mirror of
https://github.com/Monadical-SAS/reflector.git
synced 2025-12-20 20:29:06 +00:00
Compare commits
26 Commits
fix/file-u
...
v0.9.0
| Author | SHA1 | Date | |
|---|---|---|---|
| 02a3938822 | |||
|
|
7f5a4c9ddc | ||
|
|
08d88ec349 | ||
|
|
c4d2825c81 | ||
| 0663700a61 | |||
| dc82f8bb3b | |||
| 457823e1c1 | |||
|
|
695d1a957d | ||
| ccffdba75b | |||
| 84a381220b | |||
| 5f2f0e9317 | |||
| 88ed7cfa78 | |||
| 6f0c7c1a5e | |||
| 9dfd76996f | |||
| 55cc8637c6 | |||
| f5331a2107 | |||
|
|
124ce03bf8 | ||
| 7030e0f236 | |||
| 37f0110892 | |||
| cf2896a7f4 | |||
| aabf2c2572 | |||
| 6a7b08f016 | |||
| e2736563d9 | |||
| 0f54b7782d | |||
| 359280dd34 | |||
| 9265d201b5 |
5
.github/workflows/db_migrations.yml
vendored
5
.github/workflows/db_migrations.yml
vendored
@@ -2,6 +2,8 @@ name: Test Database Migrations
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/migrations/**"
|
||||
- "server/reflector/db/**"
|
||||
@@ -17,6 +19,9 @@ on:
|
||||
jobs:
|
||||
test-migrations:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: db-ubuntu-latest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
postgres:
|
||||
image: postgres:17
|
||||
|
||||
45
.github/workflows/test_next_server.yml
vendored
Normal file
45
.github/workflows/test_next_server.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test Next Server
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "www/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "www/**"
|
||||
|
||||
jobs:
|
||||
test-next-server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./www
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
|
||||
- name: Setup Node.js cache
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
cache: 'pnpm'
|
||||
cache-dependency-path: './www/pnpm-lock.yaml'
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install
|
||||
|
||||
- name: Run tests
|
||||
run: pnpm test
|
||||
11
.github/workflows/test_server.yml
vendored
11
.github/workflows/test_server.yml
vendored
@@ -5,12 +5,17 @@ on:
|
||||
paths:
|
||||
- "server/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "server/**"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
runs-on: ubuntu-latest
|
||||
concurrency:
|
||||
group: pytest-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
services:
|
||||
redis:
|
||||
image: redis:6
|
||||
@@ -30,6 +35,9 @@ jobs:
|
||||
|
||||
docker-amd64:
|
||||
runs-on: linux-amd64
|
||||
concurrency:
|
||||
group: docker-amd64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
@@ -45,6 +53,9 @@ jobs:
|
||||
|
||||
docker-arm64:
|
||||
runs-on: linux-arm64
|
||||
concurrency:
|
||||
group: docker-arm64-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Docker Buildx
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -14,4 +14,7 @@ data/
|
||||
www/REFACTOR.md
|
||||
www/reload-frontend
|
||||
server/test.sqlite
|
||||
CLAUDE.local.md
|
||||
CLAUDE.local.md
|
||||
www/.env.development
|
||||
www/.env.production
|
||||
.playwright-mcp
|
||||
|
||||
1
.gitleaksignore
Normal file
1
.gitleaksignore
Normal file
@@ -0,0 +1 @@
|
||||
b9d891d3424f371642cb032ecfd0e2564470a72c:server/tests/test_transcripts_recording_deletion.py:generic-api-key:15
|
||||
@@ -27,3 +27,8 @@ repos:
|
||||
files: ^server/
|
||||
- id: ruff-format
|
||||
files: ^server/
|
||||
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.28.0
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
52
CHANGELOG.md
52
CHANGELOG.md
@@ -1,5 +1,57 @@
|
||||
# Changelog
|
||||
|
||||
## [0.9.0](https://github.com/Monadical-SAS/reflector/compare/v0.8.2...v0.9.0) (2025-09-06)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* frontend openapi react query ([#606](https://github.com/Monadical-SAS/reflector/issues/606)) ([c4d2825](https://github.com/Monadical-SAS/reflector/commit/c4d2825c81f81ad8835629fbf6ea8c7383f8c31b))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* align whisper transcriber api with parakeet ([#602](https://github.com/Monadical-SAS/reflector/issues/602)) ([0663700](https://github.com/Monadical-SAS/reflector/commit/0663700a615a4af69a03c96c410f049e23ec9443))
|
||||
* kv use tls explicit ([#610](https://github.com/Monadical-SAS/reflector/issues/610)) ([08d88ec](https://github.com/Monadical-SAS/reflector/commit/08d88ec349f38b0d13e0fa4cb73486c8dfd31836))
|
||||
* source kind for file processing ([#601](https://github.com/Monadical-SAS/reflector/issues/601)) ([dc82f8b](https://github.com/Monadical-SAS/reflector/commit/dc82f8bb3bdf3ab3d4088e592a30fd63907319e1))
|
||||
* token refresh locking ([#613](https://github.com/Monadical-SAS/reflector/issues/613)) ([7f5a4c9](https://github.com/Monadical-SAS/reflector/commit/7f5a4c9ddc7fd098860c8bdda2ca3b57f63ded2f))
|
||||
|
||||
## [0.8.2](https://github.com/Monadical-SAS/reflector/compare/v0.8.1...v0.8.2) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* search-logspam ([#593](https://github.com/Monadical-SAS/reflector/issues/593)) ([695d1a9](https://github.com/Monadical-SAS/reflector/commit/695d1a957d4cd862753049f9beed88836cabd5ab))
|
||||
|
||||
## [0.8.1](https://github.com/Monadical-SAS/reflector/compare/v0.8.0...v0.8.1) (2025-08-29)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* make webhook secret/url allowing null ([#590](https://github.com/Monadical-SAS/reflector/issues/590)) ([84a3812](https://github.com/Monadical-SAS/reflector/commit/84a381220bc606231d08d6f71d4babc818fa3c75))
|
||||
|
||||
## [0.8.0](https://github.com/Monadical-SAS/reflector/compare/v0.7.3...v0.8.0) (2025-08-29)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* **cleanup:** add automatic data retention for public instances ([#574](https://github.com/Monadical-SAS/reflector/issues/574)) ([6f0c7c1](https://github.com/Monadical-SAS/reflector/commit/6f0c7c1a5e751713366886c8e764c2009e12ba72))
|
||||
* **rooms:** add webhook for transcript completion ([#578](https://github.com/Monadical-SAS/reflector/issues/578)) ([88ed7cf](https://github.com/Monadical-SAS/reflector/commit/88ed7cfa7804794b9b54cad4c3facc8a98cf85fd))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* file pipeline status reporting and websocket updates ([#589](https://github.com/Monadical-SAS/reflector/issues/589)) ([9dfd769](https://github.com/Monadical-SAS/reflector/commit/9dfd76996f851cc52be54feea078adbc0816dc57))
|
||||
* Igor/evaluation ([#575](https://github.com/Monadical-SAS/reflector/issues/575)) ([124ce03](https://github.com/Monadical-SAS/reflector/commit/124ce03bf86044c18313d27228a25da4bc20c9c5))
|
||||
* optimize parakeet transcription batching algorithm ([#577](https://github.com/Monadical-SAS/reflector/issues/577)) ([7030e0f](https://github.com/Monadical-SAS/reflector/commit/7030e0f23649a8cf6c1eb6d5889684a41ce849ec))
|
||||
|
||||
## [0.7.3](https://github.com/Monadical-SAS/reflector/compare/v0.7.2...v0.7.3) (2025-08-22)
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* cleaned repo, and get git-leaks clean ([359280d](https://github.com/Monadical-SAS/reflector/commit/359280dd340433ba4402ed69034094884c825e67))
|
||||
* restore previous behavior on live pipeline + audio downscaler ([#561](https://github.com/Monadical-SAS/reflector/issues/561)) ([9265d20](https://github.com/Monadical-SAS/reflector/commit/9265d201b590d23c628c5f19251b70f473859043))
|
||||
|
||||
## [0.7.2](https://github.com/Monadical-SAS/reflector/compare/v0.7.1...v0.7.2) (2025-08-21)
|
||||
|
||||
|
||||
|
||||
45
README.md
45
README.md
@@ -1,43 +1,60 @@
|
||||
<div align="center">
|
||||
<img width="100" alt="image" src="https://github.com/user-attachments/assets/66fb367b-2c89-4516-9912-f47ac59c6a7f"/>
|
||||
|
||||
# Reflector
|
||||
|
||||
Reflector Audio Management and Analysis is a cutting-edge web application under development by Monadical. It utilizes AI to record meetings, providing a permanent record with transcripts, translations, and automated summaries.
|
||||
Reflector is an AI-powered audio transcription and meeting analysis platform that provides real-time transcription, speaker diarization, translation and summarization for audio content and live meetings. It works 100% with local models (whisper/parakeet, pyannote, seamless-m4t, and your local llm like phi-4).
|
||||
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/pytests.yml)
|
||||
[](https://github.com/monadical-sas/reflector/actions/workflows/test_server.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
</div>
|
||||
|
||||
## Screenshots
|
||||
</div>
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/3a976930-56c1-47ef-8c76-55d3864309e3" />
|
||||
<a href="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21f5597c-2930-4899-a154-f7bd61a59e97" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/bfe3bde3-08af-4426-a9a1-11ad5cd63b33" />
|
||||
<a href="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/f6b9399a-5e51-4bae-b807-59128d0a940c" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/7b60c9d0-efe4-474f-a27b-ea13bd0fabdc" />
|
||||
<a href="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/a42ce460-c1fd-4489-a995-270516193897" />
|
||||
</a>
|
||||
</td>
|
||||
<td>
|
||||
<a href="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4">
|
||||
<img width="700" alt="image" src="https://github.com/user-attachments/assets/21929f6d-c309-42fe-9c11-f1299e50fbd4" />
|
||||
</a>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## What is Reflector?
|
||||
|
||||
Reflector is a web application that utilizes local models to process audio content, providing:
|
||||
|
||||
- **Real-time Transcription**: Convert speech to text using [Whisper](https://github.com/openai/whisper) (multi-language) or [Parakeet](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) (English) models
|
||||
- **Speaker Diarization**: Identify and label different speakers using [Pyannote](https://github.com/pyannote/pyannote-audio) 3.1
|
||||
- **Live Translation**: Translate audio content in real-time to many languages with [Facebook Seamless-M4T](https://github.com/facebookresearch/seamless_communication)
|
||||
- **Topic Detection & Summarization**: Extract key topics and generate concise summaries using LLMs
|
||||
- **Meeting Recording**: Create permanent records of meetings with searchable transcripts
|
||||
|
||||
Currently we provide [modal.com](https://modal.com/) gpu template to deploy.
|
||||
|
||||
## Background
|
||||
|
||||
The project architecture consists of three primary components:
|
||||
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **Back-End**: Python server that offers an API and data persistence, found in `server/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations. Most reliable option is Modal deployment
|
||||
- **Front-End**: NextJS React project hosted on Vercel, located in `www/`.
|
||||
- **GPU implementation**: Providing services such as speech-to-text transcription, topic generation, automated summaries, and translations.
|
||||
|
||||
It also uses authentik for authentication if activated, and Vercel for deployment and configuration of the front-end.
|
||||
It also uses authentik for authentication if activated.
|
||||
|
||||
## Contribution Guidelines
|
||||
|
||||
@@ -72,6 +89,8 @@ Note: We currently do not have instructions for Windows users.
|
||||
|
||||
## Installation
|
||||
|
||||
*Note: we're working toward better installation, theses instructions are not accurate for now*
|
||||
|
||||
### Frontend
|
||||
|
||||
Start with `cd www`.
|
||||
|
||||
@@ -6,6 +6,7 @@ services:
|
||||
- 1250:1250
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -16,6 +17,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
@@ -26,6 +28,7 @@ services:
|
||||
context: server
|
||||
volumes:
|
||||
- ./server/:/app/
|
||||
- /app/.venv
|
||||
env_file:
|
||||
- ./server/.env
|
||||
environment:
|
||||
|
||||
95
server/docs/data_retention.md
Normal file
95
server/docs/data_retention.md
Normal file
@@ -0,0 +1,95 @@
|
||||
# Data Retention and Cleanup
|
||||
|
||||
## Overview
|
||||
|
||||
For public instances of Reflector, a data retention policy is automatically enforced to delete anonymous user data after a configurable period (default: 7 days). This ensures compliance with privacy expectations and prevents unbounded storage growth.
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `PUBLIC_MODE` (bool): Must be set to `true` to enable automatic cleanup
|
||||
- `PUBLIC_DATA_RETENTION_DAYS` (int): Number of days to retain anonymous data (default: 7)
|
||||
|
||||
### What Gets Deleted
|
||||
|
||||
When data reaches the retention period, the following items are automatically removed:
|
||||
|
||||
1. **Transcripts** from anonymous users (where `user_id` is NULL):
|
||||
- Database records
|
||||
- Local files (audio.wav, audio.mp3, audio.json waveform)
|
||||
- Storage files (cloud storage if configured)
|
||||
|
||||
## Automatic Cleanup
|
||||
|
||||
### Celery Beat Schedule
|
||||
|
||||
When `PUBLIC_MODE=true`, a Celery beat task runs daily at 3 AM to clean up old data:
|
||||
|
||||
```python
|
||||
# Automatically scheduled when PUBLIC_MODE=true
|
||||
"cleanup_old_public_data": {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data",
|
||||
"schedule": crontab(hour=3, minute=0), # Daily at 3 AM
|
||||
}
|
||||
```
|
||||
|
||||
### Running the Worker
|
||||
|
||||
Ensure both Celery worker and beat scheduler are running:
|
||||
|
||||
```bash
|
||||
# Start Celery worker
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
|
||||
# Start Celery beat scheduler (in another terminal)
|
||||
uv run celery -A reflector.worker.app beat
|
||||
```
|
||||
|
||||
## Manual Cleanup
|
||||
|
||||
For testing or manual intervention, use the cleanup tool:
|
||||
|
||||
```bash
|
||||
# Delete data older than 7 days (default)
|
||||
uv run python -m reflector.tools.cleanup_old_data
|
||||
|
||||
# Delete data older than 30 days
|
||||
uv run python -m reflector.tools.cleanup_old_data --days 30
|
||||
```
|
||||
|
||||
Note: The manual tool uses the same implementation as the Celery worker task to ensure consistency.
|
||||
|
||||
## Important Notes
|
||||
|
||||
1. **User Data Deletion**: Only anonymous data (where `user_id` is NULL) is deleted. Authenticated user data is preserved.
|
||||
|
||||
2. **Storage Cleanup**: The system properly cleans up both local files and cloud storage when configured.
|
||||
|
||||
3. **Error Handling**: If individual deletions fail, the cleanup continues and logs errors. Failed deletions are reported in the task output.
|
||||
|
||||
4. **Public Instance Only**: The automatic cleanup task only runs when `PUBLIC_MODE=true` to prevent accidental data loss in private deployments.
|
||||
|
||||
## Testing
|
||||
|
||||
Run the cleanup tests:
|
||||
|
||||
```bash
|
||||
uv run pytest tests/test_cleanup.py -v
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
Check Celery logs for cleanup task execution:
|
||||
|
||||
```bash
|
||||
# Look for cleanup task logs
|
||||
grep "cleanup_old_public_data" celery.log
|
||||
grep "Starting cleanup of old public data" celery.log
|
||||
```
|
||||
|
||||
Task statistics are logged after each run:
|
||||
- Number of transcripts deleted
|
||||
- Number of meetings deleted
|
||||
- Number of orphaned recordings deleted
|
||||
- Any errors encountered
|
||||
194
server/docs/gpu/api-transcription.md
Normal file
194
server/docs/gpu/api-transcription.md
Normal file
@@ -0,0 +1,194 @@
|
||||
## Reflector GPU Transcription API (Specification)
|
||||
|
||||
This document defines the Reflector GPU transcription API that all implementations must adhere to. Current implementations include NVIDIA Parakeet (NeMo) and Whisper (faster-whisper), both deployed on Modal.com. The API surface and response shapes are OpenAI/Whisper-compatible, so clients can switch implementations by changing only the base URL.
|
||||
|
||||
### Base URL and Authentication
|
||||
|
||||
- Example base URLs (Modal web endpoints):
|
||||
|
||||
- Parakeet: `https://<account>--reflector-transcriber-parakeet-web.modal.run`
|
||||
- Whisper: `https://<account>--reflector-transcriber-web.modal.run`
|
||||
|
||||
- All endpoints are served under `/v1` and require a Bearer token:
|
||||
|
||||
```
|
||||
Authorization: Bearer <REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
Note: To switch implementations, deploy the desired variant and point `TRANSCRIPT_URL` to its base URL. The API is identical.
|
||||
|
||||
### Supported file types
|
||||
|
||||
`mp3, mp4, mpeg, mpga, m4a, wav, webm`
|
||||
|
||||
### Models and languages
|
||||
|
||||
- Parakeet (NVIDIA NeMo): default `nvidia/parakeet-tdt-0.6b-v2`
|
||||
- Language support: only `en`. Other languages return HTTP 400.
|
||||
- Whisper (faster-whisper): default `large-v2` (or deployment-specific)
|
||||
- Language support: multilingual (per Whisper model capabilities).
|
||||
|
||||
Note: The `model` parameter is accepted by all implementations for interface parity. Some backends may treat it as informational.
|
||||
|
||||
### Endpoints
|
||||
|
||||
#### POST /v1/audio/transcriptions
|
||||
|
||||
Transcribe one or more uploaded audio files.
|
||||
|
||||
Request: multipart/form-data
|
||||
|
||||
- `file` (File) — optional. Single file to transcribe.
|
||||
- `files` (File[]) — optional. One or more files to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`.
|
||||
- Parakeet: only `en` is accepted; other values return HTTP 400
|
||||
- Whisper: model-dependent; typically multilingual
|
||||
- `batch` (boolean) — optional, defaults to `false`.
|
||||
|
||||
Notes:
|
||||
|
||||
- Provide either `file` or `files`, not both. If neither is provided, HTTP 400.
|
||||
- `batch` requires `files`; using `batch=true` without `files` returns HTTP 400.
|
||||
- Response shape for multiple files is the same regardless of `batch`.
|
||||
- Files sent to this endpoint are processed in a single pass (no VAD/chunking). This is intended for short clips (roughly ≤ 30s; depends on GPU memory/model). For longer audio, prefer `/v1/audio/transcriptions-from-url` which supports VAD-based chunking.
|
||||
|
||||
Responses
|
||||
|
||||
Single file response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 0.0, "end": 0.5 },
|
||||
{ "word": "world", "start": 0.5, "end": 1.0 }
|
||||
],
|
||||
"filename": "audio.mp3"
|
||||
}
|
||||
```
|
||||
|
||||
Multiple files response:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{"filename": "a1.mp3", "text": "...", "words": [...]},
|
||||
{"filename": "a2.mp3", "text": "...", "words": [...]}]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- Word objects always include keys: `word`, `start`, `end`.
|
||||
- Some implementations may include a trailing space in `word` to match Whisper tokenization behavior; clients should trim if needed.
|
||||
|
||||
Example curl (single file):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "file=@/path/to/audio.mp3" \
|
||||
-F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
Example curl (multiple files, batch):
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-F "files=@/path/a1.mp3" -F "files=@/path/a2.mp3" \
|
||||
-F "batch=true" -F "language=en" \
|
||||
"$BASE_URL/v1/audio/transcriptions"
|
||||
```
|
||||
|
||||
#### POST /v1/audio/transcriptions-from-url
|
||||
|
||||
Transcribe a single remote audio file by URL.
|
||||
|
||||
Request: application/json
|
||||
|
||||
Body parameters:
|
||||
|
||||
- `audio_file_url` (string) — required. URL of the audio file to transcribe.
|
||||
- `model` (string) — optional. Defaults to the implementation-specific model (see above).
|
||||
- `language` (string) — optional, defaults to `en`. Parakeet only accepts `en`.
|
||||
- `timestamp_offset` (number) — optional, defaults to `0.0`. Added to each word's `start`/`end` in the response.
|
||||
|
||||
```json
|
||||
{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"model": "nvidia/parakeet-tdt-0.6b-v2",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0.0
|
||||
}
|
||||
```
|
||||
|
||||
Response:
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "transcribed text",
|
||||
"words": [
|
||||
{ "word": "hello", "start": 10.0, "end": 10.5 },
|
||||
{ "word": "world", "start": 10.5, "end": 11.0 }
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
||||
- `timestamp_offset` is added to each word’s `start`/`end` in the response.
|
||||
- Implementations may perform VAD-based chunking and batching for long-form audio; word timings are adjusted accordingly.
|
||||
|
||||
Example curl:
|
||||
|
||||
```bash
|
||||
curl -X POST \
|
||||
-H "Authorization: Bearer $REFLECTOR_GPU_APIKEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"audio_file_url": "https://example.com/audio.mp3",
|
||||
"language": "en",
|
||||
"timestamp_offset": 0
|
||||
}' \
|
||||
"$BASE_URL/v1/audio/transcriptions-from-url"
|
||||
```
|
||||
|
||||
### Error handling
|
||||
|
||||
- 400 Bad Request
|
||||
- Parakeet: `language` other than `en`
|
||||
- Missing required parameters (`file`/`files` for upload; `audio_file_url` for URL endpoint)
|
||||
- Unsupported file extension
|
||||
- 401 Unauthorized
|
||||
- Missing or invalid Bearer token
|
||||
- 404 Not Found
|
||||
- `audio_file_url` does not exist
|
||||
|
||||
### Implementation details
|
||||
|
||||
- GPUs: A10G for small-file/live, L40S for large-file URL transcription (subject to deployment)
|
||||
- VAD chunking and segment batching; word timings adjusted and overlapping ends constrained
|
||||
- Pads very short segments (< 0.5s) to avoid model crashes on some backends
|
||||
|
||||
### Server configuration (Reflector API)
|
||||
|
||||
Set the Reflector server to use the Modal backend and point `TRANSCRIPT_URL` to your chosen deployment:
|
||||
|
||||
```
|
||||
TRANSCRIPT_BACKEND=modal
|
||||
TRANSCRIPT_URL=https://<account>--reflector-transcriber-parakeet-web.modal.run
|
||||
TRANSCRIPT_MODAL_API_KEY=<REFLECTOR_GPU_APIKEY>
|
||||
```
|
||||
|
||||
### Conformance tests
|
||||
|
||||
Use the pytest-based conformance tests to validate any new implementation (including self-hosted) against this spec:
|
||||
|
||||
```
|
||||
TRANSCRIPT_URL=https://<your-deployment-base> \
|
||||
TRANSCRIPT_MODAL_API_KEY=your-api-key \
|
||||
uv run -m pytest -m gpu_modal --no-cov server/tests/test_gpu_modal_transcript.py
|
||||
```
|
||||
212
server/docs/webhook.md
Normal file
212
server/docs/webhook.md
Normal file
@@ -0,0 +1,212 @@
|
||||
# Reflector Webhook Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
Reflector supports webhook notifications to notify external systems when transcript processing is completed. Webhooks can be configured per room and are triggered automatically after a transcript is successfully processed.
|
||||
|
||||
## Configuration
|
||||
|
||||
Webhooks are configured at the room level with two fields:
|
||||
- `webhook_url`: The HTTPS endpoint to receive webhook notifications
|
||||
- `webhook_secret`: Optional secret key for HMAC signature verification (auto-generated if not provided)
|
||||
|
||||
## Events
|
||||
|
||||
### `transcript.completed`
|
||||
|
||||
Triggered when a transcript has been fully processed, including transcription, diarization, summarization, and topic detection.
