mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
89 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| dc4b737daa | |||
|
|
0baff7abf7 | ||
|
|
962c40e2b6 | ||
|
|
3c4b9f2103 | ||
|
|
c6c035aacf | ||
| c086b91445 | |||
|
|
9a258abc02 | ||
| af86c47f1d | |||
| 5f6910e513 | |||
| 9a71af145e | |||
| eef6dc3903 | |||
|
|
1dee255fed | ||
| 5d98754305 | |||
|
|
969bd84fcc | ||
|
|
36608849ec | ||
|
|
5bf64b5a41 | ||
| 0aaa42528a | |||
| 565a62900f | |||
|
|
27016e6051 | ||
| 6ddfee0b4e | |||
|
|
47716f6e5d | ||
| 0abcebfc94 | |||
|
|
2b723da08b | ||
| 6566e04300 | |||
| 870e860517 | |||
| 396a95d5ce | |||
| 6f680b5795 | |||
| ab859d65a6 | |||
| fa049e8d06 | |||
| 2ce7479967 | |||
| b42f7cfc60 | |||
| c546e69739 | |||
|
|
3f1fe8c9bf | ||
| 5f143fe364 | |||
|
|
79f161436e | ||
|
|
5cba5d310d | ||
| 43ea9349f5 | |||
|
|
b3a8e9739d | ||
|
|
369ecdff13 | ||
| fc363bd49b | |||
|
|
962038ee3f | ||
|
|
3b85ff3bdf | ||
|
|
cde99ca271 | ||
|
|
f81fe9948a | ||
|
|
5a5b323382 | ||
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 | |||
| 52f9f533d7 | |||
| 0c3878ac3c | |||
|
|
d70beee51b | ||
| bc5b351d2b | |||
|
|
07981e8090 | ||
| 7e366f6338 | |||
| 7592679a35 | |||
| af16178f86 | |||
| 3ea7f6b7b6 | |||
|
|
009590c080 | ||
|
|
fe5d344cff | ||
|
|
86455ce573 | ||
| 2fccd81bcd | |||
| 1311714451 | |||
| b9d891d342 | |||
| 9eab952c63 | |||
|
|
6fb5cb21c2 | ||
|
|
a42ed12982 |
35
.github/workflows/db_migrations.yml
vendored
35
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/migrations/**"
|
||||
- "server/reflector/db/**"
|
||||
@@ -17,10 +19,43 @@ on:
|
||||
jobs:
|
||||
test-migrations:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: db-ubuntu-latest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
postgres:
|
||||
image: postgres:17
|
||||
env:
|
||||
POSTGRES_USER: reflector
|
||||
POSTGRES_PASSWORD: reflector
|
||||
POSTGRES_DB: reflector
|
||||
ports:
|
||||
- 5432:5432
|
||||
options: >-
|
||||
--health-cmd pg_isready -h 127.0.0.1 -p 5432
|
||||
--health-interval 10s
|
||||
--health-timeout 5s
|
||||
--health-retries 5
|
||||
|
||||
env:
|
||||
DATABASE_URL: postgresql://reflector:reflector@localhost:5432/reflector
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install PostgreSQL client
|
||||
run: sudo apt-get update && sudo apt-get install -y postgresql-client | cat
|
||||
|
||||
- name: Wait for Postgres
|
||||
run: |
|
||||
for i in {1..30}; do
|
||||
if pg_isready -h localhost -p 5432; then
|
||||
echo "Postgres is ready"
|
||||
break
|
||||
fi
|
||||
echo "Waiting for Postgres... ($i)" && sleep 1
|
||||
done
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v3
|
||||
with:
|
||||
|
||||
79
.github/workflows/deploy.yml
vendored
79
.github/workflows/deploy.yml
vendored
@@ -1,4 +1,4 @@
|
||||
name: Deploy to Amazon ECS
|
||||
name: Build container/push to container registry
|
||||
|
||||
on: [workflow_dispatch]
|
||||
|
||||
@@ -8,18 +8,30 @@ env:
|
||||
ECR_REPOSITORY: reflector
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
build:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- platform: linux/amd64
|
||||
runner: linux-amd64
|
||||
arch: amd64
|
||||
- platform: linux/arm64
|
||||
runner: linux-arm64
|
||||
arch: arm64
|
||||
|
||||
runs-on: ${{ matrix.runner }}
|
||||
|
||||
permissions:
|
||||
deployments: write
|
||||
contents: read
|
||||
|
||||
outputs:
|
||||
registry: ${{ steps.login-ecr.outputs.registry }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@0e613a0980cbf65ed5b322eb7a1e075d28913a83
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
@@ -27,21 +39,52 @@ jobs:
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
id: login-ecr
|
||||
uses: aws-actions/amazon-ecr-login@62f4f872db3836360b72999f4b87f1ff13310f3a
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: aws-actions/amazon-ecr-login@v2
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build and push
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
- name: Build and push ${{ matrix.arch }}
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: ${{ matrix.platform }}
|
||||
push: true
|
||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
tags: ${{ steps.login-ecr.outputs.registry }}/${{ env.ECR_REPOSITORY }}:latest-${{ matrix.arch }}
|
||||
cache-from: type=gha,scope=${{ matrix.arch }}
|
||||
cache-to: type=gha,mode=max,scope=${{ matrix.arch }}
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
provenance: false
|
||||
|
||||
create-manifest:
|
||||
runs-on: ubuntu-latest
|
||||
needs: [build]
|
||||
|
||||
permissions:
|
||||
deployments: write
|
||||
contents: read
|
||||
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
uses: aws-actions/amazon-ecr-login@v2
|
||||
|
||||
- name: Create and push multi-arch manifest
|
||||
run: |
|
||||
# Get the registry URL (since we can't easily access job outputs in matrix)
|
||||
ECR_REGISTRY=$(aws ecr describe-registry --query 'registryId' --output text).dkr.ecr.${{ env.AWS_REGION }}.amazonaws.com
|
||||
|
||||
docker manifest create \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-amd64 \
|
||||
$ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest-arm64
|
||||
|
||||
docker manifest push $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest
|
||||
|
||||
echo "✅ Multi-arch manifest pushed: $ECR_REGISTRY/${{ env.ECR_REPOSITORY }}:latest"
|
||||
|
||||
57
.github/workflows/docker-frontend.yml
vendored
Normal file
57
.github/workflows/docker-frontend.yml
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
name: Build and Push Frontend Docker Image
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'www/**'
|
||||
- '.github/workflows/docker-frontend.yml'
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
REGISTRY: ghcr.io
|
||||
IMAGE_NAME: ${{ github.repository }}-frontend
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Log in to GitHub Container Registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ${{ env.REGISTRY }}
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Extract metadata
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=sha,prefix={{branch}}-
|
||||
type=raw,value=latest,enable={{is_default_branch}}
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build and push Docker image
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./www
|
||||
file: ./www/Dockerfile
|
||||
push: true
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
platforms: linux/amd64,linux/arm64
|
||||
24
.github/workflows/pre-commit.yml
vendored
Normal file
24
.github/workflows/pre-commit.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: pre-commit
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/setup-python@v5
|
||||
- uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 10
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 22
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: "www/pnpm-lock.yaml"
|
||||
- name: Install dependencies
|
||||
run: cd www && pnpm install --frozen-lockfile
|
||||
- uses: pre-commit/action@v3.0.1
|
||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test Next Server
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "www/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "www/**"
|
||||
|
||||
jobs:
|
||||
test-next-server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./www
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
|
||||
- name: Setup Node.js cache
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
cache: 'pnpm'
|
||||
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install
|
||||
|
||||
- name: Run tests
|
||||
run: pnpm test
|
||||
49
.github/workflows/test_server.yml
vendored
49
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
||||
paths:
|
||||
- "server/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/**"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: pytest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
redis:
|
||||
image: redis:6
|
||||
@@ -19,29 +24,47 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v3
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
enable-cache: true
|
||||
working-directory: server
|
||||
|
||||
- name: Tests
|
||||
run: |
|
||||
cd server
|
||||
uv run -m pytest -v tests
|
||||
|
||||
docker:
|
||||
runs-on: ubuntu-latest
|
||||
docker-amd64:
|
||||
runs-on: linux-amd64
|
||||
concurrency:
|
||||
group: docker-amd64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
- name: Build and push
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Build AMD64
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
platforms: linux/amd64
|
||||
cache-from: type=gha,scope=amd64
|
||||
cache-to: type=gha,mode=max,scope=amd64
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
|
||||
docker-arm64:
|
||||
runs-on: linux-arm64
|
||||
concurrency:
|
||||
group: docker-arm64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Build ARM64
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: server
|
||||
platforms: linux/arm64
|
||||
cache-from: type=gha,scope=arm64
|
||||
cache-to: type=gha,mode=max,scope=arm64
|
||||
github-token: ${{ secrets.GHA_CACHE_TOKEN }}
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -14,3 +14,7 @@ data/
|
||||
www/REFACTOR.md
|
||||
www/reload-frontend
|
||||
server/test.sqlite
|
||||
CLAUDE.local.md
|
||||
www/.env.development
|
||||
www/.env.production
|
||||
.playwright-mcp
|
||||
|
||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
||||
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||
@@ -3,10 +3,10 @@
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: yarn-format
|
||||
name: run yarn format
|
||||
- id: format
|
||||
name: run format
|
||||
language: system
|
||||
entry: bash -c 'cd www && yarn format'
|
||||
entry: bash -c 'cd www && pnpm format'
|
||||
pass_filenames: false
|
||||
files: ^www/
|
||||
|
||||
@@ -23,8 +23,12 @@ repos:
|
||||
- id: ruff
|
||||
args:
|
||||
- --fix
|
||||
- --select
|
||||
- I,F401
|
||||
# Uses select rules from server/pyproject.toml
|
||||
files: ^server/
|
||||
- id: ruff-format
|
||||
files: ^server/
|
||||
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.28.0
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
184
CHANGELOG.md
184
CHANGELOG.md
@@ -1,5 +1,189 @@
|
||||
# Changelog
|
||||
|
||||
## [0.16.0](https://github.com/Monadical-SAS/reflector/compare/v0.15.0...v0.16.0) (2025-10-24)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* search date filter ([#710](https://github.com/Monadical-SAS/reflector/issues/710)) ([962c40e](https://github.com/Monadical-SAS/reflector/commit/962c40e2b6428ac42fd10aea926782d7a6f3f902))
|
||||
|
||||
## [0.15.0](https://github.com/Monadical-SAS/reflector/compare/v0.14.0...v0.15.0) (2025-10-20)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* api tokens ([#705](https://github.com/Monadical-SAS/reflector/issues/705)) ([9a258ab](https://github.com/Monadical-SAS/reflector/commit/9a258abc0209b0ac3799532a507ea6a9125d703a))
|
||||
|
||||
## [0.14.0](https://github.com/Monadical-SAS/reflector/compare/v0.13.1...v0.14.0) (2025-10-08)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* Add calendar event data to transcript webhook payload ([#689](https://github.com/Monadical-SAS/reflector/issues/689)) ([5f6910e](https://github.com/Monadical-SAS/reflector/commit/5f6910e5131b7f28f86c9ecdcc57fed8412ee3cd))
|
||||
* container build for www / github ([#672](https://github.com/Monadical-SAS/reflector/issues/672)) ([969bd84](https://github.com/Monadical-SAS/reflector/commit/969bd84fcc14851d1a101412a0ba115f1b7cde82))
|
||||
* docker-compose for production frontend ([#664](https://github.com/Monadical-SAS/reflector/issues/664)) ([5bf64b5](https://github.com/Monadical-SAS/reflector/commit/5bf64b5a41f64535e22849b4bb11734d4dbb4aae))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* restore feature boolean logic ([#671](https://github.com/Monadical-SAS/reflector/issues/671)) ([3660884](https://github.com/Monadical-SAS/reflector/commit/36608849ec64e953e3be456172502762e3c33df9))
|
||||
* security review ([#656](https://github.com/Monadical-SAS/reflector/issues/656)) ([5d98754](https://github.com/Monadical-SAS/reflector/commit/5d98754305c6c540dd194dda268544f6d88bfaf8))
|
||||
* update transcript list on reprocess ([#676](https://github.com/Monadical-SAS/reflector/issues/676)) ([9a71af1](https://github.com/Monadical-SAS/reflector/commit/9a71af145ee9b833078c78d0c684590ab12e9f0e))
|
||||
* upgrade nemo toolkit ([#678](https://github.com/Monadical-SAS/reflector/issues/678)) ([eef6dc3](https://github.com/Monadical-SAS/reflector/commit/eef6dc39037329b65804297786d852dddb0557f9))
|
||||
|
||||
## [0.13.1](https://github.com/Monadical-SAS/reflector/compare/v0.13.0...v0.13.1) (2025-09-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* TypeError on not all arguments converted during string formatting in logger ([#667](https://github.com/Monadical-SAS/reflector/issues/667)) ([565a629](https://github.com/Monadical-SAS/reflector/commit/565a62900f5a02fc946b68f9269a42190ed70ab6))
|
||||
|
||||
## [0.13.0](https://github.com/Monadical-SAS/reflector/compare/v0.12.1...v0.13.0) (2025-09-19)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* room form edit with enter ([#662](https://github.com/Monadical-SAS/reflector/issues/662)) ([47716f6](https://github.com/Monadical-SAS/reflector/commit/47716f6e5ddee952609d2fa0ffabdfa865286796))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* invalid cleanup call ([#660](https://github.com/Monadical-SAS/reflector/issues/660)) ([0abcebf](https://github.com/Monadical-SAS/reflector/commit/0abcebfc9491f87f605f21faa3e53996fafedd9a))
|
||||
|
||||
## [0.12.1](https://github.com/Monadical-SAS/reflector/compare/v0.12.0...v0.12.1) (2025-09-17)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* production blocked because having existing meeting with room_id null ([#657](https://github.com/Monadical-SAS/reflector/issues/657)) ([870e860](https://github.com/Monadical-SAS/reflector/commit/870e8605171a27155a9cbee215eeccb9a8d6c0a2))
|
||||
|
||||
## [0.12.0](https://github.com/Monadical-SAS/reflector/compare/v0.11.0...v0.12.0) (2025-09-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* calendar integration ([#608](https://github.com/Monadical-SAS/reflector/issues/608)) ([6f680b5](https://github.com/Monadical-SAS/reflector/commit/6f680b57954c688882c4ed49f40f161c52a00a24))
|
||||
* self-hosted gpu api ([#636](https://github.com/Monadical-SAS/reflector/issues/636)) ([ab859d6](https://github.com/Monadical-SAS/reflector/commit/ab859d65a6bded904133a163a081a651b3938d42))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* ignore player hotkeys for text inputs ([#646](https://github.com/Monadical-SAS/reflector/issues/646)) ([fa049e8](https://github.com/Monadical-SAS/reflector/commit/fa049e8d068190ce7ea015fd9fcccb8543f54a3f))
|
||||
|
||||
## [0.11.0](https://github.com/Monadical-SAS/reflector/compare/v0.10.0...v0.11.0) (2025-09-16)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* remove profanity filter that was there for conference ([#652](https://github.com/Monadical-SAS/reflector/issues/652)) ([b42f7cf](https://github.com/Monadical-SAS/reflector/commit/b42f7cfc606783afcee792590efcc78b507468ab))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* zulip and consent handler on the file pipeline ([#645](https://github.com/Monadical-SAS/reflector/issues/645)) ([5f143fe](https://github.com/Monadical-SAS/reflector/commit/5f143fe3640875dcb56c26694254a93189281d17))
|
||||
* zulip stream and topic selection in share dialog ([#644](https://github.com/Monadical-SAS/reflector/issues/644)) ([c546e69](https://github.com/Monadical-SAS/reflector/commit/c546e69739e68bb74fbc877eb62609928e5b8de6))
|
||||
|
||||
## [0.10.0](https://github.com/Monadical-SAS/reflector/compare/v0.9.0...v0.10.0) (2025-09-11)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* replace nextjs-config with environment variables ([#632](https://github.com/Monadical-SAS/reflector/issues/632)) ([369ecdf](https://github.com/Monadical-SAS/reflector/commit/369ecdff13f3862d926a9c0b87df52c9d94c4dde))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* anonymous users transcript permissions ([#621](https://github.com/Monadical-SAS/reflector/issues/621)) ([f81fe99](https://github.com/Monadical-SAS/reflector/commit/f81fe9948a9237b3e0001b2d8ca84f54d76878f9))
|
||||
* auth post ([#624](https://github.com/Monadical-SAS/reflector/issues/624)) ([cde99ca](https://github.com/Monadical-SAS/reflector/commit/cde99ca2716f84ba26798f289047732f0448742e))
|
||||
* auth post ([#626](https://github.com/Monadical-SAS/reflector/issues/626)) ([3b85ff3](https://github.com/Monadical-SAS/reflector/commit/3b85ff3bdf4fb053b103070646811bc990c0e70a))
|
||||
* auth post ([#627](https://github.com/Monadical-SAS/reflector/issues/627)) ([962038e](https://github.com/Monadical-SAS/reflector/commit/962038ee3f2a555dc3c03856be0e4409456e0996))
|
||||
* missing follow_redirects=True on modal endpoint ([#630](https://github.com/Monadical-SAS/reflector/issues/630)) ([fc363bd](https://github.com/Monadical-SAS/reflector/commit/fc363bd49b17b075e64f9186e5e0185abc325ea7))
|
||||
* sync backend and frontend token refresh logic ([#614](https://github.com/Monadical-SAS/reflector/issues/614)) ([5a5b323](https://github.com/Monadical-SAS/reflector/commit/5a5b3233820df9536da75e87ce6184a983d4713a))
|
||||
|
||||
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||
|
||||
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||
|
||||
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||
|
||||
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||
|
||||
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||
|
||||
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* docker image not loading libgomp.so.1 for torch ([#560](https://github.com/Monadical-SAS/reflector/issues/560)) ([773fccd](https://github.com/Monadical-SAS/reflector/commit/773fccd93e887c3493abc2e4a4864dddce610177))
|
||||
* include shared rooms to search ([#558](https://github.com/Monadical-SAS/reflector/issues/558)) ([499eced](https://github.com/Monadical-SAS/reflector/commit/499eced3360b84fb3a90e1c8a3b554290d21adc2))
|
||||
|
||||
## [0.7.1](https://github.com/Monadical-SAS/reflector/compare/v0.7.0...v0.7.1) (2025-08-21)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* webvtt db null expectation mismatch ([#556](https://github.com/Monadical-SAS/reflector/issues/556)) ([e67ad1a](https://github.com/Monadical-SAS/reflector/commit/e67ad1a4a2054467bfeb1e0258fbac5868aaaf21))
|
||||
|
||||
## [0.7.0](https://github.com/Monadical-SAS/reflector/compare/v0.6.1...v0.7.0) (2025-08-21)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* delete recording with transcript ([#547](https://github.com/Monadical-SAS/reflector/issues/547)) ([99cc984](https://github.com/Monadical-SAS/reflector/commit/99cc9840b3f5de01e0adfbfae93234042d706d13))
|
||||
* pipeline improvement with file processing, parakeet, silero-vad ([#540](https://github.com/Monadical-SAS/reflector/issues/540)) ([bcc29c9](https://github.com/Monadical-SAS/reflector/commit/bcc29c9e0050ae215f89d460e9d645aaf6a5e486))
|
||||
* postgresql migration and removal of sqlite in pytest ([#546](https://github.com/Monadical-SAS/reflector/issues/546)) ([cd1990f](https://github.com/Monadical-SAS/reflector/commit/cd1990f8f0fe1503ef5069512f33777a73a93d7f))
|
||||
* search backend ([#537](https://github.com/Monadical-SAS/reflector/issues/537)) ([5f9b892](https://github.com/Monadical-SAS/reflector/commit/5f9b89260c9ef7f3c921319719467df22830453f))
|
||||
* search frontend ([#551](https://github.com/Monadical-SAS/reflector/issues/551)) ([3657242](https://github.com/Monadical-SAS/reflector/commit/365724271ca6e615e3425125a69ae2b46ce39285))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* evaluation cli event wrap ([#536](https://github.com/Monadical-SAS/reflector/issues/536)) ([941c3db](https://github.com/Monadical-SAS/reflector/commit/941c3db0bdacc7b61fea412f3746cc5a7cb67836))
|
||||
* use structlog not logging ([#550](https://github.com/Monadical-SAS/reflector/issues/550)) ([27e2f81](https://github.com/Monadical-SAS/reflector/commit/27e2f81fda5232e53edc729d3e99c5ef03adbfe9))
|
||||
|
||||
## [0.6.1](https://github.com/Monadical-SAS/reflector/compare/v0.6.0...v0.6.1) (2025-08-06)
|
||||
|
||||
|
||||
|
||||
15
CLAUDE.md
15
CLAUDE.md
@@ -62,29 +62,28 @@ uv run python -m reflector.tools.process path/to/audio.wav
|
||||
**Setup:**
|
||||
```bash
|
||||
# Install dependencies
|
||||
yarn install
|
||||
pnpm install
|
||||
|
||||
# Copy configuration templates
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
```
|
||||
|
||||
**Development:**
|
||||
```bash
|
||||
# Start development server
|
||||
yarn dev
|
||||
pnpm dev
|
||||
|
||||
# Generate TypeScript API client from OpenAPI spec
|
||||
yarn openapi
|
||||
pnpm openapi
|
||||
|
||||
# Lint code
|
||||
yarn lint
|
||||
pnpm lint
|
||||
|
||||
# Format code
|
||||
yarn format
|
||||
pnpm format
|
||||
|
||||
# Build for production
|
||||
yarn build
|
||||
pnpm build
|
||||
```
|
||||
|
||||
### Docker Compose (Full Stack)
|
||||
@@ -152,7 +151,7 @@ All endpoints prefixed `/v1/`:
|
||||
|
||||
**Frontend** (`www/.env`):
|
||||
- `NEXTAUTH_URL`, `NEXTAUTH_SECRET` - Authentication configuration
|
||||
- `NEXT_PUBLIC_REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_DOMAIN_CONFIG` - Feature flags and domain settings
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
94
README.md
94
README.md
@@ -1,43 +1,60 @@
|
||||
<div align="center">
|
||||
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||
|
||||
# Reflector
|
||||
|
||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
||||
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
</div>
|
||||
|
||||
## Screenshots
|
||||
</div>
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
||||
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
||||
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
||||
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||
</a>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## What is Reflector?
|
||||
|
||||
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||
|
||||
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||
|
||||
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||
|
||||
## Background
|
||||
|
||||
The project architecture consists of three primary components:
|
||||
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||
|
||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
||||
It also uses authentik for authentication if activated.
|
||||
|
||||
## Contribution Guidelines
|
||||
|
||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
||||
|
||||
## Installation
|
||||
|
||||
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||
|
||||
### Frontend
|
||||
|
||||
Start with `cd www`.
|
||||
@@ -79,17 +98,16 @@ Start with `cd www`.
|
||||
**Installation**
|
||||
|
||||
```bash
|
||||
yarn install
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
pnpm install
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
Then, fill in the environment variables in `.env` and the configuration in `config.ts` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
Then, fill in the environment variables in `.env` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
|
||||
**Run in development mode**
|
||||
|
||||
```bash
|
||||
yarn dev
|
||||
pnpm dev
|
||||
```
|
||||
|
||||
Then (after completing server setup and starting it) open [http://localhost:3000](http://localhost:3000) to view it in the browser.
|
||||
@@ -99,7 +117,7 @@ Then (after completing server setup and starting it) open [http://localhost:3000
|
||||
To generate the TypeScript files from the openapi.json file, make sure the python server is running, then run:
|
||||
|
||||
```bash
|
||||
yarn openapi
|
||||
pnpm openapi
|
||||
```
|
||||
|
||||
### Backend
|
||||
@@ -149,3 +167,41 @@ You can manually process an audio file by calling the process tool:
|
||||
```bash
|
||||
uv run python -m reflector.tools.process path/to/audio.wav
|
||||
```
|
||||
|
||||
## Build-time env variables
|
||||
|
||||
Next.js projects are more used to NEXT_PUBLIC_ prefixed buildtime vars. We don't have those for the reason we need to serve a ccustomizable prebuild docker container.
|
||||
|
||||
Instead, all the variables are runtime. Variables needed to the frontend are served to the frontend app at initial render.
|
||||
|
||||
It also means there's no static prebuild and no static files to serve for js/html.
|
||||
|
||||
## Feature Flags
|
||||
|
||||
Reflector uses environment variable-based feature flags to control application functionality. These flags allow you to enable or disable features without code changes.
|
||||
|
||||
### Available Feature Flags
|
||||
|
||||
| Feature Flag | Environment Variable |
|
||||
|-------------|---------------------|
|
||||
| `requireLogin` | `FEATURE_REQUIRE_LOGIN` |
|
||||
| `privacy` | `FEATURE_PRIVACY` |
|
||||
| `browse` | `FEATURE_BROWSE` |
|
||||
| `sendToZulip` | `FEATURE_SEND_TO_ZULIP` |
|
||||
| `rooms` | `FEATURE_ROOMS` |
|
||||
|
||||
### Setting Feature Flags
|
||||
|
||||
Feature flags are controlled via environment variables using the pattern `FEATURE_{FEATURE_NAME}` where `{FEATURE_NAME}` is the SCREAMING_SNAKE_CASE version of the feature name.
