mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
64 Commits
fix/file-u
...
v0.14.0
| Author | SHA1 | Date | |
|---|---|---|---|
| af86c47f1d | |||
| 5f6910e513 | |||
| 9a71af145e | |||
| eef6dc3903 | |||
|
|
1dee255fed | ||
| 5d98754305 | |||
|
|
969bd84fcc | ||
|
|
36608849ec | ||
|
|
5bf64b5a41 | ||
| 0aaa42528a | |||
| 565a62900f | |||
|
|
27016e6051 | ||
| 6ddfee0b4e | |||
|
|
47716f6e5d | ||
| 0abcebfc94 | |||
|
|
2b723da08b | ||
| 6566e04300 | |||
| 870e860517 | |||
| 396a95d5ce | |||
| 6f680b5795 | |||
| ab859d65a6 | |||
| fa049e8d06 | |||
| 2ce7479967 | |||
| b42f7cfc60 | |||
| c546e69739 | |||
|
|
3f1fe8c9bf | ||
| 5f143fe364 | |||
|
|
79f161436e | ||
|
|
5cba5d310d | ||
| 43ea9349f5 | |||
|
|
b3a8e9739d | ||
|
|
369ecdff13 | ||
| fc363bd49b | |||
|
|
962038ee3f | ||
|
|
3b85ff3bdf | ||
|
|
cde99ca271 | ||
|
|
f81fe9948a | ||
|
|
5a5b323382 | ||
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 |
5
.github/workflows/db_migrations.yml
vendored
5
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/migrations/**"
|
||||
- "server/reflector/db/**"
|
||||
@@ -17,6 +19,9 @@ on:
|
||||
jobs:
|
||||
test-migrations:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: db-ubuntu-latest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
postgres:
|
||||
image: postgres:17
|
||||
|
||||
57
.github/workflows/docker-frontend.yml
vendored
Normal file
57
.github/workflows/docker-frontend.yml
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
name: Build and Push Frontend Docker Image
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'www/**'
|
||||
- '.github/workflows/docker-frontend.yml'
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
REGISTRY: ghcr.io
|
||||
IMAGE_NAME: ${{ github.repository }}-frontend
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Log in to GitHub Container Registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ${{ env.REGISTRY }}
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Extract metadata
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=sha,prefix={{branch}}-
|
||||
type=raw,value=latest,enable={{is_default_branch}}
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Build and push Docker image
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./www
|
||||
file: ./www/Dockerfile
|
||||
push: true
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
platforms: linux/amd64,linux/arm64
|
||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test Next Server
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "www/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "www/**"
|
||||
|
||||
jobs:
|
||||
test-next-server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./www
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
|
||||
- name: Setup Node.js cache
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
cache: 'pnpm'
|
||||
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install
|
||||
|
||||
- name: Run tests
|
||||
run: pnpm test
|
||||
11
.github/workflows/test_server.yml
vendored
11
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
||||
paths:
|
||||
- "server/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/**"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: pytest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
redis:
|
||||
image: redis:6
|
||||
@@ -30,6 +35,9 @@ jobs:
|
||||
|
||||
docker-amd64:
|
||||
runs-on: linux-amd64
|
||||
concurrency:
|
||||
group: docker-amd64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
@@ -45,6 +53,9 @@ jobs:
|
||||
|
||||
docker-arm64:
|
||||
runs-on: linux-arm64
|
||||
concurrency:
|
||||
group: docker-arm64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -14,4 +14,7 @@ data/
|
||||
www/REFACTOR.md
|
||||
www/reload-frontend
|
||||
server/test.sqlite
|
||||
CLAUDE.local.md
|
||||
CLAUDE.local.md
|
||||
www/.env.development
|
||||
www/.env.production
|
||||
.playwright-mcp
|
||||
|
||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
||||
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||
@@ -27,3 +27,8 @@ repos:
|
||||
files: ^server/
|
||||
- id: ruff-format
|
||||
files: ^server/
|
||||
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.28.0
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
138
CHANGELOG.md
138
CHANGELOG.md
@@ -1,5 +1,143 @@
|
||||
# Changelog
|
||||
|
||||
## [0.14.0](https://github.com/Monadical-SAS/reflector/compare/v0.13.1...v0.14.0) (2025-10-08)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* Add calendar event data to transcript webhook payload ([#689](https://github.com/Monadical-SAS/reflector/issues/689)) ([5f6910e](https://github.com/Monadical-SAS/reflector/commit/5f6910e5131b7f28f86c9ecdcc57fed8412ee3cd))
|
||||
* container build for www / github ([#672](https://github.com/Monadical-SAS/reflector/issues/672)) ([969bd84](https://github.com/Monadical-SAS/reflector/commit/969bd84fcc14851d1a101412a0ba115f1b7cde82))
|
||||
* docker-compose for production frontend ([#664](https://github.com/Monadical-SAS/reflector/issues/664)) ([5bf64b5](https://github.com/Monadical-SAS/reflector/commit/5bf64b5a41f64535e22849b4bb11734d4dbb4aae))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* restore feature boolean logic ([#671](https://github.com/Monadical-SAS/reflector/issues/671)) ([3660884](https://github.com/Monadical-SAS/reflector/commit/36608849ec64e953e3be456172502762e3c33df9))
|
||||
* security review ([#656](https://github.com/Monadical-SAS/reflector/issues/656)) ([5d98754](https://github.com/Monadical-SAS/reflector/commit/5d98754305c6c540dd194dda268544f6d88bfaf8))
|
||||
* update transcript list on reprocess ([#676](https://github.com/Monadical-SAS/reflector/issues/676)) ([9a71af1](https://github.com/Monadical-SAS/reflector/commit/9a71af145ee9b833078c78d0c684590ab12e9f0e))
|
||||
* upgrade nemo toolkit ([#678](https://github.com/Monadical-SAS/reflector/issues/678)) ([eef6dc3](https://github.com/Monadical-SAS/reflector/commit/eef6dc39037329b65804297786d852dddb0557f9))
|
||||
|
||||
## [0.13.1](https://github.com/Monadical-SAS/reflector/compare/v0.13.0...v0.13.1) (2025-09-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* TypeError on not all arguments converted during string formatting in logger ([#667](https://github.com/Monadical-SAS/reflector/issues/667)) ([565a629](https://github.com/Monadical-SAS/reflector/commit/565a62900f5a02fc946b68f9269a42190ed70ab6))
|
||||
|
||||
## [0.13.0](https://github.com/Monadical-SAS/reflector/compare/v0.12.1...v0.13.0) (2025-09-19)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* room form edit with enter ([#662](https://github.com/Monadical-SAS/reflector/issues/662)) ([47716f6](https://github.com/Monadical-SAS/reflector/commit/47716f6e5ddee952609d2fa0ffabdfa865286796))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* invalid cleanup call ([#660](https://github.com/Monadical-SAS/reflector/issues/660)) ([0abcebf](https://github.com/Monadical-SAS/reflector/commit/0abcebfc9491f87f605f21faa3e53996fafedd9a))
|
||||
|
||||
## [0.12.1](https://github.com/Monadical-SAS/reflector/compare/v0.12.0...v0.12.1) (2025-09-17)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* production blocked because having existing meeting with room_id null ([#657](https://github.com/Monadical-SAS/reflector/issues/657)) ([870e860](https://github.com/Monadical-SAS/reflector/commit/870e8605171a27155a9cbee215eeccb9a8d6c0a2))
|
||||
|
||||
## [0.12.0](https://github.com/Monadical-SAS/reflector/compare/v0.11.0...v0.12.0) (2025-09-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* calendar integration ([#608](https://github.com/Monadical-SAS/reflector/issues/608)) ([6f680b5](https://github.com/Monadical-SAS/reflector/commit/6f680b57954c688882c4ed49f40f161c52a00a24))
|
||||
* self-hosted gpu api ([#636](https://github.com/Monadical-SAS/reflector/issues/636)) ([ab859d6](https://github.com/Monadical-SAS/reflector/commit/ab859d65a6bded904133a163a081a651b3938d42))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* ignore player hotkeys for text inputs ([#646](https://github.com/Monadical-SAS/reflector/issues/646)) ([fa049e8](https://github.com/Monadical-SAS/reflector/commit/fa049e8d068190ce7ea015fd9fcccb8543f54a3f))
|
||||
|
||||
## [0.11.0](https://github.com/Monadical-SAS/reflector/compare/v0.10.0...v0.11.0) (2025-09-16)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* remove profanity filter that was there for conference ([#652](https://github.com/Monadical-SAS/reflector/issues/652)) ([b42f7cf](https://github.com/Monadical-SAS/reflector/commit/b42f7cfc606783afcee792590efcc78b507468ab))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* zulip and consent handler on the file pipeline ([#645](https://github.com/Monadical-SAS/reflector/issues/645)) ([5f143fe](https://github.com/Monadical-SAS/reflector/commit/5f143fe3640875dcb56c26694254a93189281d17))
|
||||
* zulip stream and topic selection in share dialog ([#644](https://github.com/Monadical-SAS/reflector/issues/644)) ([c546e69](https://github.com/Monadical-SAS/reflector/commit/c546e69739e68bb74fbc877eb62609928e5b8de6))
|
||||
|
||||
## [0.10.0](https://github.com/Monadical-SAS/reflector/compare/v0.9.0...v0.10.0) (2025-09-11)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* replace nextjs-config with environment variables ([#632](https://github.com/Monadical-SAS/reflector/issues/632)) ([369ecdf](https://github.com/Monadical-SAS/reflector/commit/369ecdff13f3862d926a9c0b87df52c9d94c4dde))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* anonymous users transcript permissions ([#621](https://github.com/Monadical-SAS/reflector/issues/621)) ([f81fe99](https://github.com/Monadical-SAS/reflector/commit/f81fe9948a9237b3e0001b2d8ca84f54d76878f9))
|
||||
* auth post ([#624](https://github.com/Monadical-SAS/reflector/issues/624)) ([cde99ca](https://github.com/Monadical-SAS/reflector/commit/cde99ca2716f84ba26798f289047732f0448742e))
|
||||
* auth post ([#626](https://github.com/Monadical-SAS/reflector/issues/626)) ([3b85ff3](https://github.com/Monadical-SAS/reflector/commit/3b85ff3bdf4fb053b103070646811bc990c0e70a))
|
||||
* auth post ([#627](https://github.com/Monadical-SAS/reflector/issues/627)) ([962038e](https://github.com/Monadical-SAS/reflector/commit/962038ee3f2a555dc3c03856be0e4409456e0996))
|
||||
* missing follow_redirects=True on modal endpoint ([#630](https://github.com/Monadical-SAS/reflector/issues/630)) ([fc363bd](https://github.com/Monadical-SAS/reflector/commit/fc363bd49b17b075e64f9186e5e0185abc325ea7))
|
||||
* sync backend and frontend token refresh logic ([#614](https://github.com/Monadical-SAS/reflector/issues/614)) ([5a5b323](https://github.com/Monadical-SAS/reflector/commit/5a5b3233820df9536da75e87ce6184a983d4713a))
|
||||
|
||||
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||
|
||||
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||
|
||||
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||
|
||||
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||
|
||||
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||
|
||||
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||
|
||||
|
||||
|
||||
@@ -66,7 +66,6 @@ pnpm install
|
||||
|
||||
# Copy configuration templates
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
```
|
||||
|
||||
**Development:**
|
||||
@@ -152,7 +151,7 @@ All endpoints prefixed `/v1/`:
|
||||
|
||||
**Frontend** (`www/.env`):
|
||||
- `NEXTAUTH_URL`, `NEXTAUTH_SECRET` - Authentication configuration
|
||||
- `NEXT_PUBLIC_REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_API_URL` - Backend API endpoint
|
||||
- `REFLECTOR_DOMAIN_CONFIG` - Feature flags and domain settings
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
88
README.md
88
README.md
@@ -1,43 +1,60 @@
|
||||
<div align="center">
|
||||
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||
|
||||
# Reflector
|
||||
|
||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
||||
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
</div>
|
||||
|
||||
## Screenshots
|
||||
</div>
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
||||
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
||||
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
||||
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||
</a>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## What is Reflector?
|
||||
|
||||
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||
|
||||
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||
|
||||
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||
|
||||
## Background
|
||||
|
||||
The project architecture consists of three primary components:
|
||||
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||
|
||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
||||
It also uses authentik for authentication if activated.
|
||||
|
||||
## Contribution Guidelines
|
||||
|
||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
||||
|
||||
## Installation
|
||||
|
||||
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||
|
||||
### Frontend
|
||||
|
||||
Start with `cd www`.
|
||||
@@ -80,11 +99,10 @@ Start with `cd www`.
|
||||
|
||||
```bash
|
||||
pnpm install
|
||||
cp .env_template .env
|
||||
cp config-template.ts config.ts
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
Then, fill in the environment variables in `.env` and the configuration in `config.ts` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
Then, fill in the environment variables in `.env` as needed. If you are unsure on how to proceed, ask in Zulip.
|
||||
|
||||
**Run in development mode**
|
||||
|
||||
@@ -149,3 +167,41 @@ You can manually process an audio file by calling the process tool:
|
||||
```bash
|
||||
uv run python -m reflector.tools.process path/to/audio.wav
|
||||
```
|
||||
|
||||
## Build-time env variables
|
||||
|
||||
Next.js projects are more used to NEXT_PUBLIC_ prefixed buildtime vars. We don't have those for the reason we need to serve a ccustomizable prebuild docker container.
|
||||
|
||||
Instead, all the variables are runtime. Variables needed to the frontend are served to the frontend app at initial render.
|
||||
|
||||
It also means there's no static prebuild and no static files to serve for js/html.
|
||||
|
||||
## Feature Flags
|
||||
|
||||
Reflector uses environment variable-based feature flags to control application functionality. These flags allow you to enable or disable features without code changes.
|
||||
|
||||
### Available Feature Flags
|
||||
|
||||
| Feature Flag | Environment Variable |
|
||||
|-------------|---------------------|
|
||||
| `requireLogin` | `FEATURE_REQUIRE_LOGIN` |
|
||||
| `privacy` | `FEATURE_PRIVACY` |
|
||||
| `browse` | `FEATURE_BROWSE` |
|
||||
| `sendToZulip` | `FEATURE_SEND_TO_ZULIP` |
|
||||
| `rooms` | `FEATURE_ROOMS` |
|
||||
|
||||
### Setting Feature Flags
|
||||
|
||||
Feature flags are controlled via environment variables using the pattern `FEATURE_{FEATURE_NAME}` where `{FEATURE_NAME}` is the SCREAMING_SNAKE_CASE version of the feature name.
|
||||
|
||||
**Examples:**
|
||||
```bash
|
||||
# Enable user authentication requirement
|
||||
FEATURE_REQUIRE_LOGIN=true
|
||||
|
||||
# Disable browse functionality
|
||||
FEATURE_BROWSE=false
|
||||
|
||||
# Enable Zulip integration
|
||||
FEATURE_SEND_TO_ZULIP=true
|
||||
```
|
||||
|
||||
39
docker-compose.prod.yml
Normal file
39
docker-compose.prod.yml
Normal file
@@ -0,0 +1,39 @@
|
||||
# Production Docker Compose configuration for Frontend
|
||||
# Usage: docker compose -f docker-compose.prod.yml up -d
|
||||
|
||||
services:
|
||||
web:
|
||||
build:
|
||||
context: ./www
|
||||
dockerfile: Dockerfile
|
||||
image: reflector-frontend:latest
|
||||
environment:
|
||||
- KV_URL=${KV_URL:-redis://redis:6379}
|
||||
- SITE_URL=${SITE_URL}
|
||||
- API_URL=${API_URL}
|
||||
- WEBSOCKET_URL=${WEBSOCKET_URL}
|
||||
- NEXTAUTH_URL=${NEXTAUTH_URL:-http://localhost:3000}
|
||||
- NEXTAUTH_SECRET=${NEXTAUTH_SECRET:-changeme-in-production}
|
||||
- AUTHENTIK_ISSUER=${AUTHENTIK_ISSUER}
|
||||
- AUTHENTIK_CLIENT_ID=${AUTHENTIK_CLIENT_ID}
|
||||
- AUTHENTIK_CLIENT_SECRET=${AUTHENTIK_CLIENT_SECRET}
|
||||
- AUTHENTIK_REFRESH_TOKEN_URL=${AUTHENTIK_REFRESH_TOKEN_URL}
|
||||
- SENTRY_DSN=${SENTRY_DSN}
|
||||
- SENTRY_IGNORE_API_RESOLUTION_ERROR=${SENTRY_IGNORE_API_RESOLUTION_ERROR:-1}
|
||||
depends_on:
|
||||
- redis
|
||||
restart: unless-stopped
|
||||
|
||||
redis:
|
||||
image: redis:7.2-alpine
|
||||
restart: unless-stopped
|
||||
healthcheck:
|
||||
test: ["CMD", "redis-cli", "ping"]
|
||||
interval: 30s
|
||||
timeout: 3s
|
||||
retries: 3
|
||||
volumes:
|
||||
- redis_data:/data
|
||||
|
||||
volumes:
|
||||
redis_data:
|
||||
@@ -6,6 +6,7 @@ services:
|
||||
- 1250:1250
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -16,6 +17,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -26,6 +28,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -36,7 +39,7 @@ services:
|
||||
ports:
|
||||
- 6379:6379
|
||||
web:
|
||||
image: node:18
|
||||
image: node:22-alpine
|
||||
ports:
|
||||
- "3000:3000"
|
||||
command: sh -c "corepack enable && pnpm install && pnpm dev"
|
||||
@@ -47,6 +50,8 @@ services:
|
||||
- /app/node_modules
|
||||
env_file:
|
||||
- ./www/.env.local
|
||||
environment:
|
||||
- NODE_ENV=development
|
||||
|
||||
postgres:
|
||||
image: postgres:17
|
||||
33
gpu/modal_deployments/.gitignore
vendored
Normal file
33
gpu/modal_deployments/.gitignore
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
.env.*
|
||||
*.env
|
||||
*.secret
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Modal local state (if any)
|
||||
modal_mounts/
|
||||
.modal_cache/
|
||||
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
608
gpu/modal_deployments/reflector_transcriber.py
Normal file
@@ -0,0 +1,608 @@
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
MINUTES = 60 # seconds
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/models"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
|
||||
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
model_cache.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||
|
||||
model_cache.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
"fastapi==0.115.12",
|
||||
"requests",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
)
|
||||
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||
|
||||
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberWhisperLive:
|
||||
"""Live transcriber class for small audio segments (A10G).
|
||||
|
||||
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||
"""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
print(f"Model is on device: {self.device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
filename: str,
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe a single uploaded audio file by filename."""
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start), 2),
|
||||
"end": round(float(w.end), 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=15 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class TranscriberWhisperFile:
|
||||
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLERATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield TimeSegment(
|
||||
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||
)
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
upload_volume.reload()
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
|
||||
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||
merged_batches: list[TimeSegment] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for segment in vad_segments(audio_array):
|
||||
seg_start, seg_end = segment.start, segment.end
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
|
||||
for segment in merged_batches:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
s_idx = int(start_time * SAMPLERATE)
|
||||
e_idx = int(end_time * SAMPLERATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = pad_audio(segment, SAMPLERATE)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: dict) -> str:
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
transcriber_live = TranscriberWhisperLive()
|
||||
transcriber_file = TranscriberWhisperFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(dict):
|
||||
pass
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_filenames: list[str] = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
if batch and len(upload_files) > 1:
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
language=language,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
os.remove(file_path)
|
||||
except Exception:
|
||||
pass
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
@@ -3,7 +3,7 @@ import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Mapping, NewType
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
@@ -14,10 +14,7 @@ SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/cache"
|
||||
VAD_CONFIG = {
|
||||
"max_segment_duration": 30.0,
|
||||
"batch_max_files": 10,
|
||||
"batch_max_duration": 5.0,
|
||||
"min_segment_duration": 0.02,
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
@@ -25,6 +22,37 @@ VAD_CONFIG = {
|
||||
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
app = modal.App("reflector-transcriber-parakeet")
|
||||
|
||||
# Volume for caching model weights
|
||||
@@ -49,7 +77,7 @@ image = (
|
||||
.pip_install(
|
||||
"hf_transfer==0.1.9",
|
||||
"huggingface_hub[hf-xet]==0.31.2",
|
||||
"nemo_toolkit[asr]==2.3.0",
|
||||
"nemo_toolkit[asr]==2.5.0",
|
||||
"cuda-python==12.8.0",
|
||||
"fastapi==0.115.12",
|
||||
"numpy<2",
|
||||
@@ -170,12 +198,14 @@ class TranscriberParakeetLive:
|
||||
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||
|
||||
text = output.text.strip()
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(word_info["start"], 2),
|
||||
"end": round(word_info["end"], 2),
|
||||
}
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
# XXX the space added here is to match the output of whisper
|
||||
# whisper add space to each words, while parakeet don't
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
@@ -211,12 +241,12 @@ class TranscriberParakeetLive:
|
||||
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||
text = output.text.strip()
|
||||
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(word_info["start"], 2),
|
||||
"end": round(word_info["end"], 2),
|
||||
}
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
@@ -271,7 +301,9 @@ class TranscriberParakeetFile:
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
return audio_array
|
||||
|
||||
def vad_segment_generator(audio_array):
|
||||
def vad_segment_generator(
|
||||
audio_array,
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments using VAD with start/end sample indices"""
|
||||
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||
window_size = VAD_CONFIG["window_size"]
|
||||
@@ -297,107 +329,121 @@ class TranscriberParakeetFile:
|
||||
start_time = start / float(SAMPLERATE)
|
||||
end_time = end / float(SAMPLERATE)
|
||||
|
||||
# Extract the actual audio segment
|
||||
audio_segment = audio_array[start:end]
|
||||
|
||||
yield (start_time, end_time, audio_segment)
|
||||
yield TimeSegment(start_time, end_time)
|
||||
start = None
|
||||
|
||||
vad_iterator.reset_states()
|
||||
|
||||
def vad_segment_filter(segments):
|
||||
"""Filter VAD segments by duration and chunk large segments"""
|
||||
min_dur = VAD_CONFIG["min_segment_duration"]
|
||||
max_dur = VAD_CONFIG["max_segment_duration"]
|
||||
def batch_speech_segments(
|
||||
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""
|
||||
Input segments:
|
||||
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||
|
||||
for start_time, end_time, audio_segment in segments:
|
||||
segment_duration = end_time - start_time
|
||||
↓ (max_duration=10)
|
||||
|
||||
# Skip very small segments
|
||||
if segment_duration < min_dur:
|
||||
Output batches:
|
||||
[0-8] [10-19] [20-22]
|
||||
|
||||
Note: silences are kept for better transcription, previous implementation was
|
||||
passing segments separatly, but the output was less accurate.
|
||||
"""
|
||||
batch_start_time = None
|
||||
batch_end_time = None
|
||||
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
# If segment is within max duration, yield as-is
|
||||
if segment_duration <= max_dur:
|
||||
yield (start_time, end_time, audio_segment)
|
||||
total_duration = end_time - batch_start_time
|
||||
|
||||
if total_duration <= max_duration:
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
# Chunk large segments into smaller pieces
|
||||
chunk_samples = int(max_dur * SAMPLERATE)
|
||||
current_start = start_time
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
|
||||
for chunk_offset in range(0, len(audio_segment), chunk_samples):
|
||||
chunk_audio = audio_segment[
|
||||
chunk_offset : chunk_offset + chunk_samples
|
||||
]
|
||||
if len(chunk_audio) == 0:
|
||||
break
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
return
|
||||
|
||||
chunk_duration = len(chunk_audio) / float(SAMPLERATE)
|
||||
chunk_end = current_start + chunk_duration
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
|
||||
# Only yield chunks that meet minimum duration
|
||||
if chunk_duration >= min_dur:
|
||||
yield (current_start, chunk_end, chunk_audio)
|
||||
def batch_segment_to_audio_segment(
|
||||
segments: Generator[TimeSegment, None, None],
|
||||
audio_array,
|
||||
) -> Generator[AudioSegment, None, None]:
|
||||
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||
|
||||
current_start = chunk_end
|
||||
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||
segments, which are corrected by enforce_word_timing_constraints.
|
||||
"""
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
start_sample = int(start_time * SAMPLERATE)
|
||||
end_sample = int(end_time * SAMPLERATE)
|
||||
audio_segment = audio_array[start_sample:end_sample]
|
||||
|
||||
def batch_segments(segments, max_files=10, max_duration=5.0):
|
||||
batch = []
|
||||
batch_duration = 0.0
|
||||
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||
|
||||
for start_time, end_time, audio_segment in segments:
|
||||
segment_duration = end_time - start_time
|
||||
yield AudioSegment(start_time, end_time, padded_segment)
|
||||
|
||||
if segment_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(
|
||||
(VAD_CONFIG["silence_padding"] - segment_duration) * SAMPLERATE
|
||||
)
|
||||
padding = np.zeros(silence_samples, dtype=np.float32)
|
||||
audio_segment = np.concatenate([audio_segment, padding])
|
||||
segment_duration = VAD_CONFIG["silence_padding"]
|
||||
|
||||
batch.append((start_time, end_time, audio_segment))
|
||||
batch_duration += segment_duration
|
||||
|
||||
if len(batch) >= max_files or batch_duration >= max_duration:
|
||||
yield batch
|
||||
batch = []
|
||||
batch_duration = 0.0
|
||||
|
||||
if batch:
|
||||
yield batch
|
||||
|
||||
def transcribe_batch(model, audio_segments):
|
||||
def transcribe_batch(model, audio_segments: list) -> list:
|
||||
with NoStdStreams():
|
||||
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||
return outputs
|
||||
|
||||
def enforce_word_timing_constraints(
|
||||
words: list[WordTiming],
|
||||
) -> list[WordTiming]:
|
||||
"""Enforce that word end times don't exceed the start time of the next word.
|
||||
|
||||
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||
transcription accuracy, word timings from different segments may overlap.
|
||||
This function ensures there are no overlaps by adjusting end times.
|
||||
"""
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
|
||||
enforced_words = []
|
||||
for i, word in enumerate(words):
|
||||
enforced_word = word.copy()
|
||||
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if enforced_word["end"] > next_start:
|
||||
enforced_word["end"] = next_start
|
||||
|
||||
enforced_words.append(enforced_word)
|
||||
|
||||
return enforced_words
|
||||
|
||||
def emit_results(
|
||||
results,
|
||||
segments_info,
|
||||
batch_index,
|
||||
total_batches,
|
||||
):
|
||||
results: list,
|
||||
segments_info: list[AudioSegment],
|
||||
) -> Generator[TranscriptResult, None, None]:
|
||||
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||
for i, (output, (start_time, end_time, _)) in enumerate(
|
||||
zip(results, segments_info)
|
||||
):
|
||||
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||
start_time, end_time = segment.start, segment.end
|
||||
text = output.text.strip()
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(
|
||||
word_info["start"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
"end": round(
|
||||
word_info["end"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
}
|
||||
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
yield text, words
|
||||
yield TranscriptResult(text, words)
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
@@ -407,41 +453,31 @@ class TranscriberParakeetFile:
|
||||
|
||||
audio_array = load_and_convert_audio(file_path)
|
||||
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||
processed_duration = 0.0
|
||||
|
||||
all_text_parts = []
|
||||
all_words = []
|
||||
all_text_parts: list[str] = []
|
||||
all_words: list[WordTiming] = []
|
||||
|
||||
raw_segments = vad_segment_generator(audio_array)
|
||||
filtered_segments = vad_segment_filter(raw_segments)
|
||||
batches = batch_segments(
|
||||
filtered_segments,
|
||||
VAD_CONFIG["batch_max_files"],
|
||||
speech_segments = batch_speech_segments(
|
||||
raw_segments,
|
||||
VAD_CONFIG["batch_max_duration"],
|
||||
)
|
||||
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||
|
||||
batch_index = 0
|
||||
total_batches = max(
|
||||
1, int(total_duration / VAD_CONFIG["batch_max_duration"]) + 1
|
||||
)
|
||||
for batch in audio_segments:
|
||||
audio_segment = batch.audio
|
||||
results = transcribe_batch(self.model, [audio_segment])
|
||||
|
||||
for batch in batches:
|
||||
batch_index += 1
|
||||
audio_segments = [seg[2] for seg in batch]
|
||||
results = transcribe_batch(self.model, audio_segments)
|
||||
|
||||
for text, words in emit_results(
|
||||
for result in emit_results(
|
||||
results,
|
||||
batch,
|
||||
batch_index,
|
||||
total_batches,
|
||||
[batch],
|
||||
):
|
||||
if not text:
|
||||
if not result.text:
|
||||
continue
|
||||
all_text_parts.append(text)
|
||||
all_words.extend(words)
|
||||
all_text_parts.append(result.text)
|
||||
all_words.extend(result.words)
|
||||
|
||||
processed_duration += sum(len(seg[2]) / float(SAMPLERATE) for seg in batch)
|
||||
all_words = enforce_word_timing_constraints(all_words)
|
||||
|
||||
combined_text = " ".join(all_text_parts)
|
||||
return {"text": combined_text, "words": all_words}
|
||||
2
gpu/self_hosted/.env.example
Normal file
2
gpu/self_hosted/.env.example
Normal file
@@ -0,0 +1,2 @@
|
||||
REFLECTOR_GPU_APIKEY=
|
||||
HF_TOKEN=
|
||||
38
gpu/self_hosted/.gitignore
vendored
Normal file
38
gpu/self_hosted/.gitignore
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
cache/
|
||||
|
||||
# OS / Editor
|
||||
.DS_Store
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# Env and secrets
|
||||
.env
|
||||
*.env
|
||||
*.secret
|
||||
HF_TOKEN
|
||||
REFLECTOR_GPU_APIKEY
|
||||
|
||||
# Virtual env / uv
|
||||
.venv/
|
||||
venv/
|
||||
ENV/
|
||||
uv/
|
||||
|
||||
# Build / dist
|
||||
build/
|
||||
dist/
|
||||
.eggs/
|
||||
*.egg-info/
|
||||
|
||||
# Coverage / test
|
||||
.pytest_cache/
|
||||
.coverage*
|
||||
htmlcov/
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
46
gpu/self_hosted/Dockerfile
Normal file
46
gpu/self_hosted/Dockerfile
Normal file
@@ -0,0 +1,46 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
UV_LINK_MODE=copy \
|
||||
UV_NO_CACHE=1
|
||||
|
||||
WORKDIR /tmp
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
ffmpeg \
|
||||
curl \
|
||||
ca-certificates \
|
||||
gnupg \
|
||||
wget \
|
||||
&& apt-get clean
|
||||
# Add NVIDIA CUDA repo for Debian 12 (bookworm) and install cuDNN 9 for CUDA 12
|
||||
ADD https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb /cuda-keyring.deb
|
||||
RUN dpkg -i /cuda-keyring.deb \
|
||||
&& rm /cuda-keyring.deb \
|
||||
&& apt-get update \
|
||||
&& apt-get install -y --no-install-recommends \
|
||||
cuda-cudart-12-6 \
|
||||
libcublas-12-6 \
|
||||
libcudnn9-cuda-12 \
|
||||
libcudnn9-dev-cuda-12 \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
||||
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
||||
ENV PATH="/root/.local/bin/:$PATH"
|
||||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH"
|
||||
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY pyproject.toml uv.lock /app/
|
||||
|
||||
|
||||
COPY ./app /app/app
|
||||
COPY ./main.py /app/
|
||||
COPY ./runserver.sh /app/
|
||||
|
||||
EXPOSE 8000
|
||||
|
||||
CMD ["sh", "/app/runserver.sh"]
|
||||
|
||||
|
||||
73
gpu/self_hosted/README.md
Normal file
73
gpu/self_hosted/README.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Self-hosted Model API
|
||||
|
||||
Run transcription, translation, and diarization services compatible with Reflector's GPU Model API. Works on CPU or GPU.