|
||||
|
||||
### `test`
|
||||
|
||||
A test event that can be triggered manually to verify webhook configuration.
|
||||
|
||||
## Webhook Request Format
|
||||
|
||||
### Headers
|
||||
|
||||
All webhook requests include the following headers:
|
||||
|
||||
| Header | Description | Example |
|
||||
|--------|-------------|---------|
|
||||
| `Content-Type` | Always `application/json` | `application/json` |
|
||||
| `User-Agent` | Identifies Reflector as the source | `Reflector-Webhook/1.0` |
|
||||
| `X-Webhook-Event` | The event type | `transcript.completed` or `test` |
|
||||
| `X-Webhook-Retry` | Current retry attempt number | `0`, `1`, `2`... |
|
||||
| `X-Webhook-Signature` | HMAC signature (if secret configured) | `t=1735306800,v1=abc123...` |
|
||||
|
||||
### Signature Verification
|
||||
|
||||
If a webhook secret is configured, Reflector includes an HMAC-SHA256 signature in the `X-Webhook-Signature` header to verify the webhook authenticity.
|
||||
|
||||
The signature format is: `t={timestamp},v1={signature}`
|
||||
|
||||
To verify the signature:
|
||||
1. Extract the timestamp and signature from the header
|
||||
2. Create the signed payload: `{timestamp}.{request_body}`
|
||||
3. Compute HMAC-SHA256 of the signed payload using your webhook secret
|
||||
4. Compare the computed signature with the received signature
|
||||
|
||||
Example verification (Python):
|
||||
```python
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
def verify_webhook_signature(payload: bytes, signature_header: str, secret: str) -> bool:
|
||||
# Parse header: "t=1735306800,v1=abc123..."
|
||||
parts = dict(part.split("=") for part in signature_header.split(","))
|
||||
timestamp = parts["t"]
|
||||
received_signature = parts["v1"]
|
||||
|
||||
# Create signed payload
|
||||
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||
|
||||
# Compute expected signature
|
||||
expected_signature = hmac.new(
|
||||
secret.encode("utf-8"),
|
||||
signed_payload.encode("utf-8"),
|
||||
hashlib.sha256
|
||||
).hexdigest()
|
||||
|
||||
# Compare signatures
|
||||
return hmac.compare_digest(expected_signature, received_signature)
|
||||
```
|
||||
|
||||
## Event Payloads
|
||||
|
||||
### `transcript.completed` Event
|
||||
|
||||
This event includes a convenient URL for accessing the transcript:
|
||||
- `frontend_url`: Direct link to view the transcript in the web interface
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "transcript.completed",
|
||||
"event_id": "transcript.completed-abc-123-def-456",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"transcript": {
|
||||
"id": "abc-123-def-456",
|
||||
"room_id": "room-789",
|
||||
"created_at": "2025-08-27T12:00:00Z",
|
||||
"duration": 1800.5,
|
||||
"title": "Q3 Product Planning Meeting",
|
||||
"short_summary": "Team discussed Q3 product roadmap, prioritizing mobile app features and API improvements.",
|
||||
"long_summary": "The product team met to finalize the Q3 roadmap. Key decisions included...",
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone to today's meeting...",
|
||||
"topics": [
|
||||
{
|
||||
"title": "Introduction and Agenda",
|
||||
"summary": "Meeting kickoff with agenda review",
|
||||
"timestamp": 0.0,
|
||||
"duration": 120.0,
|
||||
"webvtt": "WEBVTT\n\n00:00:00.000 --> 00:00:05.000\n<v Speaker 1>Welcome everyone..."
|
||||
},
|
||||
{
|
||||
"title": "Mobile App Features Discussion",
|
||||
"summary": "Team reviewed proposed mobile app features for Q3",
|
||||
"timestamp": 120.0,
|
||||
"duration": 600.0,
|
||||
"webvtt": "WEBVTT\n\n00:02:00.000 --> 00:02:10.000\n<v Speaker 2>Let's talk about the mobile app..."
|
||||
}
|
||||
],
|
||||
"participants": [
|
||||
{
|
||||
"id": "participant-1",
|
||||
"name": "John Doe",
|
||||
"speaker": "Speaker 1"
|
||||
},
|
||||
{
|
||||
"id": "participant-2",
|
||||
"name": "Jane Smith",
|
||||
"speaker": "Speaker 2"
|
||||
}
|
||||
],
|
||||
"source_language": "en",
|
||||
"target_language": "en",
|
||||
"status": "completed",
|
||||
"frontend_url": "https://app.reflector.com/transcripts/abc-123-def-456"
|
||||
},
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `test` Event
|
||||
|
||||
```json
|
||||
{
|
||||
"event": "test",
|
||||
"event_id": "test.2025-08-27T12:34:56.789012Z",
|
||||
"timestamp": "2025-08-27T12:34:56.789012Z",
|
||||
"message": "This is a test webhook from Reflector",
|
||||
"room": {
|
||||
"id": "room-789",
|
||||
"name": "Product Team Room"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Retry Policy
|
||||
|
||||
Webhooks are delivered with automatic retry logic to handle transient failures. When a webhook delivery fails due to server errors or network issues, Reflector will automatically retry the delivery multiple times over an extended period.
|
||||
|
||||
### Retry Mechanism
|
||||
|
||||
Reflector implements an exponential backoff strategy for webhook retries:
|
||||
|
||||
- **Initial retry delay**: 60 seconds after the first failure
|
||||
- **Exponential backoff**: Each subsequent retry waits approximately twice as long as the previous one
|
||||
- **Maximum retry interval**: 1 hour (backoff is capped at this duration)
|
||||
- **Maximum retry attempts**: 30 attempts total
|
||||
- **Total retry duration**: Retries continue for approximately 24 hours
|
||||
|
||||
### How Retries Work
|
||||
|
||||
When a webhook fails, Reflector will:
|
||||
1. Wait 60 seconds, then retry (attempt #1)
|
||||
2. If it fails again, wait ~2 minutes, then retry (attempt #2)
|
||||
3. Continue doubling the wait time up to a maximum of 1 hour between attempts
|
||||
4. Keep retrying at 1-hour intervals until successful or 30 attempts are exhausted
|
||||
|
||||
The `X-Webhook-Retry` header indicates the current retry attempt number (0 for the initial attempt, 1 for first retry, etc.), allowing your endpoint to track retry attempts.
|
||||
|
||||
### Retry Behavior by HTTP Status Code
|
||||
|
||||
| Status Code | Behavior |
|
||||
|-------------|----------|
|
||||
| 2xx (Success) | No retry, webhook marked as delivered |
|
||||
| 4xx (Client Error) | No retry, request is considered permanently failed |
|
||||
| 5xx (Server Error) | Automatic retry with exponential backoff |
|
||||
| Network/Timeout Error | Automatic retry with exponential backoff |
|
||||
|
||||
**Important Notes:**
|
||||
- Webhooks timeout after 30 seconds. If your endpoint takes longer to respond, it will be considered a timeout error and retried.
|
||||
- During the retry period (~24 hours), you may receive the same webhook multiple times if your endpoint experiences intermittent failures.
|
||||
- There is no mechanism to manually retry failed webhooks after the retry period expires.
|
||||
|
||||
## Testing Webhooks
|
||||
|
||||
You can test your webhook configuration before processing transcripts:
|
||||
|
||||
```http
|
||||
POST /v1/rooms/{room_id}/webhook/test
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"status_code": 200,
|
||||
"message": "Webhook test successful",
|
||||
"response_preview": "OK"
|
||||
}
|
||||
```
|
||||
|
||||
Or in case of failure:
|
||||
```json
|
||||
{
|
||||
"success": false,
|
||||
"error": "Webhook request timed out (10 seconds)"
|
||||
}
|
||||
```
|
||||
@@ -1,41 +1,78 @@
|
||||
import os
|
||||
import tempfile
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
from pydantic import BaseModel
|
||||
|
||||
MODELS_DIR = "/models"
|
||||
|
||||
MODEL_NAME = "large-v2"
|
||||
MODEL_COMPUTE_TYPE: str = "float16"
|
||||
MODEL_NUM_WORKERS: int = 1
|
||||
|
||||
MINUTES = 60 # seconds
|
||||
SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/models"
|
||||
SUPPORTED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
VAD_CONFIG = {
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
|
||||
volume = modal.Volume.from_name("models", create_if_missing=True)
|
||||
|
||||
WhisperUniqFilename = NewType("WhisperUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
app = modal.App("reflector-transcriber")
|
||||
|
||||
model_cache = modal.Volume.from_name("models", create_if_missing=True)
|
||||
upload_volume = modal.Volume.from_name("whisper-uploads", create_if_missing=True)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
def download_model():
|
||||
from faster_whisper import download_model
|
||||
|
||||
volume.reload()
|
||||
model_cache.reload()
|
||||
|
||||
download_model(MODEL_NAME, cache_dir=MODELS_DIR)
|
||||
download_model(MODEL_NAME, cache_dir=CACHE_PATH)
|
||||
|
||||
volume.commit()
|
||||
model_cache.commit()
|
||||
|
||||
|
||||
image = (
|
||||
modal.Image.debian_slim(python_version="3.12")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
)
|
||||
.env(
|
||||
{
|
||||
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
||||
@@ -45,19 +82,98 @@ image = (
|
||||
),
|
||||
}
|
||||
)
|
||||
.run_function(download_model, volumes={MODELS_DIR: volume})
|
||||
.apt_install("ffmpeg")
|
||||
.pip_install(
|
||||
"huggingface_hub==0.27.1",
|
||||
"hf-transfer==0.1.9",
|
||||
"torch==2.5.1",
|
||||
"faster-whisper==1.1.1",
|
||||
"fastapi==0.115.12",
|
||||
"requests",
|
||||
"librosa==0.10.1",
|
||||
"numpy<2",
|
||||
"silero-vad==5.1.0",
|
||||
)
|
||||
.run_function(download_model, volumes={CACHE_PATH: model_cache})
|
||||
)
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: Mapping[str, str]) -> AudioFileExtension:
|
||||
parsed_url = urlparse(url)
|
||||
url_path = parsed_url.path
|
||||
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return AudioFileExtension(ext)
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return AudioFileExtension("mp3")
|
||||
if "audio/wav" in content_type:
|
||||
return AudioFileExtension("wav")
|
||||
if "audio/mp4" in content_type:
|
||||
return AudioFileExtension("mp4")
|
||||
|
||||
raise ValueError(
|
||||
f"Unsupported audio format for URL: {url}. "
|
||||
f"Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(
|
||||
audio_file_url: str,
|
||||
) -> tuple[WhisperUniqFilename, AudioFileExtension]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = WhisperUniqFilename(f"{uuid.uuid4()}.{audio_suffix}")
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
def pad_audio(audio_array, sample_rate: int = SAMPLERATE):
|
||||
"""Add 0.5s of silence if audio is shorter than the silence_padding window.
|
||||
|
||||
Whisper does not require this strictly, but aligning behavior with Parakeet
|
||||
avoids edge-case crashes on extremely short inputs and makes comparisons easier.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
audio_duration = len(audio_array) / sample_rate
|
||||
if audio_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(sample_rate * VAD_CONFIG["silence_padding"])
|
||||
silence = np.zeros(silence_samples, dtype=np.float32)
|
||||
return np.concatenate([audio_array, silence])
|
||||
return audio_array
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="A10G",
|
||||
timeout=5 * MINUTES,
|
||||
scaledown_window=5 * MINUTES,
|
||||
allow_concurrent_inputs=6,
|
||||
image=image,
|
||||
volumes={MODELS_DIR: volume},
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class Transcriber:
|
||||
@modal.concurrent(max_inputs=10)
|
||||
class TranscriberWhisperLive:
|
||||
"""Live transcriber class for small audio segments (A10G).
|
||||
|
||||
Mirrors the Parakeet live class API but uses Faster-Whisper under the hood.
|
||||
"""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
@@ -71,23 +187,200 @@ class Transcriber:
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=MODELS_DIR,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
print(f"Model is on device: {self.device}")
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self,
|
||||
audio_data: str,
|
||||
audio_suffix: str,
|
||||
language: str,
|
||||
filename: str,
|
||||
language: str = "en",
|
||||
):
|
||||
with tempfile.NamedTemporaryFile("wb+", suffix=f".{audio_suffix}") as fp:
|
||||
fp.write(audio_data)
|
||||
"""Transcribe a single uploaded audio file by filename."""
|
||||
upload_volume.reload()
|
||||
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": word.word,
|
||||
"start": round(float(word.start), 2),
|
||||
"end": round(float(word.end), 2),
|
||||
}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
]
|
||||
|
||||
return {"text": text, "words": words}
|
||||
|
||||
@modal.method()
|
||||
def transcribe_batch(
|
||||
self,
|
||||
filenames: list[str],
|
||||
language: str = "en",
|
||||
):
|
||||
"""Transcribe multiple uploaded audio files and return per-file results."""
|
||||
upload_volume.reload()
|
||||
|
||||
results = []
|
||||
for filename in filenames:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"Batch file not found: {file_path}")
|
||||
|
||||
with self.lock:
|
||||
with NoStdStreams():
|
||||
segments, _ = self.model.transcribe(
|
||||
file_path,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
vad_filter=True,
|
||||
vad_parameters={"min_silence_duration_ms": 500},
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start), 2),
|
||||
"end": round(float(w.end), 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
|
||||
results.append(
|
||||
{
|
||||
"filename": filename,
|
||||
"text": text,
|
||||
"words": words,
|
||||
}
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@app.cls(
|
||||
gpu="L40S",
|
||||
timeout=15 * MINUTES,
|
||||
image=image,
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
)
|
||||
class TranscriberWhisperFile:
|
||||
"""File transcriber for larger/longer audio, using VAD-driven batching (L40S)."""
|
||||
|
||||
@modal.enter()
|
||||
def enter(self):
|
||||
import faster_whisper
|
||||
import torch
|
||||
from silero_vad import load_silero_vad
|
||||
|
||||
self.lock = threading.Lock()
|
||||
self.use_gpu = torch.cuda.is_available()
|
||||
self.device = "cuda" if self.use_gpu else "cpu"
|
||||
self.model = faster_whisper.WhisperModel(
|
||||
MODEL_NAME,
|
||||
device=self.device,
|
||||
compute_type=MODEL_COMPUTE_TYPE,
|
||||
num_workers=MODEL_NUM_WORKERS,
|
||||
download_root=CACHE_PATH,
|
||||
local_files_only=True,
|
||||
)
|
||||
self.vad_model = load_silero_vad(onnx=False)
|
||||
|
||||
@modal.method()
|
||||
def transcribe_segment(
|
||||
self, filename: str, timestamp_offset: float = 0.0, language: str = "en"
|
||||
):
|
||||
import librosa
|
||||
import numpy as np
|
||||
from silero_vad import VADIterator
|
||||
|
||||
def vad_segments(
|
||||
audio_array,
|
||||
sample_rate: int = SAMPLERATE,
|
||||
window_size: int = VAD_CONFIG["window_size"],
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments as TimeSegment using Silero VAD."""
|
||||
iterator = VADIterator(self.vad_model, sampling_rate=sample_rate)
|
||||
start = None
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(
|
||||
chunk, (0, window_size - len(chunk)), mode="constant"
|
||||
)
|
||||
speech = iterator(chunk)
|
||||
if not speech:
|
||||
continue
|
||||
if "start" in speech:
|
||||
start = speech["start"]
|
||||
continue
|
||||
if "end" in speech and start is not None:
|
||||
end = speech["end"]
|
||||
yield TimeSegment(
|
||||
start / float(SAMPLERATE), end / float(SAMPLERATE)
|
||||
)
|
||||
start = None
|
||||
iterator.reset_states()
|
||||
|
||||
upload_volume.reload()
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
audio_array, _sr = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
|
||||
# Batch segments up to ~30s windows by merging contiguous VAD segments
|
||||
merged_batches: list[TimeSegment] = []
|
||||
batch_start = None
|
||||
batch_end = None
|
||||
max_duration = VAD_CONFIG["batch_max_duration"]
|
||||
for segment in vad_segments(audio_array):
|
||||
seg_start, seg_end = segment.start, segment.end
|
||||
if batch_start is None:
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
continue
|
||||
if seg_end - batch_start <= max_duration:
|
||||
batch_end = seg_end
|
||||
else:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
batch_start, batch_end = seg_start, seg_end
|
||||
if batch_start is not None and batch_end is not None:
|
||||
merged_batches.append(TimeSegment(batch_start, batch_end))
|
||||
|
||||
all_text = []
|
||||
all_words = []
|
||||
|
||||
for segment in merged_batches:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
s_idx = int(start_time * SAMPLERATE)
|
||||
e_idx = int(end_time * SAMPLERATE)
|
||||
segment = audio_array[s_idx:e_idx]
|
||||
segment = pad_audio(segment, SAMPLERATE)
|
||||
|
||||
with self.lock:
|
||||
segments, _ = self.model.transcribe(
|
||||
fp.name,
|
||||
segment,
|
||||
language=language,
|
||||
beam_size=5,
|
||||
word_timestamps=True,
|
||||
@@ -96,66 +389,220 @@ class Transcriber:
|
||||
)
|
||||
|
||||
segments = list(segments)
|
||||
text = "".join(segment.text for segment in segments)
|
||||
text = "".join(seg.text for seg in segments).strip()
|
||||
words = [
|
||||
{"word": word.word, "start": word.start, "end": word.end}
|
||||
for segment in segments
|
||||
for word in segment.words
|
||||
{
|
||||
"word": w.word,
|
||||
"start": round(float(w.start) + start_time + timestamp_offset, 2),
|
||||
"end": round(float(w.end) + start_time + timestamp_offset, 2),
|
||||
}
|
||||
for seg in segments
|
||||
for w in seg.words
|
||||
]
|
||||
if text:
|
||||
all_text.append(text)
|
||||
all_words.extend(words)
|
||||
|
||||
return {"text": text, "words": words}
|
||||
return {"text": " ".join(all_text), "words": all_words}
|
||||
|
||||
|
||||
def detect_audio_format(url: str, headers: dict) -> str:
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
url_path = urlparse(url).path
|
||||
for ext in SUPPORTED_FILE_EXTENSIONS:
|
||||
if url_path.lower().endswith(f".{ext}"):
|
||||
return ext
|
||||
|
||||
content_type = headers.get("content-type", "").lower()
|
||||
if "audio/mpeg" in content_type or "audio/mp3" in content_type:
|
||||
return "mp3"
|
||||
if "audio/wav" in content_type:
|
||||
return "wav"
|
||||
if "audio/mp4" in content_type:
|
||||
return "mp4"
|
||||
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format for URL. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def download_audio_to_volume(audio_file_url: str) -> tuple[str, str]:
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
|
||||
response = requests.head(audio_file_url, allow_redirects=True)
|
||||
if response.status_code == 404:
|
||||
raise HTTPException(status_code=404, detail="Audio file not found")
|
||||
|
||||
response = requests.get(audio_file_url, allow_redirects=True)
|
||||
response.raise_for_status()
|
||||
|
||||
audio_suffix = detect_audio_format(audio_file_url, response.headers)
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
upload_volume.commit()
|
||||
return unique_filename, audio_suffix
|
||||
|
||||
|
||||
@app.function(
|
||||
scaledown_window=60,
|
||||
timeout=60,
|
||||
allow_concurrent_inputs=40,
|
||||
timeout=600,
|
||||
secrets=[
|
||||
modal.Secret.from_name("reflector-gpu"),
|
||||
],
|
||||
volumes={MODELS_DIR: volume},
|
||||
volumes={CACHE_PATH: model_cache, UPLOADS_PATH: upload_volume},
|
||||
image=image,
|
||||
)
|
||||
@modal.concurrent(max_inputs=40)
|
||||
@modal.asgi_app()
|
||||
def web():
|
||||
from fastapi import Body, Depends, FastAPI, HTTPException, UploadFile, status
|
||||
from fastapi import (
|
||||
Body,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from typing_extensions import Annotated
|
||||
|
||||
transcriber = Transcriber()
|
||||
transcriber_live = TranscriberWhisperLive()
|
||||
transcriber_file = TranscriberWhisperFile()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
||||
|
||||
supported_file_types = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
|
||||
|
||||
def apikey_auth(apikey: str = Depends(oauth2_scheme)):
|
||||
if apikey != os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
if apikey == os.environ["REFLECTOR_GPU_APIKEY"]:
|
||||
return
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid API key",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
|
||||
class TranscriptResponse(BaseModel):
|
||||
result: dict
|
||||
class TranscriptResponse(dict):
|
||||
pass
|
||||
|
||||
@app.post("/v1/audio/transcriptions", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe(
|
||||
file: UploadFile,
|
||||
model: str = "whisper-1",
|
||||
language: Annotated[str, Body(...)] = "en",
|
||||
) -> TranscriptResponse:
|
||||
audio_data = file.file.read()
|
||||
audio_suffix = file.filename.split(".")[-1]
|
||||
assert audio_suffix in supported_file_types
|
||||
file: UploadFile = None,
|
||||
files: list[UploadFile] | None = None,
|
||||
model: str = Form(MODEL_NAME),
|
||||
language: str = Form("en"),
|
||||
batch: bool = Form(False),
|
||||
):
|
||||
if not file and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Either 'file' or 'files' parameter is required"
|
||||
)
|
||||
if batch and not files:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Batch transcription requires 'files'"
|
||||
)
|
||||
|
||||
func = transcriber.transcribe_segment.spawn(
|
||||
audio_data=audio_data,
|
||||
audio_suffix=audio_suffix,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
upload_files = [file] if file else files
|
||||
|
||||
uploaded_filenames: list[str] = []
|
||||
for upload_file in upload_files:
|
||||
audio_suffix = upload_file.filename.split(".")[-1]
|
||||
if audio_suffix not in SUPPORTED_FILE_EXTENSIONS:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=(
|
||||
f"Unsupported audio format. Supported extensions: {', '.join(SUPPORTED_FILE_EXTENSIONS)}"
|
||||
),
|
||||
)
|
||||
|
||||
unique_filename = f"{uuid.uuid4()}.{audio_suffix}"
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
with open(file_path, "wb") as f:
|
||||
content = upload_file.file.read()
|
||||
f.write(content)
|
||||
uploaded_filenames.append(unique_filename)
|
||||
|
||||
upload_volume.commit()
|
||||
|
||||
try:
|
||||
if batch and len(upload_files) > 1:
|
||||
func = transcriber_live.transcribe_batch.spawn(
|
||||
filenames=uploaded_filenames,
|
||||
language=language,
|
||||
)
|
||||
results = func.get()
|
||||
return {"results": results}
|
||||
|
||||
results = []
|
||||
for filename in uploaded_filenames:
|
||||
func = transcriber_live.transcribe_segment.spawn(
|
||||
filename=filename,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
result["filename"] = filename
|
||||
results.append(result)
|
||||
|
||||
return {"results": results} if len(results) > 1 else results[0]
|
||||
finally:
|
||||
for filename in uploaded_filenames:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{filename}"
|
||||
os.remove(file_path)
|
||||
except Exception:
|
||||
pass
|
||||
upload_volume.commit()
|
||||
|
||||
@app.post("/v1/audio/transcriptions-from-url", dependencies=[Depends(apikey_auth)])
|
||||
def transcribe_from_url(
|
||||
audio_file_url: str = Body(
|
||||
..., description="URL of the audio file to transcribe"
|
||||
),
|
||||
model: str = Body(MODEL_NAME),
|
||||
language: str = Body("en"),
|
||||
timestamp_offset: float = Body(0.0),
|
||||
):
|
||||
unique_filename, _audio_suffix = download_audio_to_volume(audio_file_url)
|
||||
try:
|
||||
func = transcriber_file.transcribe_segment.spawn(
|
||||
filename=unique_filename,
|
||||
timestamp_offset=timestamp_offset,
|
||||
language=language,
|
||||
)
|
||||
result = func.get()
|
||||
return result
|
||||
finally:
|
||||
try:
|
||||
file_path = f"{UPLOADS_PATH}/{unique_filename}"
|
||||
os.remove(file_path)
|
||||
upload_volume.commit()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return app
|
||||
|
||||
|
||||
class NoStdStreams:
|
||||
def __init__(self):
|
||||
self.devnull = open(os.devnull, "w")
|
||||
|
||||
def __enter__(self):
|
||||
self._stdout, self._stderr = sys.stdout, sys.stderr
|
||||
self._stdout.flush()
|
||||
self._stderr.flush()
|
||||
sys.stdout, sys.stderr = self.devnull, self.devnull
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.stdout, sys.stderr = self._stdout, self._stderr
|
||||
self.devnull.close()
|
||||
|
||||
@@ -3,7 +3,7 @@ import os
|
||||
import sys
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Mapping, NewType
|
||||
from typing import Generator, Mapping, NamedTuple, NewType, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import modal
|
||||
@@ -14,10 +14,7 @@ SAMPLERATE = 16000
|
||||
UPLOADS_PATH = "/uploads"
|
||||
CACHE_PATH = "/cache"
|
||||
VAD_CONFIG = {
|
||||
"max_segment_duration": 30.0,
|
||||
"batch_max_files": 10,
|
||||
"batch_max_duration": 5.0,
|
||||
"min_segment_duration": 0.02,
|
||||
"batch_max_duration": 30.0,
|
||||
"silence_padding": 0.5,
|
||||
"window_size": 512,
|
||||
}
|
||||
@@ -25,6 +22,37 @@ VAD_CONFIG = {
|
||||
ParakeetUniqFilename = NewType("ParakeetUniqFilename", str)
|
||||
AudioFileExtension = NewType("AudioFileExtension", str)
|
||||
|
||||
|
||||
class TimeSegment(NamedTuple):
|
||||
"""Represents a time segment with start and end times."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
class AudioSegment(NamedTuple):
|
||||
"""Represents an audio segment with timing and audio data."""