|
||||
|
||||
**Examples:**
|
||||
```bash
|
||||
# Enable user authentication requirement
|
||||
FEATURE_REQUIRE_LOGIN=true
|
||||
|
||||
# Disable browse functionality
|
||||
FEATURE_BROWSE=false
|
||||
|
||||
# Enable Zulip integration
|
||||
FEATURE_SEND_TO_ZULIP=true
|
||||
```
|
||||
|
||||
39
docker-compose.prod.yml
Normal file
39
docker-compose.prod.yml
Normal file
@@ -0,0 +1,39 @@
|
||||
# Production Docker Compose configuration for Frontend
|
||||
# Usage: docker compose -f docker-compose.prod.yml up -d
|
||||
|
||||
services:
|
||||
web:
|
||||
build:
|
||||
context: ./www
|
||||
dockerfile: Dockerfile
|
||||
image: reflector-frontend:latest
|
||||
environment:
|
||||
- KV_URL=${KV_URL:-redis://redis:6379}
|
||||
- SITE_URL=${SITE_URL}
|
||||
- API_URL=${API_URL}
|
||||
- WEBSOCKET_URL=${WEBSOCKET_URL}
|
||||
- NEXTAUTH_URL=${NEXTAUTH_URL:-http://localhost:3000}
|
||||
- NEXTAUTH_SECRET=${NEXTAUTH_SECRET:-changeme-in-production}
|
||||
- AUTHENTIK_ISSUER=${AUTHENTIK_ISSUER}
|
||||
- AUTHENTIK_CLIENT_ID=${AUTHENTIK_CLIENT_ID}
|
||||
- AUTHENTIK_CLIENT_SECRET=${AUTHENTIK_CLIENT_SECRET}
|
||||
- AUTHENTIK_REFRESH_TOKEN_URL=${AUTHENTIK_REFRESH_TOKEN_URL}
|
||||
- SENTRY_DSN=${SENTRY_DSN}
|
||||
- SENTRY_IGNORE_API_RESOLUTION_ERROR=${SENTRY_IGNORE_API_RESOLUTION_ERROR:-1}
|
||||
depends_on:
|
||||
- redis
|
||||
restart: unless-stopped
|
||||
|
||||
redis:
|
||||
image: redis:7.2-alpine
|
||||
restart: unless-stopped
|
||||
healthcheck:
|
||||
test: ["CMD", "redis-cli", "ping"]
|
||||
interval: 30s
|
||||
timeout: 3s
|
||||
retries: 3
|
||||
volumes:
|
||||
- redis_data:/data
|
||||
|
||||
volumes:
|
||||
redis_data:
|
||||
@@ -6,6 +6,7 @@ services:
|
||||
- 1250:1250
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -16,6 +17,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -26,6 +28,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -36,16 +39,19 @@ services:
|
||||
ports:
|
||||
- 6379:6379
|
||||
web:
|
||||
image: node:18
|
||||
image: node:22-alpine
|
||||
ports:
|
||||
- "3000:3000"
|
||||
command: sh -c "yarn install && yarn dev"
|
||||
command: sh -c "corepack enable && pnpm install && pnpm dev"
|
||||
restart: unless-stopped
|
||||
working_dir: /app
|
||||
volumes:
|
||||
- ./www:/app/
|
||||
- /app/node_modules
|
||||
env_file:
|
||||
- ./www/.env.local
|
||||
environment:
|
||||
- NODE_ENV=development
|
||||
|
||||
postgres:
|
||||
image: postgres:17
|
||||
33
gpu/modal_deployments/.gitignore
vendored
Normal file
33
gpu/modal_deployments/.gitignore
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
.env.*
|
||||
*.env
|
||||
*.secret
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Modal local state (if any)
|
||||
modal_mounts/
|
||||
.modal_cache/
|
||||
171
gpu/modal_deployments/README.md
Normal file
171
gpu/modal_deployments/README.md
Normal file
@@ -0,0 +1,171 @@
|
||||
# Reflector GPU implementation - Transcription and LLM
|
||||
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_diarizer.py` - Diarization API
|
||||
- `reflector_transcriber.py` - Transcription API (Whisper)
|
||||
- `reflector_transcriber_parakeet.py` - Transcription API (NVIDIA Parakeet)
|
||||
- `reflector_translator.py` - Translation API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
Create a modal secret, and name it `reflector-gpu`.
|
||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||
|
||||
The deployment is done using [Modal.com](https://modal.com) service.
|
||||
|
||||
```
|
||||
$ modal deploy reflector_transcriber.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||
|
||||
$ modal deploy reflector_transcriber_parakeet.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-parakeet-web.modal.run
|
||||
|
||||
$ modal deploy reflector_llm.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||
```
|
||||
|
||||
Then in your reflector api configuration `.env`, you can set these keys:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
||||
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
TRANSLATION_BACKEND=modal
|
||||
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
||||
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
```
|
||||
|
||||
## API
|
||||
|
||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||
|
||||
```
|
||||
Authorization: bearer <REFLECTOR_APIKEY>
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
`POST /llm`
|
||||
|
||||
**request**
|
||||
```
|
||||
{
|
||||
"prompt": "xxx"
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx completed"
|
||||
}
|
||||
```
|
||||
|
||||
### Transcription
|
||||
|
||||
#### Parakeet Transcriber (`reflector_transcriber_parakeet.py`)
|
||||
|
||||
NVIDIA Parakeet is a state-of-the-art ASR model optimized for real-time transcription with superior word-level timestamps.
|
||||
|
||||
**GPU Configuration:**
|
||||
- **A10G GPU** - Used for `/v1/audio/transcriptions` endpoint (small files, live transcription)
|
||||
- Higher concurrency (max_inputs=10)
|
||||
- Optimized for multiple small audio files
|
||||
- Supports batch processing for efficiency
|
||||
|
||||
- **L40S GPU** - Used for `/v1/audio/transcriptions-from-url` endpoint (large files)
|
||||
- Lower concurrency but more powerful processing
|
||||
- Optimized for single large audio files
|
||||
- VAD-based chunking for long-form audio
|
||||
|
||||
##### `/v1/audio/transcriptions` - Small file transcription
|
||||
|
||||
**request** (multipart/form-data)
|
||||
- `file` or `files[]` - audio file(s) to transcribe
|
||||
- `model` - model name (default: `nvidia/parakeet-tdt-0.6b-v2`)
|
||||
- `language` - language code (default: `en`)
|
||||
- `batch` - whether to use batch processing for multiple files (default: `true`)
|
||||
|
||||
**response**
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||
{"word": "world", "start": 0.5, "end": 1.0}
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
For multiple files with batch=true:
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{
|
||||
"filename": "audio1.mp3",
|
||||
"text": "transcribed text",
|
||||
"words": [...]
|
||||
},
|
||||
{
|
||||
"filename": "audio2.mp3",
|
||||
"text": "transcribed text",
|
||||
"words": [...]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
##### `/v1/audio/transcriptions-from-url` - Large file transcription
|
||||
|
||||
**request** (application/json)
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text from large file",
|
||||
"words": [
|
||||
{"word": "hello", "start": 0.0, "end": 0.5},
|
||||
{"word": "world", "start": 0.5, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**Supported file types:** mp3, mp4, mpeg, mpga, m4a, wav, webm
|
||||
|
||||
#### Whisper Transcriber (`reflector_transcriber.py`)
|
||||
|
||||
`POST /transcribe`
|
||||
|
||||
**request** (multipart/form-data)
|
||||
|
||||
- `file` - audio file
|
||||
- `language` - language code (e.g. `en`)
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx",
|
||||
"words": [
|
||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
253
gpu/modal_deployments/reflector_diarizer.py
Normal file
@@ -0,0 +1,253 @@
|
||||
"""
|
||||
Reflector GPU backend - diarizer
|
||||
===================================
|
||||
"""
|
||||
|
||||
import os
|
||||
import uuid
|
||||
from typing import Mapping, NewType
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||
MODEL_DIR = "/root/diarization_models"
|
||||
UPLOADS_PATH = "/uploads"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
DiarizerUniqFilename = NewType("DiarizerUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App(name="reflector-diarizer")
|
||||
|
||||
# Volume for temporary file uploads
|
||||
upload_volume = modal.Volume.from_name("diarizer-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[DiarizerUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
print(f"Checking audio file at: {audio_file_url}")
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
print(f"Downloading audio file from: {audio_file_url}")
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
|
||||
if response.status_code != 200:
|
||||
print(f"Download failed with status {response.status_code}: {response.text}")
|
||||
raise HTTPException(
|
||||
status_code=response.status_code,
|
||||
detail=f"Failed to download audio file: {response.status_code}",
|
||||
)
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = DiarizerUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
print(f"Writing file to: {file_path} (size: {len(response.content)} bytes)")
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
print(f"File saved as: {unique_filename}")
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
def download_pyannote_audio():
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
|
||||
|
||||
diarizer_image = (
|
||||
modal.Image.debian_slim(python_version="3.10.8")
|
||||
.pip_install(
|
||||
"pyannote.audio==3.1.0",
|
||||
"requests",
|
||||
"onnx",
|
||||
"torchaudio",
|
||||
"onnxruntime-gpu",
|
||||
"torch==2.0.0",
|
||||
"transformers==4.34.0",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"numpy",
|
||||
"huggingface_hub",
|
||||
"hf-transfer",
|
||||
)
|
||||
.run_function(
|
||||
download_pyannote_audio,
|
||||
secrets=[modal.Secret.from_name("hf_token")],
|
||||
)
|
||||
.run_function(migrate_cache_llm)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A100",
|
||||
timeout=60 * 30,
|
||||
image=diarizer_image,
|
||||
volumes={UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
secrets=[
|
||||
modal.Secret.from_name("hf_token"),
|
||||
],
|
||||
)
|
||||
@modal.concurrent(max_inputs=1)
|
||||
class Diarizer:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import torch
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
print(f"Using device: {self.device}")
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
|
||||
@modal.method()
|
||||
def diarize(self, filename: str, timestamp: float = 0.0):
|
||||
import torchaudio
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
print(f"Diarizing audio from: {file_path}")
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
diarization = self.diarization_pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:]),
|
||||
}
|
||||
)
|
||||
print("Diarization complete")
|
||||
return {"diarization": words}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
scaledown_window=60 * 3,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={UPLOADS_PATH: upload_volume},
|
||||
image=diarizer_image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
diarizerstub = Diarizer()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/diarize", dependencies=[Depends(apikey_auth)])
|
||||
def diarize(audio_file_url: str, timestamp: float = 0.0) -> DiarizationResponse:
|
||||
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
|
||||
try:
|
||||
func = diarizerstub.diarize.spawn(
|
||||
filename=unique_filename, timestamp=timestamp
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {unique_filename}: {e}")
|
||||
|
||||
return app
|
||||
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
@@ -0,0 +1,608 @@
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
MINUTES = 60 # seconds
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/models"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
|
||||
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
model_cache.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||
|
||||
model_cache.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
"fastapi==0.115.12",
|
||||
"requests",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
)
|
||||
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||
|
||||
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberWhisperLive:
|
||||
"""Live transcriber class for small audio segments (A10G).
|
||||
|
||||
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||
"""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
print(f"Model is on device: {self.device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe a single uploaded audio file by filename."""
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start), 2),
|
||||
"end": round(float(w.end), 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=15 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class TranscriberWhisperFile:
|
||||
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLERATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield TimeSegment(
|
||||
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||
)
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
upload_volume.reload()
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
|
||||
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||
merged_batches: list[TimeSegment] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for segment in vad_segments(audio_array):
|
||||
seg_start, seg_end = segment.start, segment.end
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
|
||||
for segment in merged_batches:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
s_idx = int(start_time * SAMPLERATE)
|
||||
e_idx = int(end_time * SAMPLERATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = pad_audio(segment, SAMPLERATE)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: dict) -> str:
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
transcriber_live = TranscriberWhisperLive()
|
||||
transcriber_file = TranscriberWhisperFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(dict):
|
||||
pass
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_filenames: list[str] = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
if batch and len(upload_files) > 1:
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
language=language,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
os.remove(file_path)
|
||||
except Exception:
|
||||
pass
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
658
gpu/modal_deployments/reflector_transcriber_parakeet.py
Normal file
@@ -0,0 +1,658 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/cache"
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
app = modal.App("reflector-transcriber-parakeet")
|
||||
|
||||
# Volume for caching model weights
|
||||
model_cache = modal.Volume.from_name("parakeet-model-cache", create_if_missing=True)
|
||||
# Volume for temporary file uploads
|
||||
upload_volume = modal.Volume.from_name("parakeet-uploads", create_if_missing=True)
|
||||
|
||||
image = (
|
||||
modal.Image.from_registry(
|
||||
"nvidia/cuda:12.8.0-cudnn-devel-ubuntu22.04", add_python="3.12"
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"HF_HOME": "/cache",
|
||||
"DEBIAN_FRONTEND": "noninteractive",
|
||||
"CXX": "g++",
|
||||
"CC": "g++",
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"hf_transfer==0.1.9",
|
||||
"huggingface_hub[hf-xet]==0.31.2",
|
||||
"nemo_toolkit[asr]==2.5.0",
|
||||
"cuda-python==12.8.0",
|
||||
"fastapi==0.115.12",
|
||||
"numpy<2",
|
||||
"librosa==0.10.1",
|
||||
"requests",
|
||||
"silero-vad==5.1.0",
|
||||
"torch",
|
||||
)
|
||||
.entrypoint([]) # silence chatty logs by container on start
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[ParakeetUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = ParakeetUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5 seconds of silence if audio is less than 500ms.
|
||||
|
||||
This is a workaround for a Parakeet bug where very short audio (<500ms) causes:
|
||||
ValueError: `char_offsets`: [] and `processed_tokens`: [157, 834, 834, 841]
|
||||
have to be of the same length
|
||||
|
||||
See: https://github.com/NVIDIA/NeMo/issues/8451
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < 0.5:
|
||||
silence_samples = int(sample_rate * 0.5)
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=600,
|
||||
scaledown_window=300,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberParakeetLive:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import nemo.collections.asr as nemo_asr
|
||||
|
||||
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||
device = next(self.model.parameters()).device
|
||||
print(f"Model is on device: {device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
):
|
||||
import librosa
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
padded_audio = pad_audio(audio_array, sample_rate)
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||
|
||||
text = output.text.strip()
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
# XXX the space added here is to match the output of whisper
|
||||
# whisper add space to each words, while parakeet don't
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
):
|
||||
import librosa
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
audio_arrays = []
|
||||
|
||||
# Load all audio files with padding
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
padded_audio = pad_audio(audio_array, sample_rate)
|
||||
audio_arrays.append(padded_audio)
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
outputs = self.model.transcribe(audio_arrays, timestamps=True)
|
||||
|
||||
# Process results for each file
|
||||
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||
text = output.text.strip()
|
||||
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
# L40S class for file transcription (bigger files)
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=900,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
enable_memory_snapshot=True,
|
||||
experimental_options={"enable_gpu_snapshot": True},
|
||||
)
|
||||
class TranscriberParakeetFile:
|
||||
@modal.enter(snap=True)
|
||||
def enter(self):
|
||||
import nemo.collections.asr as nemo_asr
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
logging.getLogger("nemo_logger").setLevel(logging.CRITICAL)
|
||||
|
||||
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name=MODEL_NAME)
|
||||
device = next(self.model.parameters()).device
|
||||
print(f"Model is on device: {device}")
|
||||
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
print("Silero VAD initialized")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
timestamp_offset: float = 0.0,
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def load_and_convert_audio(file_path):
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
return audio_array
|
||||
|
||||
def vad_segment_generator(
|
||||
audio_array,
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments using VAD with start/end sample indices"""
|
||||
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||
window_size = VAD_CONFIG["window_size"]
|
||||
start = None
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
|
||||
speech_dict = vad_iterator(chunk)
|
||||
if not speech_dict:
|
||||
continue
|
||||
|
||||
if "start" in speech_dict:
|
||||
start = speech_dict["start"]
|
||||
continue
|
||||
|
||||
if "end" in speech_dict and start is not None:
|
||||
end = speech_dict["end"]
|
||||
start_time = start / float(SAMPLERATE)
|
||||
end_time = end / float(SAMPLERATE)
|
||||
|
||||
yield TimeSegment(start_time, end_time)
|
||||
start = None
|
||||
|
||||
vad_iterator.reset_states()
|
||||
|
||||
def batch_speech_segments(
|
||||
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""
|
||||
Input segments:
|
||||
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||
|
||||
↓ (max_duration=10)
|
||||
|
||||
Output batches:
|
||||
[0-8] [10-19] [20-22]
|
||||
|
||||
Note: silences are kept for better transcription, previous implementation was
|
||||
passing segments separatly, but the output was less accurate.
|
||||
"""
|
||||
batch_start_time = None
|
||||
batch_end_time = None
|
||||
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
total_duration = end_time - batch_start_time
|
||||
|
||||
if total_duration <= max_duration:
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
return
|
||||
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
|
||||
def batch_segment_to_audio_segment(
|
||||
segments: Generator[TimeSegment, None, None],
|
||||
audio_array,
|
||||
) -> Generator[AudioSegment, None, None]:
|
||||
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||
|
||||
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||
segments, which are corrected by enforce_word_timing_constraints.
|
||||
"""
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
start_sample = int(start_time * SAMPLERATE)
|
||||
end_sample = int(end_time * SAMPLERATE)
|
||||
audio_segment = audio_array[start_sample:end_sample]
|
||||
|
||||
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||
|
||||
yield AudioSegment(start_time, end_time, padded_segment)
|
||||
|
||||
def transcribe_batch(model, audio_segments: list) -> list:
|
||||
with NoStdStreams():
|
||||
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||
return outputs
|
||||
|
||||
def enforce_word_timing_constraints(
|
||||
words: list[WordTiming],
|
||||
) -> list[WordTiming]:
|
||||
"""Enforce that word end times don't exceed the start time of the next word.
|
||||
|
||||
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||
transcription accuracy, word timings from different segments may overlap.
|
||||
This function ensures there are no overlaps by adjusting end times.
|
||||
"""
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
|
||||
enforced_words = []
|
||||
for i, word in enumerate(words):
|
||||
enforced_word = word.copy()
|
||||
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if enforced_word["end"] > next_start:
|
||||
enforced_word["end"] = next_start
|
||||
|
||||
enforced_words.append(enforced_word)
|
||||
|
||||
return enforced_words
|
||||
|
||||
def emit_results(
|
||||
results: list,
|
||||
segments_info: list[AudioSegment],
|
||||
) -> Generator[TranscriptResult, None, None]:
|
||||
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||
start_time, end_time = segment.start, segment.end
|
||||
text = output.text.strip()
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(
|
||||
word_info["start"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
yield TranscriptResult(text, words)
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array = load_and_convert_audio(file_path)
|
||||
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||
|
||||
all_text_parts: list[str] = []
|
||||
all_words: list[WordTiming] = []
|
||||
|
||||
raw_segments = vad_segment_generator(audio_array)
|
||||
speech_segments = batch_speech_segments(
|
||||
raw_segments,
|
||||
VAD_CONFIG["batch_max_duration"],
|
||||
)
|
||||
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||
|
||||
for batch in audio_segments:
|
||||
audio_segment = batch.audio
|
||||
results = transcribe_batch(self.model, [audio_segment])
|
||||
|
||||
for result in emit_results(
|
||||
results,
|
||||
[batch],
|
||||
):
|
||||
if not result.text:
|
||||
continue
|
||||
all_text_parts.append(result.text)
|
||||
all_words.extend(result.words)
|
||||
|
||||
all_words = enforce_word_timing_constraints(all_words)
|
||||
|
||||
combined_text = " ".join(all_text_parts)
|
||||
return {"text": combined_text, "words": all_words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from pydantic import BaseModel
|
||||
|
||||
transcriber_live = TranscriberParakeetLive()
|
||||
transcriber_file = TranscriberParakeetFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
# Parakeet only supports English
|
||||
if language != "en":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||
)
|
||||
# Handle both single file and multiple files
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
# Upload files to volume
|
||||
uploaded_filenames = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
assert audio_suffix in SUPPORTED_FILE_EXTENSIONS
|
||||
|
||||
# Generate unique filename
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
print(f"Writing file to: {file_path}")
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
# Use A10G live transcriber for per-file transcription
|
||||
if batch and len(upload_files) > 1:
|
||||
# Use batch transcription
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
# Per-file transcription
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
except Exception as e:
|
||||
print(f"Error deleting {filename}: {e}")
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en", description="Language code (only 'en' supported)"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
# Parakeet only supports English
|
||||
if language != "en":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Parakeet model only supports English. Got language='{language}'",
|
||||
)
|
||||
unique_filename, audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
print(f"Deleting file: {file_path}")
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception as e:
|
||||
print(f"Error cleaning up {unique_filename}: {e}")
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
2
gpu/self_hosted/.env.example
Normal file
2
gpu/self_hosted/.env.example
Normal file
@@ -0,0 +1,2 @@
|
||||
REFLECTOR_GPU_APIKEY=
|
||||
HF_TOKEN=
|
||||
38
gpu/self_hosted/.gitignore
vendored
Normal file
38
gpu/self_hosted/.gitignore
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
cache/
|
||||
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
*.env
|
||||
*.secret
|
||||
HF_TOKEN
|
||||
REFLECTOR_GPU_APIKEY
|
||||
|
||||
# Virtual env / uv
|
||||
.venv/
|
||||
venv/
|
||||
ENV/
|
||||
uv/
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
46
gpu/self_hosted/Dockerfile
Normal file
46
gpu/self_hosted/Dockerfile
Normal file
@@ -0,0 +1,46 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
WORKDIR /tmp
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
ffmpeg \
|
||||
curl \
|
||||
ca-certificates \
|
||||
gnupg \
|
||||
wget \
|
||||
&& apt-get clean
|
||||
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
|
||||
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
|
||||
RUN dpkg -i /cuda-keyring.deb \
|
||||
&& rm /cuda-keyring.deb \
|
||||
&& apt-get update \
|
||||
&& apt-get install -y --no-install-recommends \
|
||||
cuda-cudart-12-6 \
|
||||
libcublas-12-6 \
|
||||
libcudnn9-cuda-12 \
|
||||
libcudnn9-dev-cuda-12 \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
||||
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
||||
ENV PATH="/root/.local/bin/:$PATH"
|
||||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
|
||||
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
|
||||
|
||||
COPY ./app /app/app
|
||||
COPY ./main.py /app/
|
||||
COPY ./runserver.sh /app/
|
||||
|
||||
EXPOSE 8000
|
||||
|
||||
CMD ["sh", "/app/runserver.sh"]
|
||||
|
||||
|
||||
73
gpu/self_hosted/README.md
Normal file
73
gpu/self_hosted/README.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Self-hosted Model API
|
||||
|
||||
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
|
||||
|
||||
Environment variables
|
||||
|
||||
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
|
||||
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
|
||||
|
||||
Requirements
|
||||
|
||||
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
|
||||
- Python 3.12+
|
||||
- NVIDIA GPU optional. If available, it will be used automatically
|
||||
|
||||
Local run
|
||||
Set env vars in self_hosted/.env file
|
||||
uv sync
|
||||
|
||||
uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
Authentication
|
||||
|
||||
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
|
||||
|
||||
Endpoints
|
||||
|
||||
- POST /v1/audio/transcriptions
|
||||
|
||||
- multipart/form-data
|
||||
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
|
||||
- response: single { text, words, filename } or { results: [ ... ] }
|
||||
|
||||
- POST /v1/audio/transcriptions-from-url
|
||||
|
||||
- application/json
|
||||
- body: { audio_file_url, language, timestamp_offset }
|
||||
- response: { text, words }
|
||||
|
||||
- POST /translate
|
||||
|
||||
- text: query parameter
|
||||
- body (application/json): { source_language, target_language }
|
||||
- response: { text: { <src>: original, <tgt>: translated } }
|
||||
|
||||
- POST /diarize
|
||||
- query parameters: audio_file_url, timestamp (optional)
|
||||
- requires HF_TOKEN to be set (for pyannote)
|
||||
- response: { diarization: [ { start, end, speaker } ] }
|
||||
|
||||
OpenAPI docs
|
||||
|
||||
- Visit /docs when the server is running
|
||||
|
||||
Docker
|
||||
|
||||
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
|
||||
|
||||
Conformance tests
|
||||
|
||||
# From this directory
|
||||
|
||||
TRANSCRIPT_URL=http://localhost:8000 \
|
||||
TRANSCRIPT_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
|
||||
|
||||
TRANSLATION_URL=http://localhost:8000 \
|
||||
TRANSLATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
|
||||
|
||||
DIARIZATION_URL=http://localhost:8000 \
|
||||
DIARIZATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py
|
||||
19
gpu/self_hosted/app/auth.py
Normal file
19
gpu/self_hosted/app/auth.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
from fastapi import Depends, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
|
||||
if not required_key:
|
||||
return
|
||||
if apikey == required_key:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
12
gpu/self_hosted/app/config.py
Normal file
12
gpu/self_hosted/app/config.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from pathlib import Path
|
||||
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLE_RATE = 16000
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
# App-level paths
|
||||
UPLOADS_PATH = Path("/tmp/whisper-uploads")
|
||||
30
gpu/self_hosted/app/factory.py
Normal file
30
gpu/self_hosted/app/factory.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
from fastapi import FastAPI
|
||||
|
||||
from .routers.diarization import router as diarization_router
|
||||
from .routers.transcription import router as transcription_router
|
||||
from .routers.translation import router as translation_router
|
||||
from .services.transcriber import WhisperService
|
||||
from .services.diarizer import PyannoteDiarizationService
|
||||
from .utils import ensure_dirs
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
ensure_dirs()
|
||||
whisper_service = WhisperService()
|
||||
whisper_service.load()
|
||||
app.state.whisper = whisper_service
|
||||
diarization_service = PyannoteDiarizationService()
|
||||
diarization_service.load()
|
||||
app.state.diarizer = diarization_service
|
||||
yield
|
||||
|
||||
|
||||
def create_app() -> FastAPI:
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.include_router(transcription_router)
|
||||
app.include_router(translation_router)
|
||||
app.include_router(diarization_router)
|
||||
return app
|
||||
30
gpu/self_hosted/app/routers/diarization.py
Normal file
30
gpu/self_hosted/app/routers/diarization.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from typing import List
|
||||
|
||||
from fastapi import APIRouter, Depends, Request
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.diarizer import PyannoteDiarizationService
|
||||
from ..utils import download_audio_file
|
||||
|
||||
router = APIRouter(tags=["diarization"])
|
||||
|
||||
|
||||
class DiarizationSegment(BaseModel):
|
||||
start: float
|
||||
end: float
|
||||
speaker: int
|
||||
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
diarization: List[DiarizationSegment]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
|
||||
)
|
||||
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
diarizer: PyannoteDiarizationService = request.app.state.diarizer
|
||||
return diarizer.diarize_file(file_path, timestamp=timestamp)
|
||||
109
gpu/self_hosted/app/routers/transcription.py
Normal file
109
gpu/self_hosted/app/routers/transcription.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import uuid
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
|
||||
from pydantic import BaseModel
|
||||
from pathlib import Path
|
||||
from ..auth import apikey_auth
|
||||
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
from ..services.transcriber import MODEL_NAME
|
||||
from ..utils import cleanup_uploaded_files, download_audio_file
|
||||
|
||||
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
|
||||
|
||||
|
||||
class WordTiming(BaseModel):
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class TranscriptResult(BaseModel):
|
||||
text: str
|
||||
words: list[WordTiming]
|
||||
filename: Optional[str] = None
|
||||
|
||||
|
||||
class TranscriptBatchResponse(BaseModel):
|
||||
results: list[TranscriptResult]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=Union[TranscriptResult, TranscriptBatchResponse],
|
||||
)
|
||||
def transcribe(
|
||||
request: Request,
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_paths: list[Path] = []
|
||||
with cleanup_uploaded_files(uploaded_paths):
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1].lower()
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = UPLOADS_PATH / unique_filename
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_paths.append(file_path)
|
||||
|
||||
if batch and len(upload_files) > 1:
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions-from-url",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranscriptResult,
|
||||
)
|
||||
def transcribe_from_url(
|
||||
request: Request,
|
||||
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
result = service.transcribe_vad_url_segment(
|
||||
file_path=file_path, timestamp_offset=timestamp_offset, language=language
|
||||
)
|
||||
return result
|
||||
28
gpu/self_hosted/app/routers/translation.py
Normal file
28
gpu/self_hosted/app/routers/translation.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from typing import Dict
|
||||
|
||||
from fastapi import APIRouter, Body, Depends
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.translator import TextTranslatorService
|
||||
|
||||
router = APIRouter(tags=["translation"])
|
||||
|
||||
translator = TextTranslatorService()
|
||||
|
||||
|
||||
class TranslationResponse(BaseModel):
|
||||
text: Dict[str, str]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/translate",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranslationResponse,
|
||||
)
|
||||
def translate(
|
||||
text: str,
|
||||
source_language: str = Body("en"),
|
||||
target_language: str = Body("fr"),
|
||||
):
|
||||
return translator.translate(text, source_language, target_language)
|
||||
42
gpu/self_hosted/app/services/diarizer.py
Normal file
42
gpu/self_hosted/app/services/diarizer.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
import threading
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
|
||||
class PyannoteDiarizationService:
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._device = "cpu"
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self._pipeline = Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.1",
|
||||
use_auth_token=os.environ.get("HF_TOKEN"),
|
||||
)
|
||||
self._pipeline.to(torch.device(self._device))
|
||||
|
||||
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load()
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
with self._lock:
|
||||
diarization = self._pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:])
|
||||
if speaker and speaker[-2:].isdigit()
|
||||
else 0,
|
||||
}
|
||||
)
|
||||
return {"diarization": words}
|
||||
208
gpu/self_hosted/app/services/transcriber.py
Normal file
208
gpu/self_hosted/app/services/transcriber.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import threading
|
||||
from typing import Generator
|
||||
|
||||
import faster_whisper
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch
|
||||
from fastapi import HTTPException
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from ..config import SAMPLE_RATE, VAD_CONFIG
|
||||
|
||||
# Whisper configuration (service-local defaults)
|
||||
MODEL_NAME = "large-v2"
|
||||
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
|
||||
MODEL_COMPUTE_TYPE = None
|
||||
MODEL_NUM_WORKERS = 1
|
||||
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
|
||||
from ..utils import NoStdStreams
|
||||
|
||||
|
||||
class WhisperService:
|
||||
def __init__(self):
|
||||
self.model = None
|
||||
self.device = "cpu"
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
compute_type = MODEL_COMPUTE_TYPE or (
|
||||
"float16" if self.device == "cuda" else "int8"
|
||||
)
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=compute_type,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
)
|
||||
|
||||
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
enforced: list[dict] = []
|
||||
for i, word in enumerate(words):
|
||||
current = dict(word)
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if current["end"] > next_start:
|
||||
current["end"] = next_start
|
||||
enforced.append(current)
|
||||
return enforced
|
||||
|
||||
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
|
||||
input_for_model: str | "object" = file_path
|
||||
try:
|
||||
audio_array, _sample_rate = librosa.load(
|
||||
file_path, sr=SAMPLE_RATE, mono=True
|
||||
)
|
||||
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
|
||||
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
input_for_model,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
words = self.enforce_word_timing_constraints(words)
|
||||
return {"text": text, "words": words}
|
||||
|
||||
def transcribe_vad_url_segment(
|
||||
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
) -> dict:
|
||||
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
|
||||
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
|
||||
cmd = [
|
||||
ffmpeg_bin,
|
||||
"-nostdin",
|
||||
"-threads",
|
||||
"1",
|
||||
"-i",
|
||||
input_path,
|
||||
"-f",
|
||||
"f32le",
|
||||
"-acodec",
|
||||
"pcm_f32le",
|
||||
"-ac",
|
||||
"1",
|
||||
"-ar",
|
||||
str(sample_rate),
|
||||
"pipe:1",
|
||||
]
|
||||
try:
|
||||
proc = subprocess.run(
|
||||
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
|
||||
audio = np.frombuffer(proc.stdout, dtype=np.float32)
|
||||
return audio
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLE_RATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[tuple[float, float], None, None]:
|
||||
vad_model = load_silero_vad(onnx=False)
|
||||
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
|
||||
|
||||
merged_batches: list[tuple[float, float]] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for seg_start, seg_end in vad_segments(audio_array):
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
for start_time, end_time in merged_batches:
|
||||
s_idx = int(start_time * SAMPLE_RATE)
|
||||
e_idx = int(end_time * SAMPLE_RATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = self.pad_audio(segment, SAMPLE_RATE)
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
all_words = self.enforce_word_timing_constraints(all_words)
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
44
gpu/self_hosted/app/services/translator.py
Normal file
44
gpu/self_hosted/app/services/translator.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import threading
|
||||
|
||||
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
||||
|
||||
|
||||
class TextTranslatorService:
|
||||
"""Simple text-to-text translator using HuggingFace MarianMT models.