|
||||
|
||||
Environment variables
|
||||
|
||||
- REFLECTOR_GPU_APIKEY: Optional Bearer token. If unset, auth is disabled.
|
||||
- HF_TOKEN: Optional. Required for diarization to download pyannote pipelines
|
||||
|
||||
Requirements
|
||||
|
||||
- FFmpeg must be installed and on PATH (used for URL-based and segmented transcription)
|
||||
- Python 3.12+
|
||||
- NVIDIA GPU optional. If available, it will be used automatically
|
||||
|
||||
Local run
|
||||
Set env vars in self_hosted/.env file
|
||||
uv sync
|
||||
|
||||
uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
Authentication
|
||||
|
||||
- If REFLECTOR_GPU_APIKEY is set, include header: Authorization: Bearer <key>
|
||||
|
||||
Endpoints
|
||||
|
||||
- POST /v1/audio/transcriptions
|
||||
|
||||
- multipart/form-data
|
||||
- fields: file (single file) OR files[] (multiple files), language, batch (true/false)
|
||||
- response: single { text, words, filename } or { results: [ ... ] }
|
||||
|
||||
- POST /v1/audio/transcriptions-from-url
|
||||
|
||||
- application/json
|
||||
- body: { audio_file_url, language, timestamp_offset }
|
||||
- response: { text, words }
|
||||
|
||||
- POST /translate
|
||||
|
||||
- text: query parameter
|
||||
- body (application/json): { source_language, target_language }
|
||||
- response: { text: { <src>: original, <tgt>: translated } }
|
||||
|
||||
- POST /diarize
|
||||
- query parameters: audio_file_url, timestamp (optional)
|
||||
- requires HF_TOKEN to be set (for pyannote)
|
||||
- response: { diarization: [ { start, end, speaker } ] }
|
||||
|
||||
OpenAPI docs
|
||||
|
||||
- Visit /docs when the server is running
|
||||
|
||||
Docker
|
||||
|
||||
- Not yet provided in this directory. A Dockerfile will be added later. For now, use Local run above
|
||||
|
||||
Conformance tests
|
||||
|
||||
# From this directory
|
||||
|
||||
TRANSCRIPT_URL=http://localhost:8000 \
|
||||
TRANSCRIPT_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_transcript.py
|
||||
|
||||
TRANSLATION_URL=http://localhost:8000 \
|
||||
TRANSLATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_translation.py
|
||||
|
||||
DIARIZATION_URL=http://localhost:8000 \
|
||||
DIARIZATION_API_KEY=dev-key \
|
||||
uv run -m pytest -m model_api --no-cov ../../server/tests/test_model_api_diarization.py
|
||||
19
gpu/self_hosted/app/auth.py
Normal file
19
gpu/self_hosted/app/auth.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
from fastapi import Depends, HTTPException, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
required_key = os.environ.get("REFLECTOR_GPU_APIKEY")
|
||||
if not required_key:
|
||||
return
|
||||
if apikey == required_key:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
12
gpu/self_hosted/app/config.py
Normal file
12
gpu/self_hosted/app/config.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from pathlib import Path
|
||||
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
SAMPLE_RATE = 16000
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
# App-level paths
|
||||
UPLOADS_PATH = Path("/tmp/whisper-uploads")
|
||||
30
gpu/self_hosted/app/factory.py
Normal file
30
gpu/self_hosted/app/factory.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
from fastapi import FastAPI
|
||||
|
||||
from .routers.diarization import router as diarization_router
|
||||
from .routers.transcription import router as transcription_router
|
||||
from .routers.translation import router as translation_router
|
||||
from .services.transcriber import WhisperService
|
||||
from .services.diarizer import PyannoteDiarizationService
|
||||
from .utils import ensure_dirs
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
ensure_dirs()
|
||||
whisper_service = WhisperService()
|
||||
whisper_service.load()
|
||||
app.state.whisper = whisper_service
|
||||
diarization_service = PyannoteDiarizationService()
|
||||
diarization_service.load()
|
||||
app.state.diarizer = diarization_service
|
||||
yield
|
||||
|
||||
|
||||
def create_app() -> FastAPI:
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.include_router(transcription_router)
|
||||
app.include_router(translation_router)
|
||||
app.include_router(diarization_router)
|
||||
return app
|
||||
30
gpu/self_hosted/app/routers/diarization.py
Normal file
30
gpu/self_hosted/app/routers/diarization.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from typing import List
|
||||
|
||||
from fastapi import APIRouter, Depends, Request
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.diarizer import PyannoteDiarizationService
|
||||
from ..utils import download_audio_file
|
||||
|
||||
router = APIRouter(tags=["diarization"])
|
||||
|
||||
|
||||
class DiarizationSegment(BaseModel):
|
||||
start: float
|
||||
end: float
|
||||
speaker: int
|
||||
|
||||
|
||||
class DiarizationResponse(BaseModel):
|
||||
diarization: List[DiarizationSegment]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/diarize", dependencies=[Depends(apikey_auth)], response_model=DiarizationResponse
|
||||
)
|
||||
def diarize(request: Request, audio_file_url: str, timestamp: float = 0.0):
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
diarizer: PyannoteDiarizationService = request.app.state.diarizer
|
||||
return diarizer.diarize_file(file_path, timestamp=timestamp)
|
||||
109
gpu/self_hosted/app/routers/transcription.py
Normal file
109
gpu/self_hosted/app/routers/transcription.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import uuid
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi import APIRouter, Body, Depends, Form, HTTPException, Request, UploadFile
|
||||
from pydantic import BaseModel
|
||||
from pathlib import Path
|
||||
from ..auth import apikey_auth
|
||||
from ..config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
from ..services.transcriber import MODEL_NAME
|
||||
from ..utils import cleanup_uploaded_files, download_audio_file
|
||||
|
||||
router = APIRouter(prefix="/v1/audio", tags=["transcription"])
|
||||
|
||||
|
||||
class WordTiming(BaseModel):
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class TranscriptResult(BaseModel):
|
||||
text: str
|
||||
words: list[WordTiming]
|
||||
filename: Optional[str] = None
|
||||
|
||||
|
||||
class TranscriptBatchResponse(BaseModel):
|
||||
results: list[TranscriptResult]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=Union[TranscriptResult, TranscriptBatchResponse],
|
||||
)
|
||||
def transcribe(
|
||||
request: Request,
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_paths: list[Path] = []
|
||||
with cleanup_uploaded_files(uploaded_paths):
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1].lower()
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = UPLOADS_PATH / unique_filename
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_paths.append(file_path)
|
||||
|
||||
if batch and len(upload_files) > 1:
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for path in uploaded_paths:
|
||||
result = service.transcribe_file(str(path), language=language)
|
||||
result["filename"] = path.name
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/transcriptions-from-url",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranscriptResult,
|
||||
)
|
||||
def transcribe_from_url(
|
||||
request: Request,
|
||||
audio_file_url: str = Body(..., description="URL of the audio file to transcribe"),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
service = request.app.state.whisper
|
||||
with download_audio_file(audio_file_url) as (file_path, _ext):
|
||||
file_path = str(file_path)
|
||||
result = service.transcribe_vad_url_segment(
|
||||
file_path=file_path, timestamp_offset=timestamp_offset, language=language
|
||||
)
|
||||
return result
|
||||
28
gpu/self_hosted/app/routers/translation.py
Normal file
28
gpu/self_hosted/app/routers/translation.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from typing import Dict
|
||||
|
||||
from fastapi import APIRouter, Body, Depends
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..auth import apikey_auth
|
||||
from ..services.translator import TextTranslatorService
|
||||
|
||||
router = APIRouter(tags=["translation"])
|
||||
|
||||
translator = TextTranslatorService()
|
||||
|
||||
|
||||
class TranslationResponse(BaseModel):
|
||||
text: Dict[str, str]
|
||||
|
||||
|
||||
@router.post(
|
||||
"/translate",
|
||||
dependencies=[Depends(apikey_auth)],
|
||||
response_model=TranslationResponse,
|
||||
)
|
||||
def translate(
|
||||
text: str,
|
||||
source_language: str = Body("en"),
|
||||
target_language: str = Body("fr"),
|
||||
):
|
||||
return translator.translate(text, source_language, target_language)
|
||||
42
gpu/self_hosted/app/services/diarizer.py
Normal file
42
gpu/self_hosted/app/services/diarizer.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
import threading
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
|
||||
class PyannoteDiarizationService:
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._device = "cpu"
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self._device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self._pipeline = Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.1",
|
||||
use_auth_token=os.environ.get("HF_TOKEN"),
|
||||
)
|
||||
self._pipeline.to(torch.device(self._device))
|
||||
|
||||
def diarize_file(self, file_path: str, timestamp: float = 0.0) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load()
|
||||
waveform, sample_rate = torchaudio.load(file_path)
|
||||
with self._lock:
|
||||
diarization = self._pipeline(
|
||||
{"waveform": waveform, "sample_rate": sample_rate}
|
||||
)
|
||||
words = []
|
||||
for diarization_segment, _, speaker in diarization.itertracks(yield_label=True):
|
||||
words.append(
|
||||
{
|
||||
"start": round(timestamp + diarization_segment.start, 3),
|
||||
"end": round(timestamp + diarization_segment.end, 3),
|
||||
"speaker": int(speaker[-2:])
|
||||
if speaker and speaker[-2:].isdigit()
|
||||
else 0,
|
||||
}
|
||||
)
|
||||
return {"diarization": words}
|
||||
208
gpu/self_hosted/app/services/transcriber.py
Normal file
208
gpu/self_hosted/app/services/transcriber.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import threading
|
||||
from typing import Generator
|
||||
|
||||
import faster_whisper
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch
|
||||
from fastapi import HTTPException
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from ..config import SAMPLE_RATE, VAD_CONFIG
|
||||
|
||||
# Whisper configuration (service-local defaults)
|
||||
MODEL_NAME = "large-v2"
|
||||
# None delegates compute type to runtime: float16 on CUDA, int8 on CPU
|
||||
MODEL_COMPUTE_TYPE = None
|
||||
MODEL_NUM_WORKERS = 1
|
||||
CACHE_PATH = os.path.join(os.path.expanduser("~"), ".cache", "reflector-whisper")
|
||||
from ..utils import NoStdStreams
|
||||
|
||||
|
||||
class WhisperService:
|
||||
def __init__(self):
|
||||
self.model = None
|
||||
self.device = "cpu"
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def load(self):
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
compute_type = MODEL_COMPUTE_TYPE or (
|
||||
"float16" if self.device == "cuda" else "int8"
|
||||
)
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=compute_type,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
)
|
||||
|
||||
def pad_audio(self, audio_array, sample_rate: int = SAMPLE_RATE):
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
def enforce_word_timing_constraints(self, words: list[dict]) -> list[dict]:
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
enforced: list[dict] = []
|
||||
for i, word in enumerate(words):
|
||||
current = dict(word)
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if current["end"] > next_start:
|
||||
current["end"] = next_start
|
||||
enforced.append(current)
|
||||
return enforced
|
||||
|
||||
def transcribe_file(self, file_path: str, language: str = "en") -> dict:
|
||||
input_for_model: str | "object" = file_path
|
||||
try:
|
||||
audio_array, _sample_rate = librosa.load(
|
||||
file_path, sr=SAMPLE_RATE, mono=True
|
||||
)
|
||||
if len(audio_array) / float(SAMPLE_RATE) < VAD_CONFIG["silence_padding"]:
|
||||
input_for_model = self.pad_audio(audio_array, SAMPLE_RATE)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
input_for_model,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
words = self.enforce_word_timing_constraints(words)
|
||||
return {"text": text, "words": words}
|
||||
|
||||
def transcribe_vad_url_segment(
|
||||
self, file_path: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
) -> dict:
|
||||
def load_audio_via_ffmpeg(input_path: str, sample_rate: int) -> np.ndarray:
|
||||
ffmpeg_bin = shutil.which("ffmpeg") or "ffmpeg"
|
||||
cmd = [
|
||||
ffmpeg_bin,
|
||||
"-nostdin",
|
||||
"-threads",
|
||||
"1",
|
||||
"-i",
|
||||
input_path,
|
||||
"-f",
|
||||
"f32le",
|
||||
"-acodec",
|
||||
"pcm_f32le",
|
||||
"-ac",
|
||||
"1",
|
||||
"-ar",
|
||||
str(sample_rate),
|
||||
"pipe:1",
|
||||
]
|
||||
try:
|
||||
proc = subprocess.run(
|
||||
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=f"ffmpeg failed: {e}")
|
||||
audio = np.frombuffer(proc.stdout, dtype=np.float32)
|
||||
return audio
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLE_RATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[tuple[float, float], None, None]:
|
||||
vad_model = load_silero_vad(onnx=False)
|
||||
iterator = VADIterator(vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield (start / float(SAMPLE_RATE), end / float(SAMPLE_RATE))
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
audio_array = load_audio_via_ffmpeg(file_path, SAMPLE_RATE)
|
||||
|
||||
merged_batches: list[tuple[float, float]] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for seg_start, seg_end in vad_segments(audio_array):
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append((batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
for start_time, end_time in merged_batches:
|
||||
s_idx = int(start_time * SAMPLE_RATE)
|
||||
e_idx = int(end_time * SAMPLE_RATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = self.pad_audio(segment, SAMPLE_RATE)
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
all_words = self.enforce_word_timing_constraints(all_words)
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
44
gpu/self_hosted/app/services/translator.py
Normal file
44
gpu/self_hosted/app/services/translator.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import threading
|
||||
|
||||
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
||||
|
||||
|
||||
class TextTranslatorService:
|
||||
"""Simple text-to-text translator using HuggingFace MarianMT models.
|
||||
|
||||
This mirrors the modal translator API shape but uses text translation only.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._pipeline = None
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def load(self, source_language: str = "en", target_language: str = "fr"):
|
||||
# Pick a default MarianMT model pair if available; fall back to Helsinki-NLP en->fr
|
||||
model_name = self._resolve_model_name(source_language, target_language)
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
model = MarianMTModel.from_pretrained(model_name)
|
||||
self._pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
||||
|
||||
def _resolve_model_name(self, src: str, tgt: str) -> str:
|
||||
# Minimal mapping; extend as needed
|
||||
pair = (src.lower(), tgt.lower())
|
||||
mapping = {
|
||||
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
|
||||
("fr", "en"): "Helsinki-NLP/opus-mt-fr-en",
|
||||
("en", "es"): "Helsinki-NLP/opus-mt-en-es",
|
||||
("es", "en"): "Helsinki-NLP/opus-mt-es-en",
|
||||
("en", "de"): "Helsinki-NLP/opus-mt-en-de",
|
||||
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
|
||||
}
|
||||
return mapping.get(pair, "Helsinki-NLP/opus-mt-en-fr")
|
||||
|
||||
def translate(self, text: str, source_language: str, target_language: str) -> dict:
|
||||
if self._pipeline is None:
|
||||
self.load(source_language, target_language)
|
||||
with self._lock:
|
||||
results = self._pipeline(
|
||||
text, src_lang=source_language, tgt_lang=target_language
|
||||
)
|
||||
translated = results[0]["translation_text"] if results else ""
|
||||
return {"text": {source_language: text, target_language: translated}}
|
||||
107
gpu/self_hosted/app/utils.py
Normal file
107
gpu/self_hosted/app/utils.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from typing import Mapping
|
||||
from urllib.parse import urlparse
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
from .config import SUPPORTED_FILE_EXTENSIONS, UPLOADS_PATH
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
|
||||
|
||||
def ensure_dirs():
|
||||
UPLOADS_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> str:
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_uploads(audio_file_url: str) -> tuple[Path, str]:
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path: Path = UPLOADS_PATH / unique_filename
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
return file_path, audio_suffix
|
||||
|
||||
|
||||
@contextmanager
|
||||
def download_audio_file(audio_file_url: str):
|
||||
"""Download an audio file to UPLOADS_PATH and remove it after use.
|
||||
|
||||
Yields (file_path: Path, audio_suffix: str).
|
||||
"""
|
||||
file_path, audio_suffix = download_audio_to_uploads(audio_file_url)
|
||||
try:
|
||||
yield file_path, audio_suffix
|
||||
finally:
|
||||
try:
|
||||
file_path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", file_path, e)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def cleanup_uploaded_files(file_paths: list[Path]):
|
||||
"""Ensure provided file paths are removed after use.
|
||||
|
||||
The provided list can be populated inside the context; all present entries
|
||||
at exit will be deleted.
|
||||
"""
|
||||
try:
|
||||
yield file_paths
|
||||
finally:
|
||||
for path in list(file_paths):
|
||||
try:
|
||||
path.unlink(missing_ok=True)
|
||||
except Exception as e:
|
||||
logger.error("Error deleting temporary file %s: %s", path, e)
|
||||
10
gpu/self_hosted/compose.yml
Normal file
10
gpu/self_hosted/compose.yml
Normal file
@@ -0,0 +1,10 @@
|
||||
services:
|
||||
reflector_gpu:
|
||||
build:
|
||||
context: .
|
||||
ports:
|
||||
- "8000:8000"
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./cache:/root/.cache
|
||||
3
gpu/self_hosted/main.py
Normal file
3
gpu/self_hosted/main.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from app.factory import create_app
|
||||
|
||||
app = create_app()
|
||||
19
gpu/self_hosted/pyproject.toml
Normal file
19
gpu/self_hosted/pyproject.toml
Normal file
@@ -0,0 +1,19 @@
|
||||
[project]
|
||||
name = "reflector-gpu"
|
||||
version = "0.1.0"
|
||||
description = "Self-hosted GPU service for speech transcription, diarization, and translation via FastAPI."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"fastapi[standard]>=0.116.1",
|
||||
"uvicorn[standard]>=0.30.0",
|
||||
"torch>=2.3.0",
|
||||
"faster-whisper>=1.1.0",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
"transformers>=4.35.0",
|
||||
"sentencepiece",
|
||||
"pyannote.audio==3.1.0",
|
||||
"torchaudio>=2.3.0",
|
||||
]
|
||||
17
gpu/self_hosted/runserver.sh
Normal file
17
gpu/self_hosted/runserver.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/bin/sh
|
||||
set -e
|
||||
|
||||
export PATH="/root/.local/bin:$PATH"
|
||||
cd /app
|
||||
|
||||
# Install Python dependencies at runtime (first run or when FORCE_SYNC=1)
|
||||
if [ ! -d "/app/.venv" ] || [ "$FORCE_SYNC" = "1" ]; then
|
||||
echo "[startup] Installing Python dependencies with uv..."
|
||||
uv sync --compile-bytecode --locked
|
||||
else
|
||||
echo "[startup] Using existing virtual environment at /app/.venv"
|
||||
fi
|
||||
|
||||
exec uv run uvicorn main:app --host 0.0.0.0 --port 8000
|
||||
|
||||
|
||||
3013
gpu/self_hosted/uv.lock
generated
Normal file
3013
gpu/self_hosted/uv.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
||||
# Data Retention and Cleanup
|
||||
|
||||
## Overview
|
||||
|
||||
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||
|
||||
### What Gets Deleted
|
||||
|
||||
When data reaches the retention period, the following items are automatically removed:
|
||||
|
||||
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||
- Database records
|
||||
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||
- Storage files (cloud storage if configured)
|
||||
|
||||
## Automatic Cleanup
|
||||
|
||||
### Celery Beat Schedule
|
||||
|
||||
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||
|
||||
```python
|
||||
# Automatically scheduled when PUBLIC_MODE=true
|
||||
"cleanup_old_public_data": {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||
}
|
||||
```
|
||||
|
||||
### Running the Worker
|
||||
|
||||
Ensure both Celery worker and beat scheduler are running:
|
||||
|
||||
```bash
|
||||
# Start Celery worker
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
|
||||
# Start Celery beat scheduler (in another terminal)
|
||||
uv run celery -A reflector.worker.app beat
|
||||
```
|
||||
|
||||
## Manual Cleanup
|
||||
|
||||
For testing or manual intervention, use the cleanup tool:
|
||||
|
||||
```bash
|
||||
# Delete data older than 7 days (default)
|
||||
uv run python -m reflector.tools.cleanup_old_data
|
||||
|
||||
# Delete data older than 30 days
|
||||
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||
```
|
||||
|
||||
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||
|
||||
## Important Notes
|
||||
|
||||
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||
|
||||
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||
|
||||
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||
|
||||
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||
|
||||
## Testing
|
||||
|
||||
Run the cleanup tests:
|
||||
|
||||
```bash
|
||||
uv run pytest tests/test_cleanup.py -v
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
Check Celery logs for cleanup task execution:
|
||||
|
||||
```bash
|
||||
# Look for cleanup task logs
|
||||
grep "cleanup_old_public_data" celery.log
|
||||
grep "Starting cleanup of old public data" celery.log
|
||||
```
|
||||
|
||||
Task statistics are logged after each run:
|
||||
- Number of transcripts deleted
|
||||
- Number of meetings deleted
|
||||
- Number of orphaned recordings deleted
|
||||
- Any errors encountered
|
||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
||||
## Reflector GPU Transcription API (Specification)
|
||||
|
||||
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||
|
||||
### Base URL and Authentication
|
||||
|
||||
- Example base URLs (Modal web endpoints):
|
||||
|
||||
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||
|
||||
- All endpoints are served under `/v1` and require a Bearer token:
|
||||
|
||||
```
|
||||
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||
|
||||
### Supported file types
|
||||
|
||||
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||
|
||||
### Models and languages
|
||||
|
||||
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||
- Language support: only `en`. Other languages return HTTP 400.
|
||||
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||
- Language support: multilingual (per Whisper model capabilities).
|
||||
|
||||
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||
|
||||
### Endpoints
|
||||
|
||||
#### POST /v1/audio/transcriptions
|
||||
|
||||
Transcribe one or more uploaded audio files.
|
||||
|
||||
Request: multipart/form-data
|
||||
|
||||
- `file` (File) — optional. Single file to transcribe.
|
||||
- `files` (File[]) — optional. One or more files to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`.
|
||||
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||
- Whisper: model-dependent; typically multilingual
|
||||
- `batch` (boolean) — optional, defaults to `false`.
|
||||
|
||||
Notes:
|
||||
|
||||
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||
- Response shape for multiple files is the same regardless of `batch`.
|
||||
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||
|
||||
Responses
|
||||
|
||||
Single file response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
Multiple files response:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- Word objects always include keys: `word`, `start`, `end`.
|
||||
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||
|
||||
Example curl (single file):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "file=@/path/to/audio.mp3" \
|
||||
-F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
Example curl (multiple files, batch):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||
-F "batch=true" -F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
#### POST /v1/audio/transcriptions-from-url
|
||||
|
||||
Transcribe a single remote audio file by URL.
|
||||
|
||||
Request: application/json
|
||||
|
||||
Body parameters:
|
||||
|
||||
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||
|
||||
Example curl:
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0
|
||||
}' \
|
||||
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||
```
|
||||
|
||||
### Error handling
|
||||
|
||||
- 400 Bad Request
|
||||
- Parakeet: `language` other than `en`
|
||||
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||
- Unsupported file extension
|
||||
- 401 Unauthorized
|
||||
- Missing or invalid Bearer token
|
||||
- 404 Not Found
|
||||
- `audio_file_url` does not exist
|
||||
|
||||
### Implementation details
|
||||
|
||||
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||
|
||||
### Server configuration (Reflector API)
|
||||
|
||||
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
### Conformance tests
|
||||
|
||||
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||
|
||||
```
|
||||
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||
uv run -m pytest -m model_api --no-cov server/tests/test_model_api_transcript.py
|
||||
```
|
||||
233
server/docs/webhook.md
Normal file
233
server/docs/webhook.md
Normal file
@@ -0,0 +1,233 @@
|
||||
# Reflector Webhook Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||
|
||||
## Configuration
|
||||
|
||||
Webhooks are configured at the room level with two fields:
|
||||
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||
|
||||
## Events
|
||||
|
||||
### `transcript.completed`
|
||||
|
||||
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, topic detection and calendar event integration.
|
||||
|
||||
### `test`
|
||||
|
||||
A test event that can be triggered manually to verify webhook configuration.