|
||||
|
||||
start: float
|
||||
end: float
|
||||
audio: any
|
||||
|
||||
|
||||
class TranscriptResult(NamedTuple):
|
||||
"""Represents a transcription result with text and word timings."""
|
||||
|
||||
text: str
|
||||
words: list["WordTiming"]
|
||||
|
||||
|
||||
class WordTiming(TypedDict):
|
||||
"""Represents a word with its timing information."""
|
||||
|
||||
word: str
|
||||
start: float
|
||||
end: float
|
||||
|
||||
|
||||
app = modal.App("reflector-transcriber-parakeet")
|
||||
|
||||
# Volume for caching model weights
|
||||
@@ -170,12 +198,14 @@ class TranscriberParakeetLive:
|
||||
(output,) = self.model.transcribe([padded_audio], timestamps=True)
|
||||
|
||||
text = output.text.strip()
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(word_info["start"], 2),
|
||||
"end": round(word_info["end"], 2),
|
||||
}
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
# XXX the space added here is to match the output of whisper
|
||||
# whisper add space to each words, while parakeet don't
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
@@ -211,12 +241,12 @@ class TranscriberParakeetLive:
|
||||
for i, (filename, output) in enumerate(zip(filenames, outputs)):
|
||||
text = output.text.strip()
|
||||
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(word_info["start"], 2),
|
||||
"end": round(word_info["end"], 2),
|
||||
}
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(word_info["start"], 2),
|
||||
end=round(word_info["end"], 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
@@ -271,7 +301,9 @@ class TranscriberParakeetFile:
|
||||
audio_array, sample_rate = librosa.load(file_path, sr=SAMPLERATE, mono=True)
|
||||
return audio_array
|
||||
|
||||
def vad_segment_generator(audio_array):
|
||||
def vad_segment_generator(
|
||||
audio_array,
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""Generate speech segments using VAD with start/end sample indices"""
|
||||
vad_iterator = VADIterator(self.vad_model, sampling_rate=SAMPLERATE)
|
||||
window_size = VAD_CONFIG["window_size"]
|
||||
@@ -297,107 +329,121 @@ class TranscriberParakeetFile:
|
||||
start_time = start / float(SAMPLERATE)
|
||||
end_time = end / float(SAMPLERATE)
|
||||
|
||||
# Extract the actual audio segment
|
||||
audio_segment = audio_array[start:end]
|
||||
|
||||
yield (start_time, end_time, audio_segment)
|
||||
yield TimeSegment(start_time, end_time)
|
||||
start = None
|
||||
|
||||
vad_iterator.reset_states()
|
||||
|
||||
def vad_segment_filter(segments):
|
||||
"""Filter VAD segments by duration and chunk large segments"""
|
||||
min_dur = VAD_CONFIG["min_segment_duration"]
|
||||
max_dur = VAD_CONFIG["max_segment_duration"]
|
||||
def batch_speech_segments(
|
||||
segments: Generator[TimeSegment, None, None], max_duration: int
|
||||
) -> Generator[TimeSegment, None, None]:
|
||||
"""
|
||||
Input segments:
|
||||
[0-2] [3-5] [6-8] [10-11] [12-15] [17-19] [20-22]
|
||||
|
||||
for start_time, end_time, audio_segment in segments:
|
||||
segment_duration = end_time - start_time
|
||||
↓ (max_duration=10)
|
||||
|
||||
# Skip very small segments
|
||||
if segment_duration < min_dur:
|
||||
Output batches:
|
||||
[0-8] [10-19] [20-22]
|
||||
|
||||
Note: silences are kept for better transcription, previous implementation was
|
||||
passing segments separatly, but the output was less accurate.
|
||||
"""
|
||||
batch_start_time = None
|
||||
batch_end_time = None
|
||||
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
# If segment is within max duration, yield as-is
|
||||
if segment_duration <= max_dur:
|
||||
yield (start_time, end_time, audio_segment)
|
||||
total_duration = end_time - batch_start_time
|
||||
|
||||
if total_duration <= max_duration:
|
||||
batch_end_time = end_time
|
||||
continue
|
||||
|
||||
# Chunk large segments into smaller pieces
|
||||
chunk_samples = int(max_dur * SAMPLERATE)
|
||||
current_start = start_time
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
batch_start_time = start_time
|
||||
batch_end_time = end_time
|
||||
|
||||
for chunk_offset in range(0, len(audio_segment), chunk_samples):
|
||||
chunk_audio = audio_segment[
|
||||
chunk_offset : chunk_offset + chunk_samples
|
||||
]
|
||||
if len(chunk_audio) == 0:
|
||||
break
|
||||
if batch_start_time is None or batch_end_time is None:
|
||||
return
|
||||
|
||||
chunk_duration = len(chunk_audio) / float(SAMPLERATE)
|
||||
chunk_end = current_start + chunk_duration
|
||||
yield TimeSegment(batch_start_time, batch_end_time)
|
||||
|
||||
# Only yield chunks that meet minimum duration
|
||||
if chunk_duration >= min_dur:
|
||||
yield (current_start, chunk_end, chunk_audio)
|
||||
def batch_segment_to_audio_segment(
|
||||
segments: Generator[TimeSegment, None, None],
|
||||
audio_array,
|
||||
) -> Generator[AudioSegment, None, None]:
|
||||
"""Extract audio segments and apply padding for Parakeet compatibility.
|
||||
|
||||
current_start = chunk_end
|
||||
Uses pad_audio to ensure segments are at least 0.5s long, preventing
|
||||
Parakeet crashes. This padding may cause slight timing overlaps between
|
||||
segments, which are corrected by enforce_word_timing_constraints.
|
||||
"""
|
||||
for segment in segments:
|
||||
start_time, end_time = segment.start, segment.end
|
||||
start_sample = int(start_time * SAMPLERATE)
|
||||
end_sample = int(end_time * SAMPLERATE)
|
||||
audio_segment = audio_array[start_sample:end_sample]
|
||||
|
||||
def batch_segments(segments, max_files=10, max_duration=5.0):
|
||||
batch = []
|
||||
batch_duration = 0.0
|
||||
padded_segment = pad_audio(audio_segment, SAMPLERATE)
|
||||
|
||||
for start_time, end_time, audio_segment in segments:
|
||||
segment_duration = end_time - start_time
|
||||
yield AudioSegment(start_time, end_time, padded_segment)
|
||||
|
||||
if segment_duration < VAD_CONFIG["silence_padding"]:
|
||||
silence_samples = int(
|
||||
(VAD_CONFIG["silence_padding"] - segment_duration) * SAMPLERATE
|
||||
)
|
||||
padding = np.zeros(silence_samples, dtype=np.float32)
|
||||
audio_segment = np.concatenate([audio_segment, padding])
|
||||
segment_duration = VAD_CONFIG["silence_padding"]
|
||||
|
||||
batch.append((start_time, end_time, audio_segment))
|
||||
batch_duration += segment_duration
|
||||
|
||||
if len(batch) >= max_files or batch_duration >= max_duration:
|
||||
yield batch
|
||||
batch = []
|
||||
batch_duration = 0.0
|
||||
|
||||
if batch:
|
||||
yield batch
|
||||
|
||||
def transcribe_batch(model, audio_segments):
|
||||
def transcribe_batch(model, audio_segments: list) -> list:
|
||||
with NoStdStreams():
|
||||
outputs = model.transcribe(audio_segments, timestamps=True)
|
||||
return outputs
|
||||
|
||||
def enforce_word_timing_constraints(
|
||||
words: list[WordTiming],
|
||||
) -> list[WordTiming]:
|
||||
"""Enforce that word end times don't exceed the start time of the next word.
|
||||
|
||||
Due to silence padding added in batch_segment_to_audio_segment for better
|
||||
transcription accuracy, word timings from different segments may overlap.
|
||||
This function ensures there are no overlaps by adjusting end times.
|
||||
"""
|
||||
if len(words) <= 1:
|
||||
return words
|
||||
|
||||
enforced_words = []
|
||||
for i, word in enumerate(words):
|
||||
enforced_word = word.copy()
|
||||
|
||||
if i < len(words) - 1:
|
||||
next_start = words[i + 1]["start"]
|
||||
if enforced_word["end"] > next_start:
|
||||
enforced_word["end"] = next_start
|
||||
|
||||
enforced_words.append(enforced_word)
|
||||
|
||||
return enforced_words
|
||||
|
||||
def emit_results(
|
||||
results,
|
||||
segments_info,
|
||||
batch_index,
|
||||
total_batches,
|
||||
):
|
||||
results: list,
|
||||
segments_info: list[AudioSegment],
|
||||
) -> Generator[TranscriptResult, None, None]:
|
||||
"""Yield transcribed text and word timings from model output, adjusting timestamps to absolute positions."""
|
||||
for i, (output, (start_time, end_time, _)) in enumerate(
|
||||
zip(results, segments_info)
|
||||
):
|
||||
for i, (output, segment) in enumerate(zip(results, segments_info)):
|
||||
start_time, end_time = segment.start, segment.end
|
||||
text = output.text.strip()
|
||||
words = [
|
||||
{
|
||||
"word": word_info["word"],
|
||||
"start": round(
|
||||
words: list[WordTiming] = [
|
||||
WordTiming(
|
||||
word=word_info["word"] + " ",
|
||||
start=round(
|
||||
word_info["start"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
"end": round(
|
||||
word_info["end"] + start_time + timestamp_offset, 2
|
||||
),
|
||||
}
|
||||
end=round(word_info["end"] + start_time + timestamp_offset, 2),
|
||||
)
|
||||
for word_info in output.timestamp["word"]
|
||||
]
|
||||
|
||||
yield text, words
|
||||
yield TranscriptResult(text, words)
|
||||
|
||||
upload_volume.reload()
|
||||
|
||||
@@ -407,41 +453,31 @@ class TranscriberParakeetFile:
|
||||
|
||||
audio_array = load_and_convert_audio(file_path)
|
||||
total_duration = len(audio_array) / float(SAMPLERATE)
|
||||
processed_duration = 0.0
|
||||
|
||||
all_text_parts = []
|
||||
all_words = []
|
||||
all_text_parts: list[str] = []
|
||||
all_words: list[WordTiming] = []
|
||||
|
||||
raw_segments = vad_segment_generator(audio_array)
|
||||
filtered_segments = vad_segment_filter(raw_segments)
|
||||
batches = batch_segments(
|
||||
filtered_segments,
|
||||
VAD_CONFIG["batch_max_files"],
|
||||
speech_segments = batch_speech_segments(
|
||||
raw_segments,
|
||||
VAD_CONFIG["batch_max_duration"],
|
||||
)
|
||||
audio_segments = batch_segment_to_audio_segment(speech_segments, audio_array)
|
||||
|
||||
batch_index = 0
|
||||
total_batches = max(
|
||||
1, int(total_duration / VAD_CONFIG["batch_max_duration"]) + 1
|
||||
)
|
||||
for batch in audio_segments:
|
||||
audio_segment = batch.audio
|
||||
results = transcribe_batch(self.model, [audio_segment])
|
||||
|
||||
for batch in batches:
|
||||
batch_index += 1
|
||||
audio_segments = [seg[2] for seg in batch]
|
||||
results = transcribe_batch(self.model, audio_segments)
|
||||
|
||||
for text, words in emit_results(
|
||||
for result in emit_results(
|
||||
results,
|
||||
batch,
|
||||
batch_index,
|
||||
total_batches,
|
||||
[batch],
|
||||
):
|
||||
if not text:
|
||||
if not result.text:
|
||||
continue
|
||||
all_text_parts.append(text)
|
||||
all_words.extend(words)
|
||||
all_text_parts.append(result.text)
|
||||
all_words.extend(result.words)
|
||||
|
||||
processed_duration += sum(len(seg[2]) / float(SAMPLERATE) for seg in batch)
|
||||
all_words = enforce_word_timing_constraints(all_words)
|
||||
|
||||
combined_text = " ".join(all_text_parts)
|
||||
return {"text": combined_text, "words": all_words}
|
||||
|
||||
@@ -0,0 +1,36 @@
|
||||
"""Add webhook fields to rooms
|
||||
|
||||
Revision ID: 0194f65cd6d3
|
||||
Revises: 5a8907fd1d78
|
||||
Create Date: 2025-08-27 09:03:19.610995
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "0194f65cd6d3"
|
||||
down_revision: Union[str, None] = "5a8907fd1d78"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column("webhook_url", sa.String(), nullable=True))
|
||||
batch_op.add_column(sa.Column("webhook_secret", sa.String(), nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("room", schema=None) as batch_op:
|
||||
batch_op.drop_column("webhook_secret")
|
||||
batch_op.drop_column("webhook_url")
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,50 @@
|
||||
"""add cascade delete to meeting consent foreign key
|
||||
|
||||
Revision ID: 5a8907fd1d78
|
||||
Revises: 0ab2d7ffaa16
|
||||
Create Date: 2025-08-26 17:26:50.945491
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "5a8907fd1d78"
|
||||
down_revision: Union[str, None] = "0ab2d7ffaa16"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table("meeting_consent", schema=None) as batch_op:
|
||||
batch_op.drop_constraint(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"), type_="foreignkey"
|
||||
)
|
||||
batch_op.create_foreign_key(
|
||||
batch_op.f("meeting_consent_meeting_id_fkey"),
|
||||
"meeting",
|
||||
["meeting_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,28 @@
|
||||
"""webhook url and secret null by default
|
||||
|
||||
|
||||
Revision ID: 61882a919591
|
||||
Revises: 0194f65cd6d3
|
||||
Create Date: 2025-08-29 11:46:36.738091
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "61882a919591"
|
||||
down_revision: Union[str, None] = "0194f65cd6d3"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
pass
|
||||
# ### end Alembic commands ###
|
||||
27
server/reflector/asynctask.py
Normal file
27
server/reflector/asynctask.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import asyncio
|
||||
import functools
|
||||
|
||||
from reflector.db import get_database
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
@@ -54,7 +54,12 @@ meeting_consent = sa.Table(
|
||||
"meeting_consent",
|
||||
metadata,
|
||||
sa.Column("id", sa.String, primary_key=True),
|
||||
sa.Column("meeting_id", sa.String, sa.ForeignKey("meeting.id"), nullable=False),
|
||||
sa.Column(
|
||||
"meeting_id",
|
||||
sa.String,
|
||||
sa.ForeignKey("meeting.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("user_id", sa.String),
|
||||
sa.Column("consent_given", sa.Boolean, nullable=False),
|
||||
sa.Column("consent_timestamp", sa.DateTime(timezone=True), nullable=False),
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import secrets
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import IntegrityError
|
||||
from typing import Literal
|
||||
@@ -40,6 +41,8 @@ rooms = sqlalchemy.Table(
|
||||
sqlalchemy.Column(
|
||||
"is_shared", sqlalchemy.Boolean, nullable=False, server_default=false()
|
||||
),
|
||||
sqlalchemy.Column("webhook_url", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Column("webhook_secret", sqlalchemy.String, nullable=True),
|
||||
sqlalchemy.Index("idx_room_is_shared", "is_shared"),
|
||||
)
|
||||
|
||||
@@ -59,6 +62,8 @@ class Room(BaseModel):
|
||||
"none", "prompt", "automatic", "automatic-2nd-participant"
|
||||
] = "automatic-2nd-participant"
|
||||
is_shared: bool = False
|
||||
webhook_url: str | None = None
|
||||
webhook_secret: str | None = None
|
||||
|
||||
|
||||
class RoomController:
|
||||
@@ -107,10 +112,15 @@ class RoomController:
|
||||
recording_type: str,
|
||||
recording_trigger: str,
|
||||
is_shared: bool,
|
||||
webhook_url: str = "",
|
||||
webhook_secret: str = "",
|
||||
):
|
||||
"""
|
||||
Add a new room
|
||||
"""
|
||||
if webhook_url and not webhook_secret:
|
||||
webhook_secret = secrets.token_urlsafe(32)
|
||||
|
||||
room = Room(
|
||||
name=name,
|
||||
user_id=user_id,
|
||||
@@ -122,6 +132,8 @@ class RoomController:
|
||||
recording_type=recording_type,
|
||||
recording_trigger=recording_trigger,
|
||||
is_shared=is_shared,
|
||||
webhook_url=webhook_url,
|
||||
webhook_secret=webhook_secret,
|
||||
)
|
||||
query = rooms.insert().values(**room.model_dump())
|
||||
try:
|
||||
@@ -134,6 +146,9 @@ class RoomController:
|
||||
"""
|
||||
Update a room fields with key/values in values
|
||||
"""
|
||||
if values.get("webhook_url") and not values.get("webhook_secret"):
|
||||
values["webhook_secret"] = secrets.token_urlsafe(32)
|
||||
|
||||
query = rooms.update().where(rooms.c.id == room.id).values(**values)
|
||||
try:
|
||||
await get_database().execute(query)
|
||||
|
||||
@@ -8,12 +8,14 @@ from typing import Annotated, Any, Dict, Iterator
|
||||
|
||||
import sqlalchemy
|
||||
import webvtt
|
||||
from databases.interfaces import Record as DbRecord
|
||||
from fastapi import HTTPException
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
NonNegativeFloat,
|
||||
NonNegativeInt,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
constr,
|
||||
field_serializer,
|
||||
@@ -24,6 +26,7 @@ from reflector.db.rooms import rooms
|
||||
from reflector.db.transcripts import SourceKind, transcripts
|
||||
from reflector.db.utils import is_postgresql
|
||||
from reflector.logger import logger
|
||||
from reflector.utils.string import NonEmptyString, try_parse_non_empty_string
|
||||
|
||||
DEFAULT_SEARCH_LIMIT = 20
|
||||
SNIPPET_CONTEXT_LENGTH = 50 # Characters before/after match to include
|
||||
@@ -31,12 +34,13 @@ DEFAULT_SNIPPET_MAX_LENGTH = NonNegativeInt(150)
|
||||
DEFAULT_MAX_SNIPPETS = NonNegativeInt(3)
|
||||
LONG_SUMMARY_MAX_SNIPPETS = 2
|
||||
|
||||
SearchQueryBase = constr(min_length=0, strip_whitespace=True)
|
||||
SearchQueryBase = constr(min_length=1, strip_whitespace=True)
|
||||
SearchLimitBase = Annotated[int, Field(ge=1, le=100)]
|
||||
SearchOffsetBase = Annotated[int, Field(ge=0)]
|
||||
SearchTotalBase = Annotated[int, Field(ge=0)]
|
||||
|
||||
SearchQuery = Annotated[SearchQueryBase, Field(description="Search query text")]
|
||||
search_query_adapter = TypeAdapter(SearchQuery)
|
||||
SearchLimit = Annotated[SearchLimitBase, Field(description="Results per page")]
|
||||
SearchOffset = Annotated[
|
||||
SearchOffsetBase, Field(description="Number of results to skip")
|
||||
@@ -88,7 +92,7 @@ class WebVTTProcessor:
|
||||
@staticmethod
|
||||
def generate_snippets(
|
||||
webvtt_content: WebVTTContent,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from WebVTT content."""
|
||||
@@ -125,7 +129,7 @@ class SnippetCandidate:
|
||||
class SearchParameters(BaseModel):
|
||||
"""Validated search parameters for full-text search."""
|
||||
|
||||
query_text: SearchQuery
|
||||
query_text: SearchQuery | None = None
|
||||
limit: SearchLimit = DEFAULT_SEARCH_LIMIT
|
||||
offset: SearchOffset = 0
|
||||
user_id: str | None = None
|
||||
@@ -199,15 +203,13 @@ class SnippetGenerator:
|
||||
prev_start = start
|
||||
|
||||
@staticmethod
|
||||
def count_matches(text: str, query: str) -> NonNegativeInt:
|
||||
def count_matches(text: str, query: SearchQuery) -> NonNegativeInt:
|
||||
"""Count total number of matches for a query in text."""
|
||||
ZERO = NonNegativeInt(0)
|
||||
if not text:
|
||||
logger.warning("Empty text for search query in count_matches")
|
||||
return ZERO
|
||||
if not query:
|
||||
logger.warning("Empty query for search text in count_matches")
|
||||
return ZERO
|
||||
assert query is not None
|
||||
return NonNegativeInt(
|
||||
sum(1 for _ in SnippetGenerator.find_all_matches(text, query))
|
||||
)
|
||||
@@ -243,13 +245,14 @@ class SnippetGenerator:
|
||||
@staticmethod
|
||||
def generate(
|
||||
text: str,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_length: NonNegativeInt = DEFAULT_SNIPPET_MAX_LENGTH,
|
||||
max_snippets: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from text."""
|
||||
if not text or not query:
|
||||
logger.warning("Empty text or query for generate_snippets")
|
||||
assert query is not None
|
||||
if not text:
|
||||
logger.warning("Empty text for generate_snippets")
|
||||
return []
|
||||
|
||||
candidates = (
|
||||
@@ -270,7 +273,7 @@ class SnippetGenerator:
|
||||
@staticmethod
|
||||
def from_summary(
|
||||
summary: str,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_snippets: NonNegativeInt = LONG_SUMMARY_MAX_SNIPPETS,
|
||||
) -> list[str]:
|
||||
"""Generate snippets from summary text."""