|
||||
|
||||
This mirrors the modal translator API shape but uses text translation only.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self, source_language: str = "en", target_language: str = "fr"):
|
||||
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
|
||||
model_name = self._resolve_model_name(source_language, target_language)
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
model = MarianMTModel.from_pretrained(model_name)
|
||||
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
||||
|
||||
def _resolve_model_name(self, src: str, tgt: str) -> str:
|
||||
# Minimal mapping; extend as needed
|
||||
pair = (src.lower(), tgt.lower())
|
||||
mapping = {
|
||||
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
|
||||
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
|
||||
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
|
||||
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
|
||||
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
|
||||
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
|
||||
}
|
||||
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
|
||||
|
||||
def translate(self, text: str, source_language: str, target_language: str) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load(source_language, target_language)
|
||||
with self._lock:
|
||||
results = self._pipeline(
|
||||
text, src_lang=source_language, tgt_lang=target_language
|
||||
)
|
||||
translated = results[0]["translation_text"] if results else ""
|
||||
return {"text": {source_language: text, target_language: translated}}
|
||||
107
gpu/self_hosted/app/utils.py
Normal file
107
gpu/self_hosted/app/utils.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from typing import Mapping
|
||||
from urllib.parse import urlparse
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
|
||||
|
||||
def ensure_dirs():
|
||||
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path: Path = UPLOADS_PATH / unique_filename
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
return file_path, audio_suffix
|
||||
|
||||
|
||||
@contextmanager
|
||||
def download_audio_file(audio_file_url: str):
|
||||
"""Download an audio file to UPLOADS_PATH and remove it after use.
|
||||
|
||||
Yields (file_path: Path, audio_suffix: str).
|
||||
"""
|
||||
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
|
||||
try:
|
||||
yield file_path, audio_suffix
|
||||
finally:
|
||||
try:
|
||||
file_path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", file_path, e)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def cleanup_uploaded_files(file_paths: list[Path]):
|
||||
"""Ensure provided file paths are removed after use.
|
||||
|
||||
The provided list can be populated inside the context; all present entries
|
||||
at exit will be deleted.
|
||||
"""
|
||||
try:
|
||||
yield file_paths
|
||||
finally:
|
||||
for path in list(file_paths):
|
||||
try:
|
||||
path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", path, e)
|
||||
10
gpu/self_hosted/compose.yml
Normal file
10
gpu/self_hosted/compose.yml
Normal file
@@ -0,0 +1,10 @@
|
||||
services:
|
||||
reflector_gpu:
|
||||
build:
|
||||
context: .
|
||||
ports:
|
||||
- "8000:8000"
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./cache:/root/.cache
|
||||
3
gpu/self_hosted/main.py
Normal file
3
gpu/self_hosted/main.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from app.factory import create_app
|
||||
|
||||
app = create_app()
|
||||
19
gpu/self_hosted/pyproject.toml
Normal file
19
gpu/self_hosted/pyproject.toml
Normal file
@@ -0,0 +1,19 @@
|
||||
[project]
|
||||
name = "reflector-gpu"
|
||||
version = "0.1.0"
|
||||
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"fastapi[standard]>=0.116.1",
|
||||
"uvicorn[standard]>=0.30.0",
|
||||
"torch>=2.3.0",
|
||||
"faster-whisper>=1.1.0",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
"transformers>=4.35.0",
|
||||
"sentencepiece",
|
||||
"pyannote.audio==3.1.0",
|
||||
"torchaudio>=2.3.0",
|
||||
]
|
||||
17
gpu/self_hosted/runserver.sh
Normal file
17
gpu/self_hosted/runserver.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/bin/sh
|
||||
set -e
|
||||
|
||||
export PATH="/root/.local/bin:$PATH"
|
||||
cd /app
|
||||
|
||||
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
|
||||
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
|
||||
echo "[startup] Installing Python dependencies with uv..."
|
||||
uv sync --compile-bytecode --locked
|
||||
else
|
||||
echo "[startup] Using existing virtual environment at /app/.venv"
|
||||
fi
|
||||
|
||||
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
|
||||
3013
gpu/self_hosted/uv.lock
generated
Normal file
3013
gpu/self_hosted/uv.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
3
server/.gitignore
vendored
3
server/.gitignore
vendored
@@ -176,7 +176,8 @@ artefacts/
|
||||
audio_*.wav
|
||||
|
||||
# ignore local database
|
||||
reflector.sqlite3
|
||||
*.sqlite3
|
||||
*.db
|
||||
data/
|
||||
|
||||
dump.rdb
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
# builder install base dependencies
|
||||
WORKDIR /tmp
|
||||
@@ -13,8 +14,8 @@ ENV PATH="/root/.local/bin/:$PATH"
|
||||
# install application dependencies
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
RUN touch README.md && env uv sync --compile-bytecode --locked
|
||||
COPY pyproject.toml uv.lock README.md /app/
|
||||
RUN uv sync --compile-bytecode --locked
|
||||
|
||||
# pre-download nltk packages
|
||||
RUN uv run python -c "import nltk; nltk.download('punkt_tab'); nltk.download('averaged_perceptron_tagger_eng')"
|
||||
@@ -26,4 +27,15 @@ COPY migrations /app/migrations
|
||||
COPY reflector /app/reflector
|
||||
WORKDIR /app
|
||||
|
||||
# Create symlink for libgomp if it doesn't exist (for ARM64 compatibility)
|
||||
RUN if [ "$(uname -m)" = "aarch64" ] && [ ! -f /usr/lib/libgomp.so.1 ]; then \
|
||||
LIBGOMP_PATH=$(find /app/.venv/lib -path "*/torch.libs/libgomp*.so.*" 2>/dev/null | head -n1); \
|
||||
if [ -n "$LIBGOMP_PATH" ]; then \
|
||||
ln -sf "$LIBGOMP_PATH" /usr/lib/libgomp.so.1; \
|
||||
fi \
|
||||
fi
|
||||
|
||||
# Pre-check just to make sure the image will not fail
|
||||
RUN uv run python -c "import silero_vad.model"
|
||||
|
||||
CMD ["./runserver.sh"]
|
||||
|
||||
@@ -1,3 +1,29 @@
|
||||
## API Key Management
|
||||
|
||||
### Finding Your User ID
|
||||
|
||||
```bash
|
||||
# Get your OAuth sub (user ID) - requires authentication
|
||||
curl -H "Authorization: Bearer <your_jwt>" http://localhost:1250/v1/me
|
||||
# Returns: {"sub": "your-oauth-sub-here", "email": "...", ...}
|
||||
```
|
||||
|
||||
### Creating API Keys
|
||||
|
||||
```bash
|
||||
curl -X POST http://localhost:1250/v1/user/api-keys \
|
||||
-H "Authorization: Bearer <your_jwt>" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"name": "My API Key"}'
|
||||
```
|
||||
|
||||
### Using API Keys
|
||||
|
||||
```bash
|
||||
# Use X-API-Key header instead of Authorization
|
||||
curl -H "X-API-Key: <your_api_key>" http://localhost:1250/v1/transcripts
|
||||
```
|
||||
|
||||
## AWS S3/SQS usage clarification
|
||||
|
||||
Whereby.com uploads recordings directly to our S3 bucket when meetings end.
|
||||
@@ -40,3 +66,5 @@ uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeli
|
||||
```bash
|
||||
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
|
||||
```
|
||||
|
||||
.
|
||||
|
||||
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
||||
# Data Retention and Cleanup
|
||||
|
||||
## Overview
|
||||
|
||||
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||
|
||||
### What Gets Deleted
|
||||
|
||||
When data reaches the retention period, the following items are automatically removed:
|
||||
|
||||
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||
- Database records
|
||||
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||
- Storage files (cloud storage if configured)
|
||||
|
||||
## Automatic Cleanup
|
||||
|
||||
### Celery Beat Schedule
|
||||
|
||||
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||
|
||||
```python
|
||||
# Automatically scheduled when PUBLIC_MODE=true
|
||||
"cleanup_old_public_data": {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||
}
|
||||
```
|
||||
|
||||
### Running the Worker
|
||||
|
||||
Ensure both Celery worker and beat scheduler are running:
|
||||
|
||||
```bash
|
||||
# Start Celery worker
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
|
||||
# Start Celery beat scheduler (in another terminal)
|
||||
uv run celery -A reflector.worker.app beat
|
||||
```
|
||||
|
||||
## Manual Cleanup
|
||||
|
||||
For testing or manual intervention, use the cleanup tool:
|
||||
|
||||
```bash
|
||||
# Delete data older than 7 days (default)
|
||||
uv run python -m reflector.tools.cleanup_old_data
|
||||
|
||||
# Delete data older than 30 days
|
||||
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||
```
|
||||
|
||||
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||
|
||||
## Important Notes
|
||||
|
||||
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||
|
||||
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||
|
||||
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||
|
||||
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||
|
||||
## Testing
|
||||
|
||||
Run the cleanup tests:
|
||||
|
||||
```bash
|
||||
uv run pytest tests/test_cleanup.py -v
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
Check Celery logs for cleanup task execution:
|
||||
|
||||
```bash
|
||||
# Look for cleanup task logs
|
||||
grep "cleanup_old_public_data" celery.log
|
||||
grep "Starting cleanup of old public data" celery.log
|
||||
```
|
||||
|
||||
Task statistics are logged after each run:
|
||||
- Number of transcripts deleted
|
||||
- Number of meetings deleted
|
||||
- Number of orphaned recordings deleted
|
||||
- Any errors encountered
|
||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
||||
## Reflector GPU Transcription API (Specification)
|
||||
|
||||
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||
|
||||
### Base URL and Authentication
|
||||
|
||||
- Example base URLs (Modal web endpoints):
|
||||
|
||||
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||
|
||||
- All endpoints are served under `/v1` and require a Bearer token:
|
||||
|
||||
```
|
||||
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||
|
||||
### Supported file types
|
||||
|
||||
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||
|
||||
### Models and languages
|
||||
|
||||
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||
- Language support: only `en`. Other languages return HTTP 400.
|
||||
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||
- Language support: multilingual (per Whisper model capabilities).
|
||||
|
||||
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||
|
||||
### Endpoints
|
||||
|
||||
#### POST /v1/audio/transcriptions
|
||||
|
||||
Transcribe one or more uploaded audio files.
|
||||
|
||||
Request: multipart/form-data
|
||||
|
||||
- `file` (File) — optional. Single file to transcribe.
|
||||
- `files` (File[]) — optional. One or more files to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`.
|
||||
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||
- Whisper: model-dependent; typically multilingual
|
||||
- `batch` (boolean) — optional, defaults to `false`.
|
||||
|
||||
Notes:
|
||||
|
||||
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||
- Response shape for multiple files is the same regardless of `batch`.
|
||||
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||
|
||||
Responses
|
||||
|
||||
Single file response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
Multiple files response:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- Word objects always include keys: `word`, `start`, `end`.
|
||||
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||
|
||||
Example curl (single file):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "file=@/path/to/audio.mp3" \
|
||||
-F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
Example curl (multiple files, batch):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||
-F "batch=true" -F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
#### POST /v1/audio/transcriptions-from-url
|
||||
|
||||
Transcribe a single remote audio file by URL.
|
||||
|
||||
Request: application/json
|
||||
|
||||
Body parameters:
|
||||
|
||||
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||
|
||||
Example curl:
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0
|
||||
}' \
|
||||
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||
```
|
||||
|
||||
### Error handling
|
||||
|
||||
- 400 Bad Request
|
||||
- Parakeet: `language` other than `en`
|
||||
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||
- Unsupported file extension
|
||||
- 401 Unauthorized
|
||||
- Missing or invalid Bearer token
|
||||
- 404 Not Found
|
||||
- `audio_file_url` does not exist
|
||||
|
||||
### Implementation details
|
||||
|
||||
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||
|
||||
### Server configuration (Reflector API)
|
||||
|
||||
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
### Conformance tests
|
||||
|
||||
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||
|
||||
```
|
||||
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
|
||||
```
|
||||
233
server/docs/webhook.md
Normal file
233
server/docs/webhook.md
Normal file
@@ -0,0 +1,233 @@
|
||||
# Reflector Webhook Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||
|
||||
## Configuration
|
||||
|
||||
Webhooks are configured at the room level with two fields:
|
||||
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||
|
||||
## Events
|
||||
|
||||
### `transcript.completed`
|
||||
|
||||
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, topic detection and calendar event integration.
|
||||
|
||||
### `test`
|
||||
|
||||
A test event that can be triggered manually to verify webhook configuration.
|
||||
|
||||
## Webhook Request Format
|
||||
|
||||
### Headers
|
||||
|
||||
All webhook requests include the following headers:
|
||||
|
||||
| Header | Description | Example |
|
||||
|--------|-------------|---------|
|
||||
| `Content-Type` | Always `application/json` | `application/json` |
|
||||
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||
|
||||
### Signature Verification
|
||||
|
||||
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||
|
||||
The signature format is: `t={timestamp},v1={signature}`
|
||||
|
||||
To verify the signature:
|
||||
1. Extract the timestamp and signature from the header
|
||||
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||
4. Compare the computed signature with the received signature
|
||||
|
||||
Example verification (Python):
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||
# Parse header: "t=1735306800,v1=abc123..."
|
||||
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||
timestamp = parts["t"]
|
||||
received_signature = parts["v1"]
|
||||
|
||||
# Create signed payload
|
||||
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||
|
||||
# Compute expected signature
|
||||
expected_signature = hmac.new(
|
||||
secret.encode("utf-8"),
|
||||
signed_payload.encode("utf-8"),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
# Compare signatures
|
||||
return hmac.compare_digest(expected_signature, received_signature)
|
||||
```
|
||||
|
||||
## Event Payloads
|
||||
|
||||
### `transcript.completed` Event
|
||||
|
||||
This event includes a convenient URL for accessing the transcript:
|
||||
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "transcript.completed",
|
||||
"event_id": "transcript.completed-abc-123-def-456",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"transcript": {
|
||||
"id": "abc-123-def-456",
|
||||
"room_id": "room-789",
|
||||
"created_at": "2025-08-27T12:00:00Z",
|
||||
"duration": 1800.5,
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||
"topics": [
|
||||
{
|
||||
"title": "Introduction and Agenda",
|
||||
"summary": "Meeting kickoff with agenda review",
|
||||
"timestamp": 0.0,
|
||||
"duration": 120.0,
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||
},
|
||||
{
|
||||
"title": "Mobile App Features Discussion",
|
||||
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||
"timestamp": 120.0,
|
||||
"duration": 600.0,
|
||||
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||
}
|
||||
],
|
||||
"participants": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
],
|
||||
"source_language": "en",
|
||||
"target_language": "en",
|
||||
"status": "completed",
|
||||
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||
},
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
},
|
||||
"calendar_event": {
|
||||
"id": "calendar-event-123",
|
||||
"ics_uid": "event-123",
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"start_time": "2025-08-27T12:00:00Z",
|
||||
"end_time": "2025-08-27T12:30:00Z",
|
||||
"description": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"location": "Conference Room 1",
|
||||
"attendees": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `test` Event
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "test",
|
||||
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"message": "This is a test webhook from Reflector",
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Retry Policy
|
||||
|
||||
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||
|
||||
### Retry Mechanism
|
||||
|
||||
Reflector implements an exponential backoff strategy for webhook retries:
|
||||
|
||||
- **Initial retry delay**: 60 seconds after the first failure
|
||||
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||
- **Maximum retry attempts**: 30 attempts total
|
||||
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||
|
||||
### How Retries Work
|
||||
|
||||
When a webhook fails, Reflector will:
|
||||
1. Wait 60 seconds, then retry (attempt #1)
|
||||
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||
|
||||
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||
|
||||
### Retry Behavior by HTTP Status Code
|
||||
|
||||
| Status Code | Behavior |
|
||||
|-------------|----------|
|
||||
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||
|
||||
**Important Notes:**
|
||||
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||
|
||||
## Testing Webhooks
|
||||
|
||||
You can test your webhook configuration before processing transcripts:
|
||||
|
||||
```http
|
||||
POST /v1/rooms/{room_id}/webhook/test
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"status_code": 200,
|
||||
"message": "Webhook test successful",
|
||||
"response_preview": "OK"
|
||||
}
|
||||
```
|
||||
|
||||
Or in case of failure:
|
||||
```json
|
||||
{
|
||||
"success": false,
|
||||
"error": "Webhook request timed out (10 seconds)"
|
||||
}
|
||||
```
|
||||
@@ -27,7 +27,7 @@ AUTH_JWT_AUDIENCE=
|
||||
#TRANSCRIPT_MODAL_API_KEY=xxxxx
|
||||
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=
|
||||
|
||||
## =======================================================
|
||||
|
||||
@@ -1,86 +0,0 @@
|
||||
# Reflector GPU implementation - Transcription and LLM
|
||||
|
||||
This repository hold an API for the GPU implementation of the Reflector API service,
|
||||
and use [Modal.com](https://modal.com)
|
||||
|
||||
- `reflector_diarizer.py` - Diarization API
|
||||
- `reflector_transcriber.py` - Transcription API
|
||||
- `reflector_translator.py` - Translation API
|
||||
|
||||
## Modal.com deployment
|
||||
|
||||
Create a modal secret, and name it `reflector-gpu`.
|
||||
It should contain an `REFLECTOR_APIKEY` environment variable with a value.
|
||||
|
||||
The deployment is done using [Modal.com](https://modal.com) service.
|
||||
|
||||
```
|
||||
$ modal deploy reflector_transcriber.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-transcriber-web.modal.run
|
||||
|
||||
$ modal deploy reflector_llm.py
|
||||
...
|
||||
└── 🔨 Created web => https://xxxx--reflector-llm-web.modal.run
|
||||
```
|
||||
|
||||
Then in your reflector api configuration `.env`, you can set these keys:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://xxxx--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
DIARIZATION_BACKEND=modal
|
||||
DIARIZATION_URL=https://xxxx--reflector-diarizer-web.modal.run
|
||||
DIARIZATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
|
||||
TRANSLATION_BACKEND=modal
|
||||
TRANSLATION_URL=https://xxxx--reflector-translator-web.modal.run
|
||||
TRANSLATION_MODAL_API_KEY=REFLECTOR_APIKEY
|
||||
```
|
||||
|
||||
## API
|
||||
|
||||
Authentication must be passed with the `Authorization` header, using the `bearer` scheme.