|
||||
|
||||
## Webhook Request Format
|
||||
|
||||
### Headers
|
||||
|
||||
All webhook requests include the following headers:
|
||||
|
||||
| Header | Description | Example |
|
||||
|--------|-------------|---------|
|
||||
| `Content-Type` | Always `application/json` | `application/json` |
|
||||
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||
|
||||
### Signature Verification
|
||||
|
||||
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||
|
||||
The signature format is: `t={timestamp},v1={signature}`
|
||||
|
||||
To verify the signature:
|
||||
1. Extract the timestamp and signature from the header
|
||||
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||
4. Compare the computed signature with the received signature
|
||||
|
||||
Example verification (Python):
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||
# Parse header: "t=1735306800,v1=abc123..."
|
||||
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||
timestamp = parts["t"]
|
||||
received_signature = parts["v1"]
|
||||
|
||||
# Create signed payload
|
||||
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||
|
||||
# Compute expected signature
|
||||
expected_signature = hmac.new(
|
||||
secret.encode("utf-8"),
|
||||
signed_payload.encode("utf-8"),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
# Compare signatures
|
||||
return hmac.compare_digest(expected_signature, received_signature)
|
||||
```
|
||||
|
||||
## Event Payloads
|
||||
|
||||
### `transcript.completed` Event
|
||||
|
||||
This event includes a convenient URL for accessing the transcript:
|
||||
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "transcript.completed",
|
||||
"event_id": "transcript.completed-abc-123-def-456",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"transcript": {
|
||||
"id": "abc-123-def-456",
|
||||
"room_id": "room-789",
|
||||
"created_at": "2025-08-27T12:00:00Z",
|
||||
"duration": 1800.5,
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||
"topics": [
|
||||
{
|
||||
"title": "Introduction and Agenda",
|
||||
"summary": "Meeting kickoff with agenda review",
|
||||
"timestamp": 0.0,
|
||||
"duration": 120.0,
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||
},
|
||||
{
|
||||
"title": "Mobile App Features Discussion",
|
||||
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||
"timestamp": 120.0,
|
||||
"duration": 600.0,
|
||||
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||
}
|
||||
],
|
||||
"participants": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
],
|
||||
"source_language": "en",
|
||||
"target_language": "en",
|
||||
"status": "completed",
|
||||
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||
},
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
},
|
||||
"calendar_event": {
|
||||
"id": "calendar-event-123",
|
||||
"ics_uid": "event-123",
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"start_time": "2025-08-27T12:00:00Z",
|
||||
"end_time": "2025-08-27T12:30:00Z",
|
||||
"description": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"location": "Conference Room 1",
|
||||
"attendees": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `test` Event
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "test",
|
||||
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"message": "This is a test webhook from Reflector",
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Retry Policy
|
||||
|
||||
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||
|
||||
### Retry Mechanism
|
||||
|
||||
Reflector implements an exponential backoff strategy for webhook retries:
|
||||
|
||||
- **Initial retry delay**: 60 seconds after the first failure
|
||||
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||
- **Maximum retry attempts**: 30 attempts total
|
||||
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||
|
||||
### How Retries Work
|
||||
|
||||
When a webhook fails, Reflector will:
|
||||
1. Wait 60 seconds, then retry (attempt #1)
|
||||
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||
|
||||
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||
|
||||
### Retry Behavior by HTTP Status Code
|
||||
|
||||
| Status Code | Behavior |
|
||||
|-------------|----------|
|
||||
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||
|
||||
**Important Notes:**
|
||||
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||
|
||||
## Testing Webhooks
|
||||
|
||||
You can test your webhook configuration before processing transcripts:
|
||||
|
||||
```http
|
||||
POST /v1/rooms/{room_id}/webhook/test
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"status_code": 200,
|
||||
"message": "Webhook test successful",
|
||||
"response_preview": "OK"
|
||||
}
|
||||
```
|
||||
|
||||
Or in case of failure:
|
||||
```json
|
||||
{
|
||||
"success": false,
|
||||
"error": "Webhook request timed out (10 seconds)"
|
||||
}
|
||||
```
|
||||
@@ -27,7 +27,7 @@ AUTH_JWT_AUDIENCE=
|
||||
#TRANSCRIPT_MODAL_API_KEY=xxxxx
|
||||
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-web.modal.run
|
||||
TRANSCRIPT_URL=https://monadical-sas--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=
|
||||
|
||||
## =======================================================
|
||||
|
||||
@@ -1,161 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
import threading
|
||||
|
||||
import modal
|
||||
from pydantic import BaseModel
|
||||
|
||||
MODELS_DIR = "/models"
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
|
||||
MINUTES = 60 # seconds
|
||||
|
||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
volume.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
||||
|
||||
volume.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
"LD_LIBRARY_PATH": (
|
||||
"/usr/local/lib/python3.12/site-packages/nvidia/cudnn/lib/:"
|
||||
"/opt/conda/lib/python3.12/site-packages/nvidia/cublas/lib/"
|
||||
),
|
||||
}
|
||||
)
|
||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
||||
)
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
class Transcriber:
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=MODELS_DIR,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
language: str,
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments)
|
||||
words = [
|
||||
{"word": word.word, "start": word.start, "end": word.end}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={MODELS_DIR: volume},
|
||||
)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriber = Transcriber()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile,
|
||||
model: str = "whisper-1",
|
||||
language: Annotated[str, Body(...)] = "en",
|
||||
) -> TranscriptResponse:
|
||||
audio_data = file.file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_file_types
|
||||
|
||||
func = transcriber.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
|
||||
return app
|
||||
@@ -0,0 +1,36 @@
|
||||
"""Add webhook fields to rooms
|
||||
|
||||
Revision ID: 0194f65cd6d3
|
||||
Revises: 5a8907fd1d78
|
||||
Create Date: 2025-08-27 09:03:19.610995
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0194f65cd6d3"
|
||||
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("webhook_secret")
|
||||
batch_op.drop_column("webhook_url")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,36 @@
|
||||
"""remove user_id from meeting table
|
||||
|
||||
Revision ID: 0ce521cda2ee
|
||||
Revises: 6dec9fb5b46c
|
||||
Create Date: 2025-09-10 12:40:55.688899
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0ce521cda2ee"
|
||||
down_revision: Union[str, None] = "6dec9fb5b46c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_column("user_id")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(
|
||||
sa.Column("user_id", sa.VARCHAR(), autoincrement=False, nullable=True)
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,32 @@
|
||||
"""clean up orphaned room_id references in meeting table
|
||||
|
||||
Revision ID: 2ae3db106d4e
|
||||
Revises: def1b5867d4c
|
||||
Create Date: 2025-09-11 10:35:15.759967
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "2ae3db106d4e"
|
||||
down_revision: Union[str, None] = "def1b5867d4c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Set room_id to NULL for meetings that reference non-existent rooms
|
||||
op.execute("""
|
||||
UPDATE meeting
|
||||
SET room_id = NULL
|
||||
WHERE room_id IS NOT NULL
|
||||
AND room_id NOT IN (SELECT id FROM room WHERE id IS NOT NULL)
|
||||
""")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Cannot restore orphaned references - no operation needed
|
||||
pass
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add cascade delete to meeting consent foreign key
|
||||
|
||||
Revision ID: 5a8907fd1d78
|
||||
Revises: 0ab2d7ffaa16
|
||||
Create Date: 2025-08-26 17:26:50.945491
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "5a8907fd1d78"
|
||||
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,53 @@
|
||||
"""remove_one_active_meeting_per_room_constraint
|
||||
|
||||
Revision ID: 6025e9b2bef2
|
||||
Revises: 2ae3db106d4e
|
||||
Create Date: 2025-08-18 18:45:44.418392
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6025e9b2bef2"
|
||||
down_revision: Union[str, None] = "2ae3db106d4e"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove the unique constraint that prevents multiple active meetings per room
|
||||
# This is needed to support calendar integration with overlapping meetings
|
||||
# Check if index exists before trying to drop it
|
||||
from alembic import context
|
||||
|
||||
if context.get_context().dialect.name == "postgresql":
|
||||
conn = op.get_bind()
|
||||
result = conn.execute(
|
||||
sa.text(
|
||||
"SELECT 1 FROM pg_indexes WHERE indexname = 'idx_one_active_meeting_per_room'"
|
||||
)
|
||||
)
|
||||
if result.fetchone():
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
else:
|
||||
# For SQLite, just try to drop it
|
||||
try:
|
||||
op.drop_index("idx_one_active_meeting_per_room", table_name="meeting")
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Restore the unique constraint
|
||||
op.create_index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"meeting",
|
||||
["room_id"],
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sqlite_where=sa.text("is_active = 1"),
|
||||
)
|
||||
@@ -0,0 +1,28 @@
|
||||
"""webhook url and secret null by default
|
||||
|
||||
|
||||
Revision ID: 61882a919591
|
||||
Revises: 0194f65cd6d3
|
||||
Create Date: 2025-08-29 11:46:36.738091
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "61882a919591"
|
||||
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,35 @@
|
||||
"""make meeting room_id required and add foreign key
|
||||
|
||||
Revision ID: 6dec9fb5b46c
|
||||
Revises: 61882a919591
|
||||
Create Date: 2025-09-10 10:47:06.006819
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "6dec9fb5b46c"
|
||||
down_revision: Union[str, None] = "61882a919591"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.create_foreign_key(
|
||||
None, "room", ["room_id"], ["id"], ondelete="CASCADE"
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("meeting_room_id_fkey", type_="foreignkey")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,34 @@
|
||||
"""add_grace_period_fields_to_meeting
|
||||
|
||||
Revision ID: d4a1c446458c
|
||||
Revises: 6025e9b2bef2
|
||||
Create Date: 2025-08-18 18:50:37.768052
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d4a1c446458c"
|
||||
down_revision: Union[str, None] = "6025e9b2bef2"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add fields to track when participants left for grace period logic
|
||||
op.add_column(
|
||||
"meeting", sa.Column("last_participant_left_at", sa.DateTime(timezone=True))
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column("grace_period_minutes", sa.Integer, server_default=sa.text("15")),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
129
server/migrations/versions/d8e204bbf615_add_calendar.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""add calendar
|
||||
|
||||
Revision ID: d8e204bbf615
|
||||
Revises: d4a1c446458c
|
||||
Create Date: 2025-09-10 19:56:22.295756
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "d8e204bbf615"
|
||||
down_revision: Union[str, None] = "d4a1c446458c"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table(
|
||||
"calendar_event",
|
||||
sa.Column("id", sa.String(), nullable=False),
|
||||
sa.Column("room_id", sa.String(), nullable=False),
|
||||
sa.Column("ics_uid", sa.Text(), nullable=False),
|
||||
sa.Column("title", sa.Text(), nullable=True),
|
||||
sa.Column("description", sa.Text(), nullable=True),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", postgresql.JSONB(astext_type=sa.Text()), nullable=True),
|
||||
sa.Column("location", sa.Text(), nullable=True),
|
||||
sa.Column("ics_raw_data", sa.Text(), nullable=True),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column(
|
||||
"is_deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False
|
||||
),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["room_id"],
|
||||
["room.id"],
|
||||
name="fk_calendar_event_room_id",
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
)
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_deleted",
|
||||
["is_deleted"],
|
||||
unique=False,
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_calendar_event_room_start", ["room_id", "start_time"], unique=False
|
||||
)
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("calendar_event_id", sa.String(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"calendar_metadata",
|
||||
postgresql.JSONB(astext_type=sa.Text()),
|
||||
nullable=True,
|
||||
)
|
||||
)
|
||||
batch_op.create_index(
|
||||
"idx_meeting_calendar_event", ["calendar_event_id"], unique=False
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
"fk_meeting_calendar_event_id",
|
||||
"calendar_event",
|
||||
["calendar_event_id"],
|
||||
["id"],
|
||||
ondelete="SET NULL",
|
||||
)
|
||||
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("ics_url", sa.Text(), nullable=True))
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_fetch_interval", sa.Integer(), server_default="300", nullable=True
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column(
|
||||
"ics_enabled",
|
||||
sa.Boolean(),
|
||||
server_default=sa.text("false"),
|
||||
nullable=False,
|
||||
)
|
||||
)
|
||||
batch_op.add_column(
|
||||
sa.Column("ics_last_sync", sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
batch_op.add_column(sa.Column("ics_last_etag", sa.Text(), nullable=True))
|
||||
batch_op.create_index("idx_room_ics_enabled", ["ics_enabled"], unique=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_room_ics_enabled")
|
||||
batch_op.drop_column("ics_last_etag")
|
||||
batch_op.drop_column("ics_last_sync")
|
||||
batch_op.drop_column("ics_enabled")
|
||||
batch_op.drop_column("ics_fetch_interval")
|
||||
batch_op.drop_column("ics_url")
|
||||
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.drop_constraint("fk_meeting_calendar_event_id", type_="foreignkey")
|
||||
batch_op.drop_index("idx_meeting_calendar_event")
|
||||
batch_op.drop_column("calendar_metadata")
|
||||
batch_op.drop_column("calendar_event_id")
|
||||
|
||||
with op.batch_alter_table("calendar_event", schema=None) as batch_op:
|
||||
batch_op.drop_index("idx_calendar_event_room_start")
|
||||
batch_op.drop_index(
|
||||
"idx_calendar_event_deleted", postgresql_where=sa.text("NOT is_deleted")
|
||||
)
|
||||
|
||||
op.drop_table("calendar_event")
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,43 @@
|
||||
"""remove_grace_period_fields
|
||||
|
||||
Revision ID: dc035ff72fd5
|
||||
Revises: d8e204bbf615
|
||||
Create Date: 2025-09-11 10:36:45.197588
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "dc035ff72fd5"
|
||||
down_revision: Union[str, None] = "d8e204bbf615"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Remove grace period columns from meeting table
|
||||
op.drop_column("meeting", "last_participant_left_at")
|
||||
op.drop_column("meeting", "grace_period_minutes")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Add back grace period columns to meeting table
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"last_participant_left_at", sa.DateTime(timezone=True), nullable=True
|
||||
),
|
||||
)
|
||||
op.add_column(
|
||||
"meeting",
|
||||
sa.Column(
|
||||
"grace_period_minutes",
|
||||
sa.Integer(),
|
||||
server_default=sa.text("15"),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
@@ -0,0 +1,34 @@
|
||||
"""make meeting room_id nullable but keep foreign key
|
||||
|
||||
Revision ID: def1b5867d4c
|
||||
Revises: 0ce521cda2ee
|
||||
Create Date: 2025-09-11 09:42:18.697264
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "def1b5867d4c"
|
||||
down_revision: Union[str, None] = "0ce521cda2ee"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=True)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting", schema=None) as batch_op:
|
||||
batch_op.alter_column("room_id", existing_type=sa.VARCHAR(), nullable=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -12,7 +12,6 @@ dependencies = [
|
||||
"requests>=2.31.0",
|
||||
"aiortc>=1.5.0",
|
||||
"sortedcontainers>=2.4.0",
|
||||
"loguru>=0.7.0",
|
||||
"pydantic-settings>=2.0.2",
|
||||
"structlog>=23.1.0",
|
||||
"uvicorn[standard]>=0.23.1",
|
||||
@@ -27,7 +26,6 @@ dependencies = [
|
||||
"prometheus-fastapi-instrumentator>=6.1.0",
|
||||
"sentencepiece>=0.1.99",
|
||||
"protobuf>=4.24.3",
|
||||
"profanityfilter>=2.0.6",
|
||||
"celery>=5.3.4",
|
||||
"redis>=5.0.1",
|
||||
"python-jose[cryptography]>=3.3.0",
|
||||
@@ -40,6 +38,7 @@ dependencies = [
|
||||
"llama-index-llms-openai-like>=0.4.0",
|
||||
"pytest-env>=1.1.5",
|
||||
"webvtt-py>=0.5.0",
|
||||
"icalendar>=6.0.0",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
@@ -113,13 +112,14 @@ source = ["reflector"]
|
||||
[tool.pytest_env]
|
||||
ENVIRONMENT = "pytest"
|
||||
DATABASE_URL = "postgresql://test_user:test_password@localhost:15432/reflector_test"
|
||||
AUTH_BACKEND = "jwt"
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "-ra -q --disable-pytest-warnings --cov --cov-report html -v"
|
||||
testpaths = ["tests"]
|
||||
asyncio_mode = "auto"
|
||||
markers = [
|
||||
"gpu_modal: mark test to run only with GPU Modal endpoints (deselect with '-m \"not gpu_modal\"')",
|
||||
"model_api: tests for the unified model-serving HTTP API (backend- and hardware-agnostic)",
|
||||
]
|
||||
|
||||
[tool.ruff.lint]
|
||||
@@ -131,7 +131,7 @@ select = [
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"reflector/processors/summary/summary_builder.py" = ["E501"]
|
||||
"gpu/**.py" = ["PLC0415"]
|
||||
"gpu/modal_deployments/**.py" = ["PLC0415"]
|
||||
"reflector/tools/**.py" = ["PLC0415"]
|
||||
"migrations/versions/**.py" = ["PLC0415"]
|
||||
"tests/**.py" = ["PLC0415"]
|
||||
|
||||
@@ -26,6 +26,7 @@ from reflector.views.transcripts_upload import router as transcripts_upload_rout
|
||||
from reflector.views.transcripts_webrtc import router as transcripts_webrtc_router
|
||||
from reflector.views.transcripts_websocket import router as transcripts_websocket_router
|
||||
from reflector.views.user import router as user_router
|
||||
from reflector.views.user_websocket import router as user_ws_router
|
||||
from reflector.views.whereby import router as whereby_router
|
||||
from reflector.views.zulip import router as zulip_router
|
||||
|
||||
@@ -65,6 +66,12 @@ app.add_middleware(
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
# metrics
|
||||
instrumentator = Instrumentator(
|
||||
excluded_handlers=["/docs", "/metrics"],
|
||||
@@ -84,6 +91,7 @@ app.include_router(transcripts_websocket_router, prefix="/v1")
|
||||
app.include_router(transcripts_webrtc_router, prefix="/v1")
|
||||
app.include_router(transcripts_process_router, prefix="/v1")
|
||||
app.include_router(user_router, prefix="/v1")
|
||||
app.include_router(user_ws_router, prefix="/v1")
|
||||
app.include_router(zulip_router, prefix="/v1")
|
||||
app.include_router(whereby_router, prefix="/v1")
|
||||
add_pagination(app)
|
||||
|
||||
27
server/reflector/asynctask.py
Normal file
27
server/reflector/asynctask.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import asyncio
|
||||
import functools
|
||||
|
||||
from reflector.db import get_database
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
@@ -67,7 +67,8 @@ def current_user(
|
||||
try:
|
||||
payload = jwtauth.verify_token(token)
|
||||
sub = payload["sub"]
|
||||
return UserInfo(sub=sub)
|
||||
email = payload["email"]
|
||||
return UserInfo(sub=sub, email=email)
|
||||
except JWTError as e:
|
||||
logger.error(f"JWT error: {e}")
|
||||
raise HTTPException(status_code=401, detail="Invalid authentication")
|
||||
|
||||
@@ -24,6 +24,7 @@ def get_database() -> databases.Database:
|
||||
|
||||
|
||||
# import models
|
||||
import reflector.db.calendar_events # noqa
|
||||
import reflector.db.meetings # noqa
|
||||
import reflector.db.recordings # noqa
|
||||
import reflector.db.rooms # noqa
|
||||
|
||||
187
server/reflector/db/calendar_events.py
Normal file
187
server/reflector/db/calendar_events.py
Normal file
@@ -0,0 +1,187 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
import sqlalchemy as sa
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.utils import generate_uuid4
|
||||
|
||||
calendar_events = sa.Table(
|
||||
"calendar_event",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE", name="fk_calendar_event_room_id"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("ics_uid", sa.Text, nullable=False),
|
||||
sa.Column("title", sa.Text),
|
||||
sa.Column("description", sa.Text),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("end_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("attendees", JSONB),
|
||||
sa.Column("location", sa.Text),
|
||||
sa.Column("ics_raw_data", sa.Text),
|
||||
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("is_deleted", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("created_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("updated_at", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.UniqueConstraint("room_id", "ics_uid", name="uq_room_calendar_event"),
|
||||
sa.Index("idx_calendar_event_room_start", "room_id", "start_time"),
|
||||
sa.Index(
|
||||
"idx_calendar_event_deleted",
|
||||
"is_deleted",
|
||||
postgresql_where=sa.text("NOT is_deleted"),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class CalendarEvent(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
room_id: str
|
||||
ics_uid: str
|
||||
title: str | None = None
|
||||
description: str | None = None
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
attendees: list[dict[str, Any]] | None = None
|
||||
location: str | None = None
|
||||
ics_raw_data: str | None = None
|
||||
last_synced: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
is_deleted: bool = False
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
|
||||
|
||||
class CalendarEventController:
|
||||
async def get_by_room(
|
||||
self,
|
||||
room_id: str,
|
||||
include_deleted: bool = False,
|
||||
start_after: datetime | None = None,
|
||||
end_before: datetime | None = None,
|
||||
) -> list[CalendarEvent]:
|
||||
query = calendar_events.select().where(calendar_events.c.room_id == room_id)
|
||||
|
||||
if not include_deleted:
|
||||
query = query.where(calendar_events.c.is_deleted == False)
|
||||
|
||||
if start_after:
|
||||
query = query.where(calendar_events.c.start_time >= start_after)
|
||||
|
||||
if end_before:
|
||||
query = query.where(calendar_events.c.end_time <= end_before)
|
||||
|
||||
query = query.order_by(calendar_events.c.start_time.asc())
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_upcoming(
|
||||
self, room_id: str, minutes_ahead: int = 120
|
||||
) -> list[CalendarEvent]:
|
||||
"""Get upcoming events for a room within the specified minutes, including currently happening events."""
|
||||
now = datetime.now(timezone.utc)
|
||||
future_time = now + timedelta(minutes=minutes_ahead)
|
||||
|
||||
query = (
|
||||
calendar_events.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.start_time <= future_time,
|
||||
calendar_events.c.end_time >= now,
|
||||
)
|
||||
)
|
||||
.order_by(calendar_events.c.start_time.asc())
|
||||
)
|
||||
|
||||
results = await get_database().fetch_all(query)
|
||||
return [CalendarEvent(**result) for result in results]
|
||||
|
||||
async def get_by_id(self, event_id: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(calendar_events.c.id == event_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def get_by_ics_uid(self, room_id: str, ics_uid: str) -> CalendarEvent | None:
|
||||
query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.ics_uid == ics_uid,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
return CalendarEvent(**result) if result else None
|
||||
|
||||
async def upsert(self, event: CalendarEvent) -> CalendarEvent:
|
||||
existing = await self.get_by_ics_uid(event.room_id, event.ics_uid)
|
||||
|
||||
if existing:
|
||||
event.id = existing.id
|
||||
event.created_at = existing.created_at
|
||||
event.updated_at = datetime.now(timezone.utc)
|
||||
|
||||
query = (
|
||||
calendar_events.update()
|
||||
.where(calendar_events.c.id == existing.id)
|
||||
.values(**event.model_dump())
|
||||
)
|
||||
else:
|
||||
query = calendar_events.insert().values(**event.model_dump())
|
||||
|
||||
await get_database().execute(query)
|
||||
return event
|
||||
|
||||
async def soft_delete_missing(
|
||||
self, room_id: str, current_ics_uids: list[str]
|
||||
) -> int:
|
||||
"""Soft delete future events that are no longer in the calendar."""
|
||||
now = datetime.now(timezone.utc)
|
||||
|
||||
select_query = calendar_events.select().where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
|
||||
to_delete = await get_database().fetch_all(select_query)
|
||||
delete_count = len(to_delete)
|
||||
|
||||
if delete_count > 0:
|
||||
update_query = (
|
||||
calendar_events.update()
|
||||
.where(
|
||||
sa.and_(
|
||||
calendar_events.c.room_id == room_id,
|
||||
calendar_events.c.start_time > now,
|
||||
calendar_events.c.is_deleted == False,
|
||||
calendar_events.c.ics_uid.notin_(current_ics_uids)
|
||||
if current_ics_uids
|
||||
else True,
|
||||
)
|
||||
)
|
||||
.values(is_deleted=True, updated_at=now)
|
||||
)
|
||||
|
||||
await get_database().execute(update_query)
|
||||
|
||||
return delete_count
|
||||
|
||||
async def delete_by_room(self, room_id: str) -> int:
|
||||
query = calendar_events.delete().where(calendar_events.c.room_id == room_id)
|
||||
result = await get_database().execute(query)
|
||||
return result.rowcount
|
||||
|
||||
|
||||
calendar_events_controller = CalendarEventController()
|
||||
@@ -1,9 +1,9 @@
|
||||
from datetime import datetime
|
||||
from typing import Literal
|
||||
from typing import Any, Literal
|
||||
|
||||
import sqlalchemy as sa
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
|
||||
from reflector.db import get_database, metadata
|
||||
from reflector.db.rooms import Room
|
||||
@@ -18,8 +18,12 @@ meetings = sa.Table(
|
||||
sa.Column("host_room_url", sa.String),
|
||||
sa.Column("start_date", sa.DateTime(timezone=True)),
|
||||
sa.Column("end_date", sa.DateTime(timezone=True)),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("room_id", sa.String),
|
||||
sa.Column(
|
||||
"room_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("room.id", ondelete="CASCADE"),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("is_locked", sa.Boolean, nullable=False, server_default=sa.false()),
|
||||
sa.Column("room_mode", sa.String, nullable=False, server_default="normal"),
|
||||
sa.Column("recording_type", sa.String, nullable=False, server_default="cloud"),
|
||||
@@ -41,20 +45,30 @@ meetings = sa.Table(
|
||||
nullable=False,
|
||||
server_default=sa.true(),
|
||||
),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index(
|
||||
"idx_one_active_meeting_per_room",
|
||||
"room_id",
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_active = true"),
|
||||
sa.Column(
|
||||
"calendar_event_id",
|
||||
sa.String,
|
||||
sa.ForeignKey(
|
||||
"calendar_event.id",
|
||||
ondelete="SET NULL",
|
||||
name="fk_meeting_calendar_event_id",
|
||||
),
|
||||
),
|
||||
sa.Column("calendar_metadata", JSONB),
|
||||
sa.Index("idx_meeting_room_id", "room_id"),
|
||||
sa.Index("idx_meeting_calendar_event", "calendar_event_id"),
|
||||
)
|
||||
|
||||
meeting_consent = sa.Table(
|
||||
"meeting_consent",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
||||
sa.Column(
|
||||
"meeting_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
||||
@@ -76,8 +90,7 @@ class Meeting(BaseModel):
|
||||
host_room_url: str
|
||||
start_date: datetime
|
||||
end_date: datetime
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
room_id: str | None
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
@@ -85,6 +98,9 @@ class Meeting(BaseModel):
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
num_clients: int = 0
|
||||
is_active: bool = True
|
||||
calendar_event_id: str | None = None
|
||||
calendar_metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class MeetingController:
|
||||
@@ -96,12 +112,10 @@ class MeetingController:
|
||||
host_room_url: str,
|
||||
start_date: datetime,
|
||||
end_date: datetime,
|
||||
user_id: str,
|
||||
room: Room,
|
||||
calendar_event_id: str | None = None,
|
||||
calendar_metadata: dict[str, Any] | None = None,
|
||||
):
|
||||
"""
|
||||
Create a new meeting
|
||||
"""
|
||||
meeting = Meeting(
|
||||
id=id,
|
||||
room_name=room_name,
|
||||
@@ -109,41 +123,46 @@ class MeetingController:
|
||||
host_room_url=host_room_url,
|
||||
start_date=start_date,
|
||||
end_date=end_date,
|
||||
user_id=user_id,
|
||||
room_id=room.id,
|
||||
is_locked=room.is_locked,
|
||||
room_mode=room.room_mode,
|
||||
recording_type=room.recording_type,
|
||||
recording_trigger=room.recording_trigger,
|
||||
calendar_event_id=calendar_event_id,
|
||||
calendar_metadata=calendar_metadata,
|
||||
)
|
||||
query = meetings.insert().values(**meeting.model_dump())
|
||||
await get_database().execute(query)
|
||||
return meeting
|
||||
|
||||
async def get_all_active(self) -> list[Meeting]:
|
||||
"""
|
||||
Get active meetings.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.is_active)
|
||||
return await get_database().fetch_all(query)
|
||||
|
||||
async def get_by_room_name(
|
||||
self,
|
||||
room_name: str,
|
||||
) -> Meeting:
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by room name.
|
||||
For backward compatibility, returns the most recent meeting.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.room_name == room_name)
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(meetings.c.room_name == room_name)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting:
|
||||
async def get_active(self, room: Room, current_time: datetime) -> Meeting | None:
|
||||
"""
|
||||
Get latest active meeting for a room.
|
||||
For backward compatibility, returns the most recent active meeting.
|
||||
"""
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
@@ -163,32 +182,58 @@ class MeetingController:
|
||||
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_all_active_for_room(
|
||||
self, room: Room, current_time: datetime
|
||||
) -> list[Meeting]:
|
||||
end_date = getattr(meetings.c, "end_date")
|
||||
query = (
|
||||
meetings.select()
|
||||
.where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
.order_by(end_date.desc())
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Meeting(**result) for result in results]
|
||||
|
||||
async def get_active_by_calendar_event(
|
||||
self, room: Room, calendar_event_id: str, current_time: datetime
|
||||
) -> Meeting | None:
|
||||
"""
|
||||
Get active meeting for a specific calendar event.
|
||||
"""
|
||||
query = meetings.select().where(
|
||||
sa.and_(
|
||||
meetings.c.room_id == room.id,
|
||||
meetings.c.calendar_event_id == calendar_event_id,
|
||||
meetings.c.end_date > current_time,
|
||||
meetings.c.is_active,
|
||||
)
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id(self, meeting_id: str, **kwargs) -> Meeting | None:
|
||||
"""
|
||||
Get a meeting by id
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def get_by_id_for_http(self, meeting_id: str, user_id: str | None) -> Meeting:
|
||||
"""
|
||||
Get a meeting by ID for HTTP request.
|
||||
|
||||
If not found, it will raise a 404 error.