|
||||
@@ -278,9 +281,9 @@ class SnippetGenerator:
|
||||
|
||||
@staticmethod
|
||||
def combine_sources(
|
||||
summary: str | None,
|
||||
summary: NonEmptyString | None,
|
||||
webvtt: WebVTTContent | None,
|
||||
query: str,
|
||||
query: SearchQuery,
|
||||
max_total: NonNegativeInt = DEFAULT_MAX_SNIPPETS,
|
||||
) -> tuple[list[str], NonNegativeInt]:
|
||||
"""Combine snippets from multiple sources and return total match count.
|
||||
@@ -289,6 +292,11 @@ class SnippetGenerator:
|
||||
|
||||
snippets can be empty for real in case of e.g. title match
|
||||
"""
|
||||
|
||||
assert (
|
||||
summary is not None or webvtt is not None
|
||||
), "At least one source must be present"
|
||||
|
||||
webvtt_matches = 0
|
||||
summary_matches = 0
|
||||
|
||||
@@ -355,8 +363,8 @@ class SearchController:
|
||||
else_=rooms.c.name,
|
||||
).label("room_name"),
|
||||
]
|
||||
|
||||
if params.query_text:
|
||||
search_query = None
|
||||
if params.query_text is not None:
|
||||
search_query = sqlalchemy.func.websearch_to_tsquery(
|
||||
"english", params.query_text
|
||||
)
|
||||
@@ -373,7 +381,9 @@ class SearchController:
|
||||
transcripts.join(rooms, transcripts.c.room_id == rooms.c.id, isouter=True)
|
||||
)
|
||||
|
||||
if params.query_text:
|
||||
if params.query_text is not None:
|
||||
# because already initialized based on params.query_text presence above
|
||||
assert search_query is not None
|
||||
base_query = base_query.where(
|
||||
transcripts.c.search_vector_en.op("@@")(search_query)
|
||||
)
|
||||
@@ -393,7 +403,7 @@ class SearchController:
|
||||
transcripts.c.source_kind == params.source_kind
|
||||
)
|
||||
|
||||
if params.query_text:
|
||||
if params.query_text is not None:
|
||||
order_by = sqlalchemy.desc(sqlalchemy.text("rank"))
|
||||
else:
|
||||
order_by = sqlalchemy.desc(transcripts.c.created_at)
|
||||
@@ -407,19 +417,29 @@ class SearchController:
|
||||
)
|
||||
total = await get_database().fetch_val(count_query)
|
||||
|
||||
def _process_result(r) -> SearchResult:
|
||||
def _process_result(r: DbRecord) -> SearchResult:
|
||||
r_dict: Dict[str, Any] = dict(r)
|
||||
|
||||
webvtt_raw: str | None = r_dict.pop("webvtt", None)
|
||||
webvtt: WebVTTContent | None
|
||||
if webvtt_raw:
|
||||
webvtt = WebVTTProcessor.parse(webvtt_raw)
|
||||
else:
|
||||
webvtt = None
|
||||
long_summary: str | None = r_dict.pop("long_summary", None)
|
||||
|
||||
long_summary_r: str | None = r_dict.pop("long_summary", None)
|
||||
long_summary: NonEmptyString = try_parse_non_empty_string(long_summary_r)
|
||||
room_name: str | None = r_dict.pop("room_name", None)
|
||||
db_result = SearchResultDB.model_validate(r_dict)
|
||||
|
||||
snippets, total_match_count = SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
at_least_one_source = webvtt is not None or long_summary is not None
|
||||
has_query = params.query_text is not None
|
||||
snippets, total_match_count = (
|
||||
SnippetGenerator.combine_sources(
|
||||
long_summary, webvtt, params.query_text, DEFAULT_MAX_SNIPPETS
|
||||
)
|
||||
if has_query and at_least_one_source
|
||||
else ([], 0)
|
||||
)
|
||||
|
||||
return SearchResult(
|
||||
|
||||
@@ -122,6 +122,15 @@ def generate_transcript_name() -> str:
|
||||
return f"Transcript {now.strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
|
||||
TranscriptStatus = Literal[
|
||||
"idle", "uploaded", "recording", "processing", "error", "ended"
|
||||
]
|
||||
|
||||
|
||||
class StrValue(BaseModel):
|
||||
value: str
|
||||
|
||||
|
||||
class AudioWaveform(BaseModel):
|
||||
data: list[float]
|
||||
|
||||
@@ -185,7 +194,7 @@ class Transcript(BaseModel):
|
||||
id: str = Field(default_factory=generate_uuid4)
|
||||
user_id: str | None = None
|
||||
name: str = Field(default_factory=generate_transcript_name)
|
||||
status: str = "idle"
|
||||
status: TranscriptStatus = "idle"
|
||||
duration: float = 0
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
title: str | None = None
|
||||
@@ -732,5 +741,27 @@ class TranscriptController:
|
||||
transcript.delete_participant(participant_id)
|
||||
await self.update(transcript, {"participants": transcript.participants_dump()})
|
||||
|
||||
async def set_status(
|
||||
self, transcript_id: str, status: TranscriptStatus
|
||||
) -> TranscriptEvent | None:
|
||||
"""
|
||||
Update the status of a transcript
|
||||
|
||||
Will add an event STATUS + update the status field of transcript
|
||||
"""
|
||||
async with self.transaction():
|
||||
transcript = await self.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
if transcript.status == status:
|
||||
return
|
||||
resp = await self.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await self.update(transcript, {"status": status})
|
||||
return resp
|
||||
|
||||
|
||||
transcripts_controller = TranscriptController()
|
||||
|
||||
@@ -7,18 +7,26 @@ Uses parallel processing for transcription, diarization, and waveform generation
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import av
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
Transcript,
|
||||
TranscriptStatus,
|
||||
transcripts_controller,
|
||||
)
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.main_live_pipeline import PipelineMainBase, asynctask
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
PipelineMainBase,
|
||||
broadcast_to_sockets,
|
||||
)
|
||||
from reflector.processors import (
|
||||
AudioFileWriterProcessor,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
@@ -43,6 +51,7 @@ from reflector.processors.types import (
|
||||
)
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.worker.webhook import send_transcript_webhook
|
||||
|
||||
|
||||
class EmptyPipeline:
|
||||
@@ -83,12 +92,27 @@ class PipelineMainFile(PipelineMainBase):
|
||||
exc_info=result,
|
||||
)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def set_status(self, transcript_id: str, status: TranscriptStatus):
|
||||
async with self.lock_transaction():
|
||||
return await transcripts_controller.set_status(transcript_id, status)
|
||||
|
||||
async def process(self, file_path: Path):
|
||||
"""Main entry point for file processing"""
|
||||
self.logger.info(f"Starting file pipeline for {file_path}")
|
||||
|
||||
transcript = await self.get_transcript()
|
||||
|
||||
# Clear transcript as we're going to regenerate everything
|
||||
async with self.transaction():
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"events": [],
|
||||
"topics": [],
|
||||
},
|
||||
)
|
||||
|
||||
# Extract audio and write to transcript location
|
||||
audio_path = await self.extract_and_write_audio(file_path, transcript)
|
||||
|
||||
@@ -105,6 +129,8 @@ class PipelineMainFile(PipelineMainBase):
|
||||
|
||||
self.logger.info("File pipeline complete")
|
||||
|
||||
await transcripts_controller.set_status(transcript.id, "ended")
|
||||
|
||||
async def extract_and_write_audio(
|
||||
self, file_path: Path, transcript: Transcript
|
||||
) -> Path:
|
||||
@@ -362,14 +388,34 @@ async def task_pipeline_file_process(*, transcript_id: str):
|
||||
if not transcript:
|
||||
raise Exception(f"Transcript {transcript_id} not found")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
# Run file pipeline
|
||||
pipeline = PipelineMainFile(transcript_id=transcript_id)
|
||||
await pipeline.process(audio_file)
|
||||
try:
|
||||
await pipeline.set_status(transcript_id, "processing")
|
||||
|
||||
# Find the file to process
|
||||
audio_file = next(transcript.data_path.glob("upload.*"), None)
|
||||
if not audio_file:
|
||||
audio_file = next(transcript.data_path.glob("audio.*"), None)
|
||||
|
||||
if not audio_file:
|
||||
raise Exception("No audio file found to process")
|
||||
|
||||
await pipeline.process(audio_file)
|
||||
|
||||
except Exception:
|
||||
await pipeline.set_status(transcript_id, "error")
|
||||
raise
|
||||
|
||||
# Trigger webhook if this is a room recording with webhook configured
|
||||
if transcript.source_kind == SourceKind.ROOM and transcript.room_id:
|
||||
room = await rooms_controller.get_by_id(transcript.room_id)
|
||||
if room and room.webhook_url:
|
||||
logger.info(
|
||||
"Dispatching webhook task",
|
||||
transcript_id=transcript_id,
|
||||
room_id=room.id,
|
||||
webhook_url=room.webhook_url,
|
||||
)
|
||||
send_transcript_webhook.delay(
|
||||
transcript_id, room.id, event_id=uuid.uuid4().hex
|
||||
)
|
||||
|
||||
@@ -22,7 +22,7 @@ from celery import chord, current_task, group, shared_task
|
||||
from pydantic import BaseModel
|
||||
from structlog import BoundLogger as Logger
|
||||
|
||||
from reflector.db import get_database
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db.meetings import meeting_consent_controller, meetings_controller
|
||||
from reflector.db.recordings import recordings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
@@ -32,6 +32,7 @@ from reflector.db.transcripts import (
|
||||
TranscriptFinalLongSummary,
|
||||
TranscriptFinalShortSummary,
|
||||
TranscriptFinalTitle,
|
||||
TranscriptStatus,
|
||||
TranscriptText,
|
||||
TranscriptTopic,
|
||||
TranscriptWaveform,
|
||||
@@ -40,8 +41,9 @@ from reflector.db.transcripts import (
|
||||
from reflector.logger import logger
|
||||
from reflector.pipelines.runner import PipelineMessage, PipelineRunner
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioChunkerAutoProcessor,
|
||||
AudioDiarizationAutoProcessor,
|
||||
AudioDownscaleProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
@@ -68,29 +70,6 @@ from reflector.zulip import (
|
||||
)
|
||||
|
||||
|
||||
def asynctask(f):
|
||||
@functools.wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
async def run_with_db():
|
||||
database = get_database()
|
||||
await database.connect()
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
coro = run_with_db()
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
loop = None
|
||||
if loop and loop.is_running():
|
||||
return loop.run_until_complete(coro)
|
||||
return asyncio.run(coro)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def broadcast_to_sockets(func):
|
||||
"""
|
||||
Decorator to broadcast transcript event to websockets
|
||||
@@ -187,8 +166,15 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
]
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async def lock_transaction(self):
|
||||
# This lock is to prevent multiple processor starting adding
|
||||
# into event array at the same time
|
||||
async with self._lock:
|
||||
yield
|
||||
|
||||
@asynccontextmanager
|
||||
async def transaction(self):
|
||||
async with self.lock_transaction():
|
||||
async with transcripts_controller.transaction():
|
||||
yield
|
||||
|
||||
@@ -197,14 +183,14 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
# if it's the first part, update the status of the transcript
|
||||
# but do not set the ended status yet.
|
||||
if isinstance(self, PipelineMainLive):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"started": "recording",
|
||||
"push": "recording",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
}
|
||||
elif isinstance(self, PipelineMainFinalSummaries):
|
||||
status_mapping = {
|
||||
status_mapping: dict[str, TranscriptStatus] = {
|
||||
"push": "processing",
|
||||
"flush": "processing",
|
||||
"error": "error",
|
||||
@@ -220,22 +206,8 @@ class PipelineMainBase(PipelineRunner[PipelineMessage], Generic[PipelineMessage]
|
||||
return
|
||||
|
||||
# when the status of the pipeline changes, update the transcript
|
||||
async with self.transaction():
|
||||
transcript = await self.get_transcript()
|
||||
if status == transcript.status:
|
||||
return
|
||||
resp = await transcripts_controller.append_event(
|
||||
transcript=transcript,
|
||||
event="STATUS",
|
||||
data=StrValue(value=status),
|
||||
)
|
||||
await transcripts_controller.update(
|
||||
transcript,
|
||||
{
|
||||
"status": status,
|
||||
},
|
||||
)
|
||||
return resp
|
||||
async with self._lock:
|
||||
return await transcripts_controller.set_status(self.transcript_id, status)
|
||||
|
||||
@broadcast_to_sockets
|
||||
async def on_transcript(self, data):
|
||||
@@ -365,7 +337,8 @@ class PipelineMainLive(PipelineMainBase):
|
||||
path=transcript.audio_wav_filename,
|
||||
on_duration=self.on_duration,
|
||||
),
|
||||
AudioChunkerProcessor(),
|
||||
AudioDownscaleProcessor(),
|
||||
AudioChunkerAutoProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
@@ -792,7 +765,7 @@ def pipeline_post(*, transcript_id: str):
|
||||
chain_final_summaries,
|
||||
) | task_pipeline_post_to_zulip.si(transcript_id=transcript_id)
|
||||
|
||||
chain.delay()
|
||||
return chain.delay()
|
||||
|
||||
|
||||
@get_transcript
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from .audio_chunker import AudioChunkerProcessor # noqa: F401
|
||||
from .audio_chunker_auto import AudioChunkerAutoProcessor # noqa: F401
|
||||
from .audio_diarization_auto import AudioDiarizationAutoProcessor # noqa: F401
|
||||
from .audio_downscale import AudioDownscaleProcessor # noqa: F401
|
||||
from .audio_file_writer import AudioFileWriterProcessor # noqa: F401
|
||||
from .audio_merge import AudioMergeProcessor # noqa: F401
|
||||
from .audio_transcript import AudioTranscriptProcessor # noqa: F401
|
||||
|
||||
@@ -1,340 +1,78 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
from prometheus_client import Counter, Histogram
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
class AudioChunkerProcessor(Processor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection
|
||||
Base class for assembling audio frames into chunks
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = list[av.AudioFrame]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
vad_threshold=0.5,
|
||||
use_onnx=False,
|
||||
min_frames=2,
|
||||
):
|
||||
super().__init__()
|
||||
m_chunk = Histogram(
|
||||
"audio_chunker",
|
||||
"Time spent in AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_call = Counter(
|
||||
"audio_chunker_call",
|
||||
"Number of calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_success = Counter(
|
||||
"audio_chunker_success",
|
||||
"Number of successful calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
m_chunk_failure = Counter(
|
||||
"audio_chunker_failure",
|
||||
"Number of failed calls to AudioChunker.chunk",
|
||||
["backend"],
|
||||
)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
name = self.__class__.__name__
|
||||
self.m_chunk = self.m_chunk.labels(name)
|
||||
self.m_chunk_call = self.m_chunk_call.labels(name)
|
||||
self.m_chunk_success = self.m_chunk_success.labels(name)
|
||||
self.m_chunk_failure = self.m_chunk_failure.labels(name)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.frames: list[av.AudioFrame] = []
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.vad_threshold = vad_threshold
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
self.frames.append(data)
|
||||
# print("timestamp", data.pts * data.time_base * 1000)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
"""Process incoming audio frame"""
|
||||
# Validate audio format on first frame
|
||||
if len(self.frames) == 0:
|
||||
if data.sample_rate != 16000 or len(data.layout.channels) != 1:
|
||||
raise ValueError(
|
||||
f"AudioChunkerProcessor expects 16kHz mono audio, got {data.sample_rate}Hz "
|
||||
f"with {len(data.layout.channels)} channel(s). "
|
||||
f"Use AudioDownscaleProcessor before this processor."
|
||||
)
|
||||
|
||||
async def _process_block(self):
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return
|
||||
|
||||
# Processing block with current buffer size
|
||||
# print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
self.m_chunk_call.inc()
|
||||
with self.m_chunk.time():
|
||||
result = await self._chunk(data)
|
||||
self.m_chunk_success.inc()
|
||||
if result:
|
||||
await self.emit(result)
|
||||
except Exception:
|
||||
self.m_chunk_failure.inc()
|
||||
raise
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
await self.emit(frames_to_emit)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
first_frame = frames[0]
|
||||
original_sample_rate = first_frame.sample_rate
|
||||
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
# Handle stereo -> mono conversion
|
||||
if len(frame_array.shape) == 2 and frame_array.shape[0] > 1:
|
||||
frame_array = np.mean(frame_array, axis=0)
|
||||
elif len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Resample from 48kHz to 16kHz if needed
|
||||
if original_sample_rate != 16000:
|
||||
combined_audio = self._resample_audio(
|
||||
combined_audio, original_sample_rate, 16000
|
||||
)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _resample_audio(
|
||||
self, audio: np.ndarray, from_sr: int, to_sr: int
|
||||
) -> np.ndarray:
|
||||
"""Simple linear resampling from from_sr to to_sr"""
|
||||
if from_sr == to_sr:
|
||||
return audio
|
||||
|
||||
try:
|
||||
# Simple linear interpolation resampling
|
||||
ratio = to_sr / from_sr
|
||||
new_length = int(len(audio) * ratio)
|
||||
|
||||
# Create indices for interpolation
|
||||
old_indices = np.linspace(0, len(audio) - 1, new_length)
|
||||
resampled = np.interp(old_indices, np.arange(len(audio)), audio)
|
||||
|
||||
return resampled.astype(np.float32)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error("Resampling error", exc_info=e)
|
||||
# Fallback: simple decimation/repetition
|
||||
if from_sr > to_sr:
|
||||
# Downsample by taking every nth sample
|
||||
step = from_sr // to_sr
|
||||
return audio[::step]
|
||||
else:
|
||||
# Upsample by repeating samples
|
||||
repeat = to_sr // from_sr
|
||||
return np.repeat(audio, repeat)
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
# Account for resampling: we process at 16kHz but frames might be 48kHz
|
||||
resample_ratio = 48000 / 16000 # 3x
|
||||
actual_sample_pos = int(speech_end * resample_ratio)
|
||||
frame_index = actual_sample_pos // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""
|
||||
Process audio frame and return chunk when ready.
