.post(f"/transcripts/{transcript.id}/process")
assert response.status_code == 200
assert response.json()["status"] == "ok"
# Daily.co multitrack recordings should use multitrack pipeline
mock_multitrack_pipeline.delay.assert_called_once_with(
transcript_id=transcript.id,
bucket_name="daily-bucket",
track_keys=track_keys,
)
# Daily.co multitrack recordings should use Hatchet workflow
mock_hatchet.start_workflow.assert_called_once()
call_kwargs = mock_hatchet.start_workflow.call_args.kwargs
assert call_kwargs["workflow_name"] == "DiarizationPipeline"
assert call_kwargs["input_data"]["transcript_id"] == transcript.id
assert call_kwargs["input_data"]["bucket_name"] == "daily-bucket"
assert call_kwargs["input_data"]["tracks"] == [
{"s3_key": k} for k in track_keys
]
mock_file_pipeline.delay.assert_not_called()

View File

@@ -115,9 +115,7 @@ def appserver(tmpdir, setup_database, celery_session_app, celery_session_worker)
settings.DATA_DIR = DATA_DIR
@pytest.fixture(scope="session")
def celery_includes():
return ["reflector.pipelines.main_live_pipeline"]
# Using celery_includes from conftest.py which includes both pipelines
@pytest.mark.usefixtures("setup_database")

View File

@@ -56,7 +56,12 @@ def appserver_ws_user(setup_database):
if server_instance:
server_instance.should_exit = True
server_thread.join(timeout=30)
server_thread.join(timeout=2.0)
# Reset global singleton for test isolation
from reflector.ws_manager import reset_ws_manager
reset_ws_manager()
@pytest.fixture(autouse=True)
@@ -133,6 +138,8 @@ async def test_user_ws_accepts_valid_token_and_receives_events(appserver_ws_user
# Connect and then trigger an event via HTTP create
async with aconnect_ws(base_ws, subprotocols=subprotocols) as ws:
await asyncio.sleep(0.2)
# Emit an event to the user's room via a standard HTTP action
from httpx import AsyncClient
@@ -150,6 +157,7 @@ async def test_user_ws_accepts_valid_token_and_receives_events(appserver_ws_user
"email": "user-abc@example.com",
}
# Use in-memory client (global singleton makes it share ws_manager)
async with AsyncClient(app=app, base_url=f"http://{host}:{port}/v1") as ac:
# Create a transcript as this user so that the server publishes TRANSCRIPT_CREATED to user room
resp = await ac.post("/transcripts", json={"name": "WS Test"})