|
||||
"""
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
async def get_by_calendar_event(self, calendar_event_id: str) -> Meeting | None:
|
||||
query = meetings.select().where(
|
||||
meetings.c.calendar_event_id == calendar_event_id
|
||||
)
|
||||
result = await get_database().fetch_one(query)
|
||||
if not result:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
|
||||
meeting = Meeting(**result)
|
||||
if result["user_id"] != user_id:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
return None
|
||||
return Meeting(**result)
|
||||
|
||||
async def update_meeting(self, meeting_id: str, **kwargs):
|
||||
query = meetings.update().where(meetings.c.id == meeting_id).values(**kwargs)
|
||||
@@ -214,10 +259,9 @@ class MeetingConsentController:
|
||||
result = await get_database().fetch_one(query)
|
||||
if result is None:
|
||||
return None
|
||||
return MeetingConsent(**result) if result else None
|
||||
return MeetingConsent(**result)
|
||||
|
||||
async def upsert(self, consent: MeetingConsent) -> MeetingConsent:
|
||||
"""Create new consent or update existing one for authenticated users"""
|
||||
if consent.user_id:
|
||||
# For authenticated users, check if consent already exists
|
||||
# not transactional but we're ok with that; the consents ain't deleted anyways
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import IntegrityError
|
||||
from typing import Literal
|
||||
@@ -40,7 +41,17 @@ rooms = sqlalchemy.Table(
|
||||
sqlalchemy.Column(
|
||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("ics_url", sqlalchemy.Text),
|
||||
sqlalchemy.Column("ics_fetch_interval", sqlalchemy.Integer, server_default="300"),
|
||||
sqlalchemy.Column(
|
||||
"ics_enabled", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("ics_last_sync", sqlalchemy.DateTime(timezone=True)),
|
||||
sqlalchemy.Column("ics_last_etag", sqlalchemy.Text),
|
||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||
sqlalchemy.Index("idx_room_ics_enabled", "ics_enabled"),
|
||||
)
|
||||
|
||||
|
||||
@@ -59,6 +70,13 @@ class Room(BaseModel):
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
is_shared: bool = False
|
||||
webhook_url: str | None = None
|
||||
webhook_secret: str | None = None
|
||||
ics_url: str | None = None
|
||||
ics_fetch_interval: int = 300
|
||||
ics_enabled: bool = False
|
||||
ics_last_sync: datetime | None = None
|
||||
ics_last_etag: str | None = None
|
||||
|
||||
|
||||
class RoomController:
|
||||
@@ -107,10 +125,18 @@ class RoomController:
|
||||
recording_type: str,
|
||||
recording_trigger: str,
|
||||
is_shared: bool,
|
||||
webhook_url: str = "",
|
||||
webhook_secret: str = "",
|
||||
ics_url: str | None = None,
|
||||
ics_fetch_interval: int = 300,
|
||||
ics_enabled: bool = False,
|
||||
):
|
||||
"""
|
||||
Add a new room
|
||||
"""
|
||||
if webhook_url and not webhook_secret:
|
||||
webhook_secret = secrets.token_urlsafe(32)
|
||||
|
||||
room = Room(
|
||||
name=name,
|
||||
user_id=user_id,
|
||||
@@ -122,6 +148,11 @@ class RoomController:
|
||||
recording_type=recording_type,
|
||||
recording_trigger=recording_trigger,
|
||||
is_shared=is_shared,
|
||||
webhook_url=webhook_url,
|
||||
webhook_secret=webhook_secret,
|
||||
ics_url=ics_url,
|
||||
ics_fetch_interval=ics_fetch_interval,
|
||||
ics_enabled=ics_enabled,
|
||||
)
|
||||
query = rooms.insert().values(**room.model_dump())
|
||||
try:
|
||||
@@ -134,6 +165,9 @@ class RoomController:
|
||||
"""
|
||||
Update a room fields with key/values in values
|
||||
"""
|
||||
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||
|
||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||
try:
|
||||
await get_database().execute(query)
|
||||
@@ -183,6 +217,13 @@ class RoomController:
|
||||
|
||||
return room
|
||||
|
||||
async def get_ics_enabled(self) -> list[Room]:
|
||||
query = rooms.select().where(
|
||||
rooms.c.ics_enabled == True, rooms.c.ics_url != None
|
||||
)
|
||||
results = await get_database().fetch_all(query)
|
||||
return [Room(**result) for result in results]
|
||||
|
||||
async def remove_by_id(
|
||||
self,
|
||||
room_id: str,
|
||||
|
||||
@@ -8,12 +8,14 @@ from typing import Annotated, Any, Dict, Iterator
|
||||
|
||||
import sqlalchemy
|
||||
import webvtt
|
||||
from databases.interfaces import Record as DbRecord
|
||||
from fastapi import HTTPException
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
NonNegativeFloat,
|
||||
NonNegativeInt,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
constr,
|
||||
field_serializer,
|
||||
@@ -21,9 +23,10 @@ from pydantic import (
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.db.rooms import rooms
|
||||
from reflector.db.transcripts import SourceKind, transcripts
|
||||
from reflector.db.transcripts import SourceKind, TranscriptStatus, transcripts
|
||||
from reflector.db.utils import is_postgresql
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||
|
||||
DEFAULT_SEARCH_LIMIT = 20
|
||||
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||
@@ -31,12 +34,13 @@ DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||
|
||||
SearchQueryBase = constr(min_length=0, strip_whitespace=True)
|
||||
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||
SearchOffsetBase = Annotated[int, Field(ge=0)]
|
||||
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||
|
||||
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||
search_query_adapter = TypeAdapter(SearchQuery)
|
||||
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||
SearchOffset = Annotated[
|
||||
SearchOffsetBase, Field(description="Number of results to skip")
|
||||
@@ -88,7 +92,7 @@ class WebVTTProcessor:
|
||||
@staticmethod
|
||||
def generate_snippets(
|
||||
webvtt_content: WebVTTContent,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from WebVTT content."""
|
||||
@@ -125,7 +129,7 @@ class SnippetCandidate:
|
||||
class SearchParameters(BaseModel):
|
||||
"""Validated search parameters for full-text search."""
|
||||
|
||||
query_text: SearchQuery
|
||||
query_text: SearchQuery | None = None
|
||||
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||
offset: SearchOffset = 0
|
||||
user_id: str | None = None
|
||||
@@ -157,7 +161,7 @@ class SearchResult(BaseModel):
|
||||
room_name: str | None = None
|
||||
source_kind: SourceKind
|
||||
created_at: datetime
|
||||
status: str = Field(..., min_length=1)
|
||||
status: TranscriptStatus = Field(..., min_length=1)
|
||||
rank: float = Field(..., ge=0, le=1)
|
||||
duration: NonNegativeFloat | None = Field(..., description="Duration in seconds")
|
||||
search_snippets: list[str] = Field(
|
||||
@@ -199,15 +203,13 @@ class SnippetGenerator:
|
||||
prev_start = start
|
||||
|
||||
@staticmethod
|
||||
def count_matches(text: str, query: str) -> NonNegativeInt:
|
||||
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||
"""Count total number of matches for a query in text."""
|
||||
ZERO = NonNegativeInt(0)
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in count_matches")
|
||||
return ZERO
|
||||
if not query:
|
||||
logger.warning("Empty query for search text in count_matches")
|
||||
return ZERO
|
||||
assert query is not None
|
||||
return NonNegativeInt(
|
||||
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||
)
|
||||
@@ -243,13 +245,14 @@ class SnippetGenerator:
|
||||
@staticmethod
|
||||
def generate(
|
||||
text: str,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from text."""
|
||||
if not text or not query:
|
||||
logger.warning("Empty text or query for generate_snippets")
|
||||
assert query is not None
|
||||
if not text:
|
||||
logger.warning("Empty text for generate_snippets")
|
||||
return []
|
||||
|
||||
candidates = (
|
||||
@@ -270,7 +273,7 @@ class SnippetGenerator:
|
||||
@staticmethod
|
||||
def from_summary(
|
||||
summary: str,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from summary text."""
|
||||
@@ -278,9 +281,9 @@ class SnippetGenerator:
|
||||
|
||||
@staticmethod
|
||||
def combine_sources(
|
||||
summary: str | None,
|
||||
summary: NonEmptyString | None,
|
||||
webvtt: WebVTTContent | None,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> tuple[list[str], NonNegativeInt]:
|
||||
"""Combine snippets from multiple sources and return total match count.
|
||||
@@ -289,6 +292,11 @@ class SnippetGenerator:
|
||||
|
||||
snippets can be empty for real in case of e.g. title match
|
||||
"""
|
||||
|
||||
assert (
|
||||
summary is not None or webvtt is not None
|
||||
), "At least one source must be present"
|
||||
|
||||
webvtt_matches = 0
|
||||
summary_matches = 0
|
||||
|
||||
@@ -355,8 +363,8 @@ class SearchController:
|
||||
else_=rooms.c.name,
|
||||
).label("room_name"),
|
||||
]
|
||||
|
||||
if params.query_text:
|
||||
search_query = None
|
||||
if params.query_text is not None:
|
||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||
"english", params.query_text
|
||||
)
|
||||
@@ -373,7 +381,9 @@ class SearchController:
|
||||
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
|
||||
)
|
||||
|
||||
if params.query_text:
|
||||
if params.query_text is not None:
|
||||
# because already initialized based on params.query_text presence above
|
||||
assert search_query is not None
|
||||
base_query = base_query.where(
|
||||
transcripts.c.search_vector_en.op("@@")(search_query)
|
||||
)
|
||||
@@ -393,7 +403,7 @@ class SearchController:
|
||||
transcripts.c.source_kind == params.source_kind
|
||||
)
|
||||
|
||||
if params.query_text:
|
||||
if params.query_text is not None:
|
||||
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||
else:
|
||||
order_by = sqlalchemy.desc(transcripts.c.created_at)
|
||||
@@ -407,19 +417,29 @@ class SearchController:
|
||||
)
|
||||
total = await get_database().fetch_val(count_query)
|
||||
|
||||
def _process_result(r) -> SearchResult:
|
||||
def _process_result(r: DbRecord) -> SearchResult:
|
||||
r_dict: Dict[str, Any] = dict(r)
|
||||
|
||||
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||
webvtt: WebVTTContent | None
|
||||
if webvtt_raw:
|
||||
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||
else:
|
||||
webvtt = None
|
||||
long_summary: str | None = r_dict.pop("long_summary", None)
|
||||
|
||||
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||
room_name: str | None = r_dict.pop("room_name", None)
|
||||
db_result = SearchResultDB.model_validate(r_dict)
|
||||
|
||||
snippets, total_match_count = SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
at_least_one_source = webvtt is not None or long_summary is not None
|
||||
has_query = params.query_text is not None
|
||||
snippets, total_match_count = (
|
||||
SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
)
|
||||
if has_query and at_least_one_source
|
||||
else ([], 0)
|
||||
)
|
||||
|
||||
return SearchResult(
|
||||
|
||||
@@ -122,6 +122,15 @@ def generate_transcript_name() -> str:
|
||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
|
||||
TranscriptStatus = Literal[
|
||||
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||
]
|
||||
|
||||
|
||||
class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class AudioWaveform(BaseModel):
|
||||
data: list[float]
|
||||
|
||||
@@ -185,7 +194,7 @@ class Transcript(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
user_id: str | None = None
|
||||
name: str = Field(default_factory=generate_transcript_name)
|
||||
status: str = "idle"
|
||||
status: TranscriptStatus = "idle"
|
||||
duration: float = 0
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
title: str | None = None
|
||||
@@ -638,6 +647,19 @@ class TranscriptController:
|
||||
query = transcripts.delete().where(transcripts.c.recording_id == recording_id)
|
||||
await get_database().execute(query)
|
||||
|
||||
@staticmethod
|
||||
def user_can_mutate(transcript: Transcript, user_id: str | None) -> bool:
|
||||
"""
|
||||
Returns True if the given user is allowed to modify the transcript.
|
||||
|
||||
Policy:
|
||||
- Anonymous transcripts (user_id is None) cannot be modified via API
|
||||
- Only the owner (matching user_id) can modify their transcript
|
||||
"""
|
||||
if transcript.user_id is None:
|
||||
return False
|
||||
return user_id and transcript.user_id == user_id
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
"""
|
||||
@@ -732,5 +754,27 @@ class TranscriptController:
|
||||
transcript.delete_participant(participant_id)
|
||||
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||
|
||||
async def set_status(
|
||||
self, transcript_id: str, status: TranscriptStatus
|
||||
) -> TranscriptEvent | None:
|
||||
"""
|
||||
Update the status of a transcript
|
||||
|
||||
Will add an event STATUS + update the status field of transcript
|
||||
"""
|
||||
async with self.transaction():
|
||||
transcript = await self.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
if transcript.status == status:
|
||||
return
|
||||
resp = await self.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await self.update(transcript, {"status": status})
|
||||
return resp
|
||||
|
||||
|
||||
transcripts_controller = TranscriptController()
|
||||
|
||||
@@ -7,18 +7,28 @@ Uses parallel processing for transcription, diarization, and waveform generation
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
from celery import chain, shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
Transcript,
|
||||
TranscriptStatus,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_live_pipeline import PipelineMainBase, asynctask
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
task_cleanup_consent,
|
||||
task_pipeline_post_to_zulip,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
@@ -43,6 +53,7 @@ from reflector.processors.types import (
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.worker.webhook import send_transcript_webhook
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
@@ -83,12 +94,27 @@ class PipelineMainFile(PipelineMainBase):
|
||||
exc_info=result,
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def process(self, file_path: Path):
|
||||
"""Main entry point for file processing"""
|
||||
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Clear transcript as we're going to regenerate everything
|
||||
async with self.transaction():
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
},
|
||||
)
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
@@ -105,6 +131,8 @@ class PipelineMainFile(PipelineMainBase):
|
||||
|
||||
self.logger.info("File pipeline complete")
|
||||
|
||||
await self.set_status(transcript.id, "ended")
|
||||
|
||||
async def extract_and_write_audio(
|
||||
self, file_path: Path, transcript: Transcript
|
||||
) -> Path:
|
||||
@@ -353,6 +381,28 @@ class PipelineMainFile(PipelineMainBase):
|
||||
await processor.flush()
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_send_webhook_if_needed(*, transcript_id: str):
|
||||
"""Send webhook if this is a room recording with webhook configured"""
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
return
|
||||
|
||||
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||
if room and room.webhook_url:
|
||||
logger.info(
|
||||
"Dispatching webhook",
|
||||
transcript_id=transcript_id,
|
||||
room_id=room.id,
|
||||
webhook_url=room.webhook_url,
|
||||
)
|
||||
send_transcript_webhook.delay(
|
||||
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||
)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def task_pipeline_file_process(*, transcript_id: str):
|
||||
@@ -362,14 +412,28 @@ async def task_pipeline_file_process(*, transcript_id: str):
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
# Run file pipeline
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process(audio_file)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
await pipeline.process(audio_file)
|
||||
|
||||
except Exception:
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
# Run post-processing chain: consent cleanup -> zulip -> webhook
|
||||
post_chain = chain(
|
||||
task_cleanup_consent.si(transcript_id=transcript_id),
|
||||
task_pipeline_post_to_zulip.si(transcript_id=transcript_id),
|
||||
task_send_webhook_if_needed.si(transcript_id=transcript_id),
|
||||
)
|
||||
post_chain.delay()
|
||||
|
||||
@@ -22,7 +22,7 @@ from celery import chord, current_task, group, shared_task
|
||||
from pydantic import BaseModel
|
||||
from structlog import BoundLogger as Logger
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
@@ -32,6 +32,7 @@ from reflector.db.transcripts import (
|
||||
TranscriptFinalLongSummary,
|
||||
TranscriptFinalShortSummary,
|
||||
TranscriptFinalTitle,
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
TranscriptTopic,
|
||||
TranscriptWaveform,
|
||||
@@ -40,8 +41,9 @@ from reflector.db.transcripts import (
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioChunkerAutoProcessor,
|
||||
AudioDiarizationAutoProcessor,
|
||||
AudioDownscaleProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
@@ -68,29 +70,6 @@ from reflector.zulip import (
|
||||
)
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def broadcast_to_sockets(func):
|
||||
"""
|
||||
Decorator to broadcast transcript event to websockets
|
||||
@@ -106,6 +85,20 @@ def broadcast_to_sockets(func):
|
||||
message=resp.model_dump(mode="json"),
|
||||
)
|
||||
|
||||
transcript = await transcripts_controller.get_by_id(self.transcript_id)
|
||||
if transcript and transcript.user_id:
|
||||
# Emit only relevant events to the user room to avoid noisy updates.
|
||||
# Allowed: STATUS, FINAL_TITLE, DURATION. All are prefixed with TRANSCRIPT_
|
||||
allowed_user_events = {"STATUS", "FINAL_TITLE", "DURATION"}
|
||||
if resp.event in allowed_user_events:
|
||||
await self.ws_manager.send_json(
|
||||
room_id=f"user:{transcript.user_id}",
|
||||
message={
|
||||
"event": f"TRANSCRIPT_{resp.event}",
|
||||
"data": {"id": self.transcript_id, **resp.data},
|
||||
},
|
||||
)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@@ -187,8 +180,15 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
]
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async def lock_transaction(self):
|
||||
# This lock is to prevent multiple processor starting adding
|
||||
# into event array at the same time
|
||||
async with self._lock:
|
||||
yield
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async with self.lock_transaction():
|
||||
async with transcripts_controller.transaction():
|
||||
yield
|
||||
|
||||
@@ -197,14 +197,14 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
# if it's the first part, update the status of the transcript
|
||||
# but do not set the ended status yet.
|
||||
if isinstance(self, PipelineMainLive):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"started": "recording",
|
||||
"push": "recording",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
}
|
||||
elif isinstance(self, PipelineMainFinalSummaries):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"push": "processing",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
@@ -220,22 +220,8 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
return
|
||||
|
||||
# when the status of the pipeline changes, update the transcript
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
if status == transcript.status:
|
||||
return
|
||||
resp = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"status": status,
|
||||
},
|
||||
)
|
||||
return resp
|
||||
async with self._lock:
|
||||
return await transcripts_controller.set_status(self.transcript_id, status)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_transcript(self, data):
|
||||
@@ -365,7 +351,8 @@ class PipelineMainLive(PipelineMainBase):
|
||||
path=transcript.audio_wav_filename,
|
||||
on_duration=self.on_duration,
|
||||
),
|
||||
AudioChunkerProcessor(),
|
||||
AudioDownscaleProcessor(),
|
||||
AudioChunkerAutoProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
@@ -792,7 +779,7 @@ def pipeline_post(*, transcript_id: str):
|
||||
chain_final_summaries,
|
||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||
|
||||
chain.delay()
|
||||
return chain.delay()
|
||||
|
||||
|
||||
@get_transcript
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||
|
||||
@@ -1,340 +1,78 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
from prometheus_client import Counter, Histogram
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
class AudioChunkerProcessor(Processor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection
|
||||
Base class for assembling audio frames into chunks
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = list[av.AudioFrame]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
vad_threshold=0.5,
|
||||
use_onnx=False,
|
||||
min_frames=2,
|
||||
):
|
||||
super().__init__()
|
||||
m_chunk = Histogram(
|
||||
"audio_chunker",
|
||||
"Time spent in AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_call = Counter(
|
||||
"audio_chunker_call",
|
||||
"Number of calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_success = Counter(
|
||||
"audio_chunker_success",
|
||||
"Number of successful calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_failure = Counter(
|
||||
"audio_chunker_failure",
|
||||
"Number of failed calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
name = self.__class__.__name__
|
||||
self.m_chunk = self.m_chunk.labels(name)
|
||||
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.frames: list[av.AudioFrame] = []
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.vad_threshold = vad_threshold
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
self.frames.append(data)
|
||||
# print("timestamp", data.pts * data.time_base * 1000)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
"""Process incoming audio frame"""
|
||||
# Validate audio format on first frame
|
||||
if len(self.frames) == 0:
|
||||
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||
raise ValueError(
|
||||
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||
f"with {len(data.layout.channels)} channel(s). "
|
||||
f"Use AudioDownscaleProcessor before this processor."
|
||||
)
|
||||
|
||||
async def _process_block(self):
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return
|
||||
|
||||
# Processing block with current buffer size
|
||||
# print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
self.m_chunk_call.inc()
|
||||
with self.m_chunk.time():
|
||||
result = await self._chunk(data)
|
||||
self.m_chunk_success.inc()
|
||||
if result:
|
||||
await self.emit(result)
|
||||
except Exception:
|
||||
self.m_chunk_failure.inc()
|
||||
raise
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
first_frame = frames[0]
|
||||
original_sample_rate = first_frame.sample_rate
|
||||
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
# Handle stereo -> mono conversion
|
||||
if len(frame_array.shape) == 2 and frame_array.shape[0] > 1:
|
||||
frame_array = np.mean(frame_array, axis=0)
|
||||
elif len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Resample from 48kHz to 16kHz if needed
|
||||
if original_sample_rate != 16000:
|
||||
combined_audio = self._resample_audio(
|
||||
combined_audio, original_sample_rate, 16000
|
||||
)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _resample_audio(
|
||||
self, audio: np.ndarray, from_sr: int, to_sr: int
|
||||
) -> np.ndarray:
|
||||
"""Simple linear resampling from from_sr to to_sr"""
|
||||
if from_sr == to_sr:
|
||||
return audio
|
||||
|
||||
try:
|
||||
# Simple linear interpolation resampling
|
||||
ratio = to_sr / from_sr
|
||||
new_length = int(len(audio) * ratio)
|
||||
|
||||
# Create indices for interpolation
|
||||
old_indices = np.linspace(0, len(audio) - 1, new_length)
|
||||
resampled = np.interp(old_indices, np.arange(len(audio)), audio)
|
||||
|
||||
return resampled.astype(np.float32)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error("Resampling error", exc_info=e)
|
||||
# Fallback: simple decimation/repetition
|
||||
if from_sr > to_sr:
|
||||
# Downsample by taking every nth sample
|
||||
step = from_sr // to_sr
|
||||
return audio[::step]
|
||||
else:
|
||||
# Upsample by repeating samples
|
||||
repeat = to_sr // from_sr
|
||||
return np.repeat(audio, repeat)
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
# Account for resampling: we process at 16kHz but frames might be 48kHz
|
||||
resample_ratio = 48000 / 16000 # 3x
|
||||
actual_sample_pos = int(speech_end * resample_ratio)
|
||||
frame_index = actual_sample_pos // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""
|
||||
Process audio frame and return chunk when ready.
|
||||
Subclasses should implement their chunking logic here.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
"""Flush any remaining frames when processing ends"""
|
||||
raise NotImplementedError
|
||||
|
||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.AUDIO_CHUNKER_BACKEND
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "AUDIO_CHUNKER_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||
"""
|
||||
|
||||
def __init__(self, max_frames=256, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
return frames_to_emit
|
||||
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||
298
server/reflector/processors/audio_chunker_silero.py
Normal file
298
server/reflector/processors/audio_chunker_silero.py
Normal file
@@ -0,0 +1,298 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
use_onnx=True,
|
||||
min_frames=2,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""Process audio frame and return chunk when ready"""
|
||||
self.frames.append(data)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
return await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return None
|
||||
|
||||
# Processing block with current buffer size
|
||||
print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return None
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return None
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
if len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
frame_index = speech_end // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)
|
||||
60
server/reflector/processors/audio_downscale.py
Normal file
60
server/reflector/processors/audio_downscale.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioDownscaleProcessor(Processor):
|
||||
"""
|
||||
Downscale audio frames to 16kHz mono format
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = av.AudioFrame
|
||||
|
||||
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.target_rate = target_rate
|
||||
self.target_layout = target_layout
|
||||
self.resampler: Optional[AudioResampler] = None
|
||||
self.needs_resampling: Optional[bool] = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
if self.needs_resampling is None:
|
||||
self.needs_resampling = (
|
||||
data.sample_rate != self.target_rate
|
||||
or data.layout.name != self.target_layout
|
||||
)
|
||||
|
||||
if self.needs_resampling:
|
||||
self.resampler = AudioResampler(
|
||||
format="s16", layout=self.target_layout, rate=self.target_rate
|
||||
)
|
||||
|
||||
if not self.needs_resampling or not self.resampler:
|
||||
await self.emit(data)
|
||||
return
|
||||
|
||||
resampled_frames = self.resampler.resample(copy_frame(data))
|
||||
for resampled_frame in resampled_frames:
|
||||
await self.emit(resampled_frame)
|
||||
|
||||
async def _flush(self):
|
||||
if self.needs_resampling and self.resampler:
|
||||
final_frames = self.resampler.resample(None)
|
||||
for frame in final_frames:
|
||||
await self.emit(frame)
|
||||
@@ -3,24 +3,11 @@ from time import monotonic_ns
|
||||
from uuid import uuid4
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
from reflector.processors.types import AudioFile
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioMergeProcessor(Processor):
|
||||
"""
|
||||
Merge audio frame into a single file
|
||||
@@ -29,9 +16,8 @@ class AudioMergeProcessor(Processor):
|
||||
INPUT_TYPE = list[av.AudioFrame]
|
||||
OUTPUT_TYPE = AudioFile
|
||||
|
||||
def __init__(self, downsample_to_16k_mono: bool = True, **kwargs):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.downsample_to_16k_mono = downsample_to_16k_mono
|
||||
|
||||
async def _push(self, data: list[av.AudioFrame]):
|
||||
if not data:
|
||||
@@ -39,72 +25,27 @@ class AudioMergeProcessor(Processor):
|
||||
|
||||
# get audio information from first frame
|
||||
frame = data[0]
|
||||
original_channels = len(frame.layout.channels)
|
||||
original_sample_rate = frame.sample_rate
|
||||
original_sample_width = frame.format.bytes
|
||||
|
||||
# determine if we need processing
|
||||
needs_processing = self.downsample_to_16k_mono and (
|
||||
original_sample_rate != 16000 or original_channels != 1
|
||||
)
|
||||
|
||||
# determine output parameters
|
||||
if self.downsample_to_16k_mono:
|
||||
output_sample_rate = 16000
|
||||
output_channels = 1
|
||||
output_sample_width = 2 # 16-bit = 2 bytes
|
||||
else:
|
||||
output_sample_rate = original_sample_rate
|
||||
output_channels = original_channels
|
||||
output_sample_width = original_sample_width
|
||||
output_channels = len(frame.layout.channels)
|
||||
output_sample_rate = frame.sample_rate
|
||||
output_sample_width = frame.format.bytes
|
||||
|
||||
# create audio file
|
||||
uu = uuid4().hex
|
||||
fd = io.BytesIO()
|
||||
|
||||
if needs_processing:
|
||||
# Process with PyAV resampler
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=16000)
|
||||
out_stream.layout = "mono"
|
||||
# Use PyAV to write frames
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = frame.layout.name
|
||||
|
||||
# Create resampler if needed
|
||||
resampler = None
|
||||
if original_sample_rate != 16000 or original_channels != 1:
|
||||
resampler = AudioResampler(format="s16", layout="mono", rate=16000)
|
||||
|
||||
for frame in data:
|
||||
if resampler:
|
||||
# Resample and convert to mono
|
||||
# XXX for an unknown reason, if we don't use a copy of the frame, we get
|
||||
# Invalid Argumment from resample. Debugging indicate that when a previous processor
|
||||
# already used the frame (like AudioFileWriter), it make it invalid argument here.
|
||||
resampled_frames = resampler.resample(copy_frame(frame))
|
||||
for resampled_frame in resampled_frames:
|
||||
for packet in out_stream.encode(resampled_frame):
|
||||
out_container.mux(packet)
|
||||
else:
|
||||
# Direct encoding without resampling
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
else:
|
||||
# Use PyAV for original frames (no processing needed)
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = "mono" if output_channels == 1 else frame.layout
|
||||
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
|
||||
fd.seek(0)
|
||||
|
||||
|
||||
@@ -12,9 +12,6 @@ API will be a POST request to TRANSCRIPT_URL:
|
||||
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
import aiohttp
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from reflector.processors.audio_transcript import AudioTranscriptProcessor
|
||||
@@ -25,7 +22,9 @@ from reflector.settings import settings
|
||||
|
||||
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
def __init__(
|
||||
self, modal_api_key: str | None = None, batch_enabled: bool = True, **kwargs
|
||||
self,
|
||||
modal_api_key: str | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if not settings.TRANSCRIPT_URL:
|
||||
@@ -35,126 +34,6 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
self.transcript_url = settings.TRANSCRIPT_URL + "/v1"
|
||||
self.timeout = settings.TRANSCRIPT_TIMEOUT
|
||||
self.modal_api_key = modal_api_key
|
||||
self.max_batch_duration = 10.0
|
||||
self.max_batch_files = 15
|
||||
self.batch_enabled = batch_enabled
|
||||
self.pending_files: List[AudioFile] = [] # Files waiting to be processed
|
||||
|
||||
@classmethod
|
||||
def _calculate_duration(cls, audio_file: AudioFile) -> float:
|
||||
"""Calculate audio duration in seconds from AudioFile metadata"""
|
||||
# Duration = total_samples / sample_rate
|
||||
# We need to estimate total samples from the file data
|
||||
import wave
|
||||
|
||||
try:
|
||||
# Try to read as WAV file to get duration
|
||||
audio_file.fd.seek(0)
|
||||
with wave.open(audio_file.fd, "rb") as wav_file:
|
||||
frames = wav_file.getnframes()
|
||||
sample_rate = wav_file.getframerate()
|
||||
duration = frames / sample_rate
|
||||
return duration
|
||||
except Exception:
|
||||
# Fallback: estimate from file size and audio parameters
|
||||
audio_file.fd.seek(0, 2) # Seek to end
|
||||
file_size = audio_file.fd.tell()
|
||||
audio_file.fd.seek(0) # Reset to beginning
|
||||
|
||||
# Estimate: file_size / (sample_rate * channels * sample_width)
|
||||
bytes_per_second = (
|
||||
audio_file.sample_rate
|
||||
* audio_file.channels
|
||||
* (audio_file.sample_width // 8)
|
||||
)
|
||||
estimated_duration = (
|
||||
file_size / bytes_per_second if bytes_per_second > 0 else 0
|
||||
)
|
||||
return max(0, estimated_duration)
|
||||
|
||||
def _create_batches(self, audio_files: List[AudioFile]) -> List[List[AudioFile]]:
|
||||
"""Group audio files into batches with maximum 30s total duration"""
|
||||
batches = []
|
||||
current_batch = []
|
||||
current_duration = 0.0
|
||||
|
||||
for audio_file in audio_files:
|
||||
duration = self._calculate_duration(audio_file)
|
||||
|
||||
# If adding this file exceeds max duration, start a new batch
|
||||
if current_duration + duration > self.max_batch_duration and current_batch:
|
||||
batches.append(current_batch)
|
||||
current_batch = [audio_file]
|
||||
current_duration = duration
|
||||
else:
|
||||
current_batch.append(audio_file)
|
||||
current_duration += duration
|
||||
|
||||
# Add the last batch if not empty
|
||||
if current_batch:
|
||||
batches.append(current_batch)
|
||||
|
||||
return batches
|
||||
|
||||
async def _transcript_batch(self, audio_files: List[AudioFile]) -> List[Transcript]:
|
||||
"""Transcribe a batch of audio files using the parakeet backend"""
|
||||
if not audio_files:
|
||||
return []
|
||||
|
||||
self.logger.debug(f"Batch transcribing {len(audio_files)} files")
|
||||
|
||||
# Prepare form data for batch request
|
||||
data = aiohttp.FormData()
|
||||
data.add_field("language", self.get_pref("audio:source_language", "en"))
|
||||
data.add_field("batch", "true")
|
||||
|
||||
for i, audio_file in enumerate(audio_files):
|
||||
audio_file.fd.seek(0)
|
||||
data.add_field(
|
||||
"files",
|
||||
audio_file.fd,
|
||||
filename=f"{audio_file.name}",
|
||||
content_type="audio/wav",
|
||||
)
|
||||
|
||||
# Make batch request
|
||||
headers = {"Authorization": f"Bearer {self.modal_api_key}"}
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
timeout=aiohttp.ClientTimeout(total=self.timeout)
|
||||
) as session:
|
||||
async with session.post(
|
||||
f"{self.transcript_url}/audio/transcriptions",
|
||||
data=data,
|
||||
headers=headers,
|
||||
) as response:
|
||||
if response.status != 200:
|
||||
error_text = await response.text()
|
||||
raise Exception(
|
||||
f"Batch transcription failed: {response.status} {error_text}"
|
||||
)
|
||||
|
||||
result = await response.json()
|
||||
|
||||
# Process batch results
|
||||
transcripts = []
|
||||
results = result.get("results", [])
|
||||
|
||||
for i, (audio_file, file_result) in enumerate(zip(audio_files, results)):
|
||||
transcript = Transcript(
|
||||
words=[
|
||||
Word(
|
||||
text=word_info["word"],
|
||||
start=word_info["start"],
|
||||
end=word_info["end"],
|
||||
)
|
||||
for word_info in file_result.get("words", [])
|
||||
]
|
||||
)
|
||||
transcript.add_offset(audio_file.timestamp)
|
||||
transcripts.append(transcript)
|
||||
|
||||
return transcripts
|
||||
|
||||
async def _transcript(self, data: AudioFile):
|
||||
async with AsyncOpenAI(
|
||||
@@ -187,96 +66,5 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
|
||||
return transcript
|
||||
|
||||
async def transcript_multiple(
|
||||
self, audio_files: List[AudioFile]
|
||||
) -> List[Transcript]:
|
||||
"""Transcribe multiple audio files using batching"""
|
||||
if len(audio_files) == 1:
|
||||
# Single file, use existing method
|
||||
return [await self._transcript(audio_files[0])]
|
||||
|
||||
# Create batches with max 30s duration each
|
||||
batches = self._create_batches(audio_files)
|
||||
|
||||
self.logger.debug(
|
||||
f"Processing {len(audio_files)} files in {len(batches)} batches"
|
||||
)
|
||||
|
||||
# Process all batches concurrently
|
||||
all_transcripts = []
|
||||
|
||||
for batch in batches:
|
||||
batch_transcripts = await self._transcript_batch(batch)
|
||||
all_transcripts.extend(batch_transcripts)
|
||||
|
||||
return all_transcripts
|
||||
|
||||
async def _push(self, data: AudioFile):
|
||||
"""Override _push to support batching"""
|
||||
if not self.batch_enabled:
|
||||
# Use parent implementation for single file processing
|
||||
return await super()._push(data)
|
||||
|
||||
# Add file to pending batch
|
||||
self.pending_files.append(data)
|
||||
self.logger.debug(
|
||||
f"Added file to batch: {data.name}, batch size: {len(self.pending_files)}"
|
||||
)
|
||||
|
||||
# Calculate total duration of pending files
|
||||
total_duration = sum(self._calculate_duration(f) for f in self.pending_files)
|
||||
|
||||
# Process batch if it reaches max duration or has multiple files ready for optimization
|
||||
should_process_batch = (
|
||||
total_duration >= self.max_batch_duration
|
||||
or len(self.pending_files) >= self.max_batch_files
|
||||
)
|
||||
|
||||
if should_process_batch:
|
||||
await self._process_pending_batch()
|
||||
|
||||
async def _process_pending_batch(self):
|
||||
"""Process all pending files as batches"""
|
||||
if not self.pending_files:
|
||||
return
|
||||
|
||||
self.logger.debug(f"Processing batch of {len(self.pending_files)} files")
|
||||
|
||||
try:
|
||||
# Create batches respecting duration limit
|
||||
batches = self._create_batches(self.pending_files)
|
||||
|
||||
# Process each batch
|
||||
for batch in batches:
|
||||
self.m_transcript_call.inc()
|
||||
try:
|
||||
with self.m_transcript.time():
|
||||
# Use batch transcription
|
||||
transcripts = await self._transcript_batch(batch)
|
||||
|
||||
self.m_transcript_success.inc()
|
||||
|
||||
# Emit each transcript
|
||||
for transcript in transcripts:
|
||||
if transcript:
|
||||
await self.emit(transcript)
|
||||
|
||||
except Exception:
|
||||
self.m_transcript_failure.inc()
|
||||
raise
|
||||
finally:
|
||||
# Release audio files
|
||||
for audio_file in batch:
|
||||
audio_file.release()
|
||||
|
||||
finally:
|
||||
# Clear pending files
|
||||
self.pending_files.clear()
|
||||
|
||||
async def _flush(self):
|
||||
"""Process any remaining files when flushing"""
|
||||
await self._process_pending_batch()
|
||||
await super()._flush()
|
||||
|
||||
|
||||
AudioTranscriptAutoProcessor.register("modal", AudioTranscriptModalProcessor)
|
||||
|
||||
@@ -47,6 +47,7 @@ class FileDiarizationModalProcessor(FileDiarizationProcessor):
|
||||
"audio_file_url": data.audio_url,
|
||||
"timestamp": 0,
|
||||
},
|
||||
follow_redirects=True,
|
||||
)
|
||||
response.raise_for_status()
|
||||
diarization_data = response.json()["diarization"]
|
||||
|
||||
@@ -54,6 +54,7 @@ class FileTranscriptModalProcessor(FileTranscriptProcessor):
|
||||
"language": data.language,
|
||||
"batch": True,
|
||||
},
|
||||
follow_redirects=True,
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
@@ -67,6 +68,9 @@ class FileTranscriptModalProcessor(FileTranscriptProcessor):
|
||||
for word_info in result.get("words", [])
|
||||
]
|
||||
|
||||
# words come not in order
|
||||
words.sort(key=lambda w: w.start)
|
||||
|
||||
return Transcript(words=words)
|
||||
|
||||
|
||||
|
||||
@@ -4,11 +4,8 @@ import tempfile
|
||||
from pathlib import Path
|
||||
from typing import Annotated, TypedDict
|
||||
|
||||
from profanityfilter import ProfanityFilter
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
|
||||
from reflector.redis_cache import redis_cache
|
||||
|
||||
|
||||
class DiarizationSegment(TypedDict):
|
||||
"""Type definition for diarization segment containing speaker information"""
|
||||
@@ -20,9 +17,6 @@ class DiarizationSegment(TypedDict):
|
||||
|
||||
PUNC_RE = re.compile(r"[.;:?!…]")
|
||||
|
||||
profanity_filter = ProfanityFilter()
|
||||
profanity_filter.set_censor("*")
|
||||
|
||||
|
||||
class AudioFile(BaseModel):
|
||||
name: str
|
||||
@@ -124,21 +118,11 @@ def words_to_segments(words: list[Word]) -> list[TranscriptSegment]:
|
||||
|
||||
class Transcript(BaseModel):
|
||||
translation: str | None = None
|
||||
words: list[Word] = None
|
||||
|
||||
@property
|
||||
def raw_text(self):
|
||||
# Uncensored text
|
||||
return "".join([word.text for word in self.words])
|
||||
|
||||
@redis_cache(prefix="profanity", duration=3600 * 24 * 7)
|
||||
def _get_censored_text(self, text: str):
|
||||
return profanity_filter.censor(text).strip()
|
||||
words: list[Word] = []
|
||||
|
||||
@property
|
||||
def text(self):
|
||||
# Censored text
|
||||
return self._get_censored_text(self.raw_text)
|
||||
return "".join([word.text for word in self.words])
|
||||
|
||||
@property
|
||||
def human_timestamp(self):
|
||||
@@ -170,12 +154,6 @@ class Transcript(BaseModel):
|
||||
word.start += offset
|
||||
word.end += offset
|
||||
|
||||
def clone(self):
|
||||
words = [
|
||||
Word(text=word.text, start=word.start, end=word.end) for word in self.words
|
||||
]
|
||||
return Transcript(text=self.text, translation=self.translation, words=words)
|
||||
|
||||
def as_segments(self) -> list[TranscriptSegment]:
|
||||
return words_to_segments(self.words)
|
||||
|
||||
|
||||
@@ -1,10 +1,17 @@
|
||||
import asyncio
|
||||
import functools
|
||||
import json
|
||||
from typing import Optional
|
||||
|
||||
import redis
|
||||
import redis.asyncio as redis_async
|
||||
import structlog
|
||||
from redis.exceptions import LockError
|
||||
|
||||
from reflector.settings import settings
|
||||
|
||||
logger = structlog.get_logger(__name__)
|
||||
|
||||
redis_clients = {}
|
||||
|
||||
|
||||
@@ -21,6 +28,12 @@ def get_redis_client(db=0):
|
||||
return redis_clients[db]
|
||||
|
||||
|
||||
async def get_async_redis_client(db: int = 0):
|
||||
return await redis_async.from_url(
|
||||
f"redis://{settings.REDIS_HOST}:{settings.REDIS_PORT}/{db}"
|
||||
)
|
||||
|
||||
|
||||
def redis_cache(prefix="cache", duration=3600, db=settings.REDIS_CACHE_DB, argidx=1):
|
||||
"""
|
||||
Cache the result of a function in Redis.
|
||||
@@ -49,3 +62,87 @@ def redis_cache(prefix="cache", duration=3600, db=settings.REDIS_CACHE_DB, argid
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
class RedisAsyncLock:
|
||||
def __init__(
|
||||
self,
|
||||
key: str,
|
||||
timeout: int = 120,
|
||||
extend_interval: int = 30,
|
||||
skip_if_locked: bool = False,
|
||||
blocking: bool = True,
|
||||
blocking_timeout: Optional[float] = None,
|
||||
):
|
||||
self.key = f"async_lock:{key}"
|
||||
self.timeout = timeout
|
||||
self.extend_interval = extend_interval
|
||||
self.skip_if_locked = skip_if_locked
|
||||
self.blocking = blocking
|
||||
self.blocking_timeout = blocking_timeout
|
||||
self._lock = None
|
||||
self._redis = None
|
||||
self._extend_task = None
|
||||
self._acquired = False
|
||||
|
||||
async def _extend_lock_periodically(self):
|
||||
while True:
|
||||
try:
|
||||
await asyncio.sleep(self.extend_interval)
|
||||
if self._lock:
|
||||
await self._lock.extend(self.timeout, replace_ttl=True)
|
||||
logger.debug("Extended lock", key=self.key)
|
||||
except LockError:
|
||||
logger.warning("Failed to extend lock", key=self.key)
|
||||
break
|
||||
except asyncio.CancelledError:
|
||||
break
|
||||
except Exception as e:
|
||||
logger.error("Error extending lock", key=self.key, error=str(e))
|
||||
break
|
||||
|
||||
async def __aenter__(self):
|
||||
self._redis = await get_async_redis_client()
|
||||
self._lock = self._redis.lock(
|
||||
self.key,
|
||||
timeout=self.timeout,
|
||||
blocking=self.blocking,
|
||||
blocking_timeout=self.blocking_timeout,
|
||||
)
|
||||
|
||||
self._acquired = await self._lock.acquire()
|
||||
|
||||
if not self._acquired:
|
||||
if self.skip_if_locked:
|
||||
logger.warning(
|
||||
"Lock already acquired by another process, skipping", key=self.key
|
||||
)
|
||||
return self
|
||||
else:
|
||||
raise LockError(f"Failed to acquire lock: {self.key}")
|
||||
|
||||
self._extend_task = asyncio.create_task(self._extend_lock_periodically())
|
||||
logger.info("Acquired lock", key=self.key)
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
||||
if self._extend_task:
|
||||
self._extend_task.cancel()
|
||||
try:
|
||||
await self._extend_task
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
if self._acquired and self._lock:
|
||||
try:
|
||||
await self._lock.release()
|
||||
logger.info("Released lock", key=self.key)
|
||||
except LockError:
|
||||
logger.debug("Lock already released or expired", key=self.key)
|
||||
|
||||
if self._redis:
|
||||
await self._redis.aclose()
|
||||
|
||||
@property
|
||||
def acquired(self) -> bool:
|
||||
return self._acquired
|
||||
|
||||
408
server/reflector/services/ics_sync.py
Normal file
408
server/reflector/services/ics_sync.py
Normal file
@@ -0,0 +1,408 @@
|
||||
"""
|
||||
ICS Calendar Synchronization Service
|
||||
|
||||
This module provides services for fetching, parsing, and synchronizing ICS (iCalendar)
|
||||
calendar feeds with room booking data in the database.
|
||||
|
||||
Key Components:
|
||||
- ICSFetchService: Handles HTTP fetching and parsing of ICS calendar data
|
||||
- ICSSyncService: Manages the synchronization process between ICS feeds and database
|
||||
|
||||
Example Usage:
|
||||
# Sync a room's calendar
|
||||
room = Room(id="room1", name="conference-room", ics_url="https://cal.example.com/room.ics")
|
||||
result = await ics_sync_service.sync_room_calendar(room)
|
||||
|
||||
# Result structure:
|
||||
{
|
||||
"status": "success", # success|unchanged|error|skipped
|
||||
"hash": "abc123...", # MD5 hash of ICS content
|
||||
"events_found": 5, # Events matching this room
|
||||
"total_events": 12, # Total events in calendar within time window
|
||||
"events_created": 2, # New events added to database
|
||||
"events_updated": 3, # Existing events modified
|
||||
"events_deleted": 1 # Events soft-deleted (no longer in calendar)
|
||||
}
|
||||
|
||||
Event Matching:
|
||||
Events are matched to rooms by checking if the room's full URL appears in the
|
||||
event's LOCATION or DESCRIPTION fields. Only events within a 25-hour window
|
||||
(1 hour ago to 24 hours from now) are processed.
|
||||
|
||||
Input: ICS calendar URL (e.g., "https://calendar.google.com/calendar/ical/...")
|
||||
Output: EventData objects with structured calendar information:
|
||||
{
|
||||
"ics_uid": "event123@google.com",
|
||||
"title": "Team Meeting",
|
||||
"description": "Weekly sync meeting",
|
||||
"location": "https://meet.company.com/conference-room",
|
||||
"start_time": datetime(2024, 1, 15, 14, 0, tzinfo=UTC),
|
||||
"end_time": datetime(2024, 1, 15, 15, 0, tzinfo=UTC),
|
||||
"attendees": [
|
||||
{"email": "user@company.com", "name": "John Doe", "role": "ORGANIZER"},
|
||||
{"email": "attendee@company.com", "name": "Jane Smith", "status": "ACCEPTED"}
|
||||
],
|
||||
"ics_raw_data": "BEGIN:VEVENT\nUID:event123@google.com\n..."
|
||||
}
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
from datetime import date, datetime, timedelta, timezone
|
||||
from enum import Enum
|
||||
from typing import TypedDict
|
||||
|
||||
import httpx
|
||||
import pytz
|
||||
import structlog
|
||||
from icalendar import Calendar, Event
|
||||
|
||||
from reflector.db.calendar_events import CalendarEvent, calendar_events_controller
|
||||
from reflector.db.rooms import Room, rooms_controller
|
||||
from reflector.redis_cache import RedisAsyncLock
|
||||
from reflector.settings import settings
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
EVENT_WINDOW_DELTA_START = timedelta(hours=-1)
|
||||
EVENT_WINDOW_DELTA_END = timedelta(hours=24)
|
||||
|
||||
|
||||
class SyncStatus(str, Enum):
|
||||
SUCCESS = "success"
|
||||
UNCHANGED = "unchanged"
|
||||
ERROR = "error"
|
||||
SKIPPED = "skipped"
|
||||
|
||||
|
||||
class AttendeeData(TypedDict, total=False):
|
||||
email: str | None
|
||||
name: str | None
|
||||
status: str | None
|
||||
role: str | None
|
||||
|
||||
|
||||
class EventData(TypedDict):
|
||||
ics_uid: str
|
||||
title: str | None
|
||||
description: str | None
|
||||
location: str | None
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
attendees: list[AttendeeData]
|
||||
ics_raw_data: str
|
||||
|
||||
|
||||
class SyncStats(TypedDict):
|
||||
events_created: int
|
||||
events_updated: int
|
||||
events_deleted: int
|
||||
|
||||
|
||||
class SyncResultBase(TypedDict):
|
||||
status: SyncStatus
|
||||
|
||||
|
||||
class SyncResult(SyncResultBase, total=False):
|
||||
hash: str | None
|
||||
events_found: int
|
||||
total_events: int
|
||||
events_created: int
|
||||
events_updated: int
|
||||
events_deleted: int
|
||||
error: str | None
|
||||
reason: str | None
|
||||
|
||||
|
||||
class ICSFetchService:
|
||||
def __init__(self):
|
||||
self.client = httpx.AsyncClient(
|
||||
timeout=30.0, headers={"User-Agent": "Reflector/1.0"}
|
||||
)
|
||||
|
||||
async def fetch_ics(self, url: str) -> str:
|
||||
response = await self.client.get(url)
|
||||
response.raise_for_status()
|
||||
|
||||
return response.text
|
||||
|
||||
def parse_ics(self, ics_content: str) -> Calendar:
|
||||
return Calendar.from_ical(ics_content)
|
||||
|
||||
def extract_room_events(
|
||||
self, calendar: Calendar, room_name: str, room_url: str
|
||||
) -> tuple[list[EventData], int]:
|
||||
events = []
|
||||
total_events = 0
|
||||
now = datetime.now(timezone.utc)
|
||||
window_start = now + EVENT_WINDOW_DELTA_START
|
||||
window_end = now + EVENT_WINDOW_DELTA_END
|
||||
|
||||
for component in calendar.walk():
|
||||
if component.name != "VEVENT":
|
||||
continue
|
||||
|
||||
status = component.get("STATUS", "").upper()
|
||||
if status == "CANCELLED":
|
||||
continue
|
||||
|
||||
# Count total non-cancelled events in the time window
|
||||
event_data = self._parse_event(component)
|
||||
if event_data and window_start <= event_data["start_time"] <= window_end:
|
||||
total_events += 1
|
||||
|
||||
# Check if event matches this room
|
||||
if self._event_matches_room(component, room_name, room_url):
|
||||
events.append(event_data)
|
||||
|
||||
return events, total_events
|
||||
|
||||
def _event_matches_room(self, event: Event, room_name: str, room_url: str) -> bool:
|
||||
location = str(event.get("LOCATION", ""))
|
||||
description = str(event.get("DESCRIPTION", ""))
|
||||
|
||||
# Only match full room URL
|
||||
# XXX leaved here as a patterns, to later be extended with tinyurl or such too
|
||||
patterns = [
|
||||
room_url,
|
||||
]
|
||||
|
||||
# Check location and description for patterns
|
||||
text_to_check = f"{location} {description}".lower()
|
||||
for pattern in patterns:
|
||||
if pattern.lower() in text_to_check:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _parse_event(self, event: Event) -> EventData | None:
|
||||
uid = str(event.get("UID", ""))
|
||||
summary = str(event.get("SUMMARY", ""))
|
||||
description = str(event.get("DESCRIPTION", ""))
|
||||
location = str(event.get("LOCATION", ""))
|
||||
dtstart = event.get("DTSTART")
|
||||
dtend = event.get("DTEND")
|
||||
|
||||
if not dtstart:
|
||||
return None
|
||||
|
||||
# Convert fields
|
||||
start_time = self._normalize_datetime(
|
||||
dtstart.dt if hasattr(dtstart, "dt") else dtstart
|
||||
)
|
||||
end_time = (
|
||||
self._normalize_datetime(dtend.dt if hasattr(dtend, "dt") else dtend)
|
||||
if dtend
|
||||
else start_time + timedelta(hours=1)
|
||||
)
|
||||
attendees = self._parse_attendees(event)
|
||||
|
||||
# Get raw event data for storage
|
||||
raw_data = event.to_ical().decode("utf-8")
|
||||
|
||||
return {
|
||||
"ics_uid": uid,
|
||||
"title": summary,
|
||||
"description": description,
|
||||
"location": location,
|
||||
"start_time": start_time,
|
||||
"end_time": end_time,
|
||||
"attendees": attendees,
|
||||
"ics_raw_data": raw_data,
|
||||
}
|
||||
|
||||
def _normalize_datetime(self, dt) -> datetime:
|
||||
# Ensure datetime is with timezone, if not, assume UTC
|
||||
if isinstance(dt, date) and not isinstance(dt, datetime):
|
||||
dt = datetime.combine(dt, datetime.min.time())
|
||||
dt = pytz.UTC.localize(dt)
|
||||
elif isinstance(dt, datetime):
|
||||
if dt.tzinfo is None:
|
||||
dt = pytz.UTC.localize(dt)
|
||||
else:
|
||||
dt = dt.astimezone(pytz.UTC)
|
||||
|
||||
return dt
|
||||
|
||||
def _parse_attendees(self, event: Event) -> list[AttendeeData]:
|
||||
# Extracts attendee information from both ATTENDEE and ORGANIZER properties.
|
||||
# Handles malformed comma-separated email addresses in single ATTENDEE fields
|
||||
# by splitting them into separate attendee entries. Returns a list of attendee
|
||||
# data including email, name, status, and role information.
|
||||
final_attendees = []
|
||||
|
||||
attendees = event.get("ATTENDEE", [])
|
||||
if not isinstance(attendees, list):
|
||||
attendees = [attendees]
|
||||
for att in attendees:
|
||||
email_str = str(att).replace("mailto:", "") if att else None
|
||||
|
||||
# Handle malformed comma-separated email addresses in a single ATTENDEE field
|
||||
if email_str and "," in email_str:
|
||||
# Split comma-separated emails and create separate attendee entries
|
||||
email_parts = [email.strip() for email in email_str.split(",")]
|
||||
for email in email_parts:
|
||||
if email and "@" in email:
|
||||
clean_email = email.replace("MAILTO:", "").replace(
|
||||
"mailto:", ""
|
||||
)
|
||||
att_data: AttendeeData = {
|
||||
"email": clean_email,
|
||||
"name": att.params.get("CN")
|
||||
if hasattr(att, "params") and email == email_parts[0]
|
||||
else None,
|
||||
"status": att.params.get("PARTSTAT")
|
||||
if hasattr(att, "params") and email == email_parts[0]
|
||||
else None,
|
||||
"role": att.params.get("ROLE")
|
||||
if hasattr(att, "params") and email == email_parts[0]
|
||||
else None,
|
||||
}
|
||||
final_attendees.append(att_data)
|
||||
else:
|
||||
# Normal single attendee
|
||||
att_data: AttendeeData = {
|
||||
"email": email_str,
|
||||
"name": att.params.get("CN") if hasattr(att, "params") else None,
|
||||
"status": att.params.get("PARTSTAT")
|
||||
if hasattr(att, "params")
|
||||
else None,
|
||||
"role": att.params.get("ROLE") if hasattr(att, "params") else None,
|
||||
}
|
||||
final_attendees.append(att_data)
|
||||
|
||||
# Add organizer
|
||||
organizer = event.get("ORGANIZER")
|
||||
if organizer:
|
||||
org_email = (
|
||||
str(organizer).replace("mailto:", "").replace("MAILTO:", "")
|
||||
if organizer
|
||||
else None
|
||||
)
|
||||
org_data: AttendeeData = {
|
||||
"email": org_email,
|
||||
"name": organizer.params.get("CN")
|
||||
if hasattr(organizer, "params")
|
||||
else None,
|
||||
"role": "ORGANIZER",
|
||||
}
|
||||
final_attendees.append(org_data)
|
||||
|
||||
return final_attendees
|
||||
|
||||
|
||||
class ICSSyncService:
|
||||
def __init__(self):
|
||||
self.fetch_service = ICSFetchService()
|
||||
|
||||
async def sync_room_calendar(self, room: Room) -> SyncResult:
|
||||
async with RedisAsyncLock(
|
||||
f"ics_sync_room:{room.id}", skip_if_locked=True
|
||||
) as lock:
|
||||
if not lock.acquired:
|
||||
logger.warning("ICS sync already in progress for room", room_id=room.id)
|
||||
return {
|
||||
"status": SyncStatus.SKIPPED,
|
||||
"reason": "Sync already in progress",
|
||||
}
|
||||
|
||||
return await self._sync_room_calendar(room)
|
||||
|
||||
async def _sync_room_calendar(self, room: Room) -> SyncResult:
|
||||
if not room.ics_enabled or not room.ics_url:
|
||||
return {"status": SyncStatus.SKIPPED, "reason": "ICS not configured"}
|
||||
|
||||
try:
|
||||
if not self._should_sync(room):
|
||||
return {"status": SyncStatus.SKIPPED, "reason": "Not time to sync yet"}
|
||||
|
||||
ics_content = await self.fetch_service.fetch_ics(room.ics_url)
|
||||
calendar = self.fetch_service.parse_ics(ics_content)
|
||||
|
||||
content_hash = hashlib.md5(ics_content.encode()).hexdigest()
|
||||
if room.ics_last_etag == content_hash:
|
||||
logger.info("No changes in ICS for room", room_id=room.id)
|
||||
room_url = f"{settings.UI_BASE_URL}/{room.name}"
|
||||
events, total_events = self.fetch_service.extract_room_events(
|
||||
calendar, room.name, room_url
|
||||
)
|
||||
return {
|
||||
"status": SyncStatus.UNCHANGED,
|
||||
"hash": content_hash,
|
||||
"events_found": len(events),
|
||||
"total_events": total_events,
|
||||
"events_created": 0,
|
||||
"events_updated": 0,
|
||||
"events_deleted": 0,
|
||||
}
|
||||
|
||||
# Extract matching events
|
||||
room_url = f"{settings.UI_BASE_URL}/{room.name}"
|
||||
events, total_events = self.fetch_service.extract_room_events(
|
||||
calendar, room.name, room_url
|
||||
)
|
||||
sync_result = await self._sync_events_to_database(room.id, events)
|
||||
|
||||
# Update room sync metadata
|
||||
await rooms_controller.update(
|
||||
room,
|
||||
{
|
||||
"ics_last_sync": datetime.now(timezone.utc),
|
||||
"ics_last_etag": content_hash,
|
||||
},
|
||||
mutate=False,
|
||||
)
|
||||
|
||||
return {
|
||||
"status": SyncStatus.SUCCESS,
|
||||
"hash": content_hash,
|
||||
"events_found": len(events),
|
||||
"total_events": total_events,
|
||||
**sync_result,
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to sync ICS for room", room_id=room.id, error=str(e))
|
||||
return {"status": SyncStatus.ERROR, "error": str(e)}
|
||||
|
||||
def _should_sync(self, room: Room) -> bool:
|
||||
if not room.ics_last_sync:
|
||||
return True
|
||||
|
||||
time_since_sync = datetime.now(timezone.utc) - room.ics_last_sync
|
||||
return time_since_sync.total_seconds() >= room.ics_fetch_interval
|
||||
|
||||
async def _sync_events_to_database(
|
||||
self, room_id: str, events: list[EventData]
|
||||
) -> SyncStats:
|
||||
created = 0
|
||||
updated = 0
|
||||
|
||||
current_ics_uids = []
|
||||
|
||||
for event_data in events:
|
||||
calendar_event = CalendarEvent(room_id=room_id, **event_data)
|
||||
existing = await calendar_events_controller.get_by_ics_uid(
|
||||
room_id, event_data["ics_uid"]
|
||||
)
|
||||
|
||||
if existing:
|
||||
updated += 1
|
||||
else:
|
||||
created += 1
|
||||
|
||||
await calendar_events_controller.upsert(calendar_event)
|
||||
current_ics_uids.append(event_data["ics_uid"])
|
||||
|
||||
# Soft delete events that are no longer in calendar
|
||||
deleted = await calendar_events_controller.soft_delete_missing(
|
||||
room_id, current_ics_uids
|
||||
)
|
||||
|
||||
return {
|
||||
"events_created": created,
|
||||
"events_updated": updated,
|
||||
"events_deleted": deleted,
|
||||
}
|
||||
|
||||
|
||||
ics_sync_service = ICSSyncService()
|
||||
@@ -1,5 +1,8 @@
|
||||
from pydantic.types import PositiveInt
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
|
||||
from reflector.utils.string import NonEmptyString
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
model_config = SettingsConfigDict(
|
||||
@@ -21,6 +24,10 @@ class Settings(BaseSettings):
|
||||
# local data directory
|
||||
DATA_DIR: str = "./data"
|
||||
|
||||
# Audio Chunking
|
||||
# backends: silero, frames
|
||||
AUDIO_CHUNKER_BACKEND: str = "frames"
|
||||
|
||||
# Audio Transcription
|
||||
# backends: whisper, modal
|
||||
TRANSCRIPT_BACKEND: str = "whisper"
|
||||
@@ -86,9 +93,8 @@ class Settings(BaseSettings):
|
||||
AUTH_JWT_PUBLIC_KEY: str | None = "authentik.monadical.com_public.pem"
|
||||
AUTH_JWT_AUDIENCE: str | None = None
|
||||
|
||||
# API public mode
|
||||
# if set, all anonymous record will be public
|
||||
PUBLIC_MODE: bool = False
|
||||
PUBLIC_DATA_RETENTION_DAYS: PositiveInt = 7
|
||||
|
||||
# Min transcript length to generate topic + summary
|
||||
MIN_TRANSCRIPT_LENGTH: int = 750
|
||||
@@ -116,7 +122,7 @@ class Settings(BaseSettings):
|
||||
|
||||
# Whereby integration
|
||||
WHEREBY_API_URL: str = "https://api.whereby.dev/v1"
|
||||
WHEREBY_API_KEY: str | None = None
|
||||
WHEREBY_API_KEY: NonEmptyString | None = None
|
||||
WHEREBY_WEBHOOK_SECRET: str | None = None
|
||||
AWS_WHEREBY_ACCESS_KEY_ID: str | None = None
|
||||
AWS_WHEREBY_ACCESS_KEY_SECRET: str | None = None
|
||||
|
||||
72
server/reflector/tools/cleanup_old_data.py
Normal file
72
server/reflector/tools/cleanup_old_data.py
Normal file
@@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env python
|
||||
"""
|
||||
Manual cleanup tool for old public data.