|
||||
Subclasses should implement their chunking logic here.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
"""Flush any remaining frames when processing ends"""
|
||||
raise NotImplementedError
|
||||
|
||||
32
server/reflector/processors/audio_chunker_auto.py
Normal file
32
server/reflector/processors/audio_chunker_auto.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import importlib
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.settings import settings
|
||||
|
||||
|
||||
class AudioChunkerAutoProcessor(AudioChunkerProcessor):
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, name, kclass):
|
||||
cls._registry[name] = kclass
|
||||
|
||||
def __new__(cls, name: str | None = None, **kwargs):
|
||||
if name is None:
|
||||
name = settings.AUDIO_CHUNKER_BACKEND
|
||||
if name not in cls._registry:
|
||||
module_name = f"reflector.processors.audio_chunker_{name}"
|
||||
importlib.import_module(module_name)
|
||||
|
||||
# gather specific configuration for the processor
|
||||
# search `AUDIO_CHUNKER_BACKEND_XXX_YYY`, push to constructor as `backend_xxx_yyy`
|
||||
config = {}
|
||||
name_upper = name.upper()
|
||||
settings_prefix = "AUDIO_CHUNKER_"
|
||||
config_prefix = f"{settings_prefix}{name_upper}_"
|
||||
for key, value in settings:
|
||||
if key.startswith(config_prefix):
|
||||
config_name = key[len(settings_prefix) :].lower()
|
||||
config[config_name] = value
|
||||
|
||||
return cls._registry[name](**config | kwargs)
|
||||
34
server/reflector/processors/audio_chunker_frames.py
Normal file
34
server/reflector/processors/audio_chunker_frames.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerFramesProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Simple frame-based audio chunker that emits chunks after a fixed number of frames
|
||||
"""
|
||||
|
||||
def __init__(self, max_frames=256, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.max_frames = max_frames
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
self.frames.append(data)
|
||||
if len(self.frames) >= self.max_frames:
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
return frames_to_emit
|
||||
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
await self.emit(frames)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("frames", AudioChunkerFramesProcessor)
|
||||
298
server/reflector/processors/audio_chunker_silero.py
Normal file
298
server/reflector/processors/audio_chunker_silero.py
Normal file
@@ -0,0 +1,298 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import numpy as np
|
||||
import torch
|
||||
from silero_vad import VADIterator, load_silero_vad
|
||||
|
||||
from reflector.processors.audio_chunker import AudioChunkerProcessor
|
||||
from reflector.processors.audio_chunker_auto import AudioChunkerAutoProcessor
|
||||
|
||||
|
||||
class AudioChunkerSileroProcessor(AudioChunkerProcessor):
|
||||
"""
|
||||
Assemble audio frames into chunks with VAD-based speech detection using Silero VAD
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_frames=256,
|
||||
max_frames=1024,
|
||||
use_onnx=True,
|
||||
min_frames=2,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.block_frames = block_frames
|
||||
self.max_frames = max_frames
|
||||
self.min_frames = min_frames
|
||||
|
||||
# Initialize Silero VAD
|
||||
self._init_vad(use_onnx)
|
||||
|
||||
def _init_vad(self, use_onnx=False):
|
||||
"""Initialize Silero VAD model"""
|
||||
try:
|
||||
torch.set_num_threads(1)
|
||||
self.vad_model = load_silero_vad(onnx=use_onnx)
|
||||
self.vad_iterator = VADIterator(self.vad_model, sampling_rate=16000)
|
||||
self.logger.info("Silero VAD initialized successfully")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to initialize Silero VAD: {e}")
|
||||
self.vad_model = None
|
||||
self.vad_iterator = None
|
||||
|
||||
async def _chunk(self, data: av.AudioFrame) -> Optional[list[av.AudioFrame]]:
|
||||
"""Process audio frame and return chunk when ready"""
|
||||
self.frames.append(data)
|
||||
|
||||
# Check for speech segments every 32 frames (~1 second)
|
||||
if len(self.frames) >= 32 and len(self.frames) % 32 == 0:
|
||||
return await self._process_block()
|
||||
|
||||
# Safety fallback - emit if we hit max frames
|
||||
elif len(self.frames) >= self.max_frames:
|
||||
self.logger.warning(
|
||||
f"AudioChunkerSileroProcessor: Reached max frames ({self.max_frames}), "
|
||||
f"emitting first {self.max_frames // 2} frames"
|
||||
)
|
||||
frames_to_emit = self.frames[: self.max_frames // 2]
|
||||
self.frames = self.frames[self.max_frames // 2 :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
async def _process_block(self) -> Optional[list[av.AudioFrame]]:
|
||||
# Need at least 32 frames for VAD detection (~1 second)
|
||||
if len(self.frames) < 32 or self.vad_iterator is None:
|
||||
return None
|
||||
|
||||
# Processing block with current buffer size
|
||||
print(f"Processing block: {len(self.frames)} frames in buffer")
|
||||
|
||||
try:
|
||||
# Convert frames to numpy array for VAD
|
||||
audio_array = self._frames_to_numpy(self.frames)
|
||||
|
||||
if audio_array is None:
|
||||
# Fallback: emit all frames if conversion failed
|
||||
frames_to_emit = self.frames[:]
|
||||
self.frames = []
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring conversion-failed segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
return None
|
||||
|
||||
# Find complete speech segments in the buffer
|
||||
speech_end_frame = self._find_speech_segment_end(audio_array)
|
||||
|
||||
if speech_end_frame is None or speech_end_frame <= 0:
|
||||
# No speech found but buffer is getting large
|
||||
if len(self.frames) > 512:
|
||||
# Check if it's all silence and can be discarded
|
||||
# No speech segment found, buffer at {len(self.frames)} frames
|
||||
|
||||
# Could emit silence or discard old frames here
|
||||
# For now, keep first 256 frames and discard older silence
|
||||
if len(self.frames) > 768:
|
||||
self.logger.debug(
|
||||
f"Discarding {len(self.frames) - 256} old frames (likely silence)"
|
||||
)
|
||||
self.frames = self.frames[-256:]
|
||||
return None
|
||||
|
||||
# Calculate segment timing information
|
||||
frames_to_emit = self.frames[:speech_end_frame]
|
||||
|
||||
# Get timing from av.AudioFrame
|
||||
if frames_to_emit:
|
||||
first_frame = frames_to_emit[0]
|
||||
last_frame = frames_to_emit[-1]
|
||||
sample_rate = first_frame.sample_rate
|
||||
|
||||
# Calculate duration
|
||||
total_samples = sum(f.samples for f in frames_to_emit)
|
||||
duration_seconds = total_samples / sample_rate if sample_rate > 0 else 0
|
||||
|
||||
# Get timestamps if available
|
||||
start_time = (
|
||||
first_frame.pts * first_frame.time_base if first_frame.pts else 0
|
||||
)
|
||||
end_time = (
|
||||
last_frame.pts * last_frame.time_base if last_frame.pts else 0
|
||||
)
|
||||
|
||||
# Convert to HH:MM:SS format for logging
|
||||
def format_time(seconds):
|
||||
if not seconds:
|
||||
return "00:00:00"
|
||||
total_seconds = int(float(seconds))
|
||||
hours = total_seconds // 3600
|
||||
minutes = (total_seconds % 3600) // 60
|
||||
secs = total_seconds % 60
|
||||
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
||||
|
||||
start_formatted = format_time(start_time)
|
||||
end_formatted = format_time(end_time)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
remaining_after = len(self.frames) - speech_end_frame
|
||||
|
||||
# Single structured log line
|
||||
self.logger.info(
|
||||
"Speech segment found",
|
||||
start=start_formatted,
|
||||
end=end_formatted,
|
||||
frames=speech_end_frame,
|
||||
duration=round(duration_seconds, 2),
|
||||
buffer_before=len(self.frames),
|
||||
remaining=remaining_after,
|
||||
)
|
||||
|
||||
# Keep remaining frames for next processing
|
||||
self.frames = self.frames[speech_end_frame:]
|
||||
|
||||
# Filter out segments with too few frames
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in VAD processing: {e}")
|
||||
# Fallback to simple chunking
|
||||
if len(self.frames) >= self.block_frames:
|
||||
frames_to_emit = self.frames[: self.block_frames]
|
||||
self.frames = self.frames[self.block_frames :]
|
||||
if len(frames_to_emit) >= self.min_frames:
|
||||
return frames_to_emit
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring exception-fallback segment with {len(frames_to_emit)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def _frames_to_numpy(self, frames: list[av.AudioFrame]) -> Optional[np.ndarray]:
|
||||
"""Convert av.AudioFrame list to numpy array for VAD processing"""
|
||||
if not frames:
|
||||
return None
|
||||
|
||||
try:
|
||||
audio_data = []
|
||||
for frame in frames:
|
||||
frame_array = frame.to_ndarray()
|
||||
|
||||
if len(frame_array.shape) == 2:
|
||||
frame_array = frame_array.flatten()
|
||||
|
||||
audio_data.append(frame_array)
|
||||
|
||||
if not audio_data:
|
||||
return None
|
||||
|
||||
combined_audio = np.concatenate(audio_data)
|
||||
|
||||
# Ensure float32 format
|
||||
if combined_audio.dtype == np.int16:
|
||||
# Normalize int16 audio to float32 in range [-1.0, 1.0]
|
||||
combined_audio = combined_audio.astype(np.float32) / 32768.0
|
||||
elif combined_audio.dtype != np.float32:
|
||||
combined_audio = combined_audio.astype(np.float32)
|
||||
|
||||
return combined_audio
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error converting frames to numpy: {e}")
|
||||
|
||||
return None
|
||||
|
||||
def _find_speech_segment_end(self, audio_array: np.ndarray) -> Optional[int]:
|
||||
"""Find complete speech segments and return frame index at segment end"""
|
||||
if self.vad_iterator is None or len(audio_array) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Process audio in 512-sample windows for VAD
|
||||
window_size = 512
|
||||
min_silence_windows = 3 # Require 3 windows of silence after speech
|
||||
|
||||
# Track speech state
|
||||
in_speech = False
|
||||
speech_start = None
|
||||
speech_end = None
|
||||
silence_count = 0
|
||||
|
||||
for i in range(0, len(audio_array), window_size):
|
||||
chunk = audio_array[i : i + window_size]
|
||||
if len(chunk) < window_size:
|
||||
chunk = np.pad(chunk, (0, window_size - len(chunk)))
|
||||
|
||||
# Detect if this window has speech
|
||||
speech_dict = self.vad_iterator(chunk, return_seconds=True)
|
||||
|
||||
# VADIterator returns dict with 'start' and 'end' when speech segments are detected
|
||||
if speech_dict:
|
||||
if not in_speech:
|
||||
# Speech started
|
||||
speech_start = i
|
||||
in_speech = True
|
||||
# Debug: print(f"Speech START at sample {i}, VAD: {speech_dict}")
|
||||
silence_count = 0 # Reset silence counter
|
||||
continue
|
||||
|
||||
if not in_speech:
|
||||
continue
|
||||
|
||||
# We're in speech but found silence
|
||||
silence_count += 1
|
||||
if silence_count < min_silence_windows:
|
||||
continue
|
||||
|
||||
# Found end of speech segment
|
||||
speech_end = i - (min_silence_windows - 1) * window_size
|
||||
# Debug: print(f"Speech END at sample {speech_end}")
|
||||
|
||||
# Convert sample position to frame index
|
||||
samples_per_frame = self.frames[0].samples if self.frames else 1024
|
||||
frame_index = speech_end // samples_per_frame
|
||||
|
||||
# Ensure we don't exceed buffer
|
||||
frame_index = min(frame_index, len(self.frames))
|
||||
return frame_index
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error finding speech segment: {e}")
|
||||
return None
|
||||
|
||||
async def _flush(self):
|
||||
frames = self.frames[:]
|
||||
self.frames = []
|
||||
if frames:
|
||||
if len(frames) >= self.min_frames:
|
||||
await self.emit(frames)
|
||||
else:
|
||||
self.logger.debug(
|
||||
f"Ignoring flush segment with {len(frames)} frames "
|
||||
f"(< {self.min_frames} minimum)"
|
||||
)
|
||||
|
||||
|
||||
AudioChunkerAutoProcessor.register("silero", AudioChunkerSileroProcessor)
|
||||
60
server/reflector/processors/audio_downscale.py
Normal file
60
server/reflector/processors/audio_downscale.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioDownscaleProcessor(Processor):
|
||||
"""
|
||||
Downscale audio frames to 16kHz mono format
|
||||
"""
|
||||
|
||||
INPUT_TYPE = av.AudioFrame
|
||||
OUTPUT_TYPE = av.AudioFrame
|
||||
|
||||
def __init__(self, target_rate: int = 16000, target_layout: str = "mono", **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.target_rate = target_rate
|
||||
self.target_layout = target_layout
|
||||
self.resampler: Optional[AudioResampler] = None
|
||||
self.needs_resampling: Optional[bool] = None
|
||||
|
||||
async def _push(self, data: av.AudioFrame):
|
||||
if self.needs_resampling is None:
|
||||
self.needs_resampling = (
|
||||
data.sample_rate != self.target_rate
|
||||
or data.layout.name != self.target_layout
|
||||
)
|
||||
|
||||
if self.needs_resampling:
|
||||
self.resampler = AudioResampler(
|
||||
format="s16", layout=self.target_layout, rate=self.target_rate
|
||||
)
|
||||
|
||||
if not self.needs_resampling or not self.resampler:
|
||||
await self.emit(data)
|
||||
return
|
||||
|
||||
resampled_frames = self.resampler.resample(copy_frame(data))
|
||||
for resampled_frame in resampled_frames:
|
||||
await self.emit(resampled_frame)
|
||||
|
||||
async def _flush(self):
|
||||
if self.needs_resampling and self.resampler:
|
||||
final_frames = self.resampler.resample(None)
|
||||
for frame in final_frames:
|
||||
await self.emit(frame)
|
||||
@@ -3,24 +3,11 @@ from time import monotonic_ns
|
||||
from uuid import uuid4
|
||||
|
||||
import av
|
||||
from av.audio.resampler import AudioResampler
|
||||
|
||||
from reflector.processors.base import Processor
|
||||
from reflector.processors.types import AudioFile
|
||||
|
||||
|
||||
def copy_frame(frame: av.AudioFrame) -> av.AudioFrame:
|
||||
frame_copy = frame.from_ndarray(
|
||||
frame.to_ndarray(),
|
||||
format=frame.format.name,
|
||||
layout=frame.layout.name,
|
||||
)
|
||||
frame_copy.sample_rate = frame.sample_rate
|
||||
frame_copy.pts = frame.pts
|
||||
frame_copy.time_base = frame.time_base
|
||||
return frame_copy
|
||||
|
||||
|
||||
class AudioMergeProcessor(Processor):
|
||||
"""
|
||||
Merge audio frame into a single file
|
||||
@@ -29,9 +16,8 @@ class AudioMergeProcessor(Processor):
|
||||
INPUT_TYPE = list[av.AudioFrame]
|
||||
OUTPUT_TYPE = AudioFile
|
||||
|
||||
def __init__(self, downsample_to_16k_mono: bool = True, **kwargs):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.downsample_to_16k_mono = downsample_to_16k_mono
|
||||
|
||||
async def _push(self, data: list[av.AudioFrame]):
|
||||
if not data:
|
||||
@@ -39,72 +25,27 @@ class AudioMergeProcessor(Processor):
|
||||
|
||||
# get audio information from first frame
|
||||
frame = data[0]
|
||||
original_channels = len(frame.layout.channels)
|
||||
original_sample_rate = frame.sample_rate
|
||||
original_sample_width = frame.format.bytes
|
||||
|
||||
# determine if we need processing
|
||||
needs_processing = self.downsample_to_16k_mono and (
|
||||
original_sample_rate != 16000 or original_channels != 1
|
||||
)
|
||||
|
||||
# determine output parameters
|
||||
if self.downsample_to_16k_mono:
|
||||
output_sample_rate = 16000
|
||||
output_channels = 1
|
||||
output_sample_width = 2 # 16-bit = 2 bytes
|
||||
else:
|
||||
output_sample_rate = original_sample_rate
|
||||
output_channels = original_channels
|
||||
output_sample_width = original_sample_width
|
||||
output_channels = len(frame.layout.channels)
|
||||
output_sample_rate = frame.sample_rate
|
||||
output_sample_width = frame.format.bytes
|
||||
|
||||
# create audio file
|
||||
uu = uuid4().hex
|
||||
fd = io.BytesIO()
|
||||
|
||||
if needs_processing:
|
||||
# Process with PyAV resampler
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=16000)
|
||||
out_stream.layout = "mono"
|
||||
# Use PyAV to write frames
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = frame.layout.name
|
||||
|
||||
# Create resampler if needed
|
||||
resampler = None
|
||||
if original_sample_rate != 16000 or original_channels != 1:
|
||||
resampler = AudioResampler(format="s16", layout="mono", rate=16000)
|
||||
|
||||
for frame in data:
|
||||
if resampler:
|
||||
# Resample and convert to mono
|
||||
# XXX for an unknown reason, if we don't use a copy of the frame, we get
|
||||
# Invalid Argumment from resample. Debugging indicate that when a previous processor
|
||||
# already used the frame (like AudioFileWriter), it make it invalid argument here.
|
||||
resampled_frames = resampler.resample(copy_frame(frame))
|
||||
for resampled_frame in resampled_frames:
|
||||
for packet in out_stream.encode(resampled_frame):
|
||||
out_container.mux(packet)
|
||||
else:
|
||||
# Direct encoding without resampling
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
else:
|
||||
# Use PyAV for original frames (no processing needed)
|
||||
out_container = av.open(fd, "w", format="wav")
|
||||
out_stream = out_container.add_stream("pcm_s16le", rate=output_sample_rate)
|
||||
out_stream.layout = "mono" if output_channels == 1 else frame.layout
|
||||
|
||||
for frame in data:
|
||||
for packet in out_stream.encode(frame):
|
||||
out_container.mux(packet)
|
||||
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
# Flush the encoder
|
||||
for packet in out_stream.encode(None):
|
||||
out_container.mux(packet)
|
||||
out_container.close()
|
||||
|
||||
fd.seek(0)
|
||||
|
||||
|
||||
@@ -12,9 +12,6 @@ API will be a POST request to TRANSCRIPT_URL:
|
||||
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
import aiohttp
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from reflector.processors.audio_transcript import AudioTranscriptProcessor
|
||||
@@ -25,7 +22,9 @@ from reflector.settings import settings
|
||||
|
||||
class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
def __init__(
|
||||
self, modal_api_key: str | None = None, batch_enabled: bool = True, **kwargs
|
||||
self,
|
||||
modal_api_key: str | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if not settings.TRANSCRIPT_URL:
|
||||
@@ -35,126 +34,6 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
self.transcript_url = settings.TRANSCRIPT_URL + "/v1"
|
||||
self.timeout = settings.TRANSCRIPT_TIMEOUT
|
||||
self.modal_api_key = modal_api_key
|
||||
self.max_batch_duration = 10.0
|
||||
self.max_batch_files = 15
|
||||
self.batch_enabled = batch_enabled
|
||||
self.pending_files: List[AudioFile] = [] # Files waiting to be processed
|
||||
|
||||
@classmethod
|
||||
def _calculate_duration(cls, audio_file: AudioFile) -> float:
|
||||
"""Calculate audio duration in seconds from AudioFile metadata"""
|
||||
# Duration = total_samples / sample_rate
|
||||
# We need to estimate total samples from the file data
|
||||
import wave
|
||||
|
||||
try:
|
||||
# Try to read as WAV file to get duration
|
||||
audio_file.fd.seek(0)
|
||||
with wave.open(audio_file.fd, "rb") as wav_file:
|
||||
frames = wav_file.getnframes()
|
||||
sample_rate = wav_file.getframerate()
|
||||
duration = frames / sample_rate
|
||||
return duration
|
||||
except Exception:
|
||||
# Fallback: estimate from file size and audio parameters
|
||||
audio_file.fd.seek(0, 2) # Seek to end
|
||||
file_size = audio_file.fd.tell()
|
||||
audio_file.fd.seek(0) # Reset to beginning
|
||||
|
||||
# Estimate: file_size / (sample_rate * channels * sample_width)
|
||||
bytes_per_second = (
|
||||
audio_file.sample_rate
|
||||
* audio_file.channels
|
||||
* (audio_file.sample_width // 8)
|
||||
)
|
||||
estimated_duration = (
|
||||
file_size / bytes_per_second if bytes_per_second > 0 else 0
|
||||
)
|
||||
return max(0, estimated_duration)
|
||||
|
||||
def _create_batches(self, audio_files: List[AudioFile]) -> List[List[AudioFile]]:
|
||||
"""Group audio files into batches with maximum 30s total duration"""
|
||||
batches = []
|
||||
current_batch = []
|
||||
current_duration = 0.0
|
||||
|
||||
for audio_file in audio_files:
|
||||
duration = self._calculate_duration(audio_file)
|
||||
|
||||
# If adding this file exceeds max duration, start a new batch
|
||||
if current_duration + duration > self.max_batch_duration and current_batch:
|
||||
batches.append(current_batch)
|
||||
current_batch = [audio_file]
|
||||
current_duration = duration
|
||||
else:
|
||||
current_batch.append(audio_file)
|
||||
current_duration += duration
|
||||
|
||||
# Add the last batch if not empty
|
||||
if current_batch:
|
||||
batches.append(current_batch)
|
||||
|
||||
return batches
|
||||
|
||||
async def _transcript_batch(self, audio_files: List[AudioFile]) -> List[Transcript]:
|
||||
"""Transcribe a batch of audio files using the parakeet backend"""
|
||||
if not audio_files:
|
||||
return []
|
||||
|
||||
self.logger.debug(f"Batch transcribing {len(audio_files)} files")
|
||||
|
||||
# Prepare form data for batch request
|
||||
data = aiohttp.FormData()
|
||||
data.add_field("language", self.get_pref("audio:source_language", "en"))
|
||||
data.add_field("batch", "true")
|
||||
|
||||
for i, audio_file in enumerate(audio_files):
|
||||
audio_file.fd.seek(0)
|
||||
data.add_field(
|
||||
"files",
|
||||
audio_file.fd,
|
||||
filename=f"{audio_file.name}",
|
||||
content_type="audio/wav",
|
||||
)
|
||||
|
||||
# Make batch request
|
||||
headers = {"Authorization": f"Bearer {self.modal_api_key}"}
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
timeout=aiohttp.ClientTimeout(total=self.timeout)
|
||||
) as session:
|
||||
async with session.post(
|
||||
f"{self.transcript_url}/audio/transcriptions",
|
||||
data=data,
|
||||
headers=headers,
|
||||
) as response:
|
||||
if response.status != 200:
|
||||
error_text = await response.text()
|
||||
raise Exception(
|
||||
f"Batch transcription failed: {response.status} {error_text}"
|
||||
)
|
||||
|
||||
result = await response.json()
|
||||
|
||||
# Process batch results
|
||||
transcripts = []
|
||||
results = result.get("results", [])
|
||||
|
||||
for i, (audio_file, file_result) in enumerate(zip(audio_files, results)):
|
||||
transcript = Transcript(
|
||||
words=[
|
||||
Word(
|
||||
text=word_info["word"],
|
||||
start=word_info["start"],
|
||||
end=word_info["end"],
|
||||
)
|
||||
for word_info in file_result.get("words", [])
|
||||
]
|
||||
)
|
||||
transcript.add_offset(audio_file.timestamp)
|
||||
transcripts.append(transcript)
|
||||
|
||||
return transcripts
|
||||
|
||||
async def _transcript(self, data: AudioFile):
|
||||
async with AsyncOpenAI(
|
||||
@@ -187,96 +66,5 @@ class AudioTranscriptModalProcessor(AudioTranscriptProcessor):
|
||||
|
||||
return transcript
|
||||
|
||||
async def transcript_multiple(
|
||||
self, audio_files: List[AudioFile]
|
||||
) -> List[Transcript]:
|
||||
"""Transcribe multiple audio files using batching"""
|
||||
if len(audio_files) == 1:
|
||||
# Single file, use existing method
|
||||
return [await self._transcript(audio_files[0])]
|
||||
|
||||
# Create batches with max 30s duration each
|
||||
batches = self._create_batches(audio_files)
|
||||
|
||||
self.logger.debug(
|
||||
f"Processing {len(audio_files)} files in {len(batches)} batches"
|
||||
)
|
||||
|
||||
# Process all batches concurrently
|
||||
all_transcripts = []
|
||||
|
||||
for batch in batches:
|
||||
batch_transcripts = await self._transcript_batch(batch)
|
||||
all_transcripts.extend(batch_transcripts)
|
||||
|
||||
return all_transcripts
|
||||
|
||||
async def _push(self, data: AudioFile):
|
||||
"""Override _push to support batching"""
|
||||
if not self.batch_enabled:
|
||||
# Use parent implementation for single file processing
|
||||
return await super()._push(data)
|
||||
|
||||
# Add file to pending batch
|
||||
self.pending_files.append(data)
|
||||
self.logger.debug(
|
||||
f"Added file to batch: {data.name}, batch size: {len(self.pending_files)}"
|
||||
)
|
||||
|
||||
# Calculate total duration of pending files
|
||||
total_duration = sum(self._calculate_duration(f) for f in self.pending_files)
|
||||
|
||||
# Process batch if it reaches max duration or has multiple files ready for optimization
|
||||
should_process_batch = (
|
||||
total_duration >= self.max_batch_duration
|
||||
or len(self.pending_files) >= self.max_batch_files
|
||||
)
|
||||
|
||||
if should_process_batch:
|
||||
await self._process_pending_batch()
|
||||
|
||||
async def _process_pending_batch(self):
|
||||
"""Process all pending files as batches"""
|
||||
if not self.pending_files:
|
||||
return
|
||||
|
||||
self.logger.debug(f"Processing batch of {len(self.pending_files)} files")
|
||||
|
||||
try:
|
||||
# Create batches respecting duration limit
|
||||
batches = self._create_batches(self.pending_files)
|
||||
|
||||
# Process each batch
|
||||
for batch in batches:
|
||||
self.m_transcript_call.inc()
|
||||
try:
|
||||
with self.m_transcript.time():
|
||||
# Use batch transcription
|
||||
transcripts = await self._transcript_batch(batch)
|
||||
|
||||
self.m_transcript_success.inc()
|
||||
|
||||
# Emit each transcript
|
||||
for transcript in transcripts:
|
||||
if transcript:
|
||||
await self.emit(transcript)
|
||||
|
||||
except Exception:
|
||||
self.m_transcript_failure.inc()
|
||||
raise
|
||||
finally:
|
||||
# Release audio files
|
||||
for audio_file in batch:
|
||||
audio_file.release()
|
||||
|
||||
finally:
|
||||
# Clear pending files
|
||||
self.pending_files.clear()
|
||||
|
||||
async def _flush(self):
|
||||
"""Process any remaining files when flushing"""
|
||||
await self._process_pending_batch()
|
||||
await super()._flush()
|
||||
|
||||
|
||||
AudioTranscriptAutoProcessor.register("modal", AudioTranscriptModalProcessor)
|
||||
|
||||
@@ -67,6 +67,9 @@ class FileTranscriptModalProcessor(FileTranscriptProcessor):
|
||||
for word_info in result.get("words", [])
|
||||
]
|
||||
|
||||
# words come not in order
|
||||
words.sort(key=lambda w: w.start)
|
||||
|
||||
return Transcript(words=words)
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from pydantic.types import PositiveInt
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
|
||||
|
||||
@@ -21,6 +22,10 @@ class Settings(BaseSettings):
|
||||
# local data directory
|
||||
DATA_DIR: str = "./data"
|
||||
|
||||
# Audio Chunking
|
||||
# backends: silero, frames
|
||||
AUDIO_CHUNKER_BACKEND: str = "frames"
|
||||
|
||||
# Audio Transcription
|
||||
# backends: whisper, modal
|
||||
TRANSCRIPT_BACKEND: str = "whisper"
|
||||
@@ -86,9 +91,8 @@ class Settings(BaseSettings):
|
||||
AUTH_JWT_PUBLIC_KEY: str | None = "authentik.monadical.com_public.pem"
|
||||
AUTH_JWT_AUDIENCE: str | None = None
|
||||
|
||||
# API public mode
|
||||
# if set, all anonymous record will be public
|
||||
PUBLIC_MODE: bool = False
|
||||
PUBLIC_DATA_RETENTION_DAYS: PositiveInt = 7
|
||||
|
||||
# Min transcript length to generate topic + summary
|
||||
MIN_TRANSCRIPT_LENGTH: int = 750
|
||||
|
||||
72
server/reflector/tools/cleanup_old_data.py
Normal file
72
server/reflector/tools/cleanup_old_data.py
Normal file
@@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env python
|
||||
"""
|
||||
Manual cleanup tool for old public data.
|
||||
Uses the same implementation as the Celery worker task.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import sys
|
||||
|
||||
import structlog
|
||||
|
||||
from reflector.settings import settings
|
||||
from reflector.worker.cleanup import _cleanup_old_public_data
|
||||
|
||||
logger = structlog.get_logger(__name__)
|
||||
|
||||
|
||||
async def cleanup_old_data(days: int = 7):
|
||||
logger.info(
|
||||
"Starting manual cleanup",
|
||||
retention_days=days,
|
||||
public_mode=settings.PUBLIC_MODE,
|
||||
)
|
||||
|
||||
if not settings.PUBLIC_MODE:
|
||||
logger.critical(
|
||||
"WARNING: PUBLIC_MODE is False. "
|
||||
"This tool is intended for public instances only."