|
||||
|
||||
```
|
||||
Authorization: bearer <REFLECTOR_APIKEY>
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
`POST /llm`
|
||||
|
||||
**request**
|
||||
```
|
||||
{
|
||||
"prompt": "xxx"
|
||||
}
|
||||
```
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx completed"
|
||||
}
|
||||
```
|
||||
|
||||
### Transcription
|
||||
|
||||
`POST /transcribe`
|
||||
|
||||
**request** (multipart/form-data)
|
||||
|
||||
- `file` - audio file
|
||||
- `language` - language code (e.g. `en`)
|
||||
|
||||
**response**
|
||||
```
|
||||
{
|
||||
"text": "xxx",
|
||||
"words": [
|
||||
{"text": "xxx", "start": 0.0, "end": 1.0}
|
||||
]
|
||||
}
|
||||
```
|
||||
@@ -1,187 +0,0 @@
|
||||
"""
|
||||
Reflector GPU backend - diarizer
|
||||
===================================
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import modal.gpu
|
||||
from modal import App, Image, Secret, asgi_app, enter, method
|
||||
from pydantic import BaseModel
|
||||
|
||||
PYANNOTE_MODEL_NAME: str = "pyannote/speaker-diarization-3.1"
|
||||
MODEL_DIR = "/root/diarization_models"
|
||||
app = App(name="reflector-diarizer")
|
||||
|
||||
|
||||
def migrate_cache_llm():
|
||||
"""
|
||||
XXX The cache for model files in Transformers v4.22.0 has been updated.
|
||||
Migrating your old cache. This is a one-time only operation. You can
|
||||
interrupt this and resume the migration later on by calling
|
||||
`transformers.utils.move_cache()`.
|
||||
"""
|
||||
from transformers.utils.hub import move_cache
|
||||
|
||||
print("Moving LLM cache")
|
||||
move_cache(cache_dir=MODEL_DIR, new_cache_dir=MODEL_DIR)
|
||||
print("LLM cache moved")
|
||||
|
||||
|
||||
def download_pyannote_audio():
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME,
|
||||
cache_dir=MODEL_DIR,
|
||||
use_auth_token=os.environ["HF_TOKEN"],
|
||||
)
|
||||
|
||||
|
||||
diarizer_image = (
|
||||
Image.debian_slim(python_version="3.10.8")
|
||||
.pip_install(
|
||||
"pyannote.audio==3.1.0",
|
||||
"requests",
|
||||
"onnx",
|
||||
"torchaudio",
|
||||
"onnxruntime-gpu",
|
||||
"torch==2.0.0",
|
||||
"transformers==4.34.0",
|
||||
"sentencepiece",
|
||||
"protobuf",
|
||||
"numpy",
|
||||
"huggingface_hub",
|
||||
"hf-transfer",
|
||||
)
|
||||
.run_function(
|
||||
download_pyannote_audio, secrets=[Secret.from_name("my-huggingface-secret")]
|
||||
)
|
||||
.run_function(migrate_cache_llm)
|
||||
.env(
|
||||
{
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.10/site-packages/nvidia/cublas/lib/"
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu=modal.gpu.A100(size="40GB"),
|
||||
timeout=60 * 30,
|
||||
scaledown_window=60,
|
||||
allow_concurrent_inputs=1,
|
||||
image=diarizer_image,
|
||||
)
|
||||
class Diarizer:
|
||||
@enter()
|
||||
def enter(self):
|
||||
import torch
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
PYANNOTE_MODEL_NAME, cache_dir=MODEL_DIR
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
|
||||
@method()
|
||||
def diarize(self, audio_data: str, audio_suffix: str, timestamp: float):
|
||||
import tempfile
|
||||
|
||||
import torchaudio
|
||||
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
print("Diarizing audio")
|
||||
waveform, sample_rate = torchaudio.load(fp.name)
|
||||
diarization = self.diarization_pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(
|
||||
yield_label=True
|
||||
):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:]),
|
||||
}
|
||||
)
|
||||
print("Diarization complete")
|
||||
return {"diarization": words}
|
||||
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Web API
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
|
||||
@app.function(
|
||||
timeout=60 * 10,
|
||||
scaledown_window=60 * 3,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
image=diarizer_image,
|
||||
)
|
||||
@asgi_app()
|
||||
def web():
|
||||
import requests
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
diarizerstub = Diarizer()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
def validate_audio_file(audio_file_url: str):
|
||||
# Check if the audio file exists
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(
|
||||
status_code=response.status_code,
|
||||
detail="The audio file does not exist.",
|
||||
)
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth), Depends(validate_audio_file)]
|
||||
)
|
||||
def diarize(
|
||||
audio_file_url: str, timestamp: float = 0.0
|
||||
) -> HTTPException | DiarizationResponse:
|
||||
# Currently the uploaded files are in mp3 format
|
||||
audio_suffix = "mp3"
|
||||
|
||||
print("Downloading audio file")
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
print("Audio file downloaded successfully")
|
||||
|
||||
func = diarizerstub.diarize.spawn(
|
||||
audio_data=response.content, audio_suffix=audio_suffix, timestamp=timestamp
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -1,161 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
import threading
|
||||
|
||||
import modal
|
||||
from pydantic import BaseModel
|
||||
|
||||
MODELS_DIR = "/models"
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
|
||||
MINUTES = 60 # seconds
|
||||
|
||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
volume.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
||||
|
||||
volume.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
class Transcriber:
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=MODELS_DIR,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
language: str,
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments)
|
||||
words = [
|
||||
{"word": word.word, "start": word.start, "end": word.end}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriber = Transcriber()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile,
|
||||
model: str = "whisper-1",
|
||||
language: Annotated[str, Body(...)] = "en",
|
||||
) -> TranscriptResponse:
|
||||
audio_data = file.file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_file_types
|
||||
|
||||
func = transcriber.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -1 +1,3 @@
|
||||
Generic single-database configuration.
|
||||
Generic single-database configuration.
|
||||
|
||||
Both data migrations and schema migrations must be in migrations.
|
||||
@@ -0,0 +1,36 @@
|
||||
"""Add webhook fields to rooms
|
||||
|
||||
Revision ID: 0194f65cd6d3
|
||||
Revises: 5a8907fd1d78
|
||||
Create Date: 2025-08-27 09:03:19.610995
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0194f65cd6d3"
|
||||
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("webhook_secret")
|
||||
batch_op.drop_column("webhook_url")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,64 @@
|
||||
"""add_long_summary_to_search_vector
|
||||
|
||||
Revision ID: 0ab2d7ffaa16
|
||||
Revises: b1c33bd09963
|
||||
Create Date: 2025-08-15 13:27:52.680211
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ab2d7ffaa16"
|
||||
down_revision: Union[str, None] = "b1c33bd09963"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Drop the existing search vector column and index
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
|
||||
# Recreate the search vector column with long_summary included
|
||||
op.execute("""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')
|
||||
) STORED
|
||||
""")
|
||||
|
||||
# Recreate the GIN index for the search vector
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Drop the updated search vector column and index
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
|
||||
# Recreate the original search vector column without long_summary
|
||||
op.execute("""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||
) STORED
|
||||
""")
|
||||
|
||||
# Recreate the GIN index for the search vector
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
@@ -0,0 +1,25 @@
|
||||
"""add_webvtt_field_to_transcript
|
||||
|
||||
Revision ID: 0bc0f3ff0111
|
||||
Revises: b7df9609542c
|
||||
Create Date: 2025-08-05 19:36:41.740957
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
revision: str = "0bc0f3ff0111"
|
||||
down_revision: Union[str, None] = "b7df9609542c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column("transcript", sa.Column("webvtt", sa.Text(), nullable=True))
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("transcript", "webvtt")
|
||||
@@ -0,0 +1,36 @@
|
||||
"""remove user_id from meeting table
|
||||
|
||||
Revision ID: 0ce521cda2ee
|
||||
Revises: 6dec9fb5b46c
|
||||
Create Date: 2025-09-10 12:40:55.688899
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ce521cda2ee"
|
||||
down_revision: Union[str, None] = "6dec9fb5b46c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_column("user_id")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("user_id", sa.VARCHAR(), autoincrement=False, nullable=True)
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,46 @@
|
||||
"""add_full_text_search
|
||||
|
||||
Revision ID: 116b2f287eab
|
||||
Revises: 0bc0f3ff0111
|
||||
Create Date: 2025-08-07 11:27:38.473517
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
revision: str = "116b2f287eab"
|
||||
down_revision: Union[str, None] = "0bc0f3ff0111"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
if conn.dialect.name != "postgresql":
|
||||
return
|
||||
|
||||
op.execute("""
|
||||
ALTER TABLE transcript ADD COLUMN search_vector_en tsvector
|
||||
GENERATED ALWAYS AS (
|
||||
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
|
||||
setweight(to_tsvector('english', coalesce(webvtt, '')), 'B')
|
||||
) STORED
|
||||
""")
|
||||
|
||||
op.create_index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"transcript",
|
||||
["search_vector_en"],
|
||||
postgresql_using="gin",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
if conn.dialect.name != "postgresql":
|
||||
return
|
||||
|
||||
op.drop_index("idx_transcript_search_vector_en", table_name="transcript")
|
||||
op.drop_column("transcript", "search_vector_en")
|
||||
@@ -0,0 +1,32 @@
|
||||
"""clean up orphaned room_id references in meeting table
|
||||
|
||||
Revision ID: 2ae3db106d4e
|
||||
Revises: def1b5867d4c
|
||||
Create Date: 2025-09-11 10:35:15.759967
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "2ae3db106d4e"
|
||||
down_revision: Union[str, None] = "def1b5867d4c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Set room_id to NULL for meetings that reference non-existent rooms
|
||||
op.execute("""
|
||||
UPDATE meeting
|
||||
SET room_id = NULL
|
||||
WHERE room_id IS NOT NULL
|
||||
AND room_id NOT IN (SELECT id FROM room WHERE id IS NOT NULL)
|
||||
""")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Cannot restore orphaned references - no operation needed
|
||||
pass
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add cascade delete to meeting consent foreign key
|
||||
|
||||
Revision ID: 5a8907fd1d78
|
||||
Revises: 0ab2d7ffaa16
|
||||
Create Date: 2025-08-26 17:26:50.945491
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "5a8907fd1d78"
|
||||
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,53 @@
|
||||
"""remove_one_active_meeting_per_room_constraint
|
||||
|
||||
Revision ID: 6025e9b2bef2
|
||||
Revises: 2ae3db106d4e
|
||||
Create Date: 2025-08-18 18:45:44.418392
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6025e9b2bef2"
|
||||
down_revision: Union[str, None] = "2ae3db106d4e"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove the unique constraint that prevents multiple active meetings per room
|
||||
# This is needed to support calendar integration with overlapping meetings
|
||||
# Check if index exists before trying to drop it
|
||||
from alembic import context
|
||||
|
||||
if context.get_context().dialect.name == "postgresql":
|
||||
conn = op.get_bind()
|
||||
result = conn.execute(
|
||||
sa.text(
|
||||
"SELECT 1 FROM pg_indexes WHERE indexname = 'idx_one_active_meeting_per_room'"
|
||||
)
|
||||
)
|
||||
if result.fetchone():
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
else:
|
||||
# For SQLite, just try to drop it
|
||||
try:
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Restore the unique constraint
|
||||
op.create_index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"meeting",
|
||||
["room_id"],
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sqlite_where=sa.text("is_active = 1"),
|
||||
)
|
||||
@@ -0,0 +1,28 @@
|
||||
"""webhook url and secret null by default
|
||||
|
||||
|
||||
Revision ID: 61882a919591
|
||||
Revises: 0194f65cd6d3
|
||||
Create Date: 2025-08-29 11:46:36.738091
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "61882a919591"
|
||||
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
@@ -32,7 +32,7 @@ def upgrade() -> None:
|
||||
sa.Column("user_id", sa.String(), nullable=True),
|
||||
sa.Column("room_id", sa.String(), nullable=True),
|
||||
sa.Column(
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
||||
sa.Column(
|
||||
@@ -53,12 +53,15 @@ def upgrade() -> None:
|
||||
sa.Column("user_id", sa.String(), nullable=False),
|
||||
sa.Column("created_at", sa.DateTime(), nullable=False),
|
||||
sa.Column(
|
||||
"zulip_auto_post", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"zulip_auto_post",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("zulip_stream", sa.String(), nullable=True),
|
||||
sa.Column("zulip_topic", sa.String(), nullable=True),
|
||||
sa.Column(
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"is_locked", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("room_mode", sa.String(), server_default="normal", nullable=False),
|
||||
sa.Column(
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
"""make meeting room_id required and add foreign key
|
||||
|
||||
Revision ID: 6dec9fb5b46c
|
||||
Revises: 61882a919591
|
||||
Create Date: 2025-09-10 10:47:06.006819
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6dec9fb5b46c"
|
||||
down_revision: Union[str, None] = "61882a919591"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.create_foreign_key(
|
||||
None, "room", ["room_id"], ["id"], ondelete="CASCADE"
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("meeting_room_id_fkey", type_="foreignkey")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -20,11 +20,14 @@ depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
sourcekind_enum = sa.Enum("room", "live", "file", name="sourcekind")
|
||||
sourcekind_enum.create(op.get_bind())
|
||||
|
||||
op.add_column(
|
||||
"transcript",
|
||||
sa.Column(
|
||||
"source_kind",
|
||||
sa.Enum("ROOM", "LIVE", "FILE", name="sourcekind"),
|
||||
sourcekind_enum,
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
@@ -43,6 +46,8 @@ def upgrade() -> None:
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.drop_column("transcript", "source_kind")
|
||||
sourcekind_enum = sa.Enum(name="sourcekind")
|
||||
sourcekind_enum.drop(op.get_bind())
|
||||
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
@@ -0,0 +1,106 @@
|
||||
"""populate_webvtt_from_topics
|
||||
|
||||
Revision ID: 8120ebc75366
|
||||
Revises: 116b2f287eab
|
||||
Create Date: 2025-08-11 19:11:01.316947
|
||||
|
||||
"""
|
||||
|
||||
import json
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
from sqlalchemy import text
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "8120ebc75366"
|
||||
down_revision: Union[str, None] = "116b2f287eab"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def topics_to_webvtt(topics):
|
||||
"""Convert topics list to WebVTT format string."""
|
||||
if not topics:
|
||||
return None
|
||||
|
||||
lines = ["WEBVTT", ""]
|
||||
|
||||
for topic in topics:
|
||||
start_time = format_timestamp(topic.get("start"))
|
||||
end_time = format_timestamp(topic.get("end"))
|
||||
text = topic.get("text", "").strip()
|
||||
|
||||
if start_time and end_time and text:
|
||||
lines.append(f"{start_time} --> {end_time}")
|
||||
lines.append(text)
|
||||
lines.append("")
|
||||
|
||||
return "\n".join(lines).strip()
|
||||
|
||||
|
||||
def format_timestamp(seconds):
|
||||
"""Format seconds to WebVTT timestamp format (HH:MM:SS.mmm)."""
|
||||
if seconds is None:
|
||||
return None
|
||||
|
||||
hours = int(seconds // 3600)
|
||||
minutes = int((seconds % 3600) // 60)
|
||||
secs = seconds % 60
|
||||
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:06.3f}"
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Populate WebVTT field for all transcripts with topics."""
|
||||
|
||||
# Get connection
|
||||
connection = op.get_bind()
|
||||
|
||||
# Query all transcripts with topics
|
||||
result = connection.execute(
|
||||
text("SELECT id, topics FROM transcript WHERE topics IS NOT NULL")
|
||||
)
|
||||
|
||||
rows = result.fetchall()
|
||||
print(f"Found {len(rows)} transcripts with topics")
|
||||
|
||||
updated_count = 0
|
||||
error_count = 0
|
||||
|
||||
for row in rows:
|
||||
transcript_id = row[0]
|
||||
topics_data = row[1]
|
||||
|
||||
if not topics_data:
|
||||
continue
|
||||
|
||||
try:
|
||||
# Parse JSON if it's a string
|
||||
if isinstance(topics_data, str):
|
||||
topics_data = json.loads(topics_data)
|
||||
|
||||
# Convert topics to WebVTT format
|
||||
webvtt_content = topics_to_webvtt(topics_data)
|
||||
|
||||
if webvtt_content:
|
||||
# Update the webvtt field
|
||||
connection.execute(
|
||||
text("UPDATE transcript SET webvtt = :webvtt WHERE id = :id"),
|
||||
{"webvtt": webvtt_content, "id": transcript_id},
|
||||
)
|
||||
updated_count += 1
|
||||
print(f"✓ Updated transcript {transcript_id}")
|
||||
|
||||
except Exception as e:
|
||||
error_count += 1
|
||||
print(f"✗ Error updating transcript {transcript_id}: {e}")
|
||||
|
||||
print(f"\nMigration complete!")
|
||||
print(f" Updated: {updated_count}")
|
||||
print(f" Errors: {error_count}")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Clear WebVTT field for all transcripts."""
|
||||
op.execute(text("UPDATE transcript SET webvtt = NULL"))
|
||||
@@ -22,7 +22,7 @@ def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.execute(
|
||||
"UPDATE transcript SET events = "
|
||||
'REPLACE(events, \'"event": "SUMMARY"\', \'"event": "LONG_SUMMARY"\');'
|
||||
'REPLACE(events::text, \'"event": "SUMMARY"\', \'"event": "LONG_SUMMARY"\')::json;'
|
||||
)
|
||||
op.alter_column("transcript", "summary", new_column_name="long_summary")
|
||||
op.add_column("transcript", sa.Column("title", sa.String(), nullable=True))
|
||||
@@ -34,7 +34,7 @@ def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.execute(
|
||||
"UPDATE transcript SET events = "
|
||||
'REPLACE(events, \'"event": "LONG_SUMMARY"\', \'"event": "SUMMARY"\');'
|
||||
'REPLACE(events::text, \'"event": "LONG_SUMMARY"\', \'"event": "SUMMARY"\')::json;'
|
||||
)
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.alter_column("long_summary", nullable=True, new_column_name="summary")
|
||||
|
||||
38
server/migrations/versions/9e3f7b2a4c8e_add_user_api_keys.py
Normal file
38
server/migrations/versions/9e3f7b2a4c8e_add_user_api_keys.py
Normal file
@@ -0,0 +1,38 @@
|
||||
"""add user api keys
|
||||
|
||||
Revision ID: 9e3f7b2a4c8e
|
||||
Revises: dc035ff72fd5
|
||||
Create Date: 2025-10-17 00:00:00.000000
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "9e3f7b2a4c8e"
|
||||
down_revision: Union[str, None] = "dc035ff72fd5"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"user_api_key",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("user_id", sa.String(), nullable=False),
|
||||
sa.Column("key_hash", sa.String(), nullable=False),
|
||||
sa.Column("name", sa.String(), nullable=True),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
|
||||
with op.batch_alter_table("user_api_key", schema=None) as batch_op:
|
||||
batch_op.create_index("idx_user_api_key_hash", ["key_hash"], unique=True)
|
||||
batch_op.create_index("idx_user_api_key_user_id", ["user_id"], unique=False)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("user_api_key")
|
||||
121
server/migrations/versions/9f5c78d352d6_datetime_timezone.py
Normal file
121
server/migrations/versions/9f5c78d352d6_datetime_timezone.py
Normal file
@@ -0,0 +1,121 @@
|
||||
"""datetime timezone
|
||||
|
||||
Revision ID: 9f5c78d352d6
|
||||
Revises: 8120ebc75366
|
||||
Create Date: 2025-08-13 19:18:27.113593
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "9f5c78d352d6"
|
||||
down_revision: Union[str, None] = "8120ebc75366"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"start_date",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=True,
|
||||
)
|
||||
batch_op.alter_column(
|
||||
"end_date",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"consent_timestamp",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"recorded_at",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=postgresql.TIMESTAMP(),
|
||||
type_=sa.DateTime(timezone=True),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("transcript", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"created_at",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("recording", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"recorded_at",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"consent_timestamp",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=False,
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column(
|
||||
"end_date",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=True,
|
||||
)
|
||||
batch_op.alter_column(
|
||||
"start_date",
|
||||
existing_type=sa.DateTime(timezone=True),
|
||||
type_=postgresql.TIMESTAMP(),
|
||||
existing_nullable=True,
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -25,7 +25,7 @@ def upgrade() -> None:
|
||||
sa.Column(
|
||||
"is_shared",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("0"),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -23,7 +23,10 @@ def upgrade() -> None:
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"is_active", sa.Boolean(), server_default=sa.text("1"), nullable=False
|
||||
"is_active",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("true"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
"""add_search_optimization_indexes
|
||||
|
||||
Revision ID: b1c33bd09963
|
||||
Revises: 9f5c78d352d6
|
||||
Create Date: 2025-08-14 17:26:02.117408
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "b1c33bd09963"
|
||||
down_revision: Union[str, None] = "9f5c78d352d6"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add indexes for actual search filtering patterns used in frontend
|
||||
# Based on /browse page filters: room_id and source_kind
|
||||
|
||||
# Index for room_id + created_at (for room-specific searches with date ordering)
|
||||
op.create_index(
|
||||
"idx_transcript_room_id_created_at",
|
||||
"transcript",
|
||||
["room_id", "created_at"],
|
||||
if_not_exists=True,
|
||||
)
|
||||
|
||||
# Index for source_kind alone (actively used filter in frontend)
|
||||
op.create_index(
|
||||
"idx_transcript_source_kind", "transcript", ["source_kind"], if_not_exists=True
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove the indexes in reverse order
|
||||
op.drop_index("idx_transcript_source_kind", "transcript", if_exists=True)
|
||||
op.drop_index("idx_transcript_room_id_created_at", "transcript", if_exists=True)
|
||||
@@ -23,7 +23,7 @@ def upgrade() -> None:
|
||||
op.add_column(
|
||||
"transcript",
|
||||
sa.Column(
|
||||
"reviewed", sa.Boolean(), server_default=sa.text("0"), nullable=False
|
||||
"reviewed", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
)
|
||||
# ### end Alembic commands ###
|
||||
|
||||
@@ -0,0 +1,34 @@
|
||||
"""add_grace_period_fields_to_meeting
|
||||
|
||||
Revision ID: d4a1c446458c
|
||||
Revises: 6025e9b2bef2
|
||||
Create Date: 2025-08-18 18:50:37.768052
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d4a1c446458c"
|
||||
down_revision: Union[str, None] = "6025e9b2bef2"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add fields to track when participants left for grace period logic
|
||||
op.add_column(
|
||||
"meeting", sa.Column("last_participant_left_at", sa.DateTime(timezone=True))
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column("grace_period_minutes", sa.Integer, server_default=sa.text("15")),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""add calendar
|
||||
|
||||
Revision ID: d8e204bbf615
|
||||
Revises: d4a1c446458c
|
||||
Create Date: 2025-09-10 19:56:22.295756
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d8e204bbf615"
|
||||
down_revision: Union[str, None] = "d4a1c446458c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table(
|
||||
"calendar_event",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("room_id", sa.String(), nullable=False),
|
||||
sa.Column("ics_uid", sa.Text(), nullable=False),
|
||||
sa.Column("title", sa.Text(), nullable=True),
|
||||
sa.Column("description", sa.Text(), nullable=True),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", postgresql.JSONB(astext_type=sa.Text()), nullable=True),
|
||||
sa.Column("location", sa.Text(), nullable=True),
|
||||
sa.Column("ics_raw_data", sa.Text(), nullable=True),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column(
|
||||
"is_deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["room_id"],
|
||||
["room.id"],
|
||||
name="fk_calendar_event_room_id",
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
)
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_deleted",
|
||||
["is_deleted"],
|
||||
unique=False,
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_room_start", ["room_id", "start_time"], unique=False
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("calendar_event_id", sa.String(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"calendar_metadata",
|
||||
postgresql.JSONB(astext_type=sa.Text()),
|
||||
nullable=True,
|
||||
)
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_meeting_calendar_event", ["calendar_event_id"], unique=False
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
"fk_meeting_calendar_event_id",
|
||||
"calendar_event",
|
||||
["calendar_event_id"],
|
||||
["id"],
|
||||
ondelete="SET NULL",
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("ics_url", sa.Text(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_fetch_interval", sa.Integer(), server_default="300", nullable=True
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_enabled",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column("ics_last_sync", sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
batch_op.add_column(sa.Column("ics_last_etag", sa.Text(), nullable=True))
|
||||
batch_op.create_index("idx_room_ics_enabled", ["ics_enabled"], unique=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_room_ics_enabled")
|
||||
batch_op.drop_column("ics_last_etag")
|
||||
batch_op.drop_column("ics_last_sync")
|
||||
batch_op.drop_column("ics_enabled")
|
||||
batch_op.drop_column("ics_fetch_interval")
|
||||
batch_op.drop_column("ics_url")
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("fk_meeting_calendar_event_id", type_="foreignkey")
|
||||
batch_op.drop_index("idx_meeting_calendar_event")
|
||||
batch_op.drop_column("calendar_metadata")
|
||||
batch_op.drop_column("calendar_event_id")
|
||||
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_calendar_event_room_start")
|
||||
batch_op.drop_index(
|
||||
"idx_calendar_event_deleted", postgresql_where=sa.text("NOT is_deleted")
|
||||
)
|
||||
|
||||
op.drop_table("calendar_event")
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,43 @@
|
||||
"""remove_grace_period_fields
|
||||
|
||||
Revision ID: dc035ff72fd5
|
||||
Revises: d8e204bbf615
|
||||
Create Date: 2025-09-11 10:36:45.197588
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "dc035ff72fd5"
|
||||
down_revision: Union[str, None] = "d8e204bbf615"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove grace period columns from meeting table
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Add back grace period columns to meeting table
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"last_participant_left_at", sa.DateTime(timezone=True), nullable=True
|
||||
),
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"grace_period_minutes",
|
||||
sa.Integer(),
|
||||
server_default=sa.text("15"),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
@@ -0,0 +1,34 @@
|
||||
"""make meeting room_id nullable but keep foreign key
|
||||
|
||||
Revision ID: def1b5867d4c
|
||||
Revises: 0ce521cda2ee
|
||||
Create Date: 2025-09-11 09:42:18.697264
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "def1b5867d4c"