|
||||
Uses the same implementation as the Celery worker task.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import sys
|
||||
|
||||
import structlog
|
||||
|
||||
from reflector.settings import settings
|
||||
from reflector.worker.cleanup import _cleanup_old_public_data
|
||||
|
||||
logger = structlog.get_logger(__name__)
|
||||
|
||||
|
||||
async def cleanup_old_data(days: int = 7):
|
||||
logger.info(
|
||||
"Starting manual cleanup",
|
||||
retention_days=days,
|
||||
public_mode=settings.PUBLIC_MODE,
|
||||
)
|
||||
|
||||
if not settings.PUBLIC_MODE:
|
||||
logger.critical(
|
||||
"WARNING: PUBLIC_MODE is False. "
|
||||
"This tool is intended for public instances only."
|
||||
)
|
||||
raise Exception("Tool intended for public instances only")
|
||||
|
||||
result = await _cleanup_old_public_data(days=days)
|
||||
|
||||
if result:
|
||||
logger.info(
|
||||
"Cleanup completed",
|
||||
transcripts_deleted=result.get("transcripts_deleted", 0),
|
||||
meetings_deleted=result.get("meetings_deleted", 0),
|
||||
recordings_deleted=result.get("recordings_deleted", 0),
|
||||
errors_count=len(result.get("errors", [])),
|
||||
)
|
||||
if result.get("errors"):
|
||||
logger.warning(
|
||||
"Errors encountered during cleanup:", errors=result["errors"][:10]
|
||||
)
|
||||
else:
|
||||
logger.info("Cleanup skipped or completed without results")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Clean up old transcripts and meetings"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--days",
|
||||
type=int,
|
||||
default=7,
|
||||
help="Number of days to keep data (default: 7)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.days < 1:
|
||||
logger.error("Days must be at least 1")
|
||||
sys.exit(1)
|
||||
|
||||
asyncio.run(cleanup_old_data(days=args.days))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,292 +1,204 @@
|
||||
"""
|
||||
Process audio file with diarization support
|
||||
===========================================
|
||||
|
||||
Extended version of process.py that includes speaker diarization.
|
||||
This tool processes audio files locally without requiring the full server infrastructure.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import tempfile
|
||||
import uuid
|
||||
import json
|
||||
import shutil
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import av
|
||||
from typing import Any, Dict, List, Literal
|
||||
|
||||
from reflector.db.transcripts import SourceKind, TranscriptTopic, transcripts_controller
|
||||
from reflector.logger import logger
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
Pipeline,
|
||||
PipelineEvent,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptLinerProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
TranscriptTranslatorAutoProcessor,
|
||||
from reflector.pipelines.main_file_pipeline import (
|
||||
task_pipeline_file_process as task_pipeline_file_process,
|
||||
)
|
||||
from reflector.processors.base import BroadcastProcessor, Processor
|
||||
from reflector.processors.types import (
|
||||
AudioDiarizationInput,
|
||||
TitleSummary,
|
||||
TitleSummaryWithId,
|
||||
from reflector.pipelines.main_live_pipeline import pipeline_post as live_pipeline_post
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
pipeline_process as live_pipeline_process,
|
||||
)
|
||||
|
||||
|
||||
class TopicCollectorProcessor(Processor):
|
||||
"""Collect topics for diarization"""
|
||||
def serialize_topics(topics: List[TranscriptTopic]) -> List[Dict[str, Any]]:
|
||||
"""Convert TranscriptTopic objects to JSON-serializable dicts"""
|
||||
serialized = []
|
||||
for topic in topics:
|
||||
topic_dict = topic.model_dump()
|
||||
serialized.append(topic_dict)
|
||||
return serialized
|
||||
|
||||
INPUT_TYPE = TitleSummary
|
||||
OUTPUT_TYPE = TitleSummary
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.topics: List[TitleSummaryWithId] = []
|
||||
self._topic_id = 0
|
||||
def debug_print_speakers(serialized_topics: List[Dict[str, Any]]) -> None:
|
||||
"""Print debug info about speakers found in topics"""
|
||||
all_speakers = set()
|
||||
for topic_dict in serialized_topics:
|
||||
for word in topic_dict.get("words", []):
|
||||
all_speakers.add(word.get("speaker", 0))
|
||||
|
||||
async def _push(self, data: TitleSummary):
|
||||
# Convert to TitleSummaryWithId and collect
|
||||
self._topic_id += 1
|
||||
topic_with_id = TitleSummaryWithId(
|
||||
id=str(self._topic_id),
|
||||
title=data.title,
|
||||
summary=data.summary,
|
||||
timestamp=data.timestamp,
|
||||
duration=data.duration,
|
||||
transcript=data.transcript,
|
||||
print(
|
||||
f"Found {len(serialized_topics)} topics with speakers: {all_speakers}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
|
||||
|
||||
TranscriptId = str
|
||||
|
||||
|
||||
# common interface for every flow: it needs an Entry in db with specific ceremony (file path + status + actual file in file system)
|
||||
# ideally we want to get rid of it at some point
|
||||
async def prepare_entry(
|
||||
source_path: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
) -> TranscriptId:
|
||||
file_path = Path(source_path)
|
||||
|
||||
transcript = await transcripts_controller.add(
|
||||
file_path.name,
|
||||
# note that the real file upload has SourceKind: LIVE for the reason of it's an error
|
||||
source_kind=SourceKind.FILE,
|
||||
source_language=source_language,
|
||||
target_language=target_language,
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Created empty transcript {transcript.id} for file {file_path.name} because technically we need an empty transcript before we start transcript"
|
||||
)
|
||||
|
||||
# pipelines expect files as upload.*
|
||||
|
||||
extension = file_path.suffix
|
||||
upload_path = transcript.data_path / f"upload{extension}"
|
||||
upload_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy2(source_path, upload_path)
|
||||
logger.info(f"Copied {source_path} to {upload_path}")
|
||||
|
||||
# pipelines expect entity status "uploaded"
|
||||
await transcripts_controller.update(transcript, {"status": "uploaded"})
|
||||
|
||||
return transcript.id
|
||||
|
||||
|
||||
# same reason as prepare_entry
|
||||
async def extract_result_from_entry(
|
||||
transcript_id: TranscriptId, output_path: str
|
||||
) -> None:
|
||||
post_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
|
||||
# assert post_final_transcript.status == "ended"
|
||||
# File pipeline doesn't set status to "ended", only live pipeline does https://github.com/Monadical-SAS/reflector/issues/582
|
||||
topics = post_final_transcript.topics
|
||||
if not topics:
|
||||
raise RuntimeError(
|
||||
f"No topics found for transcript {transcript_id} after processing"
|
||||
)
|
||||
self.topics.append(topic_with_id)
|
||||
|
||||
# Pass through the original topic
|
||||
await self.emit(data)
|
||||
serialized_topics = serialize_topics(topics)
|
||||
|
||||
def get_topics(self) -> List[TitleSummaryWithId]:
|
||||
return self.topics
|
||||
if output_path:
|
||||
# Write to JSON file
|
||||
with open(output_path, "w") as f:
|
||||
for topic_dict in serialized_topics:
|
||||
json.dump(topic_dict, f)
|
||||
f.write("\n")
|
||||
print(f"Results written to {output_path}", file=sys.stderr)
|
||||
else:
|
||||
# Write to stdout as JSONL
|
||||
for topic_dict in serialized_topics:
|
||||
print(json.dumps(topic_dict))
|
||||
|
||||
debug_print_speakers(serialized_topics)
|
||||
|
||||
|
||||
async def process_audio_file(
|
||||
filename,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="pyannote",
|
||||
async def process_live_pipeline(
|
||||
transcript_id: TranscriptId,
|
||||
):
|
||||
# Create temp file for audio if diarization is enabled
|
||||
audio_temp_path = None
|
||||
if enable_diarization:
|
||||
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
||||
audio_temp_path = audio_temp_file.name
|
||||
audio_temp_file.close()
|
||||
"""Process transcript_id with transcription and diarization"""
|
||||
|
||||
# Create processor for collecting topics
|
||||
topic_collector = TopicCollectorProcessor()
|
||||
print(f"Processing transcript_id {transcript_id}...", file=sys.stderr)
|
||||
await live_pipeline_process(transcript_id=transcript_id)
|
||||
print(f"Processing complete for transcript {transcript_id}", file=sys.stderr)
|
||||
|
||||
# Build pipeline for audio processing
|
||||
processors = []
|
||||
pre_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
|
||||
# Add audio file writer at the beginning if diarization is enabled
|
||||
if enable_diarization:
|
||||
processors.append(AudioFileWriterProcessor(audio_temp_path))
|
||||
# assert documented behaviour: after process, the pipeline isn't ended. this is the reason of calling pipeline_post
|
||||
assert pre_final_transcript.status != "ended"
|
||||
|
||||
# Add the rest of the processors
|
||||
processors += [
|
||||
AudioChunkerProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
TranscriptTranslatorAutoProcessor.as_threaded(),
|
||||
]
|
||||
# at this point, diarization is running but we have no access to it. run diarization in parallel - one will hopefully win after polling
|
||||
result = live_pipeline_post(transcript_id=transcript_id)
|
||||
|
||||
if not only_transcript:
|
||||
processors += [
|
||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
||||
# Collect topics for diarization
|
||||
topic_collector,
|
||||
BroadcastProcessor(
|
||||
processors=[
|
||||
TranscriptFinalTitleProcessor.as_threaded(),
|
||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
# Create main pipeline
|
||||
pipeline = Pipeline(*processors)
|
||||
pipeline.set_pref("audio:source_language", source_language)
|
||||
pipeline.set_pref("audio:target_language", target_language)
|
||||
pipeline.describe()
|
||||
pipeline.on(event_callback)
|
||||
|
||||
# Start processing audio
|
||||
logger.info(f"Opening {filename}")
|
||||
container = av.open(filename)
|
||||
try:
|
||||
logger.info("Start pushing audio into the pipeline")
|
||||
for frame in container.decode(audio=0):
|
||||
await pipeline.push(frame)
|
||||
finally:
|
||||
logger.info("Flushing the pipeline")
|
||||
await pipeline.flush()
|
||||
|
||||
# Run diarization if enabled and we have topics
|
||||
if enable_diarization and not only_transcript and audio_temp_path:
|
||||
topics = topic_collector.get_topics()
|
||||
|
||||
if topics:
|
||||
logger.info(f"Starting diarization with {len(topics)} topics")
|
||||
|
||||
try:
|
||||
from reflector.processors import AudioDiarizationAutoProcessor
|
||||
|
||||
diarization_processor = AudioDiarizationAutoProcessor(
|
||||
name=diarization_backend
|
||||
)
|
||||
|
||||
diarization_processor.set_pipeline(pipeline)
|
||||
|
||||
# For Modal backend, we need to upload the file to S3 first
|
||||
if diarization_backend == "modal":
|
||||
from datetime import datetime
|
||||
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.utils.s3_temp_file import S3TemporaryFile
|
||||
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
# Generate a unique filename in evaluation folder
|
||||
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
||||
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
|
||||
|
||||
# Use context manager for automatic cleanup
|
||||
async with S3TemporaryFile(storage, audio_filename) as s3_file:
|
||||
# Read and upload the audio file
|
||||
with open(audio_temp_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
audio_url = await s3_file.upload(audio_data)
|
||||
logger.info(f"Uploaded audio to S3: {audio_filename}")
|
||||
|
||||
# Create diarization input with S3 URL
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
# File will be automatically cleaned up when exiting the context
|
||||
else:
|
||||
# For local backend, use local file path
|
||||
audio_url = audio_temp_path
|
||||
|
||||
# Create diarization input
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
|
||||
except ImportError as e:
|
||||
logger.error(f"Failed to import diarization dependencies: {e}")
|
||||
logger.error(
|
||||
"Install with: uv pip install pyannote.audio torch torchaudio"
|
||||
)
|
||||
logger.error(
|
||||
"And set HF_TOKEN environment variable for pyannote models"
|
||||
)
|
||||
raise SystemExit(1)
|
||||
except Exception as e:
|
||||
logger.error(f"Diarization failed: {e}")
|
||||
raise SystemExit(1)
|
||||
else:
|
||||
logger.warning("Skipping diarization: no topics available")
|
||||
|
||||
# Clean up temp file
|
||||
if audio_temp_path:
|
||||
try:
|
||||
Path(audio_temp_path).unlink()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
|
||||
|
||||
logger.info("All done!")
|
||||
# result.ready() blocks even without await; it mutates result also
|
||||
while not result.ready():
|
||||
print(f"Status: {result.state}")
|
||||
time.sleep(2)
|
||||
|
||||
|
||||
async def process_file_pipeline(
|
||||
filename: str,
|
||||
event_callback,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="modal",
|
||||
transcript_id: TranscriptId,
|
||||
):
|
||||
"""Process audio/video file using the optimized file pipeline"""
|
||||
|
||||
# task_pipeline_file_process is a Celery task, need to use .delay() for async execution
|
||||
result = task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||
|
||||
# Wait for the Celery task to complete
|
||||
while not result.ready():
|
||||
print(f"File pipeline status: {result.state}", file=sys.stderr)
|
||||
time.sleep(2)
|
||||
|
||||
logger.info("File pipeline processing complete")
|
||||
|
||||
|
||||
async def process(
|
||||
source_path: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
pipeline: Literal["live", "file"],
|
||||
output_path: str = None,
|
||||
):
|
||||
from reflector.db import get_database
|
||||
|
||||
database = get_database()
|
||||
# db connect is a part of ceremony
|
||||
await database.connect()
|
||||
|
||||
try:
|
||||
from reflector.db import database
|
||||
from reflector.db.transcripts import SourceKind, transcripts_controller
|
||||
from reflector.pipelines.main_file_pipeline import PipelineMainFile
|
||||
|
||||
await database.connect()
|
||||
try:
|
||||
# Create a temporary transcript for processing
|
||||
transcript = await transcripts_controller.add(
|
||||
"",
|
||||
source_kind=SourceKind.FILE,
|
||||
source_language=source_language,
|
||||
target_language=target_language,
|
||||
)
|
||||
|
||||
# Process the file
|
||||
pipeline = PipelineMainFile(transcript_id=transcript.id)
|
||||
await pipeline.process(Path(filename))
|
||||
|
||||
logger.info("File pipeline processing complete")
|
||||
|
||||
finally:
|
||||
await database.disconnect()
|
||||
except ImportError as e:
|
||||
logger.error(f"File pipeline not available: {e}")
|
||||
logger.info("Falling back to stream pipeline")
|
||||
# Fall back to stream pipeline
|
||||
await process_audio_file(
|
||||
filename,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language=source_language,
|
||||
target_language=target_language,
|
||||
enable_diarization=enable_diarization,
|
||||
diarization_backend=diarization_backend,
|
||||
transcript_id = await prepare_entry(
|
||||
source_path,
|
||||
source_language,
|
||||
target_language,
|
||||
)
|
||||
|
||||
pipeline_handlers = {
|
||||
"live": process_live_pipeline,
|
||||
"file": process_file_pipeline,
|
||||
}
|
||||
|
||||
handler = pipeline_handlers.get(pipeline)
|
||||
if not handler:
|
||||
raise ValueError(f"Unknown pipeline type: {pipeline}")
|
||||
|
||||
await handler(transcript_id)
|
||||
|
||||
await extract_result_from_entry(transcript_id, output_path)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
import os
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Process audio files with optional speaker diarization"
|
||||
description="Process audio files with speaker diarization"
|
||||
)
|
||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
||||
parser.add_argument(
|
||||
"--stream",
|
||||
action="store_true",
|
||||
help="Use streaming pipeline (original frame-based processing)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--only-transcript",
|
||||
"-t",
|
||||
action="store_true",
|
||||
help="Only generate transcript without topics/summaries",
|
||||
"--pipeline",
|
||||
required=True,
|
||||
choices=["live", "file"],
|
||||
help="Pipeline type to use for processing (live: streaming/incremental, file: batch/parallel)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--source-language", default="en", help="Source language code (default: en)"
|
||||
@@ -295,81 +207,14 @@ if __name__ == "__main__":
|
||||
"--target-language", default="en", help="Target language code (default: en)"
|
||||
)
|
||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
||||
parser.add_argument(
|
||||
"--enable-diarization",
|
||||
"-d",
|
||||
action="store_true",
|
||||
help="Enable speaker diarization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--diarization-backend",
|
||||
default="pyannote",
|
||||
choices=["pyannote", "modal"],
|
||||
help="Diarization backend to use (default: pyannote)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if "REDIS_HOST" not in os.environ:
|
||||
os.environ["REDIS_HOST"] = "localhost"
|
||||
|
||||
output_fd = None
|
||||
if args.output:
|
||||
output_fd = open(args.output, "w")
|
||||
|
||||
async def event_callback(event: PipelineEvent):
|
||||
processor = event.processor
|
||||
data = event.data
|
||||
|
||||
# Ignore internal processors
|
||||
if processor in (
|
||||
"AudioChunkerProcessor",
|
||||
"AudioMergeProcessor",
|
||||
"AudioFileWriterProcessor",
|
||||
"TopicCollectorProcessor",
|
||||
"BroadcastProcessor",
|
||||
):
|
||||
return
|
||||
|
||||
# If diarization is enabled, skip the original topic events from the pipeline
|
||||
# The diarization processor will emit the same topics but with speaker info
|
||||
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
|
||||
return
|
||||
|
||||
# Log all events
|
||||
logger.info(f"Event: {processor} - {type(data).__name__}")
|
||||
|
||||
# Write to output
|
||||
if output_fd:
|
||||
output_fd.write(event.model_dump_json())
|
||||
output_fd.write("\n")
|
||||
output_fd.flush()
|
||||
|
||||
if args.stream:
|
||||
# Use original streaming pipeline
|
||||
asyncio.run(
|
||||
process_audio_file(
|
||||
args.source,
|
||||
event_callback,
|
||||
only_transcript=args.only_transcript,
|
||||
source_language=args.source_language,
|
||||
target_language=args.target_language,
|
||||
enable_diarization=args.enable_diarization,
|
||||
diarization_backend=args.diarization_backend,
|
||||
)
|
||||
asyncio.run(
|
||||
process(
|
||||
args.source,
|
||||
args.source_language,
|
||||
args.target_language,
|
||||
args.pipeline,
|
||||
args.output,
|
||||
)
|
||||
else:
|
||||
# Use optimized file pipeline (default)
|
||||
asyncio.run(
|
||||
process_file_pipeline(
|
||||
args.source,
|
||||
event_callback,
|
||||
source_language=args.source_language,
|
||||
target_language=args.target_language,
|
||||
enable_diarization=args.enable_diarization,
|
||||
diarization_backend=args.diarization_backend,
|
||||
)
|
||||
)
|
||||
|
||||
if output_fd:
|
||||
output_fd.close()
|
||||
logger.info(f"Output written to {args.output}")
|
||||
)
|
||||
|
||||
@@ -1,315 +0,0 @@
|
||||
"""
|
||||
@vibe-generated
|
||||
Process audio file with diarization support
|
||||
===========================================
|
||||
|
||||
Extended version of process.py that includes speaker diarization.
|
||||
This tool processes audio files locally without requiring the full server infrastructure.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import tempfile
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import av
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
Pipeline,
|
||||
PipelineEvent,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptLinerProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
TranscriptTranslatorAutoProcessor,
|
||||
)
|
||||
from reflector.processors.base import BroadcastProcessor, Processor
|
||||
from reflector.processors.types import (
|
||||
AudioDiarizationInput,
|
||||
TitleSummary,
|
||||
TitleSummaryWithId,
|
||||
)
|
||||
|
||||
|
||||
class TopicCollectorProcessor(Processor):
|
||||
"""Collect topics for diarization"""
|
||||
|
||||
INPUT_TYPE = TitleSummary
|
||||
OUTPUT_TYPE = TitleSummary
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.topics: List[TitleSummaryWithId] = []
|
||||
self._topic_id = 0
|
||||
|
||||
async def _push(self, data: TitleSummary):
|
||||
# Convert to TitleSummaryWithId and collect
|
||||
self._topic_id += 1
|
||||
topic_with_id = TitleSummaryWithId(
|
||||
id=str(self._topic_id),
|
||||
title=data.title,
|
||||
summary=data.summary,
|
||||
timestamp=data.timestamp,
|
||||
duration=data.duration,
|
||||
transcript=data.transcript,
|
||||
)
|
||||
self.topics.append(topic_with_id)
|
||||
|
||||
# Pass through the original topic
|
||||
await self.emit(data)
|
||||
|
||||
def get_topics(self) -> List[TitleSummaryWithId]:
|
||||
return self.topics
|
||||
|
||||
|
||||
async def process_audio_file_with_diarization(
|
||||
filename,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="modal",
|
||||
):
|
||||
# Create temp file for audio if diarization is enabled
|
||||
audio_temp_path = None
|
||||
if enable_diarization:
|
||||
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
||||
audio_temp_path = audio_temp_file.name
|
||||
audio_temp_file.close()
|
||||
|
||||
# Create processor for collecting topics
|
||||
topic_collector = TopicCollectorProcessor()
|
||||
|
||||
# Build pipeline for audio processing
|
||||
processors = []
|
||||
|
||||
# Add audio file writer at the beginning if diarization is enabled
|
||||
if enable_diarization:
|
||||
processors.append(AudioFileWriterProcessor(audio_temp_path))
|
||||
|
||||
# Add the rest of the processors
|
||||
processors += [
|
||||
AudioChunkerProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
]
|
||||
|
||||
processors += [
|
||||
TranscriptLinerProcessor(),
|
||||
TranscriptTranslatorAutoProcessor.as_threaded(),
|
||||
]
|
||||
|
||||
if not only_transcript:
|
||||
processors += [
|
||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
||||
# Collect topics for diarization
|
||||
topic_collector,
|
||||
BroadcastProcessor(
|
||||
processors=[
|
||||
TranscriptFinalTitleProcessor.as_threaded(),
|
||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
# Create main pipeline
|
||||
pipeline = Pipeline(*processors)
|
||||
pipeline.set_pref("audio:source_language", source_language)
|
||||
pipeline.set_pref("audio:target_language", target_language)
|
||||
pipeline.describe()
|
||||
pipeline.on(event_callback)
|
||||
|
||||
# Start processing audio
|
||||
logger.info(f"Opening {filename}")
|
||||
container = av.open(filename)
|
||||
try:
|
||||
logger.info("Start pushing audio into the pipeline")
|
||||
for frame in container.decode(audio=0):
|
||||
await pipeline.push(frame)
|
||||
finally:
|
||||
logger.info("Flushing the pipeline")
|
||||
await pipeline.flush()
|
||||
|
||||
# Run diarization if enabled and we have topics
|
||||
if enable_diarization and not only_transcript and audio_temp_path:
|
||||
topics = topic_collector.get_topics()
|
||||
|
||||
if topics:
|
||||
logger.info(f"Starting diarization with {len(topics)} topics")
|
||||
|
||||
try:
|
||||
from reflector.processors import AudioDiarizationAutoProcessor
|
||||
|
||||
diarization_processor = AudioDiarizationAutoProcessor(
|
||||
name=diarization_backend
|
||||
)
|
||||
|
||||
diarization_processor.set_pipeline(pipeline)
|
||||
|
||||
# For Modal backend, we need to upload the file to S3 first
|
||||
if diarization_backend == "modal":
|
||||
from datetime import datetime, timezone
|
||||
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.utils.s3_temp_file import S3TemporaryFile
|
||||
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
# Generate a unique filename in evaluation folder
|
||||
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")
|
||||
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
|
||||
|
||||
# Use context manager for automatic cleanup
|
||||
async with S3TemporaryFile(storage, audio_filename) as s3_file:
|
||||
# Read and upload the audio file
|
||||
with open(audio_temp_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
audio_url = await s3_file.upload(audio_data)
|
||||
logger.info(f"Uploaded audio to S3: {audio_filename}")
|
||||
|
||||
# Create diarization input with S3 URL
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
# File will be automatically cleaned up when exiting the context
|
||||
else:
|
||||
# For local backend, use local file path
|
||||
audio_url = audio_temp_path
|
||||
|
||||
# Create diarization input
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
|
||||
except ImportError as e:
|
||||
logger.error(f"Failed to import diarization dependencies: {e}")
|
||||
logger.error(
|
||||
"Install with: uv pip install pyannote.audio torch torchaudio"
|
||||
)
|
||||
logger.error(
|
||||
"And set HF_TOKEN environment variable for pyannote models"
|
||||
)
|
||||
raise SystemExit(1)
|
||||
except Exception as e:
|
||||
logger.error(f"Diarization failed: {e}")
|
||||
raise SystemExit(1)
|
||||
else:
|
||||
logger.warning("Skipping diarization: no topics available")
|
||||
|
||||
# Clean up temp file
|
||||
if audio_temp_path:
|
||||
try:
|
||||
Path(audio_temp_path).unlink()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
|
||||
|
||||
logger.info("All done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
import os
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Process audio files with optional speaker diarization"
|
||||
)
|
||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
||||
parser.add_argument(
|
||||
"--only-transcript",
|
||||
"-t",
|
||||
action="store_true",
|
||||
help="Only generate transcript without topics/summaries",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--source-language", default="en", help="Source language code (default: en)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--target-language", default="en", help="Target language code (default: en)"
|
||||
)
|
||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
||||
parser.add_argument(
|
||||
"--enable-diarization",
|
||||
"-d",
|
||||
action="store_true",
|
||||
help="Enable speaker diarization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--diarization-backend",
|
||||
default="modal",
|
||||
choices=["modal"],
|
||||
help="Diarization backend to use (default: modal)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Set REDIS_HOST to localhost if not provided
|
||||
if "REDIS_HOST" not in os.environ:
|
||||
os.environ["REDIS_HOST"] = "localhost"
|
||||
logger.info("REDIS_HOST not set, defaulting to localhost")
|
||||
|
||||
output_fd = None
|
||||
if args.output:
|
||||
output_fd = open(args.output, "w")
|
||||
|
||||
async def event_callback(event: PipelineEvent):
|
||||
processor = event.processor
|
||||
data = event.data
|
||||
|
||||
# Ignore internal processors
|
||||
if processor in (
|
||||
"AudioChunkerProcessor",
|
||||
"AudioMergeProcessor",
|
||||
"AudioFileWriterProcessor",
|
||||
"TopicCollectorProcessor",
|
||||
"BroadcastProcessor",
|
||||
):
|
||||
return
|
||||
|
||||
# If diarization is enabled, skip the original topic events from the pipeline
|
||||
# The diarization processor will emit the same topics but with speaker info
|
||||
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
|
||||
return
|
||||
|
||||
# Log all events
|
||||
logger.info(f"Event: {processor} - {type(data).__name__}")
|
||||
|
||||
# Write to output
|
||||
if output_fd:
|
||||
output_fd.write(event.model_dump_json())
|
||||
output_fd.write("\n")
|
||||
output_fd.flush()
|
||||
|
||||
asyncio.run(
|
||||
process_audio_file_with_diarization(
|
||||
args.source,
|
||||
event_callback,
|
||||
only_transcript=args.only_transcript,
|
||||
source_language=args.source_language,
|
||||
target_language=args.target_language,
|
||||
enable_diarization=args.enable_diarization,
|
||||
diarization_backend=args.diarization_backend,
|
||||
)
|
||||
)
|
||||
|
||||
if output_fd:
|
||||
output_fd.close()
|
||||
logger.info(f"Output written to {args.output}")
|
||||
@@ -53,7 +53,7 @@ async def run_single_processor(args):
|
||||
async def event_callback(event: PipelineEvent):
|
||||
processor = event.processor
|
||||
# ignore some processor
|
||||
if processor in ("AudioChunkerProcessor", "AudioMergeProcessor"):
|
||||
if processor in ("AudioChunkerAutoProcessor", "AudioMergeProcessor"):
|
||||
return
|
||||
print(f"Event: {event}")
|
||||
if output_fd:
|
||||
|
||||
@@ -1,96 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
@vibe-generated
|
||||
Test script for the diarization CLI tool
|
||||
=========================================
|
||||
|
||||
This script helps test the diarization functionality with sample audio files.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from reflector.logger import logger
|
||||
|
||||
|
||||
async def test_diarization(audio_file: str):
|
||||
"""Test the diarization functionality"""
|
||||
|
||||
# Import the processing function
|
||||
from process_with_diarization import process_audio_file_with_diarization
|
||||
|
||||
# Collect events
|
||||
events = []
|
||||
|
||||
async def event_callback(event):
|
||||
events.append({"processor": event.processor, "data": event.data})
|
||||
logger.info(f"Event from {event.processor}")
|
||||
|
||||
# Process the audio file
|
||||
logger.info(f"Processing audio file: {audio_file}")
|
||||
|
||||
try:
|
||||
await process_audio_file_with_diarization(
|
||||
audio_file,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="modal",
|
||||
)
|
||||
|
||||
# Analyze results
|
||||
logger.info(f"Processing complete. Received {len(events)} events")
|
||||
|
||||
# Look for diarization results
|
||||
diarized_topics = []
|
||||
for event in events:
|
||||
if "TitleSummary" in event["processor"]:
|
||||
# Check if words have speaker information
|
||||
if hasattr(event["data"], "transcript") and event["data"].transcript:
|
||||
words = event["data"].transcript.words
|
||||
if words and hasattr(words[0], "speaker"):
|
||||
speakers = set(
|
||||
w.speaker for w in words if hasattr(w, "speaker")
|
||||
)
|
||||
logger.info(
|
||||
f"Found {len(speakers)} speakers in topic: {event['data'].title}"
|
||||
)
|
||||
diarized_topics.append(event["data"])
|
||||
|
||||
if diarized_topics:
|
||||
logger.info(f"Successfully diarized {len(diarized_topics)} topics")
|
||||
|
||||
# Print sample output
|
||||
sample_topic = diarized_topics[0]
|
||||
logger.info("Sample diarized output:")
|
||||
for i, word in enumerate(sample_topic.transcript.words[:10]):
|
||||
logger.info(f" Word {i}: '{word.text}' - Speaker {word.speaker}")
|
||||
else:
|
||||
logger.warning("No diarization results found in output")
|
||||
|
||||
return events
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during processing: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: python test_diarization.py <audio_file>")
|
||||
sys.exit(1)
|
||||
|
||||
audio_file = sys.argv[1]
|
||||
if not Path(audio_file).exists():
|
||||
print(f"Error: Audio file '{audio_file}' not found")
|
||||
sys.exit(1)
|
||||
|
||||
# Run the test
|
||||
asyncio.run(test_diarization(audio_file))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
23
server/reflector/utils/string.py
Normal file
23
server/reflector/utils/string.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import Field, TypeAdapter, constr
|
||||
|
||||
NonEmptyStringBase = constr(min_length=1, strip_whitespace=False)
|
||||
NonEmptyString = Annotated[
|
||||
NonEmptyStringBase,
|
||||
Field(description="A non-empty string", min_length=1),
|
||||
]
|
||||
non_empty_string_adapter = TypeAdapter(NonEmptyString)
|
||||
|
||||
|
||||
def parse_non_empty_string(s: str, error: str | None = None) -> NonEmptyString:
|
||||
try:
|
||||
return non_empty_string_adapter.validate_python(s)
|
||||
except Exception as e:
|
||||
raise ValueError(f"{e}: {error}" if error else e) from e
|
||||
|
||||
|
||||
def try_parse_non_empty_string(s: str) -> NonEmptyString | None:
|
||||
if not s:
|
||||
return None
|
||||
return parse_non_empty_string(s)
|
||||
@@ -10,6 +10,7 @@ from reflector.db.meetings import (
|
||||
meeting_consent_controller,
|
||||
meetings_controller,
|
||||
)
|
||||
from reflector.db.rooms import rooms_controller
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@@ -41,3 +42,34 @@ async def meeting_audio_consent(
|
||||
updated_consent = await meeting_consent_controller.upsert(consent)
|
||||
|
||||
return {"status": "success", "consent_id": updated_consent.id}
|
||||
|
||||
|
||||
@router.patch("/meetings/{meeting_id}/deactivate")
|
||||
async def meeting_deactivate(
|
||||
meeting_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
if not user_id:
|
||||
raise HTTPException(status_code=401, detail="Authentication required")
|
||||
|
||||
meeting = await meetings_controller.get_by_id(meeting_id)
|
||||
if not meeting:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
|
||||
if not meeting.is_active:
|
||||
return {"status": "success", "meeting_id": meeting_id}
|
||||
|
||||
# Only room owner or meeting creator can deactivate
|
||||
room = await rooms_controller.get_by_id(meeting.room_id)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
if user_id != room.user_id and user_id != meeting.user_id:
|
||||
raise HTTPException(
|
||||
status_code=403, detail="Only the room owner can deactivate meetings"
|
||||
)
|
||||
|
||||
await meetings_controller.update_meeting(meeting_id, is_active=False)
|
||||
|
||||
return {"status": "success", "meeting_id": meeting_id}
|
||||
|
||||
@@ -1,33 +1,27 @@
|
||||
import logging
|
||||
import sqlite3
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Annotated, Literal, Optional
|
||||
from enum import Enum
|
||||
from typing import Annotated, Any, Literal, Optional
|
||||
|
||||
import asyncpg.exceptions
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from fastapi_pagination import Page
|
||||
from fastapi_pagination.ext.databases import apaginate
|
||||
from pydantic import BaseModel
|
||||
from redis.exceptions import LockError
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db import get_database
|
||||
from reflector.db.calendar_events import calendar_events_controller
|
||||
from reflector.db.meetings import meetings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.redis_cache import RedisAsyncLock
|
||||
from reflector.services.ics_sync import ics_sync_service
|
||||
from reflector.settings import settings
|
||||
from reflector.whereby import create_meeting, upload_logo
|
||||
from reflector.worker.webhook import test_webhook
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
def parse_datetime_with_timezone(iso_string: str) -> datetime:
|
||||
"""Parse ISO datetime string and ensure timezone awareness (defaults to UTC if naive)."""