|
||||
)
|
||||
raise Exception("Tool intended for public instances only")
|
||||
|
||||
result = await _cleanup_old_public_data(days=days)
|
||||
|
||||
if result:
|
||||
logger.info(
|
||||
"Cleanup completed",
|
||||
transcripts_deleted=result.get("transcripts_deleted", 0),
|
||||
meetings_deleted=result.get("meetings_deleted", 0),
|
||||
recordings_deleted=result.get("recordings_deleted", 0),
|
||||
errors_count=len(result.get("errors", [])),
|
||||
)
|
||||
if result.get("errors"):
|
||||
logger.warning(
|
||||
"Errors encountered during cleanup:", errors=result["errors"][:10]
|
||||
)
|
||||
else:
|
||||
logger.info("Cleanup skipped or completed without results")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Clean up old transcripts and meetings"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--days",
|
||||
type=int,
|
||||
default=7,
|
||||
help="Number of days to keep data (default: 7)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.days < 1:
|
||||
logger.error("Days must be at least 1")
|
||||
sys.exit(1)
|
||||
|
||||
asyncio.run(cleanup_old_data(days=args.days))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,292 +1,204 @@
|
||||
"""
|
||||
Process audio file with diarization support
|
||||
===========================================
|
||||
|
||||
Extended version of process.py that includes speaker diarization.
|
||||
This tool processes audio files locally without requiring the full server infrastructure.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import tempfile
|
||||
import uuid
|
||||
import json
|
||||
import shutil
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import av
|
||||
from typing import Any, Dict, List, Literal
|
||||
|
||||
from reflector.db.transcripts import SourceKind, TranscriptTopic, transcripts_controller
|
||||
from reflector.logger import logger
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
Pipeline,
|
||||
PipelineEvent,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptLinerProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
TranscriptTranslatorAutoProcessor,
|
||||
from reflector.pipelines.main_file_pipeline import (
|
||||
task_pipeline_file_process as task_pipeline_file_process,
|
||||
)
|
||||
from reflector.processors.base import BroadcastProcessor, Processor
|
||||
from reflector.processors.types import (
|
||||
AudioDiarizationInput,
|
||||
TitleSummary,
|
||||
TitleSummaryWithId,
|
||||
from reflector.pipelines.main_live_pipeline import pipeline_post as live_pipeline_post
|
||||
from reflector.pipelines.main_live_pipeline import (
|
||||
pipeline_process as live_pipeline_process,
|
||||
)
|
||||
|
||||
|
||||
class TopicCollectorProcessor(Processor):
|
||||
"""Collect topics for diarization"""
|
||||
def serialize_topics(topics: List[TranscriptTopic]) -> List[Dict[str, Any]]:
|
||||
"""Convert TranscriptTopic objects to JSON-serializable dicts"""
|
||||
serialized = []
|
||||
for topic in topics:
|
||||
topic_dict = topic.model_dump()
|
||||
serialized.append(topic_dict)
|
||||
return serialized
|
||||
|
||||
INPUT_TYPE = TitleSummary
|
||||
OUTPUT_TYPE = TitleSummary
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.topics: List[TitleSummaryWithId] = []
|
||||
self._topic_id = 0
|
||||
def debug_print_speakers(serialized_topics: List[Dict[str, Any]]) -> None:
|
||||
"""Print debug info about speakers found in topics"""
|
||||
all_speakers = set()
|
||||
for topic_dict in serialized_topics:
|
||||
for word in topic_dict.get("words", []):
|
||||
all_speakers.add(word.get("speaker", 0))
|
||||
|
||||
async def _push(self, data: TitleSummary):
|
||||
# Convert to TitleSummaryWithId and collect
|
||||
self._topic_id += 1
|
||||
topic_with_id = TitleSummaryWithId(
|
||||
id=str(self._topic_id),
|
||||
title=data.title,
|
||||
summary=data.summary,
|
||||
timestamp=data.timestamp,
|
||||
duration=data.duration,
|
||||
transcript=data.transcript,
|
||||
print(
|
||||
f"Found {len(serialized_topics)} topics with speakers: {all_speakers}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
|
||||
|
||||
TranscriptId = str
|
||||
|
||||
|
||||
# common interface for every flow: it needs an Entry in db with specific ceremony (file path + status + actual file in file system)
|
||||
# ideally we want to get rid of it at some point
|
||||
async def prepare_entry(
|
||||
source_path: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
) -> TranscriptId:
|
||||
file_path = Path(source_path)
|
||||
|
||||
transcript = await transcripts_controller.add(
|
||||
file_path.name,
|
||||
# note that the real file upload has SourceKind: LIVE for the reason of it's an error
|
||||
source_kind=SourceKind.FILE,
|
||||
source_language=source_language,
|
||||
target_language=target_language,
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Created empty transcript {transcript.id} for file {file_path.name} because technically we need an empty transcript before we start transcript"
|
||||
)
|
||||
|
||||
# pipelines expect files as upload.*
|
||||
|
||||
extension = file_path.suffix
|
||||
upload_path = transcript.data_path / f"upload{extension}"
|
||||
upload_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy2(source_path, upload_path)
|
||||
logger.info(f"Copied {source_path} to {upload_path}")
|
||||
|
||||
# pipelines expect entity status "uploaded"
|
||||
await transcripts_controller.update(transcript, {"status": "uploaded"})
|
||||
|
||||
return transcript.id
|
||||
|
||||
|
||||
# same reason as prepare_entry
|
||||
async def extract_result_from_entry(
|
||||
transcript_id: TranscriptId, output_path: str
|
||||
) -> None:
|
||||
post_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
|
||||
# assert post_final_transcript.status == "ended"
|
||||
# File pipeline doesn't set status to "ended", only live pipeline does https://github.com/Monadical-SAS/reflector/issues/582
|
||||
topics = post_final_transcript.topics
|
||||
if not topics:
|
||||
raise RuntimeError(
|
||||
f"No topics found for transcript {transcript_id} after processing"
|
||||
)
|
||||
self.topics.append(topic_with_id)
|
||||
|
||||
# Pass through the original topic
|
||||
await self.emit(data)
|
||||
serialized_topics = serialize_topics(topics)
|
||||
|
||||
def get_topics(self) -> List[TitleSummaryWithId]:
|
||||
return self.topics
|
||||
if output_path:
|
||||
# Write to JSON file
|
||||
with open(output_path, "w") as f:
|
||||
for topic_dict in serialized_topics:
|
||||
json.dump(topic_dict, f)
|
||||
f.write("\n")
|
||||
print(f"Results written to {output_path}", file=sys.stderr)
|
||||
else:
|
||||
# Write to stdout as JSONL
|
||||
for topic_dict in serialized_topics:
|
||||
print(json.dumps(topic_dict))
|
||||
|
||||
debug_print_speakers(serialized_topics)
|
||||
|
||||
|
||||
async def process_audio_file(
|
||||
filename,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="pyannote",
|
||||
async def process_live_pipeline(
|
||||
transcript_id: TranscriptId,
|
||||
):
|
||||
# Create temp file for audio if diarization is enabled
|
||||
audio_temp_path = None
|
||||
if enable_diarization:
|
||||
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
||||
audio_temp_path = audio_temp_file.name
|
||||
audio_temp_file.close()
|
||||
"""Process transcript_id with transcription and diarization"""
|
||||
|
||||
# Create processor for collecting topics
|
||||
topic_collector = TopicCollectorProcessor()
|
||||
print(f"Processing transcript_id {transcript_id}...", file=sys.stderr)
|
||||
await live_pipeline_process(transcript_id=transcript_id)
|
||||
print(f"Processing complete for transcript {transcript_id}", file=sys.stderr)
|
||||
|
||||
# Build pipeline for audio processing
|
||||
processors = []
|
||||
pre_final_transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
|
||||
# Add audio file writer at the beginning if diarization is enabled
|
||||
if enable_diarization:
|
||||
processors.append(AudioFileWriterProcessor(audio_temp_path))
|
||||
# assert documented behaviour: after process, the pipeline isn't ended. this is the reason of calling pipeline_post
|
||||
assert pre_final_transcript.status != "ended"
|
||||
|
||||
# Add the rest of the processors
|
||||
processors += [
|
||||
AudioChunkerProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
TranscriptLinerProcessor(),
|
||||
TranscriptTranslatorAutoProcessor.as_threaded(),
|
||||
]
|
||||
# at this point, diarization is running but we have no access to it. run diarization in parallel - one will hopefully win after polling
|
||||
result = live_pipeline_post(transcript_id=transcript_id)
|
||||
|
||||
if not only_transcript:
|
||||
processors += [
|
||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
||||
# Collect topics for diarization
|
||||
topic_collector,
|
||||
BroadcastProcessor(
|
||||
processors=[
|
||||
TranscriptFinalTitleProcessor.as_threaded(),
|
||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
# Create main pipeline
|
||||
pipeline = Pipeline(*processors)
|
||||
pipeline.set_pref("audio:source_language", source_language)
|
||||
pipeline.set_pref("audio:target_language", target_language)
|
||||
pipeline.describe()
|
||||
pipeline.on(event_callback)
|
||||
|
||||
# Start processing audio
|
||||
logger.info(f"Opening {filename}")
|
||||
container = av.open(filename)
|
||||
try:
|
||||
logger.info("Start pushing audio into the pipeline")
|
||||
for frame in container.decode(audio=0):
|
||||
await pipeline.push(frame)
|
||||
finally:
|
||||
logger.info("Flushing the pipeline")
|
||||
await pipeline.flush()
|
||||
|
||||
# Run diarization if enabled and we have topics
|
||||
if enable_diarization and not only_transcript and audio_temp_path:
|
||||
topics = topic_collector.get_topics()
|
||||
|
||||
if topics:
|
||||
logger.info(f"Starting diarization with {len(topics)} topics")
|
||||
|
||||
try:
|
||||
from reflector.processors import AudioDiarizationAutoProcessor
|
||||
|
||||
diarization_processor = AudioDiarizationAutoProcessor(
|
||||
name=diarization_backend
|
||||
)
|
||||
|
||||
diarization_processor.set_pipeline(pipeline)
|
||||
|
||||
# For Modal backend, we need to upload the file to S3 first
|
||||
if diarization_backend == "modal":
|
||||
from datetime import datetime
|
||||
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.utils.s3_temp_file import S3TemporaryFile
|
||||
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
# Generate a unique filename in evaluation folder
|
||||
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
||||
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
|
||||
|
||||
# Use context manager for automatic cleanup
|
||||
async with S3TemporaryFile(storage, audio_filename) as s3_file:
|
||||
# Read and upload the audio file
|
||||
with open(audio_temp_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
audio_url = await s3_file.upload(audio_data)
|
||||
logger.info(f"Uploaded audio to S3: {audio_filename}")
|
||||
|
||||
# Create diarization input with S3 URL
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
# File will be automatically cleaned up when exiting the context
|
||||
else:
|
||||
# For local backend, use local file path
|
||||
audio_url = audio_temp_path
|
||||
|
||||
# Create diarization input
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
|
||||
except ImportError as e:
|
||||
logger.error(f"Failed to import diarization dependencies: {e}")
|
||||
logger.error(
|
||||
"Install with: uv pip install pyannote.audio torch torchaudio"
|
||||
)
|
||||
logger.error(
|
||||
"And set HF_TOKEN environment variable for pyannote models"
|
||||
)
|
||||
raise SystemExit(1)
|
||||
except Exception as e:
|
||||
logger.error(f"Diarization failed: {e}")
|
||||
raise SystemExit(1)
|
||||
else:
|
||||
logger.warning("Skipping diarization: no topics available")
|
||||
|
||||
# Clean up temp file
|
||||
if audio_temp_path:
|
||||
try:
|
||||
Path(audio_temp_path).unlink()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
|
||||
|
||||
logger.info("All done!")
|
||||
# result.ready() blocks even without await; it mutates result also
|
||||
while not result.ready():
|
||||
print(f"Status: {result.state}")
|
||||
time.sleep(2)
|
||||
|
||||
|
||||
async def process_file_pipeline(
|
||||
filename: str,
|
||||
event_callback,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="modal",
|
||||
transcript_id: TranscriptId,
|
||||
):
|
||||
"""Process audio/video file using the optimized file pipeline"""
|
||||
|
||||
# task_pipeline_file_process is a Celery task, need to use .delay() for async execution
|
||||
result = task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||
|
||||
# Wait for the Celery task to complete
|
||||
while not result.ready():
|
||||
print(f"File pipeline status: {result.state}", file=sys.stderr)
|
||||
time.sleep(2)
|
||||
|
||||
logger.info("File pipeline processing complete")
|
||||
|
||||
|
||||
async def process(
|
||||
source_path: str,
|
||||
source_language: str,
|
||||
target_language: str,
|
||||
pipeline: Literal["live", "file"],
|
||||
output_path: str = None,
|
||||
):
|
||||
from reflector.db import get_database
|
||||
|
||||
database = get_database()
|
||||
# db connect is a part of ceremony
|
||||
await database.connect()
|
||||
|
||||
try:
|
||||
from reflector.db import database
|
||||
from reflector.db.transcripts import SourceKind, transcripts_controller
|
||||
from reflector.pipelines.main_file_pipeline import PipelineMainFile
|
||||
|
||||
await database.connect()
|
||||
try:
|
||||
# Create a temporary transcript for processing
|
||||
transcript = await transcripts_controller.add(
|
||||
"",
|
||||
source_kind=SourceKind.FILE,
|
||||
source_language=source_language,
|
||||
target_language=target_language,
|
||||
)
|
||||
|
||||
# Process the file
|
||||
pipeline = PipelineMainFile(transcript_id=transcript.id)
|
||||
await pipeline.process(Path(filename))
|
||||
|
||||
logger.info("File pipeline processing complete")
|
||||
|
||||
finally:
|
||||
await database.disconnect()
|
||||
except ImportError as e:
|
||||
logger.error(f"File pipeline not available: {e}")
|
||||
logger.info("Falling back to stream pipeline")
|
||||
# Fall back to stream pipeline
|
||||
await process_audio_file(
|
||||
filename,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language=source_language,
|
||||
target_language=target_language,
|
||||
enable_diarization=enable_diarization,
|
||||
diarization_backend=diarization_backend,
|
||||
transcript_id = await prepare_entry(
|
||||
source_path,
|
||||
source_language,
|
||||
target_language,
|
||||
)
|
||||
|
||||
pipeline_handlers = {
|
||||
"live": process_live_pipeline,
|
||||
"file": process_file_pipeline,
|
||||
}
|
||||
|
||||
handler = pipeline_handlers.get(pipeline)
|
||||
if not handler:
|
||||
raise ValueError(f"Unknown pipeline type: {pipeline}")
|
||||
|
||||
await handler(transcript_id)
|
||||
|
||||
await extract_result_from_entry(transcript_id, output_path)
|
||||
finally:
|
||||
await database.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
import os
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Process audio files with optional speaker diarization"
|
||||
description="Process audio files with speaker diarization"
|
||||
)
|
||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
||||
parser.add_argument(
|
||||
"--stream",
|
||||
action="store_true",
|
||||
help="Use streaming pipeline (original frame-based processing)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--only-transcript",
|
||||
"-t",
|
||||
action="store_true",
|
||||
help="Only generate transcript without topics/summaries",
|
||||
"--pipeline",
|
||||
required=True,
|
||||
choices=["live", "file"],
|
||||
help="Pipeline type to use for processing (live: streaming/incremental, file: batch/parallel)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--source-language", default="en", help="Source language code (default: en)"
|
||||
@@ -295,81 +207,14 @@ if __name__ == "__main__":
|
||||
"--target-language", default="en", help="Target language code (default: en)"
|
||||
)
|
||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
||||
parser.add_argument(
|
||||
"--enable-diarization",
|
||||
"-d",
|
||||
action="store_true",
|
||||
help="Enable speaker diarization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--diarization-backend",
|
||||
default="pyannote",
|
||||
choices=["pyannote", "modal"],
|
||||
help="Diarization backend to use (default: pyannote)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if "REDIS_HOST" not in os.environ:
|
||||
os.environ["REDIS_HOST"] = "localhost"
|
||||
|
||||
output_fd = None
|
||||
if args.output:
|
||||
output_fd = open(args.output, "w")
|
||||
|
||||
async def event_callback(event: PipelineEvent):
|
||||
processor = event.processor
|
||||
data = event.data
|
||||
|
||||
# Ignore internal processors
|
||||
if processor in (
|
||||
"AudioChunkerProcessor",
|
||||
"AudioMergeProcessor",
|
||||
"AudioFileWriterProcessor",
|
||||
"TopicCollectorProcessor",
|
||||
"BroadcastProcessor",
|
||||
):
|
||||
return
|
||||
|
||||
# If diarization is enabled, skip the original topic events from the pipeline
|
||||
# The diarization processor will emit the same topics but with speaker info
|
||||
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
|
||||
return
|
||||
|
||||
# Log all events
|
||||
logger.info(f"Event: {processor} - {type(data).__name__}")
|
||||
|
||||
# Write to output
|
||||
if output_fd:
|
||||
output_fd.write(event.model_dump_json())
|
||||
output_fd.write("\n")
|
||||
output_fd.flush()
|
||||
|
||||
if args.stream:
|
||||
# Use original streaming pipeline
|
||||
asyncio.run(
|
||||
process_audio_file(
|
||||
args.source,
|
||||
event_callback,
|
||||
only_transcript=args.only_transcript,
|
||||
source_language=args.source_language,
|
||||
target_language=args.target_language,
|
||||
enable_diarization=args.enable_diarization,
|
||||
diarization_backend=args.diarization_backend,
|
||||
)
|
||||
asyncio.run(
|
||||
process(
|
||||
args.source,
|
||||
args.source_language,
|
||||
args.target_language,
|
||||
args.pipeline,
|
||||
args.output,
|
||||
)
|
||||
else:
|
||||
# Use optimized file pipeline (default)
|
||||
asyncio.run(
|
||||
process_file_pipeline(
|
||||
args.source,
|
||||
event_callback,
|
||||
source_language=args.source_language,
|
||||
target_language=args.target_language,
|
||||
enable_diarization=args.enable_diarization,
|
||||
diarization_backend=args.diarization_backend,
|
||||
)
|
||||
)
|
||||
|
||||
if output_fd:
|
||||
output_fd.close()
|
||||
logger.info(f"Output written to {args.output}")
|
||||
)
|
||||
|
||||
@@ -1,315 +0,0 @@
|
||||
"""
|
||||
@vibe-generated
|
||||
Process audio file with diarization support
|
||||
===========================================
|
||||
|
||||
Extended version of process.py that includes speaker diarization.
|
||||
This tool processes audio files locally without requiring the full server infrastructure.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import tempfile
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import av
|
||||
|
||||
from reflector.logger import logger
|
||||
from reflector.processors import (
|
||||
AudioChunkerProcessor,
|
||||
AudioFileWriterProcessor,
|
||||
AudioMergeProcessor,
|
||||
AudioTranscriptAutoProcessor,
|
||||
Pipeline,
|
||||
PipelineEvent,
|
||||
TranscriptFinalSummaryProcessor,
|
||||
TranscriptFinalTitleProcessor,
|
||||
TranscriptLinerProcessor,
|
||||
TranscriptTopicDetectorProcessor,
|
||||
TranscriptTranslatorAutoProcessor,
|
||||
)
|
||||
from reflector.processors.base import BroadcastProcessor, Processor
|
||||
from reflector.processors.types import (
|
||||
AudioDiarizationInput,
|
||||
TitleSummary,
|
||||
TitleSummaryWithId,
|
||||
)
|
||||
|
||||
|
||||
class TopicCollectorProcessor(Processor):
|
||||
"""Collect topics for diarization"""
|
||||
|
||||
INPUT_TYPE = TitleSummary
|
||||
OUTPUT_TYPE = TitleSummary
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.topics: List[TitleSummaryWithId] = []
|
||||
self._topic_id = 0
|
||||
|
||||
async def _push(self, data: TitleSummary):
|
||||
# Convert to TitleSummaryWithId and collect
|
||||
self._topic_id += 1
|
||||
topic_with_id = TitleSummaryWithId(
|
||||
id=str(self._topic_id),
|
||||
title=data.title,
|
||||
summary=data.summary,
|
||||
timestamp=data.timestamp,
|
||||
duration=data.duration,
|
||||
transcript=data.transcript,
|
||||
)
|
||||
self.topics.append(topic_with_id)
|
||||
|
||||
# Pass through the original topic
|
||||
await self.emit(data)
|
||||
|
||||
def get_topics(self) -> List[TitleSummaryWithId]:
|
||||
return self.topics
|
||||
|
||||
|
||||
async def process_audio_file_with_diarization(
|
||||
filename,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="modal",
|
||||
):
|
||||
# Create temp file for audio if diarization is enabled
|
||||
audio_temp_path = None
|
||||
if enable_diarization:
|
||||
audio_temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
||||
audio_temp_path = audio_temp_file.name
|
||||
audio_temp_file.close()
|
||||
|
||||
# Create processor for collecting topics
|
||||
topic_collector = TopicCollectorProcessor()
|
||||
|
||||
# Build pipeline for audio processing
|
||||
processors = []
|
||||
|
||||
# Add audio file writer at the beginning if diarization is enabled
|
||||
if enable_diarization:
|
||||
processors.append(AudioFileWriterProcessor(audio_temp_path))
|
||||
|
||||
# Add the rest of the processors
|
||||
processors += [
|
||||
AudioChunkerProcessor(),
|
||||
AudioMergeProcessor(),
|
||||
AudioTranscriptAutoProcessor.as_threaded(),
|
||||
]
|
||||
|
||||
processors += [
|
||||
TranscriptLinerProcessor(),
|
||||
TranscriptTranslatorAutoProcessor.as_threaded(),
|
||||
]
|
||||
|
||||
if not only_transcript:
|
||||
processors += [
|
||||
TranscriptTopicDetectorProcessor.as_threaded(),
|
||||
# Collect topics for diarization
|
||||
topic_collector,
|
||||
BroadcastProcessor(
|
||||
processors=[
|
||||
TranscriptFinalTitleProcessor.as_threaded(),
|
||||
TranscriptFinalSummaryProcessor.as_threaded(),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
# Create main pipeline
|
||||
pipeline = Pipeline(*processors)
|
||||
pipeline.set_pref("audio:source_language", source_language)
|
||||
pipeline.set_pref("audio:target_language", target_language)
|
||||
pipeline.describe()
|
||||
pipeline.on(event_callback)
|
||||
|
||||
# Start processing audio
|
||||
logger.info(f"Opening {filename}")
|
||||
container = av.open(filename)
|
||||
try:
|
||||
logger.info("Start pushing audio into the pipeline")
|
||||
for frame in container.decode(audio=0):
|
||||
await pipeline.push(frame)
|
||||
finally:
|
||||
logger.info("Flushing the pipeline")
|
||||
await pipeline.flush()
|
||||
|
||||
# Run diarization if enabled and we have topics
|
||||
if enable_diarization and not only_transcript and audio_temp_path:
|
||||
topics = topic_collector.get_topics()
|
||||
|
||||
if topics:
|
||||
logger.info(f"Starting diarization with {len(topics)} topics")
|
||||
|
||||
try:
|
||||
from reflector.processors import AudioDiarizationAutoProcessor
|
||||
|
||||
diarization_processor = AudioDiarizationAutoProcessor(
|
||||
name=diarization_backend
|
||||
)
|
||||
|
||||
diarization_processor.set_pipeline(pipeline)
|
||||
|
||||
# For Modal backend, we need to upload the file to S3 first
|
||||
if diarization_backend == "modal":
|
||||
from datetime import datetime, timezone
|
||||
|
||||
from reflector.storage import get_transcripts_storage
|
||||
from reflector.utils.s3_temp_file import S3TemporaryFile
|
||||
|
||||
storage = get_transcripts_storage()
|
||||
|
||||
# Generate a unique filename in evaluation folder
|
||||
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")
|
||||
audio_filename = f"evaluation/diarization_temp/{timestamp}_{uuid.uuid4().hex}.wav"
|
||||
|
||||
# Use context manager for automatic cleanup
|
||||
async with S3TemporaryFile(storage, audio_filename) as s3_file:
|
||||
# Read and upload the audio file
|
||||
with open(audio_temp_path, "rb") as f:
|
||||
audio_data = f.read()
|
||||
|
||||
audio_url = await s3_file.upload(audio_data)
|
||||
logger.info(f"Uploaded audio to S3: {audio_filename}")
|
||||
|
||||
# Create diarization input with S3 URL
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
# File will be automatically cleaned up when exiting the context
|
||||
else:
|
||||
# For local backend, use local file path
|
||||
audio_url = audio_temp_path
|
||||
|
||||
# Create diarization input
|
||||
diarization_input = AudioDiarizationInput(
|
||||
audio_url=audio_url, topics=topics
|
||||
)
|
||||
|
||||
# Run diarization
|
||||
await diarization_processor.push(diarization_input)
|
||||
await diarization_processor.flush()
|
||||
|
||||
logger.info("Diarization complete")
|
||||
|
||||
except ImportError as e:
|
||||
logger.error(f"Failed to import diarization dependencies: {e}")
|
||||
logger.error(
|
||||
"Install with: uv pip install pyannote.audio torch torchaudio"
|
||||
)
|
||||
logger.error(
|
||||
"And set HF_TOKEN environment variable for pyannote models"
|
||||
)
|
||||
raise SystemExit(1)
|
||||
except Exception as e:
|
||||
logger.error(f"Diarization failed: {e}")
|
||||
raise SystemExit(1)
|
||||
else:
|
||||
logger.warning("Skipping diarization: no topics available")
|
||||
|
||||
# Clean up temp file
|
||||
if audio_temp_path:
|
||||
try:
|
||||
Path(audio_temp_path).unlink()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up temp file {audio_temp_path}: {e}")
|
||||
|
||||
logger.info("All done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
import os
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Process audio files with optional speaker diarization"
|
||||
)
|
||||
parser.add_argument("source", help="Source file (mp3, wav, mp4...)")