|
||||
down_revision: Union[str, None] = "0ce521cda2ee"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -12,7 +12,6 @@ dependencies = [
|
||||
"requests>=2.31.0",
|
||||
"aiortc>=1.5.0",
|
||||
"sortedcontainers>=2.4.0",
|
||||
"loguru>=0.7.0",
|
||||
"pydantic-settings>=2.0.2",
|
||||
"structlog>=23.1.0",
|
||||
"uvicorn[standard]>=0.23.1",
|
||||
@@ -27,12 +26,10 @@ dependencies = [
|
||||
"prometheus-fastapi-instrumentator>=6.1.0",
|
||||
"sentencepiece>=0.1.99",
|
||||
"protobuf>=4.24.3",
|
||||
"profanityfilter>=2.0.6",
|
||||
"celery>=5.3.4",
|
||||
"redis>=5.0.1",
|
||||
"python-jose[cryptography]>=3.3.0",
|
||||
"python-multipart>=0.0.6",
|
||||
"faster-whisper>=0.10.0",
|
||||
"transformers>=4.36.2",
|
||||
"jsonschema>=4.23.0",
|
||||
"openai>=1.59.7",
|
||||
@@ -40,6 +37,8 @@ dependencies = [
|
||||
"llama-index>=0.12.52",
|
||||
"llama-index-llms-openai-like>=0.4.0",
|
||||
"pytest-env>=1.1.5",
|
||||
"webvtt-py>=0.5.0",
|
||||
"icalendar>=6.0.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
@@ -56,6 +55,9 @@ tests = [
|
||||
"httpx-ws>=0.4.1",
|
||||
"pytest-httpx>=0.23.1",
|
||||
"pytest-celery>=0.0.0",
|
||||
"pytest-recording>=0.13.4",
|
||||
"pytest-docker>=3.2.3",
|
||||
"asgi-lifespan>=2.1.0",
|
||||
]
|
||||
aws = ["aioboto3>=11.2.0"]
|
||||
evaluation = [
|
||||
@@ -64,6 +66,15 @@ evaluation = [
|
||||
"tqdm>=4.66.0",
|
||||
"pydantic>=2.1.1",
|
||||
]
|
||||
local = [
|
||||
"pyannote-audio>=3.3.2",
|
||||
"faster-whisper>=0.10.0",
|
||||
]
|
||||
silero-vad = [
|
||||
"silero-vad>=5.1.2",
|
||||
"torch>=2.8.0",
|
||||
"torchaudio>=2.8.0",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
default-groups = [
|
||||
@@ -71,6 +82,21 @@ default-groups = [
|
||||
"tests",
|
||||
"aws",
|
||||
"evaluation",
|
||||
"local",
|
||||
"silero-vad"
|
||||
]
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
explicit = true
|
||||
|
||||
[tool.uv.sources]
|
||||
torch = [
|
||||
{ index = "pytorch-cpu" },
|
||||
]
|
||||
torchaudio = [
|
||||
{ index = "pytorch-cpu" },
|
||||
]
|
||||
|
||||
[build-system]
|
||||
@@ -85,12 +111,27 @@ source = ["reflector"]
|
||||
|
||||
[tool.pytest_env]
|
||||
ENVIRONMENT = "pytest"
|
||||
DATABASE_URL = "sqlite:///test.sqlite"
|
||||
DATABASE_URL = "postgresql://test_user:test_password@localhost:15432/reflector_test"
|
||||
AUTH_BACKEND = "jwt"
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
||||
testpaths = ["tests"]
|
||||
asyncio_mode = "auto"
|
||||
markers = [
|
||||
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
|
||||
]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
"I", # isort - import sorting
|
||||
"F401", # unused imports
|
||||
"PLC0415", # import-outside-top-level - detect inline imports
|
||||
]
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
||||
"gpu/modal_deployments/**.py" = ["PLC0415"]
|
||||
"reflector/tools/**.py" = ["PLC0415"]
|
||||
"migrations/versions/**.py" = ["PLC0415"]
|
||||
"tests/**.py" = ["PLC0415"]
|
||||
|
||||
@@ -26,6 +26,8 @@ from reflector.views.transcripts_upload import router as transcripts_upload_rout
|
||||
from reflector.views.transcripts_webrtc import router as transcripts_webrtc_router
|
||||
from reflector.views.transcripts_websocket import router as transcripts_websocket_router
|
||||
from reflector.views.user import router as user_router
|
||||
from reflector.views.user_api_keys import router as user_api_keys_router
|
||||
from reflector.views.user_websocket import router as user_ws_router
|
||||
from reflector.views.whereby import router as whereby_router
|
||||
from reflector.views.zulip import router as zulip_router
|
||||
|
||||
@@ -65,6 +67,12 @@ app.add_middleware(
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
# metrics
|
||||
instrumentator = Instrumentator(
|
||||
excluded_handlers=["/docs", "/metrics"],
|
||||
@@ -84,6 +92,8 @@ app.include_router(transcripts_websocket_router, prefix="/v1")
|
||||
app.include_router(transcripts_webrtc_router, prefix="/v1")
|
||||
app.include_router(transcripts_process_router, prefix="/v1")
|
||||
app.include_router(user_router, prefix="/v1")
|
||||
app.include_router(user_api_keys_router, prefix="/v1")
|
||||
app.include_router(user_ws_router, prefix="/v1")
|
||||
app.include_router(zulip_router, prefix="/v1")
|
||||
app.include_router(whereby_router, prefix="/v1")
|
||||
add_pagination(app)
|
||||
|
||||
27
server/reflector/asynctask.py
Normal file
27
server/reflector/asynctask.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import asyncio
|
||||
import functools
|
||||
|
||||
from reflector.db import get_database
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
@@ -1,14 +1,16 @@
|
||||
from typing import Annotated, Optional
|
||||
from typing import Annotated, List, Optional
|
||||
|
||||
from fastapi import Depends, HTTPException
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer
|
||||
from jose import JWTError, jwt
|
||||
from pydantic import BaseModel
|
||||
|
||||
from reflector.db.user_api_keys import user_api_keys_controller
|
||||
from reflector.logger import logger
|
||||
from reflector.settings import settings
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token", auto_error=False)
|
||||
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
||||
|
||||
jwt_public_key = open(f"reflector/auth/jwt/keys/{settings.AUTH_JWT_PUBLIC_KEY}").read()
|
||||
jwt_algorithm = settings.AUTH_JWT_ALGORITHM
|
||||
@@ -26,7 +28,7 @@ class JWTException(Exception):
|
||||
|
||||
class UserInfo(BaseModel):
|
||||
sub: str
|
||||
email: str
|
||||
email: Optional[str] = None
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
@@ -58,33 +60,53 @@ def authenticated(token: Annotated[str, Depends(oauth2_scheme)]):
|
||||
return None
|
||||
|
||||
|
||||
def current_user(
|
||||
token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
if token is None:
|
||||
raise HTTPException(status_code=401, detail="Not authenticated")
|
||||
try:
|
||||
payload = jwtauth.verify_token(token)
|
||||
sub = payload["sub"]
|
||||
return UserInfo(sub=sub)
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
async def _authenticate_user(
|
||||
jwt_token: Optional[str],
|
||||
api_key: Optional[str],
|
||||
jwtauth: JWTAuth,
|
||||
) -> UserInfo | None:
|
||||
user_infos: List[UserInfo] = []
|
||||
if api_key:
|
||||
user_api_key = await user_api_keys_controller.verify_key(api_key)
|
||||
if user_api_key:
|
||||
user_infos.append(UserInfo(sub=user_api_key.user_id, email=None))
|
||||
|
||||
if jwt_token:
|
||||
try:
|
||||
payload = jwtauth.verify_token(jwt_token)
|
||||
sub = payload["sub"]
|
||||
email = payload["email"]
|
||||
user_infos.append(UserInfo(sub=sub, email=email))
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
|
||||
def current_user_optional(
|
||||
token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
# we accept no token, but if one is provided, it must be a valid one.
|
||||
if token is None:
|
||||
if len(user_infos) == 0:
|
||||
return None
|
||||
try:
|
||||
payload = jwtauth.verify_token(token)
|
||||
sub = payload["sub"]
|
||||
email = payload["email"]
|
||||
return UserInfo(sub=sub, email=email)
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
|
||||
if len(set([x.sub for x in user_infos])) > 1:
|
||||
raise JWTException(
|
||||
status_code=401,
|
||||
detail="Invalid authentication: more than one user provided",
|
||||
)
|
||||
|
||||
return user_infos[0]
|
||||
|
||||
|
||||
async def current_user(
|
||||
jwt_token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
api_key: Annotated[Optional[str], Depends(api_key_header)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
user = await _authenticate_user(jwt_token, api_key, jwtauth)
|
||||
if user is None:
|
||||
raise HTTPException(status_code=401, detail="Not authenticated")
|
||||
return user
|
||||
|
||||
|
||||
async def current_user_optional(
|
||||
jwt_token: Annotated[Optional[str], Depends(oauth2_scheme)],
|
||||
api_key: Annotated[Optional[str], Depends(api_key_header)],
|
||||
jwtauth: JWTAuth = Depends(),
|
||||
):
|
||||
return await _authenticate_user(jwt_token, api_key, jwtauth)
|
||||
|
||||
@@ -1,29 +1,49 @@
|
||||
import contextvars
|
||||
from typing import Optional
|
||||
|
||||
import databases
|
||||
import sqlalchemy
|
||||
|
||||
from reflector.events import subscribers_shutdown, subscribers_startup
|
||||
from reflector.settings import settings
|
||||
|
||||
database = databases.Database(settings.DATABASE_URL)
|
||||
metadata = sqlalchemy.MetaData()
|
||||
|
||||
_database_context: contextvars.ContextVar[Optional[databases.Database]] = (
|
||||
contextvars.ContextVar("database", default=None)
|
||||
)
|
||||
|
||||
|
||||
def get_database() -> databases.Database:
|
||||
"""Get database instance for current asyncio context"""
|
||||
db = _database_context.get()
|
||||
if db is None:
|
||||
db = databases.Database(settings.DATABASE_URL)
|
||||
_database_context.set(db)
|
||||
return db
|
||||
|
||||
|
||||
# import models
|
||||
import reflector.db.calendar_events # noqa
|
||||
import reflector.db.meetings # noqa
|
||||
import reflector.db.recordings # noqa
|
||||
import reflector.db.rooms # noqa
|
||||
import reflector.db.transcripts # noqa
|
||||
import reflector.db.user_api_keys # noqa
|
||||
|
||||
kwargs = {}
|
||||
if "sqlite" in settings.DATABASE_URL:
|
||||
kwargs["connect_args"] = {"check_same_thread": False}
|
||||
if "postgres" not in settings.DATABASE_URL:
|
||||
raise Exception("Only postgres database is supported in reflector")
|
||||
engine = sqlalchemy.create_engine(settings.DATABASE_URL, **kwargs)
|
||||
|
||||
|
||||
@subscribers_startup.append
|
||||
async def database_connect(_):
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
|
||||
|
||||
@subscribers_shutdown.append
|
||||
async def database_disconnect(_):
|
||||
database = get_database()
|
||||
await database.disconnect()
|
||||
|
||||
187
server/reflector/db/calendar_events.py
Normal file
187
server/reflector/db/calendar_events.py
Normal file
@@ -0,0 +1,187 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
calendar_events = sa.Table(
|
||||
"calendar_event",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE", name="fk_calendar_event_room_id"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("ics_uid", sa.Text, nullable=False),
|
||||
sa.Column("title", sa.Text),
|
||||
sa.Column("description", sa.Text),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", JSONB),
|
||||
sa.Column("location", sa.Text),
|
||||
sa.Column("ics_raw_data", sa.Text),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("is_deleted", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
sa.Index("idx_calendar_event_room_start", "room_id", "start_time"),
|
||||
sa.Index(
|
||||
"idx_calendar_event_deleted",
|
||||
"is_deleted",
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class CalendarEvent(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
room_id: str
|
||||
ics_uid: str
|
||||
title: str | None = None
|
||||
description: str | None = None
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
attendees: list[dict[str, Any]] | None = None
|
||||
location: str | None = None
|
||||
ics_raw_data: str | None = None
|
||||
last_synced: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
is_deleted: bool = False
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class CalendarEventController:
|
||||
async def get_by_room(
|
||||
self,
|
||||
room_id: str,
|
||||
include_deleted: bool = False,
|
||||
start_after: datetime | None = None,
|
||||
end_before: datetime | None = None,
|
||||
) -> list[CalendarEvent]:
|
||||
query = calendar_events.select().where(calendar_events.c.room_id == room_id)
|
||||
|
||||
if not include_deleted:
|
||||
query = query.where(calendar_events.c.is_deleted == False)
|
||||
|
||||
if start_after:
|
||||
query = query.where(calendar_events.c.start_time >= start_after)
|
||||
|
||||
if end_before:
|
||||
query = query.where(calendar_events.c.end_time <= end_before)
|
||||
|
||||
query = query.order_by(calendar_events.c.start_time.asc())
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_upcoming(
|
||||
self, room_id: str, minutes_ahead: int = 120
|
||||
) -> list[CalendarEvent]:
|
||||
"""Get upcoming events for a room within the specified minutes, including currently happening events."""
|
||||
now = datetime.now(timezone.utc)
|
||||
future_time = now + timedelta(minutes=minutes_ahead)
|
||||
|
||||
query = (
|
||||
calendar_events.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.start_time <= future_time,
|
||||
calendar_events.c.end_time >= now,
|
||||
)
|
||||
)
|
||||
.order_by(calendar_events.c.start_time.asc())
|
||||
)
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_by_id(self, event_id: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(calendar_events.c.id == event_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def get_by_ics_uid(self, room_id: str, ics_uid: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.ics_uid == ics_uid,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def upsert(self, event: CalendarEvent) -> CalendarEvent:
|
||||
existing = await self.get_by_ics_uid(event.room_id, event.ics_uid)
|
||||
|
||||
if existing:
|
||||
event.id = existing.id
|
||||
event.created_at = existing.created_at
|
||||
event.updated_at = datetime.now(timezone.utc)
|
||||
|
||||
query = (
|
||||
calendar_events.update()
|
||||
.where(calendar_events.c.id == existing.id)
|
||||
.values(**event.model_dump())
|
||||
)
|
||||
else:
|
||||
query = calendar_events.insert().values(**event.model_dump())
|
||||
|
||||
await get_database().execute(query)
|
||||
return event
|
||||
|
||||
async def soft_delete_missing(
|
||||
self, room_id: str, current_ics_uids: list[str]
|
||||
) -> int:
|
||||
"""Soft delete future events that are no longer in the calendar."""
|
||||
now = datetime.now(timezone.utc)
|
||||
|
||||
select_query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
|
||||
to_delete = await get_database().fetch_all(select_query)
|
||||
delete_count = len(to_delete)
|
||||
|
||||
if delete_count > 0:
|
||||
update_query = (
|
||||
calendar_events.update()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
.values(is_deleted=True, updated_at=now)
|
||||
)
|
||||
|
||||
await get_database().execute(update_query)
|
||||
|
||||
return delete_count
|
||||
|
||||
async def delete_by_room(self, room_id: str) -> int:
|
||||
query = calendar_events.delete().where(calendar_events.c.room_id == room_id)
|
||||
result = await get_database().execute(query)
|
||||
return result.rowcount
|
||||
|
||||
|
||||
calendar_events_controller = CalendarEventController()
|
||||
@@ -1,11 +1,11 @@
|
||||
from datetime import datetime
|
||||
from typing import Literal
|
||||
from typing import Any, Literal
|
||||
|
||||
import sqlalchemy as sa
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.db.rooms import Room
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
@@ -16,10 +16,14 @@ meetings = sa.Table(
|
||||
sa.Column("room_name", sa.String),
|
||||
sa.Column("room_url", sa.String),
|
||||
sa.Column("host_room_url", sa.String),
|
||||
sa.Column("start_date", sa.DateTime),
|
||||
sa.Column("end_date", sa.DateTime),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("room_id", sa.String),
|
||||
sa.Column("start_date", sa.DateTime(timezone=True)),
|
||||
sa.Column("end_date", sa.DateTime(timezone=True)),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE"),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
|
||||
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
|
||||
@@ -41,17 +45,33 @@ meetings = sa.Table(
|
||||
nullable=False,
|
||||
server_default=sa.true(),
|
||||
),
|
||||
sa.Column(
|
||||
"calendar_event_id",
|
||||
sa.String,
|
||||
sa.ForeignKey(
|
||||
"calendar_event.id",
|
||||
ondelete="SET NULL",
|
||||
name="fk_meeting_calendar_event_id",
|
||||
),
|
||||
),
|
||||
sa.Column("calendar_metadata", JSONB),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index("idx_meeting_calendar_event", "calendar_event_id"),
|
||||
)
|
||||
|
||||
meeting_consent = sa.Table(
|
||||
"meeting_consent",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
||||
sa.Column(
|
||||
"meeting_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||
sa.Column("consent_timestamp", sa.DateTime, nullable=False),
|
||||
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
||||
)
|
||||
|
||||
|
||||
@@ -70,8 +90,7 @@ class Meeting(BaseModel):
|
||||
host_room_url: str
|
||||
start_date: datetime
|
||||
end_date: datetime
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_id: str | None
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
@@ -79,6 +98,9 @@ class Meeting(BaseModel):
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
num_clients: int = 0
|
||||
is_active: bool = True
|
||||
calendar_event_id: str | None = None
|
||||
calendar_metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class MeetingController:
|
||||
@@ -90,12 +112,10 @@ class MeetingController:
|
||||
host_room_url: str,
|
||||
start_date: datetime,
|
||||
end_date: datetime,
|
||||
user_id: str,
|
||||
room: Room,
|
||||
calendar_event_id: str | None = None,
|
||||
calendar_metadata: dict[str, Any] | None = None,
|
||||
):
|
||||
"""
|
||||
Create a new meeting
|
||||
"""
|
||||
meeting = Meeting(
|
||||
id=id,
|
||||
room_name=room_name,
|
||||
@@ -103,41 +123,46 @@ class MeetingController:
|
||||
host_room_url=host_room_url,
|
||||
start_date=start_date,
|
||||
end_date=end_date,
|
||||
user_id=user_id,
|
||||
room_id=room.id,
|
||||
is_locked=room.is_locked,
|
||||
room_mode=room.room_mode,
|
||||
recording_type=room.recording_type,
|
||||
recording_trigger=room.recording_trigger,
|
||||
calendar_event_id=calendar_event_id,
|
||||
calendar_metadata=calendar_metadata,
|
||||
)
|
||||
query = meetings.insert().values(**meeting.model_dump())
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
return meeting
|
||||
|
||||
async def get_all_active(self) -> list[Meeting]:
|
||||
"""
|
||||
Get active meetings.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.is_active)
|
||||
return await database.fetch_all(query)
|
||||
return await get_database().fetch_all(query)
|
||||
|
||||
async def get_by_room_name(
|
||||
self,
|
||||
room_name: str,
|
||||
) -> Meeting:
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by room name.
|
||||
For backward compatibility, returns the most recent meeting.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.room_name == room_name)
|
||||
result = await database.fetch_one(query)
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(meetings.c.room_name == room_name)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting:
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting | None:
|
||||
"""
|
||||
Get latest active meeting for a room.
|
||||
For backward compatibility, returns the most recent active meeting.
|
||||
"""
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
@@ -151,42 +176,68 @@ class MeetingController:
|
||||
)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_all_active_for_room(
|
||||
self, room: Room, current_time: datetime
|
||||
) -> list[Meeting]:
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Meeting(**result) for result in results]
|
||||
|
||||
async def get_active_by_calendar_event(
|
||||
self, room: Room, calendar_event_id: str, current_time: datetime
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get active meeting for a specific calendar event.
|
||||
"""
|
||||
query = meetings.select().where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.calendar_event_id == calendar_event_id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by id
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Meeting:
|
||||
"""
|
||||
Get a meeting by ID for HTTP request.
|
||||
|
||||
If not found, it will raise a 404 error.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
result = await database.fetch_one(query)
|
||||
async def get_by_calendar_event(self, calendar_event_id: str) -> Meeting | None:
|
||||
query = meetings.select().where(
|
||||
meetings.c.calendar_event_id == calendar_event_id
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
|
||||
meeting = Meeting(**result)
|
||||
if result["user_id"] != user_id:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def update_meeting(self, meeting_id: str, **kwargs):
|
||||
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
|
||||
|
||||
class MeetingConsentController:
|
||||
@@ -194,7 +245,7 @@ class MeetingConsentController:
|
||||
query = meeting_consent.select().where(
|
||||
meeting_consent.c.meeting_id == meeting_id
|
||||
)
|
||||
results = await database.fetch_all(query)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [MeetingConsent(**result) for result in results]
|
||||
|
||||
async def get_by_meeting_and_user(
|
||||
@@ -205,13 +256,12 @@ class MeetingConsentController:
|
||||
meeting_consent.c.meeting_id == meeting_id,
|
||||
meeting_consent.c.user_id == user_id,
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if result is None:
|
||||
return None
|
||||
return MeetingConsent(**result) if result else None
|
||||
return MeetingConsent(**result)
|
||||
|
||||
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
|
||||
"""Create new consent or update existing one for authenticated users"""
|
||||
if consent.user_id:
|
||||
# For authenticated users, check if consent already exists
|
||||
# not transactional but we're ok with that; the consents ain't deleted anyways
|
||||
@@ -227,14 +277,14 @@ class MeetingConsentController:
|
||||
consent_timestamp=consent.consent_timestamp,
|
||||
)
|
||||
)
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
|
||||
existing.consent_given = consent.consent_given
|
||||
existing.consent_timestamp = consent.consent_timestamp
|
||||
return existing
|
||||
|
||||
query = meeting_consent.insert().values(**consent.model_dump())
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
return consent
|
||||
|
||||
async def has_any_denial(self, meeting_id: str) -> bool:
|
||||
@@ -243,7 +293,7 @@ class MeetingConsentController:
|
||||
meeting_consent.c.meeting_id == meeting_id,
|
||||
meeting_consent.c.consent_given.is_(False),
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
return result is not None
|
||||
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ from typing import Literal
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
recordings = sa.Table(
|
||||
@@ -13,7 +13,7 @@ recordings = sa.Table(
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("bucket_name", sa.String, nullable=False),
|
||||
sa.Column("object_key", sa.String, nullable=False),
|
||||
sa.Column("recorded_at", sa.DateTime, nullable=False),
|
||||
sa.Column("recorded_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column(
|
||||
"status",
|
||||
sa.String,
|
||||
@@ -37,12 +37,12 @@ class Recording(BaseModel):
|
||||
class RecordingController:
|
||||
async def create(self, recording: Recording):
|
||||
query = recordings.insert().values(**recording.model_dump())
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
return recording
|
||||
|
||||
async def get_by_id(self, id: str) -> Recording:
|
||||
query = recordings.select().where(recordings.c.id == id)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
return Recording(**result) if result else None
|
||||
|
||||
async def get_by_object_key(self, bucket_name: str, object_key: str) -> Recording:
|
||||
@@ -50,8 +50,12 @@ class RecordingController:
|
||||
recordings.c.bucket_name == bucket_name,
|
||||
recordings.c.object_key == object_key,
|
||||
)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
return Recording(**result) if result else None
|
||||
|
||||
async def remove_by_id(self, id: str) -> None:
|
||||
query = recordings.delete().where(recordings.c.id == id)
|
||||
await get_database().execute(query)
|
||||
|
||||
|
||||
recordings_controller = RecordingController()
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from datetime import datetime
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import IntegrityError
|
||||
from typing import Literal
|
||||
|
||||
@@ -7,7 +8,7 @@ from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.sql import false, or_
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
rooms = sqlalchemy.Table(
|
||||
@@ -16,7 +17,7 @@ rooms = sqlalchemy.Table(
|
||||
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
||||
sqlalchemy.Column("name", sqlalchemy.String, nullable=False, unique=True),
|
||||
sqlalchemy.Column("user_id", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime, nullable=False),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime(timezone=True), nullable=False),
|
||||
sqlalchemy.Column(
|
||||
"zulip_auto_post", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
@@ -40,7 +41,17 @@ rooms = sqlalchemy.Table(
|
||||
sqlalchemy.Column(
|
||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("ics_url", sqlalchemy.Text),
|
||||
sqlalchemy.Column("ics_fetch_interval", sqlalchemy.Integer, server_default="300"),
|
||||
sqlalchemy.Column(
|
||||
"ics_enabled", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("ics_last_sync", sqlalchemy.DateTime(timezone=True)),
|
||||
sqlalchemy.Column("ics_last_etag", sqlalchemy.Text),
|
||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
|
||||
)
|
||||
|
||||
|
||||
@@ -48,7 +59,7 @@ class Room(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
name: str
|
||||
user_id: str
|
||||
created_at: datetime = Field(default_factory=datetime.utcnow)
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
zulip_auto_post: bool = False
|
||||
zulip_stream: str = ""
|
||||
zulip_topic: str = ""
|
||||
@@ -59,6 +70,13 @@ class Room(BaseModel):
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
is_shared: bool = False
|
||||
webhook_url: str | None = None
|
||||
webhook_secret: str | None = None
|
||||
ics_url: str | None = None
|
||||
ics_fetch_interval: int = 300
|
||||
ics_enabled: bool = False
|
||||
ics_last_sync: datetime | None = None
|
||||
ics_last_etag: str | None = None
|
||||
|
||||
|
||||
class RoomController:
|
||||
@@ -92,7 +110,7 @@ class RoomController:
|
||||
if return_query:
|
||||
return query
|
||||
|
||||
results = await database.fetch_all(query)
|
||||
results = await get_database().fetch_all(query)
|
||||
return results
|
||||
|
||||
async def add(
|
||||
@@ -107,10 +125,18 @@ class RoomController:
|
||||
recording_type: str,
|
||||
recording_trigger: str,
|
||||
is_shared: bool,
|
||||
webhook_url: str = "",
|
||||
webhook_secret: str = "",
|
||||
ics_url: str | None = None,
|
||||
ics_fetch_interval: int = 300,
|
||||
ics_enabled: bool = False,
|
||||
):
|
||||
"""
|
||||
Add a new room
|
||||
"""
|
||||
if webhook_url and not webhook_secret:
|
||||
webhook_secret = secrets.token_urlsafe(32)
|
||||
|
||||
room = Room(
|
||||
name=name,
|
||||
user_id=user_id,
|
||||
@@ -122,10 +148,15 @@ class RoomController:
|
||||
recording_type=recording_type,
|
||||
recording_trigger=recording_trigger,
|
||||
is_shared=is_shared,
|
||||
webhook_url=webhook_url,
|
||||
webhook_secret=webhook_secret,
|
||||
ics_url=ics_url,
|
||||
ics_fetch_interval=ics_fetch_interval,
|
||||
ics_enabled=ics_enabled,
|
||||
)
|
||||
query = rooms.insert().values(**room.model_dump())
|
||||
try:
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
except IntegrityError:
|
||||
raise HTTPException(status_code=400, detail="Room name is not unique")
|
||||
return room
|
||||
@@ -134,9 +165,12 @@ class RoomController:
|
||||
"""
|
||||
Update a room fields with key/values in values
|
||||
"""
|
||||
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||
|
||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||
try:
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
except IntegrityError:
|
||||
raise HTTPException(status_code=400, detail="Room name is not unique")
|
||||
|
||||
@@ -151,7 +185,7 @@ class RoomController:
|
||||
query = rooms.select().where(rooms.c.id == room_id)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Room(**result)
|
||||
@@ -163,7 +197,7 @@ class RoomController:
|
||||
query = rooms.select().where(rooms.c.name == room_name)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(rooms.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Room(**result)
|
||||
@@ -175,7 +209,7 @@ class RoomController:
|
||||
If not found, it will raise a 404 error.