|
||||
dt = datetime.fromisoformat(iso_string)
|
||||
if dt.tzinfo is None:
|
||||
dt = dt.replace(tzinfo=timezone.utc)
|
||||
return dt
|
||||
|
||||
|
||||
class Room(BaseModel):
|
||||
id: str
|
||||
@@ -42,16 +36,38 @@ class Room(BaseModel):
|
||||
recording_type: str
|
||||
recording_trigger: str
|
||||
is_shared: bool
|
||||
ics_url: Optional[str] = None
|
||||
ics_fetch_interval: int = 300
|
||||
ics_enabled: bool = False
|
||||
ics_last_sync: Optional[datetime] = None
|
||||
ics_last_etag: Optional[str] = None
|
||||
|
||||
|
||||
class RoomDetails(Room):
|
||||
webhook_url: str | None
|
||||
webhook_secret: str | None
|
||||
|
||||
|
||||
class Meeting(BaseModel):
|
||||
id: str
|
||||
room_name: str
|
||||
room_url: str
|
||||
# TODO it's not always present, | None
|
||||
host_room_url: str
|
||||
start_date: datetime
|
||||
end_date: datetime
|
||||
user_id: str | None = None
|
||||
room_id: str | None = None
|
||||
is_locked: bool = False
|
||||
room_mode: Literal["normal", "group"] = "normal"
|
||||
recording_type: Literal["none", "local", "cloud"] = "cloud"
|
||||
recording_trigger: Literal[
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
num_clients: int = 0
|
||||
is_active: bool = True
|
||||
calendar_event_id: str | None = None
|
||||
calendar_metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class CreateRoom(BaseModel):
|
||||
@@ -64,28 +80,103 @@ class CreateRoom(BaseModel):
|
||||
recording_type: str
|
||||
recording_trigger: str
|
||||
is_shared: bool
|
||||
webhook_url: str
|
||||
webhook_secret: str
|
||||
ics_url: Optional[str] = None
|
||||
ics_fetch_interval: int = 300
|
||||
ics_enabled: bool = False
|
||||
|
||||
|
||||
class UpdateRoom(BaseModel):
|
||||
name: str
|
||||
zulip_auto_post: bool
|
||||
zulip_stream: str
|
||||
zulip_topic: str
|
||||
is_locked: bool
|
||||
room_mode: str
|
||||
recording_type: str
|
||||
recording_trigger: str
|
||||
is_shared: bool
|
||||
name: Optional[str] = None
|
||||
zulip_auto_post: Optional[bool] = None
|
||||
zulip_stream: Optional[str] = None
|
||||
zulip_topic: Optional[str] = None
|
||||
is_locked: Optional[bool] = None
|
||||
room_mode: Optional[str] = None
|
||||
recording_type: Optional[str] = None
|
||||
recording_trigger: Optional[str] = None
|
||||
is_shared: Optional[bool] = None
|
||||
webhook_url: Optional[str] = None
|
||||
webhook_secret: Optional[str] = None
|
||||
ics_url: Optional[str] = None
|
||||
ics_fetch_interval: Optional[int] = None
|
||||
ics_enabled: Optional[bool] = None
|
||||
|
||||
|
||||
class CreateRoomMeeting(BaseModel):
|
||||
allow_duplicated: Optional[bool] = False
|
||||
|
||||
|
||||
class DeletionStatus(BaseModel):
|
||||
status: str
|
||||
|
||||
|
||||
@router.get("/rooms", response_model=Page[Room])
|
||||
class WebhookTestResult(BaseModel):
|
||||
success: bool
|
||||
message: str = ""
|
||||
error: str = ""
|
||||
status_code: int | None = None
|
||||
response_preview: str | None = None
|
||||
|
||||
|
||||
class ICSStatus(BaseModel):
|
||||
status: Literal["enabled", "disabled"]
|
||||
last_sync: Optional[datetime] = None
|
||||
next_sync: Optional[datetime] = None
|
||||
last_etag: Optional[str] = None
|
||||
events_count: int = 0
|
||||
|
||||
|
||||
class SyncStatus(str, Enum):
|
||||
success = "success"
|
||||
unchanged = "unchanged"
|
||||
error = "error"
|
||||
skipped = "skipped"
|
||||
|
||||
|
||||
class ICSSyncResult(BaseModel):
|
||||
status: SyncStatus
|
||||
hash: Optional[str] = None
|
||||
events_found: int = 0
|
||||
total_events: int = 0
|
||||
events_created: int = 0
|
||||
events_updated: int = 0
|
||||
events_deleted: int = 0
|
||||
error: Optional[str] = None
|
||||
reason: Optional[str] = None
|
||||
|
||||
|
||||
class CalendarEventResponse(BaseModel):
|
||||
id: str
|
||||
room_id: str
|
||||
ics_uid: str
|
||||
title: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
attendees: Optional[list[dict]] = None
|
||||
location: Optional[str] = None
|
||||
last_synced: datetime
|
||||
created_at: datetime
|
||||
updated_at: datetime
|
||||
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
def parse_datetime_with_timezone(iso_string: str) -> datetime:
|
||||
"""Parse ISO datetime string and ensure timezone awareness (defaults to UTC if naive)."""
|
||||
dt = datetime.fromisoformat(iso_string)
|
||||
if dt.tzinfo is None:
|
||||
dt = dt.replace(tzinfo=timezone.utc)
|
||||
return dt
|
||||
|
||||
|
||||
@router.get("/rooms", response_model=Page[RoomDetails])
|
||||
async def rooms_list(
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
) -> list[Room]:
|
||||
) -> list[RoomDetails]:
|
||||
if not user and not settings.PUBLIC_MODE:
|
||||
raise HTTPException(status_code=401, detail="Not authenticated")
|
||||
|
||||
@@ -99,12 +190,50 @@ async def rooms_list(
|
||||
)
|
||||
|
||||
|
||||
@router.post("/rooms", response_model=Room)
|
||||
async def rooms_create(
|
||||
room: CreateRoom,
|
||||
@router.get("/rooms/{room_id}", response_model=RoomDetails)
|
||||
async def rooms_get(
|
||||
room_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_id_for_http(room_id, user_id=user_id)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
if not room.is_shared and (user_id is None or room.user_id != user_id):
|
||||
raise HTTPException(status_code=403, detail="Room access denied")
|
||||
return room
|
||||
|
||||
|
||||
@router.get("/rooms/name/{room_name}", response_model=RoomDetails)
|
||||
async def rooms_get_by_name(
|
||||
room_name: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
# Convert to RoomDetails format (add webhook fields if user is owner)
|
||||
room_dict = room.__dict__.copy()
|
||||
if user_id == room.user_id:
|
||||
# User is owner, include webhook details if available
|
||||
room_dict["webhook_url"] = getattr(room, "webhook_url", None)
|
||||
room_dict["webhook_secret"] = getattr(room, "webhook_secret", None)
|
||||
else:
|
||||
# Non-owner, hide webhook details
|
||||
room_dict["webhook_url"] = None
|
||||
room_dict["webhook_secret"] = None
|
||||
|
||||
return RoomDetails(**room_dict)
|
||||
|
||||
|
||||
@router.post("/rooms", response_model=Room)
|
||||
async def rooms_create(
|
||||
room: CreateRoom,
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
):
|
||||
user_id = user["sub"]
|
||||
|
||||
return await rooms_controller.add(
|
||||
name=room.name,
|
||||
@@ -117,19 +246,26 @@ async def rooms_create(
|
||||
recording_type=room.recording_type,
|
||||
recording_trigger=room.recording_trigger,
|
||||
is_shared=room.is_shared,
|
||||
webhook_url=room.webhook_url,
|
||||
webhook_secret=room.webhook_secret,
|
||||
ics_url=room.ics_url,
|
||||
ics_fetch_interval=room.ics_fetch_interval,
|
||||
ics_enabled=room.ics_enabled,
|
||||
)
|
||||
|
||||
|
||||
@router.patch("/rooms/{room_id}", response_model=Room)
|
||||
@router.patch("/rooms/{room_id}", response_model=RoomDetails)
|
||||
async def rooms_update(
|
||||
room_id: str,
|
||||
info: UpdateRoom,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
room = await rooms_controller.get_by_id_for_http(room_id, user_id=user_id)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
if room.user_id != user_id:
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
values = info.dict(exclude_unset=True)
|
||||
await rooms_controller.update(room, values)
|
||||
return room
|
||||
@@ -138,12 +274,14 @@ async def rooms_update(
|
||||
@router.delete("/rooms/{room_id}", response_model=DeletionStatus)
|
||||
async def rooms_delete(
|
||||
room_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_id(room_id, user_id=user_id)
|
||||
user_id = user["sub"]
|
||||
room = await rooms_controller.get_by_id(room_id)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
if room.user_id != user_id:
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
await rooms_controller.remove_by_id(room.id, user_id=user_id)
|
||||
return DeletionStatus(status="ok")
|
||||
|
||||
@@ -151,6 +289,7 @@ async def rooms_delete(
|
||||
@router.post("/rooms/{room_name}/meeting", response_model=Meeting)
|
||||
async def rooms_create_meeting(
|
||||
room_name: str,
|
||||
info: CreateRoomMeeting,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
@@ -158,54 +297,266 @@ async def rooms_create_meeting(
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
current_time = datetime.now(timezone.utc)
|
||||
meeting = await meetings_controller.get_active(room=room, current_time=current_time)
|
||||
try:
|
||||
async with RedisAsyncLock(
|
||||
f"create_meeting:{room_name}",
|
||||
timeout=30,
|
||||
extend_interval=10,
|
||||
blocking_timeout=5.0,
|
||||
) as lock:
|
||||
current_time = datetime.now(timezone.utc)
|
||||
|
||||
if meeting is None:
|
||||
end_date = current_time + timedelta(hours=8)
|
||||
meeting = None
|
||||
if not info.allow_duplicated:
|
||||
meeting = await meetings_controller.get_active(
|
||||
room=room, current_time=current_time
|
||||
)
|
||||
|
||||
whereby_meeting = await create_meeting("", end_date=end_date, room=room)
|
||||
await upload_logo(whereby_meeting["roomName"], "./images/logo.png")
|
||||
|
||||
# Now try to save to database
|
||||
try:
|
||||
meeting = await meetings_controller.create(
|
||||
id=whereby_meeting["meetingId"],
|
||||
room_name=whereby_meeting["roomName"],
|
||||
room_url=whereby_meeting["roomUrl"],
|
||||
host_room_url=whereby_meeting["hostRoomUrl"],
|
||||
start_date=parse_datetime_with_timezone(whereby_meeting["startDate"]),
|
||||
end_date=parse_datetime_with_timezone(whereby_meeting["endDate"]),
|
||||
user_id=user_id,
|
||||
room=room,
|
||||
)
|
||||
except (asyncpg.exceptions.UniqueViolationError, sqlite3.IntegrityError):
|
||||
# Another request already created a meeting for this room
|
||||
# Log this race condition occurrence
|
||||
logger.info(
|
||||
"Race condition detected for room %s - fetching existing meeting",
|
||||
room.name,
|
||||
)
|
||||
logger.warning(
|
||||
"Whereby meeting %s was created but not used (resource leak) for room %s",
|
||||
whereby_meeting["meetingId"],
|
||||
room.name,
|
||||
)
|
||||
|
||||
# Fetch the meeting that was created by the other request
|
||||
meeting = await meetings_controller.get_active(
|
||||
room=room, current_time=current_time
|
||||
)
|
||||
if meeting is None:
|
||||
# Edge case: meeting was created but expired/deleted between checks
|
||||
logger.error(
|
||||
"Meeting disappeared after race condition for room %s", room.name
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=503, detail="Unable to join meeting - please try again"
|
||||
end_date = current_time + timedelta(hours=8)
|
||||
|
||||
whereby_meeting = await create_meeting("", end_date=end_date, room=room)
|
||||
|
||||
await upload_logo(whereby_meeting["roomName"], "./images/logo.png")
|
||||
|
||||
meeting = await meetings_controller.create(
|
||||
id=whereby_meeting["meetingId"],
|
||||
room_name=whereby_meeting["roomName"],
|
||||
room_url=whereby_meeting["roomUrl"],
|
||||
host_room_url=whereby_meeting["hostRoomUrl"],
|
||||
start_date=parse_datetime_with_timezone(
|
||||
whereby_meeting["startDate"]
|
||||
),
|
||||
end_date=parse_datetime_with_timezone(whereby_meeting["endDate"]),
|
||||
room=room,
|
||||
)
|
||||
except LockError:
|
||||
logger.warning("Failed to acquire lock for room %s within timeout", room_name)
|
||||
raise HTTPException(
|
||||
status_code=503, detail="Meeting creation in progress, please try again"
|
||||
)
|
||||
|
||||
if user_id != room.user_id:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
|
||||
|
||||
@router.post("/rooms/{room_id}/webhook/test", response_model=WebhookTestResult)
|
||||
async def rooms_test_webhook(
|
||||
room_id: str,
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
):
|
||||
"""Test webhook configuration by sending a sample payload."""
|
||||
user_id = user["sub"]
|
||||
|
||||
room = await rooms_controller.get_by_id(room_id)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
if room.user_id != user_id:
|
||||
raise HTTPException(
|
||||
status_code=403, detail="Not authorized to test this room's webhook"
|
||||
)
|
||||
|
||||
result = await test_webhook(room_id)
|
||||
return WebhookTestResult(**result)
|
||||
|
||||
|
||||
@router.post("/rooms/{room_name}/ics/sync", response_model=ICSSyncResult)
|
||||
async def rooms_sync_ics(
|
||||
room_name: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
if user_id != room.user_id:
|
||||
raise HTTPException(
|
||||
status_code=403, detail="Only room owner can trigger ICS sync"
|
||||
)
|
||||
|
||||
if not room.ics_enabled or not room.ics_url:
|
||||
raise HTTPException(status_code=400, detail="ICS not configured for this room")
|
||||
|
||||
result = await ics_sync_service.sync_room_calendar(room)
|
||||
|
||||
if result["status"] == "error":
|
||||
raise HTTPException(
|
||||
status_code=500, detail=result.get("error", "Unknown error")
|
||||
)
|
||||
|
||||
return ICSSyncResult(**result)
|
||||
|
||||
|
||||
@router.get("/rooms/{room_name}/ics/status", response_model=ICSStatus)
|
||||
async def rooms_ics_status(
|
||||
room_name: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
if user_id != room.user_id:
|
||||
raise HTTPException(
|
||||
status_code=403, detail="Only room owner can view ICS status"
|
||||
)
|
||||
|
||||
next_sync = None
|
||||
if room.ics_enabled and room.ics_last_sync:
|
||||
next_sync = room.ics_last_sync + timedelta(seconds=room.ics_fetch_interval)
|
||||
|
||||
events = await calendar_events_controller.get_by_room(
|
||||
room.id, include_deleted=False
|
||||
)
|
||||
|
||||
return ICSStatus(
|
||||
status="enabled" if room.ics_enabled else "disabled",
|
||||
last_sync=room.ics_last_sync,
|
||||
next_sync=next_sync,
|
||||
last_etag=room.ics_last_etag,
|
||||
events_count=len(events),
|
||||
)
|
||||
|
||||
|
||||
@router.get("/rooms/{room_name}/meetings", response_model=list[CalendarEventResponse])
|
||||
async def rooms_list_meetings(
|
||||
room_name: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
events = await calendar_events_controller.get_by_room(
|
||||
room.id, include_deleted=False
|
||||
)
|
||||
|
||||
if user_id != room.user_id:
|
||||
for event in events:
|
||||
event.description = None
|
||||
event.attendees = None
|
||||
|
||||
return events
|
||||
|
||||
|
||||
@router.get(
|
||||
"/rooms/{room_name}/meetings/upcoming", response_model=list[CalendarEventResponse]
|
||||
)
|
||||
async def rooms_list_upcoming_meetings(
|
||||
room_name: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
minutes_ahead: int = 120,
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
events = await calendar_events_controller.get_upcoming(
|
||||
room.id, minutes_ahead=minutes_ahead
|
||||
)
|
||||
|
||||
if user_id != room.user_id:
|
||||
for event in events:
|
||||
event.description = None
|
||||
event.attendees = None
|
||||
|
||||
return events
|
||||
|
||||
|
||||
@router.get("/rooms/{room_name}/meetings/active", response_model=list[Meeting])
|
||||
async def rooms_list_active_meetings(
|
||||
room_name: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
current_time = datetime.now(timezone.utc)
|
||||
meetings = await meetings_controller.get_all_active_for_room(
|
||||
room=room, current_time=current_time
|
||||
)
|
||||
|
||||
# Hide host URLs from non-owners
|
||||
if user_id != room.user_id:
|
||||
for meeting in meetings:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meetings
|
||||
|
||||
|
||||
@router.get("/rooms/{room_name}/meetings/{meeting_id}", response_model=Meeting)
|
||||
async def rooms_get_meeting(
|
||||
room_name: str,
|
||||
meeting_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
"""Get a single meeting by ID within a specific room."""
|
||||
user_id = user["sub"] if user else None
|
||||
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
meeting = await meetings_controller.get_by_id(meeting_id)
|
||||
if not meeting:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
|
||||
if meeting.room_id != room.id:
|
||||
raise HTTPException(
|
||||
status_code=403, detail="Meeting does not belong to this room"
|
||||
)
|
||||
|
||||
if user_id != room.user_id and not room.is_shared:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
|
||||
|
||||
@router.post("/rooms/{room_name}/meetings/{meeting_id}/join", response_model=Meeting)
|
||||
async def rooms_join_meeting(
|
||||
room_name: str,
|
||||
meeting_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_name(room_name)
|
||||
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
meeting = await meetings_controller.get_by_id(meeting_id)
|
||||
|
||||
if not meeting:
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
|
||||
if meeting.room_id != room.id:
|
||||
raise HTTPException(
|
||||
status_code=403, detail="Meeting does not belong to this room"
|
||||
)
|
||||
|
||||
if not meeting.is_active:
|
||||
raise HTTPException(status_code=400, detail="Meeting is not active")
|
||||
|
||||
current_time = datetime.now(timezone.utc)
|
||||
if meeting.end_date <= current_time:
|
||||
raise HTTPException(status_code=400, detail="Meeting has ended")
|
||||
|
||||
# Hide host URL from non-owners
|
||||
if user_id != room.user_id:
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
|
||||
@@ -5,12 +5,10 @@ from fastapi import APIRouter, Depends, HTTPException, Query
|
||||
from fastapi_pagination import Page
|
||||
from fastapi_pagination.ext.databases import apaginate
|
||||
from jose import jwt
|
||||
from pydantic import BaseModel, Field, field_serializer
|
||||
from pydantic import BaseModel, Field, constr, field_serializer
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db import get_database
|
||||
from reflector.db.meetings import meetings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.search import (
|
||||
DEFAULT_SEARCH_LIMIT,
|
||||
SearchLimit,
|
||||
@@ -19,20 +17,22 @@ from reflector.db.search import (
|
||||
SearchOffsetBase,
|
||||
SearchParameters,
|
||||
SearchQuery,
|
||||
SearchQueryBase,
|
||||
SearchResult,
|
||||
SearchTotal,
|
||||
search_controller,
|
||||
search_query_adapter,
|
||||
)
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
TranscriptParticipant,
|
||||
TranscriptStatus,
|
||||
TranscriptTopic,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.processors.types import Transcript as ProcessorTranscript
|
||||
from reflector.processors.types import Word
|
||||
from reflector.settings import settings
|
||||
from reflector.ws_manager import get_ws_manager
|
||||
from reflector.zulip import (
|
||||
InvalidMessageError,
|
||||
get_zulip_message,
|
||||
@@ -63,7 +63,7 @@ class GetTranscriptMinimal(BaseModel):
|
||||
id: str
|
||||
user_id: str | None
|
||||
name: str
|
||||
status: str
|
||||
status: TranscriptStatus
|
||||
locked: bool
|
||||
duration: float
|
||||
title: str | None
|
||||
@@ -96,6 +96,7 @@ class CreateTranscript(BaseModel):
|
||||
name: str
|
||||
source_language: str = Field("en")
|
||||
target_language: str = Field("en")
|
||||
source_kind: SourceKind | None = None
|
||||
|
||||
|
||||
class UpdateTranscript(BaseModel):
|
||||
@@ -114,7 +115,19 @@ class DeletionStatus(BaseModel):
|
||||
status: str
|
||||
|
||||
|
||||
SearchQueryParam = Annotated[SearchQueryBase, Query(description="Search query text")]
|
||||
SearchQueryParamBase = constr(min_length=0, strip_whitespace=True)
|
||||
SearchQueryParam = Annotated[
|
||||
SearchQueryParamBase, Query(description="Search query text")
|
||||
]
|
||||
|
||||
|
||||
# http and api standards accept "q="; we would like to handle it as the absence of query, not as "empty string query"
|
||||
def parse_search_query_param(q: SearchQueryParam) -> SearchQuery | None:
|
||||
if q == "":
|
||||
return None
|
||||
return search_query_adapter.validate_python(q)
|
||||
|
||||
|
||||
SearchLimitParam = Annotated[SearchLimitBase, Query(description="Results per page")]
|
||||
SearchOffsetParam = Annotated[
|
||||
SearchOffsetBase, Query(description="Number of results to skip")
|
||||
@@ -124,7 +137,7 @@ SearchOffsetParam = Annotated[
|
||||
class SearchResponse(BaseModel):
|
||||
results: list[SearchResult]
|
||||
total: SearchTotal
|
||||
query: SearchQuery
|
||||
query: SearchQuery | None = None
|
||||
limit: SearchLimit
|
||||
offset: SearchOffset
|
||||
|
||||
@@ -174,7 +187,7 @@ async def transcripts_search(
|
||||
user_id = user["sub"] if user else None
|
||||
|
||||
search_params = SearchParameters(
|
||||
query_text=q,
|
||||
query_text=parse_search_query_param(q),
|
||||
limit=limit,
|
||||
offset=offset,
|
||||
user_id=user_id,
|
||||
@@ -199,14 +212,22 @@ async def transcripts_create(
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
return await transcripts_controller.add(
|
||||
transcript = await transcripts_controller.add(
|
||||
info.name,
|
||||
source_kind=SourceKind.LIVE,
|
||||
source_kind=info.source_kind or SourceKind.LIVE,
|
||||
source_language=info.source_language,
|
||||
target_language=info.target_language,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
if user_id:
|
||||
await get_ws_manager().send_json(
|
||||
room_id=f"user:{user_id}",
|
||||
message={"event": "TRANSCRIPT_CREATED", "data": {"id": transcript.id}},
|
||||
)
|
||||
|
||||
return transcript
|
||||
|
||||
|
||||
# ==============================================================
|
||||
# Single transcript
|
||||
@@ -330,14 +351,14 @@ async def transcript_get(
|
||||
async def transcript_update(
|
||||
transcript_id: str,
|
||||
info: UpdateTranscript,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if not transcript:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
if not transcripts_controller.user_can_mutate(transcript, user_id):
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
values = info.dict(exclude_unset=True)
|
||||
updated_transcript = await transcripts_controller.update(transcript, values)
|
||||
return updated_transcript
|
||||
@@ -346,20 +367,20 @@ async def transcript_update(
|
||||
@router.delete("/transcripts/{transcript_id}", response_model=DeletionStatus)
|
||||
async def transcript_delete(
|
||||
transcript_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
|
||||
if transcript.meeting_id:
|
||||
meeting = await meetings_controller.get_by_id(transcript.meeting_id)
|
||||
room = await rooms_controller.get_by_id(meeting.room_id)
|
||||
if room.is_shared:
|
||||
user_id = None
|
||||
if not transcripts_controller.user_can_mutate(transcript, user_id):
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
|
||||
await transcripts_controller.remove_by_id(transcript.id, user_id=user_id)
|
||||
await get_ws_manager().send_json(
|
||||
room_id=f"user:{user_id}",
|
||||
message={"event": "TRANSCRIPT_DELETED", "data": {"id": transcript.id}},
|
||||
)
|
||||
return DeletionStatus(status="ok")
|
||||
|
||||
|
||||
@@ -431,15 +452,16 @@ async def transcript_post_to_zulip(
|
||||
stream: str,
|
||||
topic: str,
|
||||
include_topics: bool,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if not transcript:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
|
||||
if not transcripts_controller.user_can_mutate(transcript, user_id):
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
content = get_zulip_message(transcript, include_topics)
|
||||
|
||||
message_updated = False
|
||||
|
||||
@@ -56,12 +56,14 @@ async def transcript_get_participants(
|
||||
async def transcript_add_participant(
|
||||
transcript_id: str,
|
||||
participant: CreateParticipant,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
) -> Participant:
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if transcript.user_id is not None and transcript.user_id != user_id:
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
|
||||
# ensure the speaker is unique
|
||||
if participant.speaker is not None and transcript.participants is not None:
|
||||
@@ -101,12 +103,14 @@ async def transcript_update_participant(
|
||||
transcript_id: str,
|
||||
participant_id: str,
|
||||
participant: UpdateParticipant,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
) -> Participant:
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if transcript.user_id is not None and transcript.user_id != user_id:
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
|
||||
# ensure the speaker is unique
|
||||
for p in transcript.participants:
|
||||
@@ -138,11 +142,13 @@ async def transcript_update_participant(
|
||||
async def transcript_delete_participant(
|
||||
transcript_id: str,
|
||||
participant_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
) -> DeletionStatus:
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if transcript.user_id is not None and transcript.user_id != user_id:
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
await transcripts_controller.delete_participant(transcript, participant_id)
|
||||
return DeletionStatus(status="ok")
|
||||
|
||||
@@ -6,7 +6,7 @@ from pydantic import BaseModel
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db.transcripts import transcripts_controller
|
||||
from reflector.pipelines.main_live_pipeline import task_pipeline_process
|
||||
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@@ -34,13 +34,13 @@ async def transcript_process(
|
||||
)
|
||||
|
||||
if task_is_scheduled_or_active(
|
||||
"reflector.pipelines.main_live_pipeline.task_pipeline_process",
|
||||
"reflector.pipelines.main_file_pipeline.task_pipeline_file_process",
|
||||
transcript_id=transcript_id,
|
||||
):
|
||||
return ProcessStatus(status="already running")
|
||||
|
||||
# schedule a background task process the file
|
||||
task_pipeline_process.delay(transcript_id=transcript_id)
|
||||
task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||
|
||||
return ProcessStatus(status="ok")
|
||||
|
||||
|
||||
@@ -35,12 +35,14 @@ class SpeakerMerge(BaseModel):
|
||||
async def transcript_assign_speaker(
|
||||
transcript_id: str,
|
||||
assignment: SpeakerAssignment,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
) -> SpeakerAssignmentStatus:
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if transcript.user_id is not None and transcript.user_id != user_id:
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
|
||||
if not transcript:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
@@ -113,12 +115,14 @@ async def transcript_assign_speaker(
|
||||
async def transcript_merge_speaker(
|
||||
transcript_id: str,
|
||||
merge: SpeakerMerge,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Annotated[auth.UserInfo, Depends(auth.current_user)],
|
||||
) -> SpeakerAssignmentStatus:
|
||||
user_id = user["sub"] if user else None
|
||||
user_id = user["sub"]
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if transcript.user_id is not None and transcript.user_id != user_id:
|
||||
raise HTTPException(status_code=403, detail="Not authorized")
|
||||
|
||||
if not transcript:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
|
||||
@@ -6,7 +6,7 @@ from pydantic import BaseModel
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db.transcripts import transcripts_controller
|
||||
from reflector.pipelines.main_live_pipeline import task_pipeline_process
|
||||
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@@ -92,6 +92,6 @@ async def transcript_record_upload(
|
||||
await transcripts_controller.update(transcript, {"status": "uploaded"})
|
||||
|
||||
# launch a background task to process the file
|
||||
task_pipeline_process.delay(transcript_id=transcript_id)
|
||||
task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||
|
||||
return UploadStatus(status="ok")
|
||||
|
||||
@@ -4,8 +4,11 @@ Transcripts websocket API
|
||||
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, HTTPException, WebSocket, WebSocketDisconnect
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException, WebSocket, WebSocketDisconnect
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db.transcripts import transcripts_controller
|
||||
from reflector.ws_manager import get_ws_manager
|
||||
|
||||
@@ -21,10 +24,12 @@ async def transcript_get_websocket_events(transcript_id: str):
|
||||
async def transcript_events_websocket(
|
||||
transcript_id: str,
|
||||
websocket: WebSocket,
|
||||
# user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
user: Optional[auth.UserInfo] = Depends(auth.current_user_optional),
|
||||
):
|
||||
# user_id = user["sub"] if user else None
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
user_id = user["sub"] if user else None
|
||||
transcript = await transcripts_controller.get_by_id_for_http(
|
||||
transcript_id, user_id=user_id
|
||||
)
|
||||
if not transcript:
|
||||
raise HTTPException(status_code=404, detail="Transcript not found")
|
||||
|
||||
|
||||
53
server/reflector/views/user_websocket.py
Normal file
53
server/reflector/views/user_websocket.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import APIRouter, WebSocket
|
||||
|
||||
from reflector.auth.auth_jwt import JWTAuth # type: ignore
|
||||
from reflector.ws_manager import get_ws_manager
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
# Close code for unauthorized WebSocket connections
|
||||
UNAUTHORISED = 4401
|
||||
|
||||
|
||||
@router.websocket("/events")
|
||||
async def user_events_websocket(websocket: WebSocket):
|
||||
# Browser can't send Authorization header for WS; use subprotocol: ["bearer", token]
|
||||
raw_subprotocol = websocket.headers.get("sec-websocket-protocol") or ""
|
||||
parts = [p.strip() for p in raw_subprotocol.split(",") if p.strip()]
|
||||
token: Optional[str] = None
|
||||
negotiated_subprotocol: Optional[str] = None
|
||||
if len(parts) >= 2 and parts[0].lower() == "bearer":
|
||||
negotiated_subprotocol = "bearer"
|
||||
token = parts[1]
|
||||
|
||||
user_id: Optional[str] = None
|
||||
if not token:
|
||||
await websocket.close(code=UNAUTHORISED)
|
||||
return
|
||||
|
||||
try:
|
||||
payload = JWTAuth().verify_token(token)
|
||||
user_id = payload.get("sub")
|
||||
except Exception:
|
||||
await websocket.close(code=UNAUTHORISED)
|
||||
return
|
||||
|
||||
if not user_id:
|
||||
await websocket.close(code=UNAUTHORISED)
|
||||
return
|
||||
|
||||
room_id = f"user:{user_id}"
|
||||
ws_manager = get_ws_manager()
|
||||
|
||||
await ws_manager.add_user_to_room(
|
||||
room_id, websocket, subprotocol=negotiated_subprotocol
|
||||
)
|
||||
|
||||
try:
|
||||
while True:
|
||||
await websocket.receive()
|
||||
finally:
|
||||
if room_id:
|
||||
await ws_manager.remove_user_from_room(room_id, websocket)
|
||||
@@ -68,8 +68,7 @@ async def whereby_webhook(event: WherebyWebhookEvent, request: Request):
|
||||
raise HTTPException(status_code=404, detail="Meeting not found")
|
||||
|
||||
if event.type in ["room.client.joined", "room.client.left"]:
|
||||
await meetings_controller.update_meeting(
|
||||
meeting.id, num_clients=event.data["numClients"]
|
||||
)
|
||||
update_data = {"num_clients": event.data["numClients"]}
|
||||
await meetings_controller.update_meeting(meeting.id, **update_data)
|
||||
|
||||
return {"status": "ok"}
|
||||
|
||||
@@ -1,18 +1,60 @@
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
import httpx
|
||||
|
||||
from reflector.db.rooms import Room
|
||||
from reflector.settings import settings
|
||||
from reflector.utils.string import parse_non_empty_string
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _get_headers():
|
||||
api_key = parse_non_empty_string(
|
||||
settings.WHEREBY_API_KEY, "WHEREBY_API_KEY value is required."