|
||||
parser.add_argument(
|
||||
"--only-transcript",
|
||||
"-t",
|
||||
action="store_true",
|
||||
help="Only generate transcript without topics/summaries",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--source-language", default="en", help="Source language code (default: en)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--target-language", default="en", help="Target language code (default: en)"
|
||||
)
|
||||
parser.add_argument("--output", "-o", help="Output file (output.jsonl)")
|
||||
parser.add_argument(
|
||||
"--enable-diarization",
|
||||
"-d",
|
||||
action="store_true",
|
||||
help="Enable speaker diarization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--diarization-backend",
|
||||
default="modal",
|
||||
choices=["modal"],
|
||||
help="Diarization backend to use (default: modal)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Set REDIS_HOST to localhost if not provided
|
||||
if "REDIS_HOST" not in os.environ:
|
||||
os.environ["REDIS_HOST"] = "localhost"
|
||||
logger.info("REDIS_HOST not set, defaulting to localhost")
|
||||
|
||||
output_fd = None
|
||||
if args.output:
|
||||
output_fd = open(args.output, "w")
|
||||
|
||||
async def event_callback(event: PipelineEvent):
|
||||
processor = event.processor
|
||||
data = event.data
|
||||
|
||||
# Ignore internal processors
|
||||
if processor in (
|
||||
"AudioChunkerProcessor",
|
||||
"AudioMergeProcessor",
|
||||
"AudioFileWriterProcessor",
|
||||
"TopicCollectorProcessor",
|
||||
"BroadcastProcessor",
|
||||
):
|
||||
return
|
||||
|
||||
# If diarization is enabled, skip the original topic events from the pipeline
|
||||
# The diarization processor will emit the same topics but with speaker info
|
||||
if processor == "TranscriptTopicDetectorProcessor" and args.enable_diarization:
|
||||
return
|
||||
|
||||
# Log all events
|
||||
logger.info(f"Event: {processor} - {type(data).__name__}")
|
||||
|
||||
# Write to output
|
||||
if output_fd:
|
||||
output_fd.write(event.model_dump_json())
|
||||
output_fd.write("\n")
|
||||
output_fd.flush()
|
||||
|
||||
asyncio.run(
|
||||
process_audio_file_with_diarization(
|
||||
args.source,
|
||||
event_callback,
|
||||
only_transcript=args.only_transcript,
|
||||
source_language=args.source_language,
|
||||
target_language=args.target_language,
|
||||
enable_diarization=args.enable_diarization,
|
||||
diarization_backend=args.diarization_backend,
|
||||
)
|
||||
)
|
||||
|
||||
if output_fd:
|
||||
output_fd.close()
|
||||
logger.info(f"Output written to {args.output}")
|
||||
@@ -53,7 +53,7 @@ async def run_single_processor(args):
|
||||
async def event_callback(event: PipelineEvent):
|
||||
processor = event.processor
|
||||
# ignore some processor
|
||||
if processor in ("AudioChunkerProcessor", "AudioMergeProcessor"):
|
||||
if processor in ("AudioChunkerAutoProcessor", "AudioMergeProcessor"):
|
||||
return
|
||||
print(f"Event: {event}")
|
||||
if output_fd:
|
||||
|
||||
@@ -1,96 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
@vibe-generated
|
||||
Test script for the diarization CLI tool
|
||||
=========================================
|
||||
|
||||
This script helps test the diarization functionality with sample audio files.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from reflector.logger import logger
|
||||
|
||||
|
||||
async def test_diarization(audio_file: str):
|
||||
"""Test the diarization functionality"""
|
||||
|
||||
# Import the processing function
|
||||
from process_with_diarization import process_audio_file_with_diarization
|
||||
|
||||
# Collect events
|
||||
events = []
|
||||
|
||||
async def event_callback(event):
|
||||
events.append({"processor": event.processor, "data": event.data})
|
||||
logger.info(f"Event from {event.processor}")
|
||||
|
||||
# Process the audio file
|
||||
logger.info(f"Processing audio file: {audio_file}")
|
||||
|
||||
try:
|
||||
await process_audio_file_with_diarization(
|
||||
audio_file,
|
||||
event_callback,
|
||||
only_transcript=False,
|
||||
source_language="en",
|
||||
target_language="en",
|
||||
enable_diarization=True,
|
||||
diarization_backend="modal",
|
||||
)
|
||||
|
||||
# Analyze results
|
||||
logger.info(f"Processing complete. Received {len(events)} events")
|
||||
|
||||
# Look for diarization results
|
||||
diarized_topics = []
|
||||
for event in events:
|
||||
if "TitleSummary" in event["processor"]:
|
||||
# Check if words have speaker information
|
||||
if hasattr(event["data"], "transcript") and event["data"].transcript:
|
||||
words = event["data"].transcript.words
|
||||
if words and hasattr(words[0], "speaker"):
|
||||
speakers = set(
|
||||
w.speaker for w in words if hasattr(w, "speaker")
|
||||
)
|
||||
logger.info(
|
||||
f"Found {len(speakers)} speakers in topic: {event['data'].title}"
|
||||
)
|
||||
diarized_topics.append(event["data"])
|
||||
|
||||
if diarized_topics:
|
||||
logger.info(f"Successfully diarized {len(diarized_topics)} topics")
|
||||
|
||||
# Print sample output
|
||||
sample_topic = diarized_topics[0]
|
||||
logger.info("Sample diarized output:")
|
||||
for i, word in enumerate(sample_topic.transcript.words[:10]):
|
||||
logger.info(f" Word {i}: '{word.text}' - Speaker {word.speaker}")
|
||||
else:
|
||||
logger.warning("No diarization results found in output")
|
||||
|
||||
return events
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during processing: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: python test_diarization.py <audio_file>")
|
||||
sys.exit(1)
|
||||
|
||||
audio_file = sys.argv[1]
|
||||
if not Path(audio_file).exists():
|
||||
print(f"Error: Audio file '{audio_file}' not found")
|
||||
sys.exit(1)
|
||||
|
||||
# Run the test
|
||||
asyncio.run(test_diarization(audio_file))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
20
server/reflector/utils/string.py
Normal file
20
server/reflector/utils/string.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import Field, TypeAdapter, constr
|
||||
|
||||
NonEmptyStringBase = constr(min_length=1, strip_whitespace=False)
|
||||
NonEmptyString = Annotated[
|
||||
NonEmptyStringBase,
|
||||
Field(description="A non-empty string", min_length=1),
|
||||
]
|
||||
non_empty_string_adapter = TypeAdapter(NonEmptyString)
|
||||
|
||||
|
||||
def parse_non_empty_string(s: str) -> NonEmptyString:
|
||||
return non_empty_string_adapter.validate_python(s)
|
||||
|
||||
|
||||
def try_parse_non_empty_string(s: str) -> NonEmptyString | None:
|
||||
if not s:
|
||||
return None
|
||||
return parse_non_empty_string(s)
|
||||
@@ -15,6 +15,7 @@ from reflector.db.meetings import meetings_controller
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.settings import settings
|
||||
from reflector.whereby import create_meeting, upload_logo
|
||||
from reflector.worker.webhook import test_webhook
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -44,6 +45,11 @@ class Room(BaseModel):
|
||||
is_shared: bool
|
||||
|
||||
|
||||
class RoomDetails(Room):
|
||||
webhook_url: str | None
|
||||
webhook_secret: str | None
|
||||
|
||||
|
||||
class Meeting(BaseModel):
|
||||
id: str
|
||||
room_name: str
|
||||
@@ -64,6 +70,8 @@ class CreateRoom(BaseModel):
|
||||
recording_type: str
|
||||
recording_trigger: str
|
||||
is_shared: bool
|
||||
webhook_url: str
|
||||
webhook_secret: str
|
||||
|
||||
|
||||
class UpdateRoom(BaseModel):
|
||||
@@ -76,16 +84,26 @@ class UpdateRoom(BaseModel):
|
||||
recording_type: str
|
||||
recording_trigger: str
|
||||
is_shared: bool
|
||||
webhook_url: str
|
||||
webhook_secret: str
|
||||
|
||||
|
||||
class DeletionStatus(BaseModel):
|
||||
status: str
|
||||
|
||||
|
||||
@router.get("/rooms", response_model=Page[Room])
|
||||
class WebhookTestResult(BaseModel):
|
||||
success: bool
|
||||
message: str = ""
|
||||
error: str = ""
|
||||
status_code: int | None = None
|
||||
response_preview: str | None = None
|
||||
|
||||
|
||||
@router.get("/rooms", response_model=Page[RoomDetails])
|
||||
async def rooms_list(
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
) -> list[Room]:
|
||||
) -> list[RoomDetails]:
|
||||
if not user and not settings.PUBLIC_MODE:
|
||||
raise HTTPException(status_code=401, detail="Not authenticated")
|
||||
|
||||
@@ -99,6 +117,18 @@ async def rooms_list(
|
||||
)
|
||||
|
||||
|
||||
@router.get("/rooms/{room_id}", response_model=RoomDetails)
|
||||
async def rooms_get(
|
||||
room_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
user_id = user["sub"] if user else None
|
||||
room = await rooms_controller.get_by_id_for_http(room_id, user_id=user_id)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
return room
|
||||
|
||||
|
||||
@router.post("/rooms", response_model=Room)
|
||||
async def rooms_create(
|
||||
room: CreateRoom,
|
||||
@@ -117,10 +147,12 @@ async def rooms_create(
|
||||
recording_type=room.recording_type,
|
||||
recording_trigger=room.recording_trigger,
|
||||
is_shared=room.is_shared,
|
||||
webhook_url=room.webhook_url,
|
||||
webhook_secret=room.webhook_secret,
|
||||
)
|
||||
|
||||
|
||||
@router.patch("/rooms/{room_id}", response_model=Room)
|
||||
@router.patch("/rooms/{room_id}", response_model=RoomDetails)
|
||||
async def rooms_update(
|
||||
room_id: str,
|
||||
info: UpdateRoom,
|
||||
@@ -165,6 +197,7 @@ async def rooms_create_meeting(
|
||||
end_date = current_time + timedelta(hours=8)
|
||||
|
||||
whereby_meeting = await create_meeting("", end_date=end_date, room=room)
|
||||
|
||||
await upload_logo(whereby_meeting["roomName"], "./images/logo.png")
|
||||
|
||||
# Now try to save to database
|
||||
@@ -209,3 +242,24 @@ async def rooms_create_meeting(
|
||||
meeting.host_room_url = ""
|
||||
|
||||
return meeting
|
||||
|
||||
|
||||
@router.post("/rooms/{room_id}/webhook/test", response_model=WebhookTestResult)
|
||||
async def rooms_test_webhook(
|
||||
room_id: str,
|
||||
user: Annotated[Optional[auth.UserInfo], Depends(auth.current_user_optional)],
|
||||
):
|
||||
"""Test webhook configuration by sending a sample payload."""
|
||||
user_id = user["sub"] if user else None
|
||||
|
||||
room = await rooms_controller.get_by_id(room_id)
|
||||
if not room:
|
||||
raise HTTPException(status_code=404, detail="Room not found")
|
||||
|
||||
if user_id and room.user_id != user_id:
|
||||
raise HTTPException(
|
||||
status_code=403, detail="Not authorized to test this room's webhook"
|
||||
)
|
||||
|
||||
result = await test_webhook(room_id)
|
||||
return WebhookTestResult(**result)
|
||||
|
||||
@@ -5,7 +5,7 @@ from fastapi import APIRouter, Depends, HTTPException, Query
|
||||
from fastapi_pagination import Page
|
||||
from fastapi_pagination.ext.databases import apaginate
|
||||
from jose import jwt
|
||||
from pydantic import BaseModel, Field, field_serializer
|
||||
from pydantic import BaseModel, Field, constr, field_serializer
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db import get_database
|
||||
@@ -19,14 +19,15 @@ from reflector.db.search import (
|
||||
SearchOffsetBase,
|
||||
SearchParameters,
|
||||
SearchQuery,
|
||||
SearchQueryBase,
|
||||
SearchResult,
|
||||
SearchTotal,
|
||||
search_controller,
|
||||
search_query_adapter,
|
||||
)
|
||||
from reflector.db.transcripts import (
|
||||
SourceKind,
|
||||
TranscriptParticipant,
|
||||
TranscriptStatus,
|
||||
TranscriptTopic,
|
||||
transcripts_controller,
|
||||
)
|
||||
@@ -63,7 +64,7 @@ class GetTranscriptMinimal(BaseModel):
|
||||
id: str
|
||||
user_id: str | None
|
||||
name: str
|
||||
status: str
|
||||
status: TranscriptStatus
|
||||
locked: bool
|
||||
duration: float
|
||||
title: str | None
|
||||
@@ -96,6 +97,7 @@ class CreateTranscript(BaseModel):
|
||||
name: str
|
||||
source_language: str = Field("en")
|
||||
target_language: str = Field("en")
|
||||
source_kind: SourceKind | None = None
|
||||
|
||||
|
||||
class UpdateTranscript(BaseModel):
|
||||
@@ -114,7 +116,19 @@ class DeletionStatus(BaseModel):
|
||||
status: str
|
||||
|
||||
|
||||
SearchQueryParam = Annotated[SearchQueryBase, Query(description="Search query text")]
|
||||
SearchQueryParamBase = constr(min_length=0, strip_whitespace=True)
|
||||
SearchQueryParam = Annotated[
|
||||
SearchQueryParamBase, Query(description="Search query text")
|
||||
]
|
||||
|
||||
|
||||
# http and api standards accept "q="; we would like to handle it as the absence of query, not as "empty string query"
|
||||
def parse_search_query_param(q: SearchQueryParam) -> SearchQuery | None:
|
||||
if q == "":
|
||||
return None
|
||||
return search_query_adapter.validate_python(q)
|
||||
|
||||
|
||||
SearchLimitParam = Annotated[SearchLimitBase, Query(description="Results per page")]
|
||||
SearchOffsetParam = Annotated[
|
||||
SearchOffsetBase, Query(description="Number of results to skip")
|
||||
@@ -124,7 +138,7 @@ SearchOffsetParam = Annotated[
|
||||
class SearchResponse(BaseModel):
|
||||
results: list[SearchResult]
|
||||
total: SearchTotal
|
||||
query: SearchQuery
|
||||
query: SearchQuery | None = None
|
||||
limit: SearchLimit
|
||||
offset: SearchOffset
|
||||
|
||||
@@ -174,7 +188,7 @@ async def transcripts_search(
|
||||
user_id = user["sub"] if user else None
|
||||
|
||||
search_params = SearchParameters(
|
||||
query_text=q,
|
||||
query_text=parse_search_query_param(q),
|
||||
limit=limit,
|
||||
offset=offset,
|
||||
user_id=user_id,
|
||||
@@ -201,7 +215,7 @@ async def transcripts_create(
|
||||
user_id = user["sub"] if user else None
|
||||
return await transcripts_controller.add(
|
||||
info.name,
|
||||
source_kind=SourceKind.LIVE,
|
||||
source_kind=info.source_kind or SourceKind.LIVE,
|
||||
source_language=info.source_language,
|
||||
target_language=info.target_language,
|
||||
user_id=user_id,
|
||||
|
||||
@@ -6,7 +6,7 @@ from pydantic import BaseModel
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db.transcripts import transcripts_controller
|
||||
from reflector.pipelines.main_live_pipeline import task_pipeline_process
|
||||
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@@ -34,13 +34,13 @@ async def transcript_process(
|
||||
)
|
||||
|
||||
if task_is_scheduled_or_active(
|
||||
"reflector.pipelines.main_live_pipeline.task_pipeline_process",
|
||||
"reflector.pipelines.main_file_pipeline.task_pipeline_file_process",
|
||||
transcript_id=transcript_id,
|
||||
):
|
||||
return ProcessStatus(status="already running")
|
||||
|
||||
# schedule a background task process the file
|
||||
task_pipeline_process.delay(transcript_id=transcript_id)
|
||||
task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||
|
||||
return ProcessStatus(status="ok")
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ from pydantic import BaseModel
|
||||
|
||||
import reflector.auth as auth
|
||||
from reflector.db.transcripts import transcripts_controller
|
||||
from reflector.pipelines.main_live_pipeline import task_pipeline_process
|
||||
from reflector.pipelines.main_file_pipeline import task_pipeline_file_process
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@@ -92,6 +92,6 @@ async def transcript_record_upload(
|
||||
await transcripts_controller.update(transcript, {"status": "uploaded"})
|
||||
|
||||
# launch a background task to process the file
|
||||
task_pipeline_process.delay(transcript_id=transcript_id)
|
||||
task_pipeline_file_process.delay(transcript_id=transcript_id)
|
||||
|
||||
return UploadStatus(status="ok")
|
||||
|
||||
@@ -19,6 +19,7 @@ else:
|
||||
"reflector.pipelines.main_live_pipeline",
|
||||
"reflector.worker.healthcheck",
|
||||
"reflector.worker.process",
|
||||
"reflector.worker.cleanup",
|
||||
]
|
||||
)
|
||||
|
||||
@@ -38,6 +39,16 @@ else:
|
||||
},
|
||||
}
|
||||
|
||||
if settings.PUBLIC_MODE:
|
||||
app.conf.beat_schedule["cleanup_old_public_data"] = {
|
||||
"task": "reflector.worker.cleanup.cleanup_old_public_data_task",
|
||||
"schedule": crontab(hour=3, minute=0),
|
||||
}
|
||||
logger.info(
|
||||
"Public mode cleanup enabled",
|
||||
retention_days=settings.PUBLIC_DATA_RETENTION_DAYS,
|
||||
)
|
||||
|
||||
if settings.HEALTHCHECK_URL:
|
||||
app.conf.beat_schedule["healthcheck_ping"] = {
|
||||
"task": "reflector.worker.healthcheck.healthcheck_ping",
|
||||
|
||||
156
server/reflector/worker/cleanup.py
Normal file
156
server/reflector/worker/cleanup.py
Normal file
@@ -0,0 +1,156 @@
|
||||
"""
|
||||
Main task for cleanup old public data.
|
||||
|
||||
Deletes old anonymous transcripts and their associated meetings/recordings.
|
||||
Transcripts are the main entry point - any associated data is also removed.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import TypedDict
|
||||
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
from databases import Database
|
||||
from pydantic.types import PositiveInt
|
||||
|
||||
from reflector.asynctask import asynctask
|
||||
from reflector.db import get_database
|
||||
from reflector.db.meetings import meetings
|
||||
from reflector.db.recordings import recordings
|
||||
from reflector.db.transcripts import transcripts, transcripts_controller
|
||||
from reflector.settings import settings
|
||||
from reflector.storage import get_recordings_storage
|
||||
|
||||
logger = structlog.get_logger(__name__)
|
||||
|
||||
|
||||
class CleanupStats(TypedDict):
|
||||
"""Statistics for cleanup operation."""
|
||||
|
||||
transcripts_deleted: int
|
||||
meetings_deleted: int
|
||||
recordings_deleted: int
|
||||
errors: list[str]
|
||||
|
||||
|
||||
async def delete_single_transcript(
|
||||
db: Database, transcript_data: dict, stats: CleanupStats
|
||||
):
|
||||
transcript_id = transcript_data["id"]
|
||||
meeting_id = transcript_data["meeting_id"]
|
||||
recording_id = transcript_data["recording_id"]
|
||||
|
||||
try:
|
||||
async with db.transaction(isolation="serializable"):
|
||||
if meeting_id:
|
||||
await db.execute(meetings.delete().where(meetings.c.id == meeting_id))
|
||||
stats["meetings_deleted"] += 1
|
||||
logger.info("Deleted associated meeting", meeting_id=meeting_id)
|
||||
|
||||
if recording_id:
|
||||
recording = await db.fetch_one(
|
||||
recordings.select().where(recordings.c.id == recording_id)
|
||||
)
|
||||
if recording:
|
||||
try:
|
||||
await get_recordings_storage().delete_file(
|
||||
recording["object_key"]
|
||||
)
|
||||
except Exception as storage_error:
|
||||
logger.warning(
|
||||
"Failed to delete recording from storage",
|
||||
recording_id=recording_id,
|
||||
object_key=recording["object_key"],
|
||||
error=str(storage_error),
|
||||
)
|
||||
|
||||
await db.execute(
|
||||
recordings.delete().where(recordings.c.id == recording_id)
|
||||
)
|
||||
stats["recordings_deleted"] += 1
|
||||
logger.info(
|
||||
"Deleted associated recording", recording_id=recording_id
|
||||
)
|
||||
|
||||
await transcripts_controller.remove_by_id(transcript_id)
|
||||
stats["transcripts_deleted"] += 1
|
||||
logger.info(
|
||||
"Deleted transcript",
|
||||
transcript_id=transcript_id,
|
||||
created_at=transcript_data["created_at"].isoformat(),
|
||||
)
|
||||
except Exception as e:
|
||||
error_msg = f"Failed to delete transcript {transcript_id}: {str(e)}"
|
||||
logger.error(error_msg, exc_info=e)
|
||||
stats["errors"].append(error_msg)
|
||||
|
||||
|
||||
async def cleanup_old_transcripts(
|
||||
db: Database, cutoff_date: datetime, stats: CleanupStats
|
||||
):
|
||||
"""Delete old anonymous transcripts and their associated recordings/meetings."""