|
||||
"""
|
||||
query = rooms.select().where(rooms.c.id == meeting_id)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
@@ -183,6 +217,13 @@ class RoomController:
|
||||
|
||||
return room
|
||||
|
||||
async def get_ics_enabled(self) -> list[Room]:
|
||||
query = rooms.select().where(
|
||||
rooms.c.ics_enabled == True, rooms.c.ics_url != None
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Room(**result) for result in results]
|
||||
|
||||
async def remove_by_id(
|
||||
self,
|
||||
room_id: str,
|
||||
@@ -197,7 +238,7 @@ class RoomController:
|
||||
if user_id is not None and room.user_id != user_id:
|
||||
return
|
||||
query = rooms.delete().where(rooms.c.id == room_id)
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
|
||||
|
||||
rooms_controller = RoomController()
|
||||
|
||||
478
server/reflector/db/search.py
Normal file
478
server/reflector/db/search.py
Normal file
@@ -0,0 +1,478 @@
|
||||
"""Search functionality for transcripts and other entities."""
|
||||
|
||||
import itertools
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from io import StringIO
|
||||
from typing import Annotated, Any, Dict, Iterator
|
||||
|
||||
import sqlalchemy
|
||||
import webvtt
|
||||
from databases.interfaces import Record as DbRecord
|
||||
from fastapi import HTTPException
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
NonNegativeFloat,
|
||||
NonNegativeInt,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
constr,
|
||||
field_serializer,
|
||||
)
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.db.rooms import rooms
|
||||
from reflector.db.transcripts import SourceKind, TranscriptStatus, transcripts
|
||||
from reflector.db.utils import is_postgresql
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||
|
||||
DEFAULT_SEARCH_LIMIT = 20
|
||||
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||
DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||
|
||||
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||
SearchOffsetBase = Annotated[int, Field(ge=0)]
|
||||
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||
|
||||
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||
search_query_adapter = TypeAdapter(SearchQuery)
|
||||
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||
SearchOffset = Annotated[
|
||||
SearchOffsetBase, Field(description="Number of results to skip")
|
||||
]
|
||||
SearchTotal = Annotated[
|
||||
SearchTotalBase, Field(description="Total number of search results")
|
||||
]
|
||||
|
||||
WEBVTT_SPEC_HEADER = "WEBVTT"
|
||||
|
||||
WebVTTContent = Annotated[
|
||||
str,
|
||||
Field(min_length=len(WEBVTT_SPEC_HEADER), description="WebVTT content"),
|
||||
]
|
||||
|
||||
|
||||
class WebVTTProcessor:
|
||||
"""Stateless processor for WebVTT content operations."""
|
||||
|
||||
@staticmethod
|
||||
def parse(raw_content: str) -> WebVTTContent:
|
||||
"""Parse WebVTT content and return it as a string."""
|
||||
if not raw_content.startswith(WEBVTT_SPEC_HEADER):
|
||||
raise ValueError(f"Invalid WebVTT content, no header {WEBVTT_SPEC_HEADER}")
|
||||
return raw_content
|
||||
|
||||
@staticmethod
|
||||
def extract_text(webvtt_content: WebVTTContent) -> str:
|
||||
"""Extract plain text from WebVTT content using webvtt library."""
|
||||
try:
|
||||
buffer = StringIO(webvtt_content)
|
||||
vtt = webvtt.read_buffer(buffer)
|
||||
return " ".join(caption.text for caption in vtt if caption.text)
|
||||
except webvtt.errors.MalformedFileError as e:
|
||||
logger.warning(f"Malformed WebVTT content: {e}")
|
||||
return ""
|
||||
except (UnicodeDecodeError, ValueError) as e:
|
||||
logger.warning(f"Failed to decode WebVTT content: {e}")
|
||||
return ""
|
||||
except AttributeError as e:
|
||||
logger.error(
|
||||
f"WebVTT parsing error - unexpected format: {e}", exc_info=True
|
||||
)
|
||||
return ""
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error parsing WebVTT: {e}", exc_info=True)
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def generate_snippets(
|
||||
webvtt_content: WebVTTContent,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from WebVTT content."""
|
||||
return SnippetGenerator.generate(
|
||||
WebVTTProcessor.extract_text(webvtt_content),
|
||||
query,
|
||||
max_snippets=max_snippets,
|
||||
)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class SnippetCandidate:
|
||||
"""Represents a candidate snippet with its position."""
|
||||
|
||||
_text: str
|
||||
start: NonNegativeInt
|
||||
_original_text_length: int
|
||||
|
||||
@property
|
||||
def end(self) -> NonNegativeInt:
|
||||
"""Calculate end position from start and raw text length."""
|
||||
return self.start + len(self._text)
|
||||
|
||||
def text(self) -> str:
|
||||
"""Get display text with ellipses added if needed."""
|
||||
result = self._text.strip()
|
||||
if self.start > 0:
|
||||
result = "..." + result
|
||||
if self.end < self._original_text_length:
|
||||
result = result + "..."
|
||||
return result
|
||||
|
||||
|
||||
class SearchParameters(BaseModel):
|
||||
"""Validated search parameters for full-text search."""
|
||||
|
||||
query_text: SearchQuery | None = None
|
||||
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||
offset: SearchOffset = 0
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
source_kind: SourceKind | None = None
|
||||
from_datetime: datetime | None = None
|
||||
to_datetime: datetime | None = None
|
||||
|
||||
|
||||
class SearchResultDB(BaseModel):
|
||||
"""Intermediate model for validating raw database results."""
|
||||
|
||||
id: str = Field(..., min_length=1)
|
||||
created_at: datetime
|
||||
status: str = Field(..., min_length=1)
|
||||
duration: float | None = Field(None, ge=0)
|
||||
user_id: str | None = None
|
||||
title: str | None = None
|
||||
source_kind: SourceKind
|
||||
room_id: str | None = None
|
||||
rank: float = Field(..., ge=0, le=1)
|
||||
|
||||
|
||||
class SearchResult(BaseModel):
|
||||
"""Public search result model with computed fields."""
|
||||
|
||||
id: str = Field(..., min_length=1)
|
||||
title: str | None = None
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_name: str | None = None
|
||||
source_kind: SourceKind
|
||||
created_at: datetime
|
||||
status: TranscriptStatus = Field(..., min_length=1)
|
||||
rank: float = Field(..., ge=0, le=1)
|
||||
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
|
||||
search_snippets: list[str] = Field(
|
||||
description="Text snippets around search matches"
|
||||
)
|
||||
total_match_count: NonNegativeInt = Field(
|
||||
default=0, description="Total number of matches found in the transcript"
|
||||
)
|
||||
|
||||
@field_serializer("created_at", when_used="json")
|
||||
def serialize_datetime(self, dt: datetime) -> str:
|
||||
if dt.tzinfo is None:
|
||||
return dt.isoformat() + "Z"
|
||||
return dt.isoformat()
|
||||
|
||||
|
||||
class SnippetGenerator:
|
||||
"""Stateless generator for text snippets and match operations."""
|
||||
|
||||
@staticmethod
|
||||
def find_all_matches(text: str, query: str) -> Iterator[int]:
|
||||
"""Generate all match positions for a query in text."""
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in find_all_matches")
|
||||
return
|
||||
if not query:
|
||||
logger.warning("Empty query for search text in find_all_matches")
|
||||
return
|
||||
|
||||
text_lower = text.lower()
|
||||
query_lower = query.lower()
|
||||
start = 0
|
||||
prev_start = start
|
||||
while (pos := text_lower.find(query_lower, start)) != -1:
|
||||
yield pos
|
||||
start = pos + len(query_lower)
|
||||
if start <= prev_start:
|
||||
raise ValueError("panic! find_all_matches is not incremental")
|
||||
prev_start = start
|
||||
|
||||
@staticmethod
|
||||
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||
"""Count total number of matches for a query in text."""
|
||||
ZERO = NonNegativeInt(0)
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in count_matches")
|
||||
return ZERO
|
||||
assert query is not None
|
||||
return NonNegativeInt(
|
||||
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_snippet(
|
||||
text: str, match_pos: int, max_length: int = DEFAULT_SNIPPET_MAX_LENGTH
|
||||
) -> SnippetCandidate:
|
||||
"""Create a snippet from a match position."""
|
||||
snippet_start = NonNegativeInt(max(0, match_pos - SNIPPET_CONTEXT_LENGTH))
|
||||
snippet_end = min(len(text), match_pos + max_length - SNIPPET_CONTEXT_LENGTH)
|
||||
|
||||
snippet_text = text[snippet_start:snippet_end]
|
||||
|
||||
return SnippetCandidate(
|
||||
_text=snippet_text, start=snippet_start, _original_text_length=len(text)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def filter_non_overlapping(
|
||||
candidates: Iterator[SnippetCandidate],
|
||||
) -> Iterator[str]:
|
||||
"""Filter out overlapping snippets and return only display text."""
|
||||
last_end = 0
|
||||
for candidate in candidates:
|
||||
display_text = candidate.text()
|
||||
# it means that next overlapping snippets simply don't get included
|
||||
# it's fine as simplistic logic and users probably won't care much because they already have their search results just fin
|
||||
if candidate.start >= last_end and display_text:
|
||||
yield display_text
|
||||
last_end = candidate.end
|
||||
|
||||
@staticmethod
|
||||
def generate(
|
||||
text: str,
|
||||
query: SearchQuery,
|
||||
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from text."""
|
||||
assert query is not None
|
||||
if not text:
|
||||
logger.warning("Empty text for generate_snippets")
|
||||
return []
|
||||
|
||||
candidates = (
|
||||
SnippetGenerator.create_snippet(text, pos, max_length)
|
||||
for pos in SnippetGenerator.find_all_matches(text, query)
|
||||
)
|
||||
filtered = SnippetGenerator.filter_non_overlapping(candidates)
|
||||
snippets = list(itertools.islice(filtered, max_snippets))
|
||||
|
||||
# Fallback to first word search if no full matches
|
||||
# it's another assumption: proper snippet logic generation is quite complicated and tied to db logic, so simplification is used here
|
||||
if not snippets and " " in query:
|
||||
first_word = query.split()[0]
|
||||
return SnippetGenerator.generate(text, first_word, max_length, max_snippets)
|
||||
|
||||
return snippets
|
||||
|
||||
@staticmethod
|
||||
def from_summary(
|
||||
summary: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from summary text."""
|
||||
return SnippetGenerator.generate(summary, query, max_snippets=max_snippets)
|
||||
|
||||
@staticmethod
|
||||
def combine_sources(
|
||||
summary: NonEmptyString | None,
|
||||
webvtt: WebVTTContent | None,
|
||||
query: SearchQuery,
|
||||
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> tuple[list[str], NonNegativeInt]:
|
||||
"""Combine snippets from multiple sources and return total match count.
|
||||
|
||||
Returns (snippets, total_match_count) tuple.
|
||||
|
||||
snippets can be empty for real in case of e.g. title match
|
||||
"""
|
||||
|
||||
assert (
|
||||
summary is not None or webvtt is not None
|
||||
), "At least one source must be present"
|
||||
|
||||
webvtt_matches = 0
|
||||
summary_matches = 0
|
||||
|
||||
if webvtt:
|
||||
webvtt_text = WebVTTProcessor.extract_text(webvtt)
|
||||
webvtt_matches = SnippetGenerator.count_matches(webvtt_text, query)
|
||||
|
||||
if summary:
|
||||
summary_matches = SnippetGenerator.count_matches(summary, query)
|
||||
|
||||
total_matches = NonNegativeInt(webvtt_matches + summary_matches)
|
||||
|
||||
summary_snippets = (
|
||||
SnippetGenerator.from_summary(summary, query) if summary else []
|
||||
)
|
||||
|
||||
if len(summary_snippets) >= max_total:
|
||||
return summary_snippets[:max_total], total_matches
|
||||
|
||||
remaining = max_total - len(summary_snippets)
|
||||
webvtt_snippets = (
|
||||
WebVTTProcessor.generate_snippets(webvtt, query, remaining)
|
||||
if webvtt
|
||||
else []
|
||||
)
|
||||
|
||||
return summary_snippets + webvtt_snippets, total_matches
|
||||
|
||||
|
||||
class SearchController:
|
||||
"""Controller for search operations across different entities."""
|
||||
|
||||
@classmethod
|
||||
async def search_transcripts(
|
||||
cls, params: SearchParameters
|
||||
) -> tuple[list[SearchResult], int]:
|
||||
"""
|
||||
Full-text search for transcripts using PostgreSQL tsvector.
|
||||
Returns (results, total_count).
|
||||
"""
|
||||
|
||||
if not is_postgresql():
|
||||
logger.warning(
|
||||
"Full-text search requires PostgreSQL. Returning empty results."
|
||||
)
|
||||
return [], 0
|
||||
|
||||
base_columns = [
|
||||
transcripts.c.id,
|
||||
transcripts.c.title,
|
||||
transcripts.c.created_at,
|
||||
transcripts.c.duration,
|
||||
transcripts.c.status,
|
||||
transcripts.c.user_id,
|
||||
transcripts.c.room_id,
|
||||
transcripts.c.source_kind,
|
||||
transcripts.c.webvtt,
|
||||
transcripts.c.long_summary,
|
||||
sqlalchemy.case(
|
||||
(
|
||||
transcripts.c.room_id.isnot(None) & rooms.c.id.is_(None),
|
||||
"Deleted Room",
|
||||
),
|
||||
else_=rooms.c.name,
|
||||
).label("room_name"),
|
||||
]
|
||||
search_query = None
|
||||
if params.query_text is not None:
|
||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||
"english", params.query_text
|
||||
)
|
||||
rank_column = sqlalchemy.func.ts_rank(
|
||||
transcripts.c.search_vector_en,
|
||||
search_query,
|
||||
32, # normalization flag: rank/(rank+1) for 0-1 range
|
||||
).label("rank")
|
||||
else:
|
||||
rank_column = sqlalchemy.cast(1.0, sqlalchemy.Float).label("rank")
|
||||
|
||||
columns = base_columns + [rank_column]
|
||||
base_query = sqlalchemy.select(columns).select_from(
|
||||
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
|
||||
)
|
||||
|
||||
if params.query_text is not None:
|
||||
# because already initialized based on params.query_text presence above
|
||||
assert search_query is not None
|
||||
base_query = base_query.where(
|
||||
transcripts.c.search_vector_en.op("@@")(search_query)
|
||||
)
|
||||
|
||||
if params.user_id:
|
||||
base_query = base_query.where(
|
||||
sqlalchemy.or_(
|
||||
transcripts.c.user_id == params.user_id, rooms.c.is_shared
|
||||
)
|
||||
)
|
||||
else:
|
||||
base_query = base_query.where(rooms.c.is_shared)
|
||||
if params.room_id:
|
||||
base_query = base_query.where(transcripts.c.room_id == params.room_id)
|
||||
if params.source_kind:
|
||||
base_query = base_query.where(
|
||||
transcripts.c.source_kind == params.source_kind
|
||||
)
|
||||
if params.from_datetime:
|
||||
base_query = base_query.where(
|
||||
transcripts.c.created_at >= params.from_datetime
|
||||
)
|
||||
if params.to_datetime:
|
||||
base_query = base_query.where(
|
||||
transcripts.c.created_at <= params.to_datetime
|
||||
)
|
||||
|
||||
if params.query_text is not None:
|
||||
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||
else:
|
||||
order_by = sqlalchemy.desc(transcripts.c.created_at)
|
||||
|
||||
query = base_query.order_by(order_by).limit(params.limit).offset(params.offset)
|
||||
|
||||
rs = await get_database().fetch_all(query)
|
||||
|
||||
count_query = sqlalchemy.select([sqlalchemy.func.count()]).select_from(
|
||||
base_query.alias("search_results")
|
||||
)
|
||||
total = await get_database().fetch_val(count_query)
|
||||
|
||||
def _process_result(r: DbRecord) -> SearchResult:
|
||||
r_dict: Dict[str, Any] = dict(r)
|
||||
|
||||
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||
webvtt: WebVTTContent | None
|
||||
if webvtt_raw:
|
||||
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||
else:
|
||||
webvtt = None
|
||||
|
||||
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||
room_name: str | None = r_dict.pop("room_name", None)
|
||||
db_result = SearchResultDB.model_validate(r_dict)
|
||||
|
||||
at_least_one_source = webvtt is not None or long_summary is not None
|
||||
has_query = params.query_text is not None
|
||||
snippets, total_match_count = (
|
||||
SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
)
|
||||
if has_query and at_least_one_source
|
||||
else ([], 0)
|
||||
)
|
||||
|
||||
return SearchResult(
|
||||
**db_result.model_dump(),
|
||||
room_name=room_name,
|
||||
search_snippets=snippets,
|
||||
total_match_count=total_match_count,
|
||||
)
|
||||
|
||||
try:
|
||||
results = [_process_result(r) for r in rs]
|
||||
except ValidationError as e:
|
||||
logger.error(f"Invalid search result data: {e}", exc_info=True)
|
||||
raise HTTPException(
|
||||
status_code=500, detail="Internal search result data consistency error"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing search results: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
return results, total
|
||||
|
||||
|
||||
search_controller = SearchController()
|
||||
webvtt_processor = WebVTTProcessor()
|
||||
snippet_generator = SnippetGenerator()
|
||||
@@ -3,7 +3,7 @@ import json
|
||||
import os
|
||||
import shutil
|
||||
from contextlib import asynccontextmanager
|
||||
from datetime import datetime, timezone
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
|
||||
@@ -11,13 +11,19 @@ import sqlalchemy
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_serializer
|
||||
from sqlalchemy import Enum
|
||||
from sqlalchemy.dialects.postgresql import TSVECTOR
|
||||
from sqlalchemy.sql import false, or_
|
||||
|
||||
from reflector.db import database, metadata
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.rooms import rooms
|
||||
from reflector.db.utils import is_postgresql
|
||||
from reflector.logger import logger
|
||||
from reflector.processors.types import Word as ProcessorWord
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.storage import get_recordings_storage, get_transcripts_storage
|
||||
from reflector.utils import generate_uuid4
|
||||
from reflector.utils.webvtt import topics_to_webvtt
|
||||
|
||||
|
||||
class SourceKind(enum.StrEnum):
|
||||
@@ -34,7 +40,7 @@ transcripts = sqlalchemy.Table(
|
||||
sqlalchemy.Column("status", sqlalchemy.String),
|
||||
sqlalchemy.Column("locked", sqlalchemy.Boolean),
|
||||
sqlalchemy.Column("duration", sqlalchemy.Float),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime(timezone=True)),
|
||||
sqlalchemy.Column("title", sqlalchemy.String),
|
||||
sqlalchemy.Column("short_summary", sqlalchemy.String),
|
||||
sqlalchemy.Column("long_summary", sqlalchemy.String),
|
||||
@@ -76,19 +82,55 @@ transcripts = sqlalchemy.Table(
|
||||
# same field could've been in recording/meeting, and it's maybe even ok to dupe it at need
|
||||
sqlalchemy.Column("audio_deleted", sqlalchemy.Boolean),
|
||||
sqlalchemy.Column("room_id", sqlalchemy.String),
|
||||
sqlalchemy.Column("webvtt", sqlalchemy.Text),
|
||||
sqlalchemy.Index("idx_transcript_recording_id", "recording_id"),
|
||||
sqlalchemy.Index("idx_transcript_user_id", "user_id"),
|
||||
sqlalchemy.Index("idx_transcript_created_at", "created_at"),
|
||||
sqlalchemy.Index("idx_transcript_user_id_recording_id", "user_id", "recording_id"),
|
||||
sqlalchemy.Index("idx_transcript_room_id", "room_id"),
|
||||
sqlalchemy.Index("idx_transcript_source_kind", "source_kind"),
|
||||
sqlalchemy.Index("idx_transcript_room_id_created_at", "room_id", "created_at"),
|
||||
)
|
||||
|
||||
# Add PostgreSQL-specific full-text search column
|
||||
# This matches the migration in migrations/versions/116b2f287eab_add_full_text_search.py
|
||||
if is_postgresql():
|
||||
transcripts.append_column(
|
||||
sqlalchemy.Column(
|
||||
"search_vector_en",
|
||||
TSVECTOR,
|
||||
sqlalchemy.Computed(
|
||||
"setweight(to_tsvector('english', coalesce(title, '')), 'A') || "
|
||||
"setweight(to_tsvector('english', coalesce(long_summary, '')), 'B') || "
|
||||
"setweight(to_tsvector('english', coalesce(webvtt, '')), 'C')",
|
||||
persisted=True,
|
||||
),
|
||||
)
|
||||
)
|
||||
# Add GIN index for the search vector
|
||||
transcripts.append_constraint(
|
||||
sqlalchemy.Index(
|
||||
"idx_transcript_search_vector_en",
|
||||
"search_vector_en",
|
||||
postgresql_using="gin",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def generate_transcript_name() -> str:
|
||||
now = datetime.now(timezone.utc)
|
||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
|
||||
TranscriptStatus = Literal[
|
||||
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||
]
|
||||
|
||||
|
||||
class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class AudioWaveform(BaseModel):
|
||||
data: list[float]
|
||||
|
||||
@@ -147,14 +189,18 @@ class TranscriptParticipant(BaseModel):
|
||||
|
||||
|
||||
class Transcript(BaseModel):
|
||||
"""Full transcript model with all fields."""
|
||||
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
user_id: str | None = None
|
||||
name: str = Field(default_factory=generate_transcript_name)
|
||||
status: str = "idle"
|
||||
locked: bool = False
|
||||
status: TranscriptStatus = "idle"
|
||||
duration: float = 0
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
title: str | None = None
|
||||
source_kind: SourceKind
|
||||
room_id: str | None = None
|
||||
locked: bool = False
|
||||
short_summary: str | None = None
|
||||
long_summary: str | None = None
|
||||
topics: list[TranscriptTopic] = []
|
||||
@@ -168,9 +214,8 @@ class Transcript(BaseModel):
|
||||
meeting_id: str | None = None
|
||||
recording_id: str | None = None
|
||||
zulip_message_id: int | None = None
|
||||
source_kind: SourceKind
|
||||
audio_deleted: bool | None = None
|
||||
room_id: str | None = None
|
||||
webvtt: str | None = None
|
||||
|
||||
@field_serializer("created_at", when_used="json")
|
||||
def serialize_datetime(self, dt: datetime) -> str:
|
||||
@@ -271,10 +316,12 @@ class Transcript(BaseModel):
|
||||
# we need to create an url to be used for diarization
|
||||
# we can't use the audio_mp3_filename because it's not accessible
|
||||
# from the diarization processor
|
||||
from datetime import timedelta
|
||||
|
||||
from reflector.app import app
|
||||
from reflector.views.transcripts import create_access_token
|
||||
# TODO don't import app in db
|
||||
from reflector.app import app # noqa: PLC0415
|
||||
|
||||
# TODO a util + don''t import views in db
|
||||
from reflector.views.transcripts import create_access_token # noqa: PLC0415
|
||||
|
||||
path = app.url_path_for(
|
||||
"transcript_get_audio_mp3",
|
||||
@@ -335,7 +382,6 @@ class TranscriptController:
|
||||
- `room_id`: filter transcripts by room ID
|
||||
- `search_term`: filter transcripts by search term
|
||||
"""
|
||||
from reflector.db.rooms import rooms
|
||||
|
||||
query = transcripts.select().join(
|
||||
rooms, transcripts.c.room_id == rooms.c.id, isouter=True
|
||||
@@ -386,7 +432,7 @@ class TranscriptController:
|
||||
if return_query:
|
||||
return query
|
||||
|
||||
results = await database.fetch_all(query)
|
||||
results = await get_database().fetch_all(query)
|
||||
return results
|
||||
|
||||
async def get_by_id(self, transcript_id: str, **kwargs) -> Transcript | None:
|
||||
@@ -396,7 +442,7 @@ class TranscriptController:
|
||||
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Transcript(**result)
|
||||
@@ -410,7 +456,7 @@ class TranscriptController:
|
||||
query = transcripts.select().where(transcripts.c.recording_id == recording_id)
|
||||
if "user_id" in kwargs:
|
||||
query = query.where(transcripts.c.user_id == kwargs["user_id"])
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Transcript(**result)
|
||||
@@ -428,7 +474,7 @@ class TranscriptController:
|
||||
if order_by.startswith("-"):
|
||||
field = field.desc()
|
||||
query = query.order_by(field)
|
||||
results = await database.fetch_all(query)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Transcript(**result) for result in results]
|
||||
|
||||
async def get_by_id_for_http(
|
||||
@@ -446,7 +492,7 @@ class TranscriptController:
|
||||
to determine if the user can access the transcript.