|
||||
)
|
||||
return {
|
||||
"Content-Type": "application/json; charset=utf-8",
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
}
|
||||
|
||||
|
||||
HEADERS = {
|
||||
"Content-Type": "application/json; charset=utf-8",
|
||||
"Authorization": f"Bearer {settings.WHEREBY_API_KEY}",
|
||||
}
|
||||
TIMEOUT = 10 # seconds
|
||||
|
||||
|
||||
def _get_whereby_s3_auth():
|
||||
errors = []
|
||||
try:
|
||||
bucket_name = parse_non_empty_string(
|
||||
settings.RECORDING_STORAGE_AWS_BUCKET_NAME,
|
||||
"RECORDING_STORAGE_AWS_BUCKET_NAME value is required.",
|
||||
)
|
||||
except Exception as e:
|
||||
errors.append(e)
|
||||
try:
|
||||
key_id = parse_non_empty_string(
|
||||
settings.AWS_WHEREBY_ACCESS_KEY_ID,
|
||||
"AWS_WHEREBY_ACCESS_KEY_ID value is required.",
|
||||
)
|
||||
except Exception as e:
|
||||
errors.append(e)
|
||||
try:
|
||||
key_secret = parse_non_empty_string(
|
||||
settings.AWS_WHEREBY_ACCESS_KEY_SECRET,
|
||||
"AWS_WHEREBY_ACCESS_KEY_SECRET value is required.",
|
||||
)
|
||||
except Exception as e:
|
||||
errors.append(e)
|
||||
if len(errors) > 0:
|
||||
raise Exception(
|
||||
f"Failed to get Whereby auth settings: {', '.join(str(e) for e in errors)}"
|
||||
)
|
||||
return bucket_name, key_id, key_secret
|
||||
|
||||
|
||||
async def create_meeting(room_name_prefix: str, end_date: datetime, room: Room):
|
||||
s3_bucket_name, s3_key_id, s3_key_secret = _get_whereby_s3_auth()
|
||||
data = {
|
||||
"isLocked": room.is_locked,
|
||||
"roomNamePrefix": room_name_prefix,
|
||||
@@ -23,23 +65,26 @@ async def create_meeting(room_name_prefix: str, end_date: datetime, room: Room):
|
||||
"type": room.recording_type,
|
||||
"destination": {
|
||||
"provider": "s3",
|
||||
"bucket": settings.RECORDING_STORAGE_AWS_BUCKET_NAME,
|
||||
"accessKeyId": settings.AWS_WHEREBY_ACCESS_KEY_ID,
|
||||
"accessKeySecret": settings.AWS_WHEREBY_ACCESS_KEY_SECRET,
|
||||
"bucket": s3_bucket_name,
|
||||
"accessKeyId": s3_key_id,
|
||||
"accessKeySecret": s3_key_secret,
|
||||
"fileFormat": "mp4",
|
||||
},
|
||||
"startTrigger": room.recording_trigger,
|
||||
},
|
||||
"fields": ["hostRoomUrl"],
|
||||
}
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
f"{settings.WHEREBY_API_URL}/meetings",
|
||||
headers=HEADERS,
|
||||
headers=_get_headers(),
|
||||
json=data,
|
||||
timeout=TIMEOUT,
|
||||
)
|
||||
if response.status_code == 403:
|
||||
logger.warning(
|
||||
f"Failed to create meeting: access denied on Whereby: {response.text}"
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
@@ -48,7 +93,7 @@ async def get_room_sessions(room_name: str):
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get(
|
||||
f"{settings.WHEREBY_API_URL}/insights/room-sessions?roomName={room_name}",
|
||||
headers=HEADERS,
|
||||
headers=_get_headers(),
|
||||
timeout=TIMEOUT,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
@@ -19,6 +19,8 @@ else:
|
||||
"reflector.pipelines.main_live_pipeline",
|
||||
"reflector.worker.healthcheck",
|
||||
"reflector.worker.process",
|
||||
"reflector.worker.cleanup",
|
||||
"reflector.worker.ics_sync",
|
||||
]
|
||||
)
|
||||
|
||||
@@ -36,8 +38,26 @@ else:
|
||||
"task": "reflector.worker.process.reprocess_failed_recordings",
|
||||
"schedule": crontab(hour=5, minute=0), # Midnight EST
|
||||
},
|
||||
"sync_all_ics_calendars": {
|
||||
"task": "reflector.worker.ics_sync.sync_all_ics_calendars",
|
||||
"schedule": 60.0, # Run every minute to check which rooms need sync
|
||||
},
|
||||
"create_upcoming_meetings": {
|
||||
"task": "reflector.worker.ics_sync.create_upcoming_meetings",
|
||||
"schedule": 30.0, # Run every 30 seconds to create upcoming meetings
|
||||
},
|
||||
}
|
||||
|
||||
if settings.PUBLIC_MODE:
|
||||
app.conf.beat_schedule["cleanup_old_public_data"] = {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data_task",
|
||||
"schedule": crontab(hour=3, minute=0),
|
||||
}
|
||||
logger.info(
|
||||
"Public mode cleanup enabled",
|
||||
retention_days=settings.PUBLIC_DATA_RETENTION_DAYS,
|
||||
)
|
||||
|
||||
if settings.HEALTHCHECK_URL:
|
||||
app.conf.beat_schedule["healthcheck_ping"] = {
|
||||
"task": "reflector.worker.healthcheck.healthcheck_ping",
|
||||
|
||||
155
server/reflector/worker/cleanup.py
Normal file
155
server/reflector/worker/cleanup.py
Normal file
@@ -0,0 +1,155 @@
|
||||
"""
|
||||
Main task for cleanup old public data.
|
||||
|
||||
Deletes old anonymous transcripts and their associated meetings/recordings.
|
||||
Transcripts are the main entry point - any associated data is also removed.
|
||||
"""
|
||||
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import TypedDict
|
||||
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
from databases import Database
|
||||
from pydantic.types import PositiveInt
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db import get_database
|
||||
from reflector.db.meetings import meetings
|
||||
from reflector.db.recordings import recordings
|
||||
from reflector.db.transcripts import transcripts, transcripts_controller
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_recordings_storage
|
||||
|
||||
logger = structlog.get_logger(__name__)
|
||||
|
||||
|
||||
class CleanupStats(TypedDict):
|
||||
"""Statistics for cleanup operation."""
|
||||
|
||||
transcripts_deleted: int
|
||||
meetings_deleted: int
|
||||
recordings_deleted: int
|
||||
errors: list[str]
|
||||
|
||||
|
||||
async def delete_single_transcript(
|
||||
db: Database, transcript_data: dict, stats: CleanupStats
|
||||
):
|
||||
transcript_id = transcript_data["id"]
|
||||
meeting_id = transcript_data["meeting_id"]
|
||||
recording_id = transcript_data["recording_id"]
|
||||
|
||||
try:
|
||||
async with db.transaction(isolation="serializable"):
|
||||
if meeting_id:
|
||||
await db.execute(meetings.delete().where(meetings.c.id == meeting_id))
|
||||
stats["meetings_deleted"] += 1
|
||||
logger.info("Deleted associated meeting", meeting_id=meeting_id)
|
||||
|
||||
if recording_id:
|
||||
recording = await db.fetch_one(
|
||||
recordings.select().where(recordings.c.id == recording_id)
|
||||
)
|
||||
if recording:
|
||||
try:
|
||||
await get_recordings_storage().delete_file(
|
||||
recording["object_key"]
|
||||
)
|
||||
except Exception as storage_error:
|
||||
logger.warning(
|
||||
"Failed to delete recording from storage",
|
||||
recording_id=recording_id,
|
||||
object_key=recording["object_key"],
|
||||
error=str(storage_error),
|
||||
)
|
||||
|
||||
await db.execute(
|
||||
recordings.delete().where(recordings.c.id == recording_id)
|
||||
)
|
||||
stats["recordings_deleted"] += 1
|
||||
logger.info(
|
||||
"Deleted associated recording", recording_id=recording_id
|
||||
)
|
||||
|
||||
await transcripts_controller.remove_by_id(transcript_id)
|
||||
stats["transcripts_deleted"] += 1
|
||||
logger.info(
|
||||
"Deleted transcript",
|
||||
transcript_id=transcript_id,
|
||||
created_at=transcript_data["created_at"].isoformat(),
|
||||
)
|
||||
except Exception as e:
|
||||
error_msg = f"Failed to delete transcript {transcript_id}: {str(e)}"
|
||||
logger.error(error_msg, exc_info=e)
|
||||
stats["errors"].append(error_msg)
|
||||
|
||||
|
||||
async def cleanup_old_transcripts(
|
||||
db: Database, cutoff_date: datetime, stats: CleanupStats
|
||||
):
|
||||
"""Delete old anonymous transcripts and their associated recordings/meetings."""
|
||||
query = transcripts.select().where(
|
||||
(transcripts.c.created_at < cutoff_date) & (transcripts.c.user_id.is_(None))
|
||||
)
|
||||
old_transcripts = await db.fetch_all(query)
|
||||
|
||||
logger.info(f"Found {len(old_transcripts)} old transcripts to delete")
|
||||
|
||||
for transcript_data in old_transcripts:
|
||||
await delete_single_transcript(db, transcript_data, stats)
|
||||
|
||||
|
||||
def log_cleanup_results(stats: CleanupStats):
|
||||
logger.info(
|
||||
"Cleanup completed",
|
||||
transcripts_deleted=stats["transcripts_deleted"],
|
||||
meetings_deleted=stats["meetings_deleted"],
|
||||
recordings_deleted=stats["recordings_deleted"],
|
||||
errors_count=len(stats["errors"]),
|
||||
)
|
||||
|
||||
if stats["errors"]:
|
||||
logger.warning(
|
||||
"Cleanup completed with errors",
|
||||
errors=stats["errors"][:10],
|
||||
)
|
||||
|
||||
|
||||
async def cleanup_old_public_data(
|
||||
days: PositiveInt | None = None,
|
||||
) -> CleanupStats | None:
|
||||
if days is None:
|
||||
days = settings.PUBLIC_DATA_RETENTION_DAYS
|
||||
|
||||
if not settings.PUBLIC_MODE:
|
||||
logger.info("Skipping cleanup - not a public instance")
|
||||
return None
|
||||
|
||||
cutoff_date = datetime.now(timezone.utc) - timedelta(days=days)
|
||||
logger.info(
|
||||
"Starting cleanup of old public data",
|
||||
cutoff_date=cutoff_date.isoformat(),
|
||||
)
|
||||
|
||||
stats: CleanupStats = {
|
||||
"transcripts_deleted": 0,
|
||||
"meetings_deleted": 0,
|
||||
"recordings_deleted": 0,
|
||||
"errors": [],
|
||||
}
|
||||
|
||||
db = get_database()
|
||||
await cleanup_old_transcripts(db, cutoff_date, stats)
|
||||
|
||||
log_cleanup_results(stats)
|
||||
return stats
|
||||
|
||||
|
||||
@shared_task(
|
||||
autoretry_for=(Exception,),
|
||||
retry_kwargs={"max_retries": 3, "countdown": 300},
|
||||
)
|
||||
@asynctask
|
||||
async def cleanup_old_public_data_task(days: int | None = None):
|
||||
await cleanup_old_public_data(days=days)
|
||||
175
server/reflector/worker/ics_sync.py
Normal file
175
server/reflector/worker/ics_sync.py
Normal file
@@ -0,0 +1,175 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
from celery.utils.log import get_task_logger
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.calendar_events import calendar_events_controller
|
||||
from reflector.db.meetings import meetings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.redis_cache import RedisAsyncLock
|
||||
from reflector.services.ics_sync import SyncStatus, ics_sync_service
|
||||
from reflector.whereby import create_meeting, upload_logo
|
||||
|
||||
logger = structlog.wrap_logger(get_task_logger(__name__))
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def sync_room_ics(room_id: str):
|
||||
try:
|
||||
room = await rooms_controller.get_by_id(room_id)
|
||||
if not room:
|
||||
logger.warning("Room not found for ICS sync", room_id=room_id)
|
||||
return
|
||||
|
||||
if not room.ics_enabled or not room.ics_url:
|
||||
logger.debug("ICS not enabled for room", room_id=room_id)
|
||||
return
|
||||
|
||||
logger.info("Starting ICS sync for room", room_id=room_id, room_name=room.name)
|
||||
result = await ics_sync_service.sync_room_calendar(room)
|
||||
|
||||
if result["status"] == SyncStatus.SUCCESS:
|
||||
logger.info(
|
||||
"ICS sync completed successfully",
|
||||
room_id=room_id,
|
||||
events_found=result.get("events_found", 0),
|
||||
events_created=result.get("events_created", 0),
|
||||
events_updated=result.get("events_updated", 0),
|
||||
events_deleted=result.get("events_deleted", 0),
|
||||
)
|
||||
elif result["status"] == SyncStatus.UNCHANGED:
|
||||
logger.debug("ICS content unchanged", room_id=room_id)
|
||||
elif result["status"] == SyncStatus.ERROR:
|
||||
logger.error("ICS sync failed", room_id=room_id, error=result.get("error"))
|
||||
else:
|
||||
logger.debug(
|
||||
"ICS sync skipped", room_id=room_id, reason=result.get("reason")
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Unexpected error during ICS sync", room_id=room_id, error=str(e))
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def sync_all_ics_calendars():
|
||||
try:
|
||||
logger.info("Starting sync for all ICS-enabled rooms")
|
||||
|
||||
ics_enabled_rooms = await rooms_controller.get_ics_enabled()
|
||||
logger.info(f"Found {len(ics_enabled_rooms)} rooms with ICS enabled")
|
||||
|
||||
for room in ics_enabled_rooms:
|
||||
if not _should_sync(room):
|
||||
logger.debug("Skipping room, not time to sync yet", room_id=room.id)
|
||||
continue
|
||||
|
||||
sync_room_ics.delay(room.id)
|
||||
|
||||
logger.info("Queued sync tasks for all eligible rooms")
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error in sync_all_ics_calendars", error=str(e))
|
||||
|
||||
|
||||
def _should_sync(room) -> bool:
|
||||
if not room.ics_last_sync:
|
||||
return True
|
||||
|
||||
time_since_sync = datetime.now(timezone.utc) - room.ics_last_sync
|
||||
return time_since_sync.total_seconds() >= room.ics_fetch_interval
|
||||
|
||||
|
||||
MEETING_DEFAULT_DURATION = timedelta(hours=1)
|
||||
|
||||
|
||||
async def create_upcoming_meetings_for_event(event, create_window, room_id, room):
|
||||
if event.start_time <= create_window:
|
||||
return
|
||||
existing_meeting = await meetings_controller.get_by_calendar_event(event.id)
|
||||
|
||||
if existing_meeting:
|
||||
return
|
||||
|
||||
logger.info(
|
||||
"Pre-creating meeting for calendar event",
|
||||
room_id=room_id,
|
||||
event_id=event.id,
|
||||
event_title=event.title,
|
||||
)
|
||||
|
||||
try:
|
||||
end_date = event.end_time or (event.start_time + MEETING_DEFAULT_DURATION)
|
||||
|
||||
whereby_meeting = await create_meeting(
|
||||
"",
|
||||
end_date=end_date,
|
||||
room=room,
|
||||
)
|
||||
await upload_logo(whereby_meeting["roomName"], "./images/logo.png")
|
||||
|
||||
meeting = await meetings_controller.create(
|
||||
id=whereby_meeting["meetingId"],
|
||||
room_name=whereby_meeting["roomName"],
|
||||
room_url=whereby_meeting["roomUrl"],
|
||||
host_room_url=whereby_meeting["hostRoomUrl"],
|
||||
start_date=datetime.fromisoformat(whereby_meeting["startDate"]),
|
||||
end_date=datetime.fromisoformat(whereby_meeting["endDate"]),
|
||||
room=room,
|
||||
calendar_event_id=event.id,
|
||||
calendar_metadata={
|
||||
"title": event.title,
|
||||
"description": event.description,
|
||||
"attendees": event.attendees,
|
||||
},
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Meeting pre-created successfully",
|
||||
meeting_id=meeting.id,
|
||||
event_id=event.id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to pre-create meeting",
|
||||
room_id=room_id,
|
||||
event_id=event.id,
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def create_upcoming_meetings():
|
||||
async with RedisAsyncLock("create_upcoming_meetings", skip_if_locked=True) as lock:
|
||||
if not lock.acquired:
|
||||
logger.warning(
|
||||
"Another worker is already creating upcoming meetings, skipping"
|
||||
)
|
||||
return
|
||||
|
||||
try:
|
||||
logger.info("Starting creation of upcoming meetings")
|
||||
|
||||
ics_enabled_rooms = await rooms_controller.get_ics_enabled()
|
||||
now = datetime.now(timezone.utc)
|
||||
create_window = now - timedelta(minutes=6)
|
||||
|
||||
for room in ics_enabled_rooms:
|
||||
events = await calendar_events_controller.get_upcoming(
|
||||
room.id,
|
||||
minutes_ahead=7,
|
||||
)
|
||||
|
||||
for event in events:
|
||||
await create_upcoming_meetings_for_event(
|
||||
event, create_window, room.id, room
|
||||
)
|
||||
logger.info("Completed pre-creation check for upcoming meetings")
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error in create_upcoming_meetings", error=str(e))
|
||||
@@ -9,6 +9,7 @@ import structlog
|
||||
from celery import shared_task
|
||||
from celery.utils.log import get_task_logger
|
||||
from pydantic import ValidationError
|
||||
from redis.exceptions import LockError
|
||||
|
||||
from reflector.db.meetings import meetings_controller
|
||||
from reflector.db.recordings import Recording, recordings_controller
|
||||
@@ -16,6 +17,7 @@ from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import SourceKind, transcripts_controller
|
||||
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
|
||||
from reflector.pipelines.main_live_pipeline import asynctask
|
||||
from reflector.redis_cache import get_redis_client
|
||||
from reflector.settings import settings
|
||||
from reflector.whereby import get_room_sessions
|
||||
|
||||
@@ -147,24 +149,93 @@ async def process_recording(bucket_name: str, object_key: str):
|
||||
@shared_task
|
||||
@asynctask
|
||||
async def process_meetings():
|
||||
"""
|
||||
Checks which meetings are still active and deactivates those that have ended.
|
||||
|
||||
Deactivation logic:
|
||||
- Active sessions: Keep meeting active regardless of scheduled time
|
||||
- No active sessions:
|
||||
* Calendar meetings:
|
||||
- If previously used (had sessions): Deactivate immediately
|
||||
- If never used: Keep active until scheduled end time, then deactivate
|
||||
* On-the-fly meetings: Deactivate immediately (created when someone joins,
|
||||
so no sessions means everyone left)
|
||||
|
||||
Uses distributed locking to prevent race conditions when multiple workers
|
||||
process the same meeting simultaneously.
|
||||
"""
|
||||
logger.info("Processing meetings")
|
||||
meetings = await meetings_controller.get_all_active()
|
||||
current_time = datetime.now(timezone.utc)
|
||||
redis_client = get_redis_client()
|
||||
processed_count = 0
|
||||
skipped_count = 0
|
||||
|
||||
for meeting in meetings:
|
||||
is_active = False
|
||||
end_date = meeting.end_date
|
||||
if end_date.tzinfo is None:
|
||||
end_date = end_date.replace(tzinfo=timezone.utc)
|
||||
if end_date > datetime.now(timezone.utc):
|
||||
logger_ = logger.bind(meeting_id=meeting.id, room_name=meeting.room_name)
|
||||
lock_key = f"meeting_process_lock:{meeting.id}"
|
||||
lock = redis_client.lock(lock_key, timeout=120)
|
||||
|
||||
try:
|
||||
if not lock.acquire(blocking=False):
|
||||
logger_.debug("Meeting is being processed by another worker, skipping")
|
||||
skipped_count += 1
|
||||
continue
|
||||
|
||||
# Process the meeting
|
||||
should_deactivate = False
|
||||
end_date = meeting.end_date
|
||||
if end_date.tzinfo is None:
|
||||
end_date = end_date.replace(tzinfo=timezone.utc)
|
||||
|
||||
# This API call could be slow, extend lock if needed
|
||||
response = await get_room_sessions(meeting.room_name)
|
||||
|
||||
try:
|
||||
# Extend lock after slow operation to ensure we still hold it
|
||||
lock.extend(120, replace_ttl=True)
|
||||
except LockError:
|
||||
logger_.warning("Lost lock for meeting, skipping")
|
||||
continue
|
||||
|
||||
room_sessions = response.get("results", [])
|
||||
is_active = not room_sessions or any(
|
||||
has_active_sessions = room_sessions and any(
|
||||
rs["endedAt"] is None for rs in room_sessions
|
||||
)
|
||||
if not is_active:
|
||||
await meetings_controller.update_meeting(meeting.id, is_active=False)
|
||||
logger.info("Meeting %s is deactivated", meeting.id)
|
||||
has_had_sessions = bool(room_sessions)
|
||||
|
||||
logger.info("Processed meetings")
|
||||
if has_active_sessions:
|
||||
logger_.debug("Meeting still has active sessions, keep it")
|
||||
elif has_had_sessions:
|
||||
should_deactivate = True
|
||||
logger_.info("Meeting ended - all participants left")
|
||||
elif current_time > end_date:
|
||||
should_deactivate = True
|
||||
logger_.info(
|
||||
"Meeting deactivated - scheduled time ended with no participants",
|
||||
)
|
||||
else:
|
||||
logger_.debug("Meeting not yet started, keep it")
|
||||
|
||||
if should_deactivate:
|
||||
await meetings_controller.update_meeting(meeting.id, is_active=False)
|
||||
logger_.info("Meeting is deactivated")
|
||||
|
||||
processed_count += 1
|
||||
|
||||
except Exception:
|
||||
logger_.error("Error processing meeting", exc_info=True)
|
||||
finally:
|
||||
try:
|
||||
lock.release()
|
||||
except LockError:
|
||||
pass # Lock already released or expired
|
||||
|
||||
logger.info(
|
||||
"Processed meetings finished",
|
||||
processed_count=processed_count,
|
||||
skipped_count=skipped_count,
|
||||
)
|
||||
|
||||
|
||||
@shared_task
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user