Files
reflector/server/README.md
Igor Loskutov 4b00dda0ca hatchet init db
2025-12-16 17:24:16 -05:00

81 lines
2.2 KiB
Markdown

## API Key Management
### Finding Your User ID
```bash
# Get your OAuth sub (user ID) - requires authentication
curl -H "Authorization: Bearer <your_jwt>" http://localhost:1250/v1/me
# Returns: {"sub": "your-oauth-sub-here", "email": "...", ...}
```
### Creating API Keys
```bash
curl -X POST http://localhost:1250/v1/user/api-keys \
-H "Authorization: Bearer <your_jwt>" \
-H "Content-Type: application/json" \
-d '{"name": "My API Key"}'
```
### Using API Keys
```bash
# Use X-API-Key header instead of Authorization
curl -H "X-API-Key: <your_api_key>" http://localhost:1250/v1/transcripts
```
## AWS S3/SQS usage clarification
Whereby.com uploads recordings directly to our S3 bucket when meetings end.
SQS Queue (AWS_PROCESS_RECORDING_QUEUE_URL)
Filled by: AWS S3 Event Notifications
The S3 bucket is configured to send notifications to our SQS queue when new objects are created. This is standard AWS infrastructure - not in our codebase.
AWS S3 → SQS Event Configuration:
- Event Type: s3:ObjectCreated:*
- Filter: *.mp4 files
- Destination: Our SQS queue
Our System's Role
Polls SQS every 60 seconds via /server/reflector/worker/process.py:24-62:
# Every 60 seconds, check for new recordings
sqs = boto3.client("sqs", ...)
response = sqs.receive_message(QueueUrl=queue_url, ...)
# Requeue
```bash
uv run /app/requeue_uploaded_file.py TRANSCRIPT_ID
```
## Hatchet Setup (Fresh DB)
After resetting the Hatchet database:
1. Create API token at http://localhost:8889 → Settings → API Tokens
2. Update `server/.env`: `HATCHET_CLIENT_TOKEN=<new-token>`
3. Restart: `docker compose restart server hatchet-worker`
Workflows register automatically when hatchet-worker starts.
## Pipeline Management
### Continue stuck pipeline from final summaries (identify_participants) step:
```bash
uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeline_final_summaries; result = task_pipeline_final_summaries.delay(transcript_id='TRANSCRIPT_ID'); print(f'Task queued: {result.id}')"
```
### Run full post-processing pipeline (continues to completion):
```bash
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
```
.