|
||||
"""
|
||||
query = transcripts.select().where(transcripts.c.id == transcript_id)
|
||||
result = await database.fetch_one(query)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
|
||||
@@ -499,23 +545,52 @@ class TranscriptController:
|
||||
room_id=room_id,
|
||||
)
|
||||
query = transcripts.insert().values(**transcript.model_dump())
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
return transcript
|
||||
|
||||
async def update(self, transcript: Transcript, values: dict, mutate=True):
|
||||
# TODO investigate why mutate= is used. it's used in one place currently, maybe because of ORM field updates.
|
||||
# using mutate=True is discouraged
|
||||
async def update(
|
||||
self, transcript: Transcript, values: dict, mutate=False
|
||||
) -> Transcript:
|
||||
"""
|
||||
Update a transcript fields with key/values in values
|
||||
Update a transcript fields with key/values in values.
|
||||
Returns a copy of the transcript with updated values.
|
||||
"""
|
||||
values = TranscriptController._handle_topics_update(values)
|
||||
|
||||
query = (
|
||||
transcripts.update()
|
||||
.where(transcripts.c.id == transcript.id)
|
||||
.values(**values)
|
||||
)
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
if mutate:
|
||||
for key, value in values.items():
|
||||
setattr(transcript, key, value)
|
||||
|
||||
updated_transcript = transcript.model_copy(update=values)
|
||||
return updated_transcript
|
||||
|
||||
@staticmethod
|
||||
def _handle_topics_update(values: dict) -> dict:
|
||||
"""Auto-update WebVTT when topics are updated."""
|
||||
|
||||
if values.get("webvtt") is not None:
|
||||
logger.warn("trying to update read-only webvtt column")
|
||||
pass
|
||||
|
||||
topics_data = values.get("topics")
|
||||
if topics_data is None:
|
||||
return values
|
||||
|
||||
return {
|
||||
**values,
|
||||
"webvtt": topics_to_webvtt(
|
||||
[TranscriptTopic(**topic_dict) for topic_dict in topics_data]
|
||||
),
|
||||
}
|
||||
|
||||
async def remove_by_id(
|
||||
self,
|
||||
transcript_id: str,
|
||||
@@ -529,23 +604,68 @@ class TranscriptController:
|
||||
return
|
||||
if user_id is not None and transcript.user_id != user_id:
|
||||
return
|
||||
if transcript.audio_location == "storage" and not transcript.audio_deleted:
|
||||
try:
|
||||
await get_transcripts_storage().delete_file(
|
||||
transcript.storage_audio_path
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete transcript audio from storage",
|
||||
exc_info=e,
|
||||
transcript_id=transcript.id,
|
||||
)
|
||||
transcript.unlink()
|
||||
if transcript.recording_id:
|
||||
try:
|
||||
recording = await recordings_controller.get_by_id(
|
||||
transcript.recording_id
|
||||
)
|
||||
if recording:
|
||||
try:
|
||||
await get_recordings_storage().delete_file(recording.object_key)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete recording object from S3",
|
||||
exc_info=e,
|
||||
recording_id=transcript.recording_id,
|
||||
)
|
||||
await recordings_controller.remove_by_id(transcript.recording_id)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to delete recording row",
|
||||
exc_info=e,
|
||||
recording_id=transcript.recording_id,
|
||||
)
|
||||
query = transcripts.delete().where(transcripts.c.id == transcript_id)
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
|
||||
async def remove_by_recording_id(self, recording_id: str):
|
||||
"""
|
||||
Remove a transcript by recording_id
|
||||
"""
|
||||
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
|
||||
await database.execute(query)
|
||||
await get_database().execute(query)
|
||||
|
||||
@staticmethod
|
||||
def user_can_mutate(transcript: Transcript, user_id: str | None) -> bool:
|
||||
"""
|
||||
Returns True if the given user is allowed to modify the transcript.
|
||||
|
||||
Policy:
|
||||
- Anonymous transcripts (user_id is None) cannot be modified via API
|
||||
- Only the owner (matching user_id) can modify their transcript
|
||||
"""
|
||||
if transcript.user_id is None:
|
||||
return False
|
||||
return user_id and transcript.user_id == user_id
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
"""
|
||||
A context manager for database transaction
|
||||
"""
|
||||
async with database.transaction(isolation="serializable"):
|
||||
async with get_database().transaction(isolation="serializable"):
|
||||
yield
|
||||
|
||||
async def append_event(
|
||||
@@ -558,11 +678,7 @@ class TranscriptController:
|
||||
Append an event to a transcript
|
||||
"""
|
||||
resp = transcript.add_event(event=event, data=data)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"events": transcript.events_dump()},
|
||||
mutate=False,
|
||||
)
|
||||
await self.update(transcript, {"events": transcript.events_dump()})
|
||||
return resp
|
||||
|
||||
async def upsert_topic(
|
||||
@@ -574,11 +690,7 @@ class TranscriptController:
|
||||
Upsert topics to a transcript
|
||||
"""
|
||||
transcript.upsert_topic(topic)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"topics": transcript.topics_dump()},
|
||||
mutate=False,
|
||||
)
|
||||
await self.update(transcript, {"topics": transcript.topics_dump()})
|
||||
|
||||
async def move_mp3_to_storage(self, transcript: Transcript):
|
||||
"""
|
||||
@@ -603,7 +715,8 @@ class TranscriptController:
|
||||
)
|
||||
|
||||
# indicate on the transcript that the audio is now on storage
|
||||
await self.update(transcript, {"audio_location": "storage"})
|
||||
# mutates transcript argument
|
||||
await self.update(transcript, {"audio_location": "storage"}, mutate=True)
|
||||
|
||||
# unlink the local file
|
||||
transcript.audio_mp3_filename.unlink(missing_ok=True)
|
||||
@@ -627,11 +740,7 @@ class TranscriptController:
|
||||
Add/update a participant to a transcript
|
||||
"""
|
||||
result = transcript.upsert_participant(participant)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"participants": transcript.participants_dump()},
|
||||
mutate=False,
|
||||
)
|
||||
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||
return result
|
||||
|
||||
async def delete_participant(
|
||||
@@ -643,11 +752,29 @@ class TranscriptController:
|
||||
Delete a participant from a transcript
|
||||
"""
|
||||
transcript.delete_participant(participant_id)
|
||||
await self.update(
|
||||
transcript,
|
||||
{"participants": transcript.participants_dump()},
|
||||
mutate=False,
|
||||
)
|
||||
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||
|
||||
async def set_status(
|
||||
self, transcript_id: str, status: TranscriptStatus
|
||||
) -> TranscriptEvent | None:
|
||||
"""
|
||||
Update the status of a transcript
|
||||
|
||||
Will add an event STATUS + update the status field of transcript
|
||||
"""
|
||||
async with self.transaction():
|
||||
transcript = await self.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
if transcript.status == status:
|
||||
return
|
||||
resp = await self.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await self.update(transcript, {"status": status})
|
||||
return resp
|
||||
|
||||
|
||||
transcripts_controller = TranscriptController()
|
||||
|
||||
90
server/reflector/db/user_api_keys.py
Normal file
90
server/reflector/db/user_api_keys.py
Normal file
@@ -0,0 +1,90 @@
|
||||
import hmac
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from hashlib import sha256
|
||||
|
||||
import sqlalchemy
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.settings import settings
|
||||
from reflector.utils import generate_uuid4
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
user_api_keys = sqlalchemy.Table(
|
||||
"user_api_key",
|
||||
metadata,
|
||||
sqlalchemy.Column("id", sqlalchemy.String, primary_key=True),
|
||||
sqlalchemy.Column("user_id", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("key_hash", sqlalchemy.String, nullable=False),
|
||||
sqlalchemy.Column("name", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("created_at", sqlalchemy.DateTime(timezone=True), nullable=False),
|
||||
sqlalchemy.Index("idx_user_api_key_hash", "key_hash", unique=True),
|
||||
sqlalchemy.Index("idx_user_api_key_user_id", "user_id"),
|
||||
)
|
||||
|
||||
|
||||
class UserApiKey(BaseModel):
|
||||
id: NonEmptyString = Field(default_factory=generate_uuid4)
|
||||
user_id: NonEmptyString
|
||||
key_hash: NonEmptyString
|
||||
name: NonEmptyString | None = None
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class UserApiKeyController:
|
||||
@staticmethod
|
||||
def generate_key() -> NonEmptyString:
|
||||
return secrets.token_urlsafe(48)
|
||||
|
||||
@staticmethod
|
||||
def hash_key(key: NonEmptyString) -> str:
|
||||
return hmac.new(
|
||||
settings.SECRET_KEY.encode(), key.encode(), digestmod=sha256
|
||||
).hexdigest()
|
||||
|
||||
@classmethod
|
||||
async def create_key(
|
||||
cls,
|
||||
user_id: NonEmptyString,
|
||||
name: NonEmptyString | None = None,
|
||||
) -> tuple[UserApiKey, NonEmptyString]:
|
||||
plaintext = cls.generate_key()
|
||||
api_key = UserApiKey(
|
||||
user_id=user_id,
|
||||
key_hash=cls.hash_key(plaintext),
|
||||
name=name,
|
||||
)
|
||||
query = user_api_keys.insert().values(**api_key.model_dump())
|
||||
await get_database().execute(query)
|
||||
return api_key, plaintext
|
||||
|
||||
@classmethod
|
||||
async def verify_key(cls, plaintext_key: NonEmptyString) -> UserApiKey | None:
|
||||
key_hash = cls.hash_key(plaintext_key)
|
||||
query = user_api_keys.select().where(
|
||||
user_api_keys.c.key_hash == key_hash,
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
return UserApiKey(**result) if result else None
|
||||
|
||||
@staticmethod
|
||||
async def list_by_user_id(user_id: NonEmptyString) -> list[UserApiKey]:
|
||||
query = (
|
||||
user_api_keys.select()
|
||||
.where(user_api_keys.c.user_id == user_id)
|
||||
.order_by(user_api_keys.c.created_at.desc())
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [UserApiKey(**r) for r in results]
|
||||
|
||||
@staticmethod
|
||||
async def delete_key(key_id: NonEmptyString, user_id: NonEmptyString) -> bool:
|
||||
query = user_api_keys.delete().where(
|
||||
(user_api_keys.c.id == key_id) & (user_api_keys.c.user_id == user_id)
|
||||
)
|
||||
result = await get_database().execute(query)
|
||||
return result > 0
|
||||
|
||||
|
||||
user_api_keys_controller = UserApiKeyController()
|
||||
9
server/reflector/db/utils.py
Normal file
9
server/reflector/db/utils.py
Normal file
@@ -0,0 +1,9 @@
|
||||
"""Database utility functions."""
|
||||
|
||||
from reflector.db import get_database
|
||||
|
||||
|
||||
def is_postgresql() -> bool:
|
||||
return get_database().url.scheme and get_database().url.scheme.startswith(
|
||||
"postgresql"
|
||||
)
|
||||
444
server/reflector/pipelines/main_file_pipeline.py
Normal file
444
server/reflector/pipelines/main_file_pipeline.py
Normal file
@@ -0,0 +1,444 @@
|
||||
"""
|
||||
File-based processing pipeline
|
||||
==============================
|
||||
|
||||
Optimized pipeline for processing complete audio/video files.
|
||||
Uses parallel processing for transcription, diarization, and waveform generation.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
import structlog
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
Transcript,
|
||||
TranscriptStatus,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
)
|
||||
from reflector.processors.audio_waveform_processor import AudioWaveformProcessor
|
||||
from reflector.processors.file_diarization import FileDiarizationInput
|
||||
from reflector.processors.file_diarization_auto import FileDiarizationAutoProcessor
|
||||
from reflector.processors.file_transcript import FileTranscriptInput
|
||||
from reflector.processors.file_transcript_auto import FileTranscriptAutoProcessor
|
||||
from reflector.processors.transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerInput,
|
||||
TranscriptDiarizationAssemblerProcessor,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
DiarizationSegment,
|
||||
TitleSummary,
|
||||
)
|
||||
from reflector.processors.types import (
|
||||
Transcript as TranscriptType,
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.worker.webhook import send_transcript_webhook
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
"""Empty pipeline for processors that need a pipeline reference"""
|
||||
|
||||
def __init__(self, logger: structlog.BoundLogger):
|
||||
self.logger = logger
|
||||
|
||||
def get_pref(self, k, d=None):
|
||||
return d
|
||||
|
||||
async def emit(self, event):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineMainFile(PipelineMainBase):
|
||||
"""
|
||||
Optimized file processing pipeline.
|
||||
Processes complete audio/video files with parallel execution.
|
||||
"""
|
||||
|
||||
logger: structlog.BoundLogger = None
|
||||
empty_pipeline = None
|
||||
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__(transcript_id=transcript_id)
|
||||
self.logger = logger.bind(transcript_id=self.transcript_id)
|
||||
self.empty_pipeline = EmptyPipeline(logger=self.logger)
|
||||
|
||||
def _handle_gather_exceptions(self, results: list, operation: str) -> None:
|
||||
"""Handle exceptions from asyncio.gather with return_exceptions=True"""
|
||||
for i, result in enumerate(results):
|
||||
if not isinstance(result, Exception):
|
||||
continue
|
||||
self.logger.error(
|
||||
f"Error in {operation} (task {i}): {result}",
|
||||
transcript_id=self.transcript_id,
|
||||
exc_info=result,
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def process(self, file_path: Path):
|
||||
"""Main entry point for file processing"""
|
||||
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Clear transcript as we're going to regenerate everything
|
||||
async with self.transaction():
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
},
|
||||
)
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
# Upload for processing
|
||||
audio_url = await self.upload_audio(audio_path, transcript)
|
||||
|
||||
# Run parallel processing
|
||||
await self.run_parallel_processing(
|
||||
audio_path,
|
||||
audio_url,
|
||||
transcript.source_language,
|
||||
transcript.target_language,
|
||||
)
|
||||
|
||||
self.logger.info("File pipeline complete")
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def extract_and_write_audio(
|
||||
self, file_path: Path, transcript: Transcript
|
||||
) -> Path:
|
||||
"""Extract audio from video if needed and write to transcript location as MP3"""
|
||||
self.logger.info(f"Processing audio file: {file_path}")
|
||||
|
||||
# Check if it's already audio-only
|
||||
container = av.open(str(file_path))
|
||||
has_video = len(container.streams.video) > 0
|
||||
container.close()
|
||||
|
||||
# Use AudioFileWriterProcessor to write MP3 to transcript location
|
||||
mp3_writer = AudioFileWriterProcessor(
|
||||
path=transcript.audio_mp3_filename,
|
||||
on_duration=self.on_duration,
|
||||
)
|
||||
|
||||
# Process audio frames and write to transcript location
|
||||
input_container = av.open(str(file_path))
|
||||
for frame in input_container.decode(audio=0):
|
||||
await mp3_writer.push(frame)
|
||||
|
||||
await mp3_writer.flush()
|
||||
input_container.close()
|
||||
|
||||
if has_video:
|
||||
self.logger.info(
|
||||
f"Extracted audio from video and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
else:
|
||||
self.logger.info(
|
||||
f"Converted audio file and saved to {transcript.audio_mp3_filename}"
|
||||
)
|
||||
|
||||
return transcript.audio_mp3_filename
|
||||
|
||||
async def upload_audio(self, audio_path: Path, transcript: Transcript) -> str:
|
||||
"""Upload audio to storage for processing"""
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
if not storage:
|
||||
raise Exception(
|
||||
"Storage backend required for file processing. Configure TRANSCRIPT_STORAGE_* settings."
|
||||
)
|
||||
|
||||
self.logger.info("Uploading audio to storage")
|
||||
|
||||
with open(audio_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
storage_path = f"file_pipeline/{transcript.id}/audio.mp3"
|
||||
await storage.put_file(storage_path, audio_data)
|
||||
|
||||
audio_url = await storage.get_file_url(storage_path)
|
||||
|
||||
self.logger.info(f"Audio uploaded to {audio_url}")
|
||||
return audio_url
|
||||
|
||||
async def run_parallel_processing(
|
||||
self,
|
||||
audio_path: Path,
|
||||
audio_url: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
):
|
||||
"""Coordinate parallel processing of transcription, diarization, and waveform"""
|
||||
self.logger.info(
|
||||
"Starting parallel processing", transcript_id=self.transcript_id
|
||||
)
|
||||
|
||||
# Phase 1: Parallel processing of independent tasks
|
||||
transcription_task = self.transcribe_file(audio_url, source_language)
|
||||
diarization_task = self.diarize_file(audio_url)
|
||||
waveform_task = self.generate_waveform(audio_path)
|
||||
|
||||
results = await asyncio.gather(
|
||||
transcription_task, diarization_task, waveform_task, return_exceptions=True
|
||||
)
|
||||
|
||||
transcript_result = results[0]
|
||||
diarization_result = results[1]
|
||||
|
||||
# Handle errors - raise any exception that occurred
|
||||
self._handle_gather_exceptions(results, "parallel processing")
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
raise result
|
||||
|
||||
# Phase 2: Assemble transcript with diarization
|
||||
self.logger.info(
|
||||
"Assembling transcript with diarization", transcript_id=self.transcript_id
|
||||
)
|
||||
processor = TranscriptDiarizationAssemblerProcessor()
|
||||
input_data = TranscriptDiarizationAssemblerInput(
|
||||
transcript=transcript_result, diarization=diarization_result or []
|
||||
)
|
||||
|
||||
# Store result for retrieval
|
||||
diarized_transcript: Transcript | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal diarized_transcript
|
||||
diarized_transcript = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not diarized_transcript:
|
||||
raise ValueError("No diarized transcript captured")
|
||||
|
||||
# Phase 3: Generate topics from diarized transcript
|
||||
self.logger.info("Generating topics", transcript_id=self.transcript_id)
|
||||
topics = await self.detect_topics(diarized_transcript, target_language)
|
||||
|
||||
# Phase 4: Generate title and summaries in parallel
|
||||
self.logger.info(
|
||||
"Generating title and summaries", transcript_id=self.transcript_id
|
||||
)
|
||||
results = await asyncio.gather(
|
||||
self.generate_title(topics),
|
||||
self.generate_summaries(topics),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
self._handle_gather_exceptions(results, "title and summary generation")
|
||||
|
||||
async def transcribe_file(self, audio_url: str, language: str) -> TranscriptType:
|
||||
"""Transcribe complete file"""
|
||||
processor = FileTranscriptAutoProcessor()
|
||||
input_data = FileTranscriptInput(audio_url=audio_url, language=language)
|
||||
|
||||
# Store result for retrieval
|
||||
result: TranscriptType | None = None
|
||||
|
||||
async def capture_result(transcript):
|
||||
nonlocal result
|
||||
result = transcript
|
||||
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
|
||||
if not result:
|
||||
raise ValueError("No transcript captured")
|
||||
|
||||
return result
|
||||
|
||||
async def diarize_file(self, audio_url: str) -> list[DiarizationSegment] | None:
|
||||
"""Get diarization for file"""
|
||||
if not settings.DIARIZATION_BACKEND:
|
||||
self.logger.info("Diarization disabled")
|
||||
return None
|
||||
|
||||
processor = FileDiarizationAutoProcessor()
|
||||
input_data = FileDiarizationInput(audio_url=audio_url)
|
||||
|
||||
# Store result for retrieval
|
||||
result = None
|
||||
|
||||
async def capture_result(diarization_output):
|
||||
nonlocal result
|
||||
result = diarization_output.diarization
|
||||
|
||||
try:
|
||||
processor.on(capture_result)
|
||||
await processor.push(input_data)
|
||||
await processor.flush()
|
||||
return result
|
||||
except Exception as e:
|
||||
self.logger.error(f"Diarization failed: {e}")
|
||||
return None
|
||||
|
||||
async def generate_waveform(self, audio_path: Path):
|
||||
"""Generate and save waveform"""
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
processor = AudioWaveformProcessor(
|
||||
audio_path=audio_path,
|
||||
waveform_path=transcript.audio_waveform_filename,
|
||||
on_waveform=self.on_waveform,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def detect_topics(
|
||||
self, transcript: TranscriptType, target_language: str
|
||||
) -> list[TitleSummary]:
|
||||
"""Detect topics from complete transcript"""
|
||||
chunk_size = 300
|
||||
topics: list[TitleSummary] = []
|
||||
|
||||
async def on_topic(topic: TitleSummary):
|
||||
topics.append(topic)
|
||||
return await self.on_topic(topic)
|
||||
|
||||
topic_detector = TranscriptTopicDetectorProcessor(callback=on_topic)
|
||||
topic_detector.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for i in range(0, len(transcript.words), chunk_size):
|
||||
chunk_words = transcript.words[i : i + chunk_size]
|
||||
if not chunk_words:
|
||||
continue
|
||||
|
||||
chunk_transcript = TranscriptType(
|
||||
words=chunk_words, translation=transcript.translation
|
||||
)
|
||||
|
||||
await topic_detector.push(chunk_transcript)
|
||||
|
||||
await topic_detector.flush()
|
||||
return topics
|
||||
|
||||
async def generate_title(self, topics: list[TitleSummary]):
|
||||
"""Generate title from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for title generation")
|
||||
return
|
||||
|
||||
processor = TranscriptFinalTitleProcessor(callback=self.on_title)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
async def generate_summaries(self, topics: list[TitleSummary]):
|
||||
"""Generate long and short summaries from topics"""
|
||||
if not topics:
|
||||
self.logger.warning("No topics for summary generation")
|
||||
return
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
processor = TranscriptFinalSummaryProcessor(
|
||||
transcript=transcript,
|
||||
callback=self.on_long_summary,
|
||||
on_short_summary=self.on_short_summary,
|
||||
)
|
||||
processor.set_pipeline(self.empty_pipeline)
|
||||
|
||||
for topic in topics:
|
||||
await processor.push(topic)
|
||||
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_send_webhook_if_needed(*, transcript_id: str):
|
||||
"""Send webhook if this is a room recording with webhook configured"""
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
return
|
||||
|
||||
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||
if room and room.webhook_url:
|
||||
logger.info(
|
||||
"Dispatching webhook",
|
||||
transcript_id=transcript_id,
|
||||
room_id=room.id,
|
||||
webhook_url=room.webhook_url,
|
||||
)
|
||||
send_transcript_webhook.delay(
|
||||
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||
)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_file_process(*, transcript_id: str):
|
||||
"""Celery task for file pipeline processing"""
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
await pipeline.process(audio_file)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"File pipeline failed for transcript {transcript_id}: {type(e).__name__}: {str(e)}",
|
||||
exc_info=True,
|
||||
transcript_id=transcript_id,
|
||||
)
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
# Run post-processing chain: consent cleanup -> zulip -> webhook
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
@@ -14,12 +14,15 @@ It is directly linked to our data model.
