Files
reflector/server/README.md
Mathieu Virbel af16178f86 ci: use github-token to get around potential api throttling + rework dockerfile (#554)
* ci: use github-token to get around potential api throttling

* build: put pyannote-audio separate to the project

* fix: now that we have a readme, use it

* build: add UV_NO_CACHE
2025-08-20 21:59:29 -06:00

45 lines
1.3 KiB
Markdown

## AWS S3/SQS usage clarification
Whereby.com uploads recordings directly to our S3 bucket when meetings end.
SQS Queue (AWS_PROCESS_RECORDING_QUEUE_URL)
Filled by: AWS S3 Event Notifications
The S3 bucket is configured to send notifications to our SQS queue when new objects are created. This is standard AWS infrastructure - not in our codebase.
AWS S3 → SQS Event Configuration:
- Event Type: s3:ObjectCreated:*
- Filter: *.mp4 files
- Destination: Our SQS queue
Our System's Role
Polls SQS every 60 seconds via /server/reflector/worker/process.py:24-62:
# Every 60 seconds, check for new recordings
sqs = boto3.client("sqs", ...)
response = sqs.receive_message(QueueUrl=queue_url, ...)
# Requeue
```bash
uv run /app/requeue_uploaded_file.py TRANSCRIPT_ID
```
## Pipeline Management
### Continue stuck pipeline from final summaries (identify_participants) step:
```bash
uv run python -c "from reflector.pipelines.main_live_pipeline import task_pipeline_final_summaries; result = task_pipeline_final_summaries.delay(transcript_id='TRANSCRIPT_ID'); print(f'Task queued: {result.id}')"
```
### Run full post-processing pipeline (continues to completion):
```bash
uv run python -c "from reflector.pipelines.main_live_pipeline import pipeline_post; pipeline_post(transcript_id='TRANSCRIPT_ID')"
```
.