|
||||
import asyncio
|
||||
import functools
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Generic
|
||||
|
||||
import av
|
||||
import boto3
|
||||
from celery import chord, current_task, group, shared_task
|
||||
from pydantic import BaseModel
|
||||
from structlog import BoundLogger as Logger
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
@@ -29,16 +32,18 @@ from reflector.db.transcripts import (
|
||||
TranscriptFinalLongSummary,
|
||||
TranscriptFinalShortSummary,
|
||||
TranscriptFinalTitle,
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
TranscriptTopic,
|
||||
TranscriptWaveform,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.runner import PipelineRunner
|
||||
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioChunkerAutoProcessor,
|
||||
AudioDiarizationAutoProcessor,
|
||||
AudioDownscaleProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
@@ -65,30 +70,6 @@ from reflector.zulip import (
|
||||
)
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
from reflector.db import database
|
||||
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def broadcast_to_sockets(func):
|
||||
"""
|
||||
Decorator to broadcast transcript event to websockets
|
||||
@@ -104,6 +85,20 @@ def broadcast_to_sockets(func):
|
||||
message=resp.model_dump(mode="json"),
|
||||
)
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(self.transcript_id)
|
||||
if transcript and transcript.user_id:
|
||||
# Emit only relevant events to the user room to avoid noisy updates.
|
||||
# Allowed: STATUS, FINAL_TITLE, DURATION. All are prefixed with TRANSCRIPT_
|
||||
allowed_user_events = {"STATUS", "FINAL_TITLE", "DURATION"}
|
||||
if resp.event in allowed_user_events:
|
||||
await self.ws_manager.send_json(
|
||||
room_id=f"user:{transcript.user_id}",
|
||||
message={
|
||||
"event": f"TRANSCRIPT_{resp.event}",
|
||||
"data": {"id": self.transcript_id, **resp.data},
|
||||
},
|
||||
)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@@ -144,16 +139,19 @@ class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class PipelineMainBase(PipelineRunner):
|
||||
transcript_id: str
|
||||
ws_room_id: str | None = None
|
||||
ws_manager: WebsocketManager | None = None
|
||||
|
||||
def prepare(self):
|
||||
# prepare websocket
|
||||
class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]):
|
||||
def __init__(self, transcript_id: str):
|
||||
super().__init__()
|
||||
self._lock = asyncio.Lock()
|
||||
self.transcript_id = transcript_id
|
||||
self.ws_room_id = f"ts:{self.transcript_id}"
|
||||
self.ws_manager = get_ws_manager()
|
||||
self._ws_manager = None
|
||||
|
||||
@property
|
||||
def ws_manager(self) -> WebsocketManager:
|
||||
if self._ws_manager is None:
|
||||
self._ws_manager = get_ws_manager()
|
||||
return self._ws_manager
|
||||
|
||||
async def get_transcript(self) -> Transcript:
|
||||
# fetch the transcript
|
||||
@@ -164,7 +162,11 @@ class PipelineMainBase(PipelineRunner):
|
||||
raise Exception("Transcript not found")
|
||||
return result
|
||||
|
||||
def get_transcript_topics(self, transcript: Transcript) -> list[TranscriptTopic]:
|
||||
@staticmethod
|
||||
def wrap_transcript_topics(
|
||||
topics: list[TranscriptTopic],
|
||||
) -> list[TitleSummaryWithIdProcessorType]:
|
||||
# transformation to a pipe-supported format
|
||||
return [
|
||||
TitleSummaryWithIdProcessorType(
|
||||
id=topic.id,
|
||||
@@ -174,12 +176,19 @@ class PipelineMainBase(PipelineRunner):
|
||||
duration=topic.duration,
|
||||
transcript=TranscriptProcessorType(words=topic.words),
|
||||
)
|
||||
for topic in transcript.topics
|
||||
for topic in topics
|
||||
]
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async def lock_transaction(self):
|
||||
# This lock is to prevent multiple processor starting adding
|
||||
# into event array at the same time
|
||||
async with self._lock:
|
||||
yield
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async with self.lock_transaction():
|
||||
async with transcripts_controller.transaction():
|
||||
yield
|
||||
|
||||
@@ -188,14 +197,14 @@ class PipelineMainBase(PipelineRunner):
|
||||
# if it's the first part, update the status of the transcript
|
||||
# but do not set the ended status yet.
|
||||
if isinstance(self, PipelineMainLive):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"started": "recording",
|
||||
"push": "recording",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
}
|
||||
elif isinstance(self, PipelineMainFinalSummaries):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"push": "processing",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
@@ -211,22 +220,8 @@ class PipelineMainBase(PipelineRunner):
|
||||
return
|
||||
|
||||
# when the status of the pipeline changes, update the transcript
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
if status == transcript.status:
|
||||
return
|
||||
resp = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"status": status,
|
||||
},
|
||||
)
|
||||
return resp
|
||||
async with self._lock:
|
||||
return await transcripts_controller.set_status(self.transcript_id, status)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_transcript(self, data):
|
||||
@@ -349,7 +344,6 @@ class PipelineMainLive(PipelineMainBase):
|
||||
async def create(self) -> Pipeline:
|
||||
# create a context for the whole rtc transaction
|
||||
# add a customised logger to the context
|
||||
self.prepare()
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
processors = [
|
||||
@@ -357,7 +351,8 @@ class PipelineMainLive(PipelineMainBase):
|
||||
path=transcript.audio_wav_filename,
|
||||
on_duration=self.on_duration,
|
||||
),
|
||||
AudioChunkerProcessor(),
|
||||
AudioDownscaleProcessor(),
|
||||
AudioChunkerAutoProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
@@ -370,6 +365,7 @@ class PipelineMainLive(PipelineMainBase):
|
||||
pipeline.set_pref("audio:target_language", transcript.target_language)
|
||||
pipeline.logger.bind(transcript_id=transcript.id)
|
||||
pipeline.logger.info("Pipeline main live created")
|
||||
pipeline.describe()
|
||||
|
||||
return pipeline
|
||||
|
||||
@@ -380,7 +376,7 @@ class PipelineMainLive(PipelineMainBase):
|
||||
pipeline_post(transcript_id=self.transcript_id)
|
||||
|
||||
|
||||
class PipelineMainDiarization(PipelineMainBase):
|
||||
class PipelineMainDiarization(PipelineMainBase[AudioDiarizationInput]):
|
||||
"""
|
||||
Diarize the audio and update topics
|
||||
"""
|
||||
@@ -388,7 +384,6 @@ class PipelineMainDiarization(PipelineMainBase):
|
||||
async def create(self) -> Pipeline:
|
||||
# create a context for the whole rtc transaction
|
||||
# add a customised logger to the context
|
||||
self.prepare()
|
||||
pipeline = Pipeline(
|
||||
AudioDiarizationAutoProcessor(callback=self.on_topic),
|
||||
)
|
||||
@@ -404,11 +399,10 @@ class PipelineMainDiarization(PipelineMainBase):
|
||||
pipeline.logger.info("Audio is local, skipping diarization")
|
||||
return
|
||||
|
||||
topics = self.get_transcript_topics(transcript)
|
||||
audio_url = await transcript.get_audio_url()
|
||||
audio_diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url,
|
||||
topics=topics,
|
||||
topics=self.wrap_transcript_topics(transcript.topics),
|
||||
)
|
||||
|
||||
# as tempting to use pipeline.push, prefer to use the runner
|
||||
@@ -421,7 +415,7 @@ class PipelineMainDiarization(PipelineMainBase):
|
||||
return pipeline
|
||||
|
||||
|
||||
class PipelineMainFromTopics(PipelineMainBase):
|
||||
class PipelineMainFromTopics(PipelineMainBase[TitleSummaryWithIdProcessorType]):
|
||||
"""
|
||||
Pseudo class for generating a pipeline from topics
|
||||
"""
|
||||
@@ -430,8 +424,6 @@ class PipelineMainFromTopics(PipelineMainBase):
|
||||
raise NotImplementedError
|
||||
|
||||
async def create(self) -> Pipeline:
|
||||
self.prepare()
|
||||
|
||||
# get transcript
|
||||
self._transcript = transcript = await self.get_transcript()
|
||||
|
||||
@@ -443,7 +435,7 @@ class PipelineMainFromTopics(PipelineMainBase):
|
||||
pipeline.logger.info(f"{self.__class__.__name__} pipeline created")
|
||||
|
||||
# push topics
|
||||
topics = self.get_transcript_topics(transcript)
|
||||
topics = PipelineMainBase.wrap_transcript_topics(transcript.topics)
|
||||
for topic in topics:
|
||||
await self.push(topic)
|
||||
|
||||
@@ -524,8 +516,6 @@ async def pipeline_convert_to_mp3(transcript: Transcript, logger: Logger):
|
||||
# Convert to mp3
|
||||
mp3_filename = transcript.audio_mp3_filename
|
||||
|
||||
import av
|
||||
|
||||
with av.open(wav_filename.as_posix()) as in_container:
|
||||
in_stream = in_container.streams.audio[0]
|
||||
with av.open(mp3_filename.as_posix(), "w") as out_container:
|
||||
@@ -604,7 +594,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
meeting.id
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get fetch consent: {e}")
|
||||
logger.error(f"Failed to get fetch consent: {e}", exc_info=e)
|
||||
consent_denied = True
|
||||
|
||||
if not consent_denied:
|
||||
@@ -627,7 +617,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
f"Deleted original Whereby recording: {recording.bucket_name}/{recording.object_key}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete Whereby recording: {e}")
|
||||
logger.error(f"Failed to delete Whereby recording: {e}", exc_info=e)
|
||||
|
||||
# non-transactional, files marked for deletion not actually deleted is possible
|
||||
await transcripts_controller.update(transcript, {"audio_deleted": True})
|
||||
@@ -640,7 +630,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
f"Deleted processed audio from storage: {transcript.storage_audio_path}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete processed audio: {e}")
|
||||
logger.error(f"Failed to delete processed audio: {e}", exc_info=e)
|
||||
|
||||
# 3. Delete local audio files
|
||||
try:
|
||||
@@ -649,7 +639,7 @@ async def cleanup_consent(transcript: Transcript, logger: Logger):
|
||||
if hasattr(transcript, "audio_wav_filename") and transcript.audio_wav_filename:
|
||||
transcript.audio_wav_filename.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete local audio files: {e}")
|
||||
logger.error(f"Failed to delete local audio files: {e}", exc_info=e)
|
||||
|
||||
logger.info("Consent cleanup done")
|
||||
|
||||
@@ -789,13 +779,11 @@ def pipeline_post(*, transcript_id: str):
|
||||
chain_final_summaries,
|
||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||
|
||||
chain.delay()
|
||||
return chain.delay()
|
||||
|
||||
|
||||
@get_transcript
|
||||
async def pipeline_process(transcript: Transcript, logger: Logger):
|
||||
import av
|
||||
|
||||
try:
|
||||
if transcript.audio_location == "storage":
|
||||
await transcripts_controller.download_mp3_from_storage(transcript)
|
||||
|
||||
@@ -16,21 +16,16 @@ During its lifecycle, it will emit the following status:
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from typing import Generic, TypeVar
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.processors import Pipeline
|
||||
|
||||
PipelineMessage = TypeVar("PipelineMessage")
|
||||
|
||||
class PipelineRunner(BaseModel):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
status: str = "idle"
|
||||
pipeline: Pipeline | None = None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
class PipelineRunner(Generic[PipelineMessage]):
|
||||
def __init__(self):
|
||||
self._task = None
|
||||
self._q_cmd = asyncio.Queue(maxsize=4096)
|
||||
self._ev_done = asyncio.Event()
|
||||
@@ -39,6 +34,8 @@ class PipelineRunner(BaseModel):
|
||||
runner=id(self),
|
||||
runner_cls=self.__class__.__name__,
|
||||
)
|
||||
self.status = "idle"
|
||||
self.pipeline: Pipeline | None = None
|
||||
|
||||
async def create(self) -> Pipeline:
|
||||
"""
|
||||
@@ -67,7 +64,7 @@ class PipelineRunner(BaseModel):
|
||||
coro = self.run()
|
||||
asyncio.run(coro)
|
||||
|
||||
async def push(self, data):
|
||||
async def push(self, data: PipelineMessage):
|
||||
"""
|
||||
Push data to the pipeline
|
||||
"""
|
||||
@@ -92,7 +89,11 @@ class PipelineRunner(BaseModel):
|
||||
pass
|
||||
|
||||
async def _add_cmd(
|
||||
self, cmd: str, data, max_retries: int = 3, retry_time_limit: int = 3
|
||||
self,
|
||||
cmd: str,
|
||||
data: PipelineMessage,
|
||||
max_retries: int = 3,
|
||||
retry_time_limit: int = 3,
|
||||
):
|
||||
"""
|
||||
Enqueue a command to be executed in the runner.
|
||||
@@ -143,7 +144,10 @@ class PipelineRunner(BaseModel):
|
||||
cmd, data = await self._q_cmd.get()
|
||||
func = getattr(self, f"cmd_{cmd.lower()}")
|
||||
if func:
|
||||
await func(data)
|
||||
if cmd.upper() == "FLUSH":
|
||||
await func()
|
||||
else:
|
||||
await func(data)
|
||||
else:
|
||||
raise Exception(f"Unknown command {cmd}")
|
||||
except Exception:
|
||||
@@ -152,13 +156,13 @@ class PipelineRunner(BaseModel):
|
||||
self._ev_done.set()
|
||||
raise
|
||||
|
||||
async def cmd_push(self, data):
|
||||
async def cmd_push(self, data: PipelineMessage):
|
||||
if self._is_first_push:
|
||||
await self._set_status("push")
|
||||
self._is_first_push = False
|
||||
await self.pipeline.push(data)
|
||||
|
||||
async def cmd_flush(self, data):
|
||||
async def cmd_flush(self):
|
||||
await self._set_status("flush")
|
||||
await self.pipeline.flush()
|
||||
await self._set_status("ended")
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||
@@ -11,6 +13,13 @@ from .base import ( # noqa: F401
|
||||
Processor,
|
||||
ThreadedProcessor,
|
||||
)
|
||||
from .file_diarization import FileDiarizationProcessor # noqa: F401
|
||||
from .file_diarization_auto import FileDiarizationAutoProcessor # noqa: F401
|
||||
from .file_transcript import FileTranscriptProcessor # noqa: F401
|
||||
from .file_transcript_auto import FileTranscriptAutoProcessor # noqa: F401
|
||||
from .transcript_diarization_assembler import (
|
||||
TranscriptDiarizationAssemblerProcessor, # noqa: F401
|
||||
)
|
||||
from .transcript_final_summary import TranscriptFinalSummaryProcessor # noqa: F401
|
||||
from .transcript_final_title import TranscriptFinalTitleProcessor # noqa: F401
|
||||
from .transcript_liner import TranscriptLinerProcessor # noqa: F401
|
||||
|
||||
@@ -1,28 +1,78 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from prometheus_client import Counter, Histogram
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
class AudioChunkerProcessor(Processor):
|
||||
"""
|
||||
Assemble audio frames into chunks
|
||||
Base class for assembling audio frames into chunks
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = list[av.AudioFrame]
|
||||
|
||||
def __init__(self, max_frames=256):
|
||||
super().__init__()
|
||||
m_chunk = Histogram(
|
||||
"audio_chunker",
|
||||
"Time spent in AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_call = Counter(
|
||||
"audio_chunker_call",
|
||||
"Number of calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_success = Counter(
|
||||
"audio_chunker_success",
|
||||
"Number of successful calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_failure = Counter(
|
||||
"audio_chunker_failure",
|
||||
"Number of failed calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
name = self.__class__.__name__
|
||||
self.m_chunk = self.m_chunk.labels(name)
|
||||
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.frames: list[av.AudioFrame] = []
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
await self.flush()
|
||||
"""Process incoming audio frame"""
|
||||
# Validate audio format on first frame
|
||||
if len(self.frames) == 0:
|
||||
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||
raise ValueError(
|
||||
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||
f"with {len(data.layout.channels)} channel(s). "
|
||||
f"Use AudioDownscaleProcessor before this processor."
|
||||
)
|
||||
|
||||
try:
|
||||
self.m_chunk_call.inc()
|
||||
with self.m_chunk.time():
|
||||
result = await self._chunk(data)
|
||||
self.m_chunk_success.inc()
|
||||
if result:
|
||||
await self.emit(result)
|
||||
except Exception:
|
||||
self.m_chunk_failure.inc()
|
||||
raise
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""
|
||||
Process audio frame and return chunk when ready.
|
||||
Subclasses should implement their chunking logic here.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
"""Flush any remaining frames when processing ends"""
|
||||
raise NotImplementedError
|
||||
|
||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.AUDIO_CHUNKER_BACKEND
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "AUDIO_CHUNKER_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||
"""
|
||||
|
||||
def __init__(self, max_frames=256, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
return frames_to_emit
|
||||
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||
298
server/reflector/processors/audio_chunker_silero.py
Normal file
298
server/reflector/processors/audio_chunker_silero.py
Normal file
@@ -0,0 +1,298 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
use_onnx=True,
|
||||
min_frames=2,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""Process audio frame and return chunk when ready"""
|
||||
self.frames.append(data)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
return await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return None
|
||||
|
||||
# Processing block with current buffer size
|
||||
print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return None
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return None
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
if len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
frame_index = speech_end // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)
|
||||
@@ -1,5 +1,10 @@
|
||||
from reflector.processors.base import Processor
|
||||
from reflector.processors.types import AudioDiarizationInput, TitleSummary, Word
|
||||
from reflector.processors.types import (
|
||||
AudioDiarizationInput,
|
||||
DiarizationSegment,
|
||||
TitleSummary,
|
||||
Word,
|
||||
)
|
||||
|
||||
|
||||
class AudioDiarizationProcessor(Processor):
|
||||
@@ -33,18 +38,21 @@ class AudioDiarizationProcessor(Processor):
|
||||
async def _diarize(self, data: AudioDiarizationInput):
|
||||
raise NotImplementedError
|
||||
|
||||
def assign_speaker(self, words: list[Word], diarization: list[dict]):
|
||||
self._diarization_remove_overlap(diarization)
|
||||
self._diarization_remove_segment_without_words(words, diarization)
|
||||
self._diarization_merge_same_speaker(words, diarization)
|
||||
self._diarization_assign_speaker(words, diarization)
|
||||
@classmethod
|
||||
def assign_speaker(cls, words: list[Word], diarization: list[DiarizationSegment]):
|
||||
cls._diarization_remove_overlap(diarization)
|
||||
cls._diarization_remove_segment_without_words(words, diarization)
|
||||
cls._diarization_merge_same_speaker(diarization)
|
||||
cls._diarization_assign_speaker(words, diarization)
|
||||
|
||||
def iter_words_from_topics(self, topics: TitleSummary):
|
||||
@staticmethod
|
||||
def iter_words_from_topics(topics: list[TitleSummary]):
|
||||
for topic in topics:
|
||||
for word in topic.transcript.words:
|
||||
yield word
|
||||
|
||||
def is_word_continuation(self, word_prev, word):
|
||||
@staticmethod
|
||||
def is_word_continuation(word_prev, word):
|
||||
"""
|
||||
Return True if the word is a continuation of the previous word
|
||||
by checking if the previous word is ending with a punctuation
|
||||
@@ -57,7 +65,8 @@ class AudioDiarizationProcessor(Processor):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _diarization_remove_overlap(self, diarization: list[dict]):
|
||||
@staticmethod
|
||||
def _diarization_remove_overlap(diarization: list[DiarizationSegment]):
|
||||
"""
|
||||
Remove overlap in diarization results
|
||||
|
||||
@@ -82,8 +91,9 @@ class AudioDiarizationProcessor(Processor):
|
||||
else:
|
||||
diarization_idx += 1
|
||||
|
||||
@staticmethod
|
||||
def _diarization_remove_segment_without_words(
|
||||
self, words: list[Word], diarization: list[dict]
|
||||
words: list[Word], diarization: list[DiarizationSegment]
|
||||
):
|
||||
"""
|
||||
Remove diarization segments without words
|
||||
@@ -112,9 +122,8 @@ class AudioDiarizationProcessor(Processor):
|
||||
else:
|
||||
diarization_idx += 1
|
||||
|
||||
def _diarization_merge_same_speaker(
|
||||
self, words: list[Word], diarization: list[dict]
|
||||
):
|
||||
@staticmethod
|
||||
def _diarization_merge_same_speaker(diarization: list[DiarizationSegment]):
|
||||
"""
|
||||
Merge diarization contigous segments with the same speaker
|
||||
|
||||
@@ -131,7 +140,10 @@ class AudioDiarizationProcessor(Processor):
|
||||
else:
|
||||
diarization_idx += 1
|
||||
|
||||
def _diarization_assign_speaker(self, words: list[Word], diarization: list[dict]):
|
||||
@classmethod
|
||||
def _diarization_assign_speaker(
|
||||
cls, words: list[Word], diarization: list[DiarizationSegment]
|
||||
):
|
||||
"""
|
||||
Assign speaker to words based on diarization
|
||||
|
||||
@@ -139,7 +151,7 @@ class AudioDiarizationProcessor(Processor):
|
||||
"""
|
||||
|
||||
word_idx = 0
|
||||
last_speaker = None
|
||||
last_speaker = 0
|
||||
for d in diarization:
|
||||
start = d["start"]
|
||||
end = d["end"]
|
||||
@@ -154,7 +166,7 @@ class AudioDiarizationProcessor(Processor):
|
||||
# If it's a continuation, assign with the last speaker
|
||||
is_continuation = False
|
||||
if word_idx > 0 and word_idx < len(words) - 1:
|
||||
is_continuation = self.is_word_continuation(
|
||||
is_continuation = cls.is_word_continuation(
|
||||
*words[word_idx - 1 : word_idx + 1]
|
||||
)
|
||||
if is_continuation:
|
||||
|
||||
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
74
server/reflector/processors/audio_diarization_pyannote.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
from reflector.processors.audio_diarization import AudioDiarizationProcessor
|
||||
from reflector.processors.audio_diarization_auto import AudioDiarizationAutoProcessor
|
||||
from reflector.processors.types import AudioDiarizationInput, DiarizationSegment
|
||||
|
||||
|
||||
class AudioDiarizationPyannoteProcessor(AudioDiarizationProcessor):
|
||||
"""Local diarization processor using pyannote.audio library"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "pyannote/speaker-diarization-3.1",
|
||||
pyannote_auth_token: str | None = None,
|
||||
device: str | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.model_name = model_name
|
||||
self.auth_token = pyannote_auth_token or os.environ.get("HF_TOKEN")
|
||||
self.device = device
|
||||
|
||||
if device is None:
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
self.logger.info(f"Loading pyannote diarization model: {self.model_name}")
|
||||
self.diarization_pipeline = Pipeline.from_pretrained(
|
||||
self.model_name, use_auth_token=self.auth_token
|
||||
)
|
||||
self.diarization_pipeline.to(torch.device(self.device))
|
||||
self.logger.info(f"Diarization model loaded on device: {self.device}")
|
||||
|
||||
async def _diarize(self, data: AudioDiarizationInput) -> list[DiarizationSegment]:
|
||||
try:
|
||||
# Load audio file (audio_url is assumed to be a local file path)
|
||||
self.logger.info(f"Loading local audio file: {data.audio_url}")
|
||||
waveform, sample_rate = torchaudio.load(data.audio_url)
|
||||
audio_input = {"waveform": waveform, "sample_rate": sample_rate}
|
||||
self.logger.info("Running speaker diarization")
|
||||
diarization = self.diarization_pipeline(audio_input)
|
||||
|
||||
# Convert pyannote diarization output to our format
|
||||
segments = []
|
||||
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
# Extract speaker number from label (e.g., "SPEAKER_00" -> 0)
|
||||
speaker_id = 0
|
||||
if speaker.startswith("SPEAKER_"):
|
||||
try:
|
||||
speaker_id = int(speaker.split("_")[-1])
|
||||
except (ValueError, IndexError):
|
||||
# Fallback to hash-based ID if parsing fails
|
||||
speaker_id = hash(speaker) % 1000
|
||||
|
||||
segments.append(
|
||||
{
|
||||
"start": round(segment.start, 3),
|
||||
"end": round(segment.end, 3),
|
||||
"speaker": speaker_id,
|
||||
}
|
||||
)
|
||||
|
||||
self.logger.info(f"Diarization completed with {len(segments)} segments")
|
||||
return segments
|
||||
|
||||
except Exception as e:
|
||||
self.logger.exception(f"Diarization failed: {e}")
|
||||
raise
|
||||
|
||||
|
||||
AudioDiarizationAutoProcessor.register("pyannote", AudioDiarizationPyannoteProcessor)
|
||||
60
server/reflector/processors/audio_downscale.py
Normal file
60
server/reflector/processors/audio_downscale.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioDownscaleProcessor(Processor):
|
||||
"""
|
||||
Downscale audio frames to 16kHz mono format
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = av.AudioFrame
|
||||
|
||||
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.target_rate = target_rate
|
||||
self.target_layout = target_layout
|
||||
self.resampler: Optional[AudioResampler] = None
|
||||
self.needs_resampling: Optional[bool] = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
if self.needs_resampling is None:
|
||||
self.needs_resampling = (
|
||||
data.sample_rate != self.target_rate
|
||||
or data.layout.name != self.target_layout
|
||||
)
|
||||
|
||||
if self.needs_resampling:
|
||||
self.resampler = AudioResampler(
|
||||
format="s16", layout=self.target_layout, rate=self.target_rate
|
||||
)
|
||||
|
||||
if not self.needs_resampling or not self.resampler:
|
||||
await self.emit(data)
|
||||
return
|
||||
|
||||
resampled_frames = self.resampler.resample(copy_frame(data))
|
||||
for resampled_frame in resampled_frames:
|
||||
await self.emit(resampled_frame)
|
||||
|
||||
async def _flush(self):
|
||||
if self.needs_resampling and self.resampler:
|
||||
final_frames = self.resampler.resample(None)
|
||||
for frame in final_frames:
|
||||
await self.emit(frame)
|
||||
@@ -16,37 +16,46 @@ class AudioMergeProcessor(Processor):
|
||||
INPUT_TYPE = list[av.AudioFrame]
|
||||
OUTPUT_TYPE = AudioFile
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def _push(self, data: list[av.AudioFrame]):
|
||||
if not data:
|
||||
return
|
||||
|
||||
# get audio information from first frame
|
||||
frame = data[0]
|
||||
channels = len(frame.layout.channels)
|
||||
sample_rate = frame.sample_rate
|
||||
sample_width = frame.format.bytes
|
||||
output_channels = len(frame.layout.channels)
|
||||
output_sample_rate = frame.sample_rate
|
||||
output_sample_width = frame.format.bytes
|
||||
|
||||
# create audio file
|
||||
uu = uuid4().hex
|
||||
fd = io.BytesIO()
|
||||
|
||||
# Use PyAV to write frames
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=sample_rate)
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = frame.layout.name
|
||||
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
|
||||
fd.seek(0)
|
||||
|
||||
# emit audio file
|
||||
audiofile = AudioFile(
|
||||
name=f"{monotonic_ns()}-{uu}.wav",
|
||||
fd=fd,
|
||||
sample_rate=sample_rate,
|
||||
channels=channels,
|
||||
sample_width=sample_width,
|
||||
sample_rate=output_sample_rate,
|
||||
channels=output_channels,
|
||||
sample_width=output_sample_width,
|
||||
timestamp=data[0].pts * data[0].time_base,
|
||||
)
|
||||
|
||||
|
||||
@@ -21,7 +21,11 @@ from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
def __init__(self, modal_api_key: str | None = None, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
modal_api_key: str | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if not settings.TRANSCRIPT_URL:
|
||||
raise Exception(
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user