|
||||
query = transcripts.select().where(
|
||||
(transcripts.c.created_at < cutoff_date) & (transcripts.c.user_id.is_(None))
|
||||
)
|
||||
old_transcripts = await db.fetch_all(query)
|
||||
|
||||
logger.info(f"Found {len(old_transcripts)} old transcripts to delete")
|
||||
|
||||
for transcript_data in old_transcripts:
|
||||
await delete_single_transcript(db, transcript_data, stats)
|
||||
|
||||
|
||||
def log_cleanup_results(stats: CleanupStats):
|
||||
logger.info(
|
||||
"Cleanup completed",
|
||||
transcripts_deleted=stats["transcripts_deleted"],
|
||||
meetings_deleted=stats["meetings_deleted"],
|
||||
recordings_deleted=stats["recordings_deleted"],
|
||||
errors_count=len(stats["errors"]),
|
||||
)
|
||||
|
||||
if stats["errors"]:
|
||||
logger.warning(
|
||||
"Cleanup completed with errors",
|
||||
errors=stats["errors"][:10],
|
||||
)
|
||||
|
||||
|
||||
async def cleanup_old_public_data(
|
||||
days: PositiveInt | None = None,
|
||||
) -> CleanupStats | None:
|
||||
if days is None:
|
||||
days = settings.PUBLIC_DATA_RETENTION_DAYS
|
||||
|
||||
if not settings.PUBLIC_MODE:
|
||||
logger.info("Skipping cleanup - not a public instance")
|
||||
return None
|
||||
|
||||
cutoff_date = datetime.now(timezone.utc) - timedelta(days=days)
|
||||
logger.info(
|
||||
"Starting cleanup of old public data",
|
||||
cutoff_date=cutoff_date.isoformat(),
|
||||
)
|
||||
|
||||
stats: CleanupStats = {
|
||||
"transcripts_deleted": 0,
|
||||
"meetings_deleted": 0,
|
||||
"recordings_deleted": 0,
|
||||
"errors": [],
|
||||
}
|
||||
|
||||
db = get_database()
|
||||
await cleanup_old_transcripts(db, cutoff_date, stats)
|
||||
|
||||
log_cleanup_results(stats)
|
||||
return stats
|
||||
|
||||
|
||||
@shared_task(
|
||||
autoretry_for=(Exception,),
|
||||
retry_kwargs={"max_retries": 3, "countdown": 300},
|
||||
)
|
||||
@asynctask
|
||||
def cleanup_old_public_data_task(days: int | None = None):
|
||||
asyncio.run(cleanup_old_public_data(days=days))
|
||||
258
server/reflector/worker/webhook.py
Normal file
258
server/reflector/worker/webhook.py
Normal file
@@ -0,0 +1,258 @@
|
||||
"""Webhook task for sending transcript notifications."""
|
||||
|
||||
import hashlib
|
||||
import hmac
|
||||
import json
|
||||
import uuid
|
||||
from datetime import datetime, timezone
|
||||
|
||||
import httpx
|
||||
import structlog
|
||||
from celery import shared_task
|
||||
from celery.utils.log import get_task_logger
|
||||
|
||||
from reflector.db.rooms import rooms_controller
|
||||
from reflector.db.transcripts import transcripts_controller
|
||||
from reflector.pipelines.main_live_pipeline import asynctask
|
||||
from reflector.settings import settings
|
||||
from reflector.utils.webvtt import topics_to_webvtt
|
||||
|
||||
logger = structlog.wrap_logger(get_task_logger(__name__))
|
||||
|
||||
|
||||
def generate_webhook_signature(payload: bytes, secret: str, timestamp: str) -> str:
|
||||
"""Generate HMAC signature for webhook payload."""
|
||||
signed_payload = f"{timestamp}.{payload.decode('utf-8')}"
|
||||
hmac_obj = hmac.new(
|
||||
secret.encode("utf-8"),
|
||||
signed_payload.encode("utf-8"),
|
||||
hashlib.sha256,
|
||||
)
|
||||
return hmac_obj.hexdigest()
|
||||
|
||||
|
||||
@shared_task(
|
||||
bind=True,
|
||||
max_retries=30,
|
||||
default_retry_delay=60,
|
||||
retry_backoff=True,
|
||||
retry_backoff_max=3600, # Max 1 hour between retries
|
||||
)
|
||||
@asynctask
|
||||
async def send_transcript_webhook(
|
||||
self,
|
||||
transcript_id: str,
|
||||
room_id: str,
|
||||
event_id: str,
|
||||
):
|
||||
log = logger.bind(
|
||||
transcript_id=transcript_id,
|
||||
room_id=room_id,
|
||||
retry_count=self.request.retries,
|
||||
)
|
||||
|
||||
try:
|
||||
# Fetch transcript and room
|
||||
transcript = await transcripts_controller.get_by_id(transcript_id)
|
||||
if not transcript:
|
||||
log.error("Transcript not found, skipping webhook")
|
||||
return
|
||||
|
||||
room = await rooms_controller.get_by_id(room_id)
|
||||
if not room:
|
||||
log.error("Room not found, skipping webhook")
|
||||
return
|
||||
|
||||
if not room.webhook_url:
|
||||
log.info("No webhook URL configured for room, skipping")
|
||||
return
|
||||
|
||||
# Generate WebVTT content from topics
|
||||
topics_data = []
|
||||
|
||||
if transcript.topics:
|
||||
# Build topics data with diarized content per topic
|
||||
for topic in transcript.topics:
|
||||
topic_webvtt = topics_to_webvtt([topic]) if topic.words else ""
|
||||
topics_data.append(
|
||||
{
|
||||
"title": topic.title,
|
||||
"summary": topic.summary,
|
||||
"timestamp": topic.timestamp,
|
||||
"duration": topic.duration,
|
||||
"webvtt": topic_webvtt,
|
||||
}
|
||||
)
|
||||
|
||||
# Build webhook payload
|
||||
frontend_url = f"{settings.UI_BASE_URL}/transcripts/{transcript.id}"
|
||||
participants = [
|
||||
{"id": p.id, "name": p.name, "speaker": p.speaker}
|
||||
for p in (transcript.participants or [])
|
||||
]
|
||||
payload_data = {
|
||||
"event": "transcript.completed",
|
||||
"event_id": event_id,
|
||||
"timestamp": datetime.now(timezone.utc).isoformat(),
|
||||
"transcript": {
|
||||
"id": transcript.id,
|
||||
"room_id": transcript.room_id,
|
||||
"created_at": transcript.created_at.isoformat(),
|
||||
"duration": transcript.duration,
|
||||
"title": transcript.title,
|
||||
"short_summary": transcript.short_summary,
|
||||
"long_summary": transcript.long_summary,
|
||||
"webvtt": transcript.webvtt,
|
||||
"topics": topics_data,
|
||||
"participants": participants,
|
||||
"source_language": transcript.source_language,
|
||||
"target_language": transcript.target_language,
|
||||
"status": transcript.status,
|
||||
"frontend_url": frontend_url,
|
||||
},
|
||||
"room": {
|
||||
"id": room.id,
|
||||
"name": room.name,
|
||||
},
|
||||
}
|
||||
|
||||
# Convert to JSON
|
||||
payload_json = json.dumps(payload_data, separators=(",", ":"))
|
||||
payload_bytes = payload_json.encode("utf-8")
|
||||
|
||||
# Generate signature if secret is configured
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": "Reflector-Webhook/1.0",
|
||||
"X-Webhook-Event": "transcript.completed",
|
||||
"X-Webhook-Retry": str(self.request.retries),
|
||||
}
|
||||
|
||||
if room.webhook_secret:
|
||||
timestamp = str(int(datetime.now(timezone.utc).timestamp()))
|
||||
signature = generate_webhook_signature(
|
||||
payload_bytes, room.webhook_secret, timestamp
|
||||
)
|
||||
headers["X-Webhook-Signature"] = f"t={timestamp},v1={signature}"
|
||||
|
||||
# Send webhook with timeout
|
||||
async with httpx.AsyncClient(timeout=30.0) as client:
|
||||
log.info(
|
||||
"Sending webhook",
|
||||
url=room.webhook_url,
|
||||
payload_size=len(payload_bytes),
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
room.webhook_url,
|
||||
content=payload_bytes,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
response.raise_for_status()
|
||||
|
||||
log.info(
|
||||
"Webhook sent successfully",
|
||||
status_code=response.status_code,
|
||||
response_size=len(response.content),
|
||||
)
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
log.error(
|
||||
"Webhook failed with HTTP error",
|
||||
status_code=e.response.status_code,
|
||||
response_text=e.response.text[:500], # First 500 chars
|
||||
)
|
||||
|
||||
# Don't retry on client errors (4xx)
|
||||
if 400 <= e.response.status_code < 500:
|
||||
log.error("Client error, not retrying")
|
||||
return
|
||||
|
||||
# Retry on server errors (5xx)
|
||||
raise self.retry(exc=e)
|
||||
|
||||
except (httpx.ConnectError, httpx.TimeoutException) as e:
|
||||
# Retry on network errors
|
||||
log.error("Webhook failed with connection error", error=str(e))
|
||||
raise self.retry(exc=e)
|
||||
|
||||
except Exception as e:
|
||||
# Retry on unexpected errors
|
||||
log.exception("Unexpected error in webhook task", error=str(e))
|
||||
raise self.retry(exc=e)
|
||||
|
||||
|
||||
async def test_webhook(room_id: str) -> dict:
|
||||
"""
|
||||
Test webhook configuration by sending a sample payload.
|
||||
Returns immediately with success/failure status.
|
||||
This is the shared implementation used by both the API endpoint and Celery task.
|
||||
"""
|
||||
try:
|
||||
room = await rooms_controller.get_by_id(room_id)
|
||||
if not room:
|
||||
return {"success": False, "error": "Room not found"}
|
||||
|
||||
if not room.webhook_url:
|
||||
return {"success": False, "error": "No webhook URL configured"}
|
||||
|
||||
now = (datetime.now(timezone.utc).isoformat(),)
|
||||
payload_data = {
|
||||
"event": "test",
|
||||
"event_id": uuid.uuid4().hex,
|
||||
"timestamp": now,
|
||||
"message": "This is a test webhook from Reflector",
|
||||
"room": {
|
||||
"id": room.id,
|
||||
"name": room.name,
|
||||
},
|
||||
}
|
||||
|
||||
payload_json = json.dumps(payload_data, separators=(",", ":"))
|
||||
payload_bytes = payload_json.encode("utf-8")
|
||||
|
||||
# Generate headers with signature
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": "Reflector-Webhook/1.0",
|
||||
"X-Webhook-Event": "test",
|
||||
}
|
||||
|
||||
if room.webhook_secret:
|
||||
timestamp = str(int(datetime.now(timezone.utc).timestamp()))
|
||||
signature = generate_webhook_signature(
|
||||
payload_bytes, room.webhook_secret, timestamp
|
||||
)
|
||||
headers["X-Webhook-Signature"] = f"t={timestamp},v1={signature}"
|
||||
|
||||
# Send test webhook with short timeout
|
||||
async with httpx.AsyncClient(timeout=10.0) as client:
|
||||
response = await client.post(
|
||||
room.webhook_url,
|
||||
content=payload_bytes,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
return {
|
||||
"success": response.is_success,
|
||||
"status_code": response.status_code,
|
||||
"message": f"Webhook test {'successful' if response.is_success else 'failed'}",
|
||||
"response_preview": response.text if response.text else None,
|
||||
}
|
||||
|
||||
except httpx.TimeoutException:
|
||||
return {
|
||||
"success": False,
|
||||
"error": "Webhook request timed out (10 seconds)",
|
||||
}
|
||||
except httpx.ConnectError as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": f"Could not connect to webhook URL: {str(e)}",
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": f"Unexpected error: {str(e)}",
|
||||
}
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
if [ "${ENTRYPOINT}" = "server" ]; then
|
||||
uv run alembic upgrade head
|
||||
uv run -m reflector.app
|
||||
uv run uvicorn reflector.app:app --host 0.0.0.0 --port 1250
|
||||
elif [ "${ENTRYPOINT}" = "worker" ]; then
|
||||
uv run celery -A reflector.worker.app worker --loglevel=info
|
||||
elif [ "${ENTRYPOINT}" = "beat" ]; then
|
||||
|
||||
@@ -178,6 +178,63 @@ async def dummy_diarization():
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def dummy_file_transcript():
|
||||
from reflector.processors.file_transcript import FileTranscriptProcessor
|
||||
from reflector.processors.types import Transcript, Word
|
||||
|
||||
class TestFileTranscriptProcessor(FileTranscriptProcessor):
|
||||
async def _transcript(self, data):
|
||||
return Transcript(
|
||||
text="Hello world. How are you today?",
|
||||
words=[
|
||||
Word(start=0.0, end=0.5, text="Hello", speaker=0),
|
||||
Word(start=0.5, end=0.6, text=" ", speaker=0),
|
||||
Word(start=0.6, end=1.0, text="world", speaker=0),
|
||||
Word(start=1.0, end=1.1, text=".", speaker=0),
|
||||
Word(start=1.1, end=1.2, text=" ", speaker=0),
|
||||
Word(start=1.2, end=1.5, text="How", speaker=0),
|
||||
Word(start=1.5, end=1.6, text=" ", speaker=0),
|
||||
Word(start=1.6, end=1.8, text="are", speaker=0),
|
||||
Word(start=1.8, end=1.9, text=" ", speaker=0),
|
||||
Word(start=1.9, end=2.1, text="you", speaker=0),
|
||||
Word(start=2.1, end=2.2, text=" ", speaker=0),
|
||||
Word(start=2.2, end=2.5, text="today", speaker=0),
|
||||
Word(start=2.5, end=2.6, text="?", speaker=0),
|
||||
],
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.processors.file_transcript_auto.FileTranscriptAutoProcessor.__new__"
|
||||
) as mock_auto:
|
||||
mock_auto.return_value = TestFileTranscriptProcessor()
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def dummy_file_diarization():
|
||||
from reflector.processors.file_diarization import (
|
||||
FileDiarizationOutput,
|
||||
FileDiarizationProcessor,
|
||||
)
|
||||
from reflector.processors.types import DiarizationSegment
|
||||
|
||||
class TestFileDiarizationProcessor(FileDiarizationProcessor):
|
||||
async def _diarize(self, data):
|
||||
return FileDiarizationOutput(
|
||||
diarization=[
|
||||
DiarizationSegment(start=0.0, end=1.1, speaker=0),
|
||||
DiarizationSegment(start=1.2, end=2.6, speaker=1),
|
||||
]
|
||||
)
|
||||
|
||||
with patch(
|
||||
"reflector.processors.file_diarization_auto.FileDiarizationAutoProcessor.__new__"
|
||||
) as mock_auto:
|
||||
mock_auto.return_value = TestFileDiarizationProcessor()
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def dummy_transcript_translator():
|
||||
from reflector.processors.transcript_translator import TranscriptTranslatorProcessor
|
||||
@@ -238,9 +295,13 @@ async def dummy_storage():
|
||||
with (
|
||||
patch("reflector.storage.base.Storage.get_instance") as mock_storage,
|
||||
patch("reflector.storage.get_transcripts_storage") as mock_get_transcripts,
|
||||
patch(
|
||||
"reflector.pipelines.main_file_pipeline.get_transcripts_storage"
|
||||
) as mock_get_transcripts2,
|
||||
):
|
||||
mock_storage.return_value = dummy
|
||||
mock_get_transcripts.return_value = dummy
|
||||
mock_get_transcripts2.return_value = dummy
|
||||
yield
|
||||
|
||||
|
||||
@@ -260,7 +321,10 @@ def celery_config():
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def celery_includes():
|
||||
return ["reflector.pipelines.main_live_pipeline"]
|
||||
return [
|
||||
"reflector.pipelines.main_live_pipeline",
|
||||
"reflector.pipelines.main_file_pipeline",
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -302,7 +366,7 @@ async def fake_transcript_with_topics(tmpdir, client):
|
||||
transcript = await transcripts_controller.get_by_id(tid)
|
||||
assert transcript is not None
|
||||
|
||||
await transcripts_controller.update(transcript, {"status": "finished"})
|
||||
await transcripts_controller.update(transcript, {"status": "ended"})
|
||||
|
||||
# manually copy a file at the expected location
|
||||
audio_filename = transcript.audio_mp3_filename
|
||||
|
||||
287
server/tests/test_cleanup.py
Normal file
287
server/tests/test_cleanup.py
Normal file
@@ -0,0 +1,287 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from reflector.db.recordings import Recording, recordings_controller
|
||||
from reflector.db.transcripts import SourceKind, transcripts_controller
|
||||
from reflector.worker.cleanup import cleanup_old_public_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_cleanup_old_public_data_skips_when_not_public():
|
||||
"""Test that cleanup is skipped when PUBLIC_MODE is False."""
|
||||
with patch("reflector.worker.cleanup.settings") as mock_settings:
|
||||
mock_settings.PUBLIC_MODE = False
|
||||
|
||||
result = await cleanup_old_public_data()
|
||||
|
||||
# Should return early without doing anything
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_cleanup_old_public_data_deletes_old_anonymous_transcripts():
|
||||
"""Test that old anonymous transcripts are deleted."""
|
||||
# Create old and new anonymous transcripts
|
||||
old_date = datetime.now(timezone.utc) - timedelta(days=8)
|
||||
new_date = datetime.now(timezone.utc) - timedelta(days=2)
|
||||
|
||||
# Create old anonymous transcript (should be deleted)
|
||||
old_transcript = await transcripts_controller.add(
|
||||
name="Old Anonymous Transcript",
|
||||
source_kind=SourceKind.FILE,
|
||||
user_id=None, # Anonymous
|
||||
)
|
||||
# Manually update created_at to be old
|
||||
from reflector.db import get_database
|
||||
from reflector.db.transcripts import transcripts
|
||||
|
||||
await get_database().execute(
|
||||
transcripts.update()
|
||||
.where(transcripts.c.id == old_transcript.id)
|
||||
.values(created_at=old_date)
|
||||
)
|
||||
|
||||
# Create new anonymous transcript (should NOT be deleted)
|
||||
new_transcript = await transcripts_controller.add(
|
||||
name="New Anonymous Transcript",
|
||||
source_kind=SourceKind.FILE,
|
||||
user_id=None, # Anonymous
|
||||
)
|
||||
|
||||
# Create old transcript with user (should NOT be deleted)
|
||||
old_user_transcript = await transcripts_controller.add(
|
||||
name="Old User Transcript",
|
||||
source_kind=SourceKind.FILE,
|
||||
user_id="user123",
|
||||
)
|
||||
await get_database().execute(
|
||||
transcripts.update()
|
||||
.where(transcripts.c.id == old_user_transcript.id)
|
||||
.values(created_at=old_date)
|
||||
)
|
||||
|
||||
with patch("reflector.worker.cleanup.settings") as mock_settings:
|
||||
mock_settings.PUBLIC_MODE = True
|
||||
mock_settings.PUBLIC_DATA_RETENTION_DAYS = 7
|
||||
|
||||
# Mock the storage deletion
|
||||
with patch("reflector.db.transcripts.get_transcripts_storage") as mock_storage:
|
||||
mock_storage.return_value.delete_file = AsyncMock()
|
||||
|
||||
result = await cleanup_old_public_data()
|
||||
|
||||
# Check results
|
||||
assert result["transcripts_deleted"] == 1
|
||||
assert result["errors"] == []
|
||||
|
||||
# Verify old anonymous transcript was deleted
|
||||
assert await transcripts_controller.get_by_id(old_transcript.id) is None
|
||||
|
||||
# Verify new anonymous transcript still exists
|
||||
assert await transcripts_controller.get_by_id(new_transcript.id) is not None
|
||||
|
||||
# Verify user transcript still exists
|
||||
assert await transcripts_controller.get_by_id(old_user_transcript.id) is not None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_cleanup_deletes_associated_meeting_and_recording():
|
||||
"""Test that meetings and recordings associated with old transcripts are deleted."""
|
||||
from reflector.db import get_database
|
||||
from reflector.db.meetings import meetings
|
||||
from reflector.db.transcripts import transcripts
|
||||
|
||||
old_date = datetime.now(timezone.utc) - timedelta(days=8)
|
||||
|
||||
# Create a meeting
|
||||
meeting_id = "test-meeting-for-transcript"
|
||||
await get_database().execute(
|
||||
meetings.insert().values(
|
||||
id=meeting_id,
|
||||
room_name="Meeting with Transcript",
|
||||
room_url="https://example.com/meeting",
|
||||
host_room_url="https://example.com/meeting-host",
|
||||
start_date=old_date,
|
||||
end_date=old_date + timedelta(hours=1),
|
||||
user_id=None,
|
||||
room_id=None,
|
||||
)
|
||||
)
|
||||
|
||||
# Create a recording
|
||||
recording = await recordings_controller.create(
|
||||
Recording(
|
||||
bucket_name="test-bucket",
|
||||
object_key="test-recording.mp4",
|
||||
recorded_at=old_date,
|
||||
)
|
||||
)
|
||||
|
||||
# Create an old transcript with both meeting and recording
|
||||
old_transcript = await transcripts_controller.add(
|
||||
name="Old Transcript with Meeting and Recording",
|
||||
source_kind=SourceKind.ROOM,
|
||||
user_id=None,
|
||||
meeting_id=meeting_id,
|
||||
recording_id=recording.id,
|
||||
)
|
||||
|
||||
# Update created_at to be old
|
||||
await get_database().execute(
|
||||
transcripts.update()
|
||||
.where(transcripts.c.id == old_transcript.id)
|
||||
.values(created_at=old_date)
|
||||
)
|
||||
|
||||
with patch("reflector.worker.cleanup.settings") as mock_settings:
|
||||
mock_settings.PUBLIC_MODE = True
|
||||
mock_settings.PUBLIC_DATA_RETENTION_DAYS = 7
|
||||
|
||||
# Mock storage deletion
|
||||
with patch("reflector.db.transcripts.get_transcripts_storage") as mock_storage:
|
||||
mock_storage.return_value.delete_file = AsyncMock()
|
||||
with patch(
|
||||
"reflector.worker.cleanup.get_recordings_storage"
|
||||
) as mock_rec_storage:
|
||||
mock_rec_storage.return_value.delete_file = AsyncMock()
|
||||
|
||||
result = await cleanup_old_public_data()
|
||||
|
||||
# Check results
|
||||
assert result["transcripts_deleted"] == 1
|
||||
assert result["meetings_deleted"] == 1
|
||||
assert result["recordings_deleted"] == 1
|
||||
assert result["errors"] == []
|
||||
|
||||
# Verify transcript was deleted
|
||||
assert await transcripts_controller.get_by_id(old_transcript.id) is None
|
||||
|
||||
# Verify meeting was deleted
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
meeting_result = await get_database().fetch_one(query)
|
||||
assert meeting_result is None
|
||||
|
||||
# Verify recording was deleted
|
||||
assert await recordings_controller.get_by_id(recording.id) is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_cleanup_handles_errors_gracefully():
|
||||
"""Test that cleanup continues even when individual deletions fail."""
|
||||
old_date = datetime.now(timezone.utc) - timedelta(days=8)
|
||||
|
||||
# Create multiple old transcripts
|
||||
transcript1 = await transcripts_controller.add(
|
||||
name="Transcript 1",
|
||||
source_kind=SourceKind.FILE,
|
||||
user_id=None,
|
||||
)
|
||||
transcript2 = await transcripts_controller.add(
|
||||
name="Transcript 2",
|
||||
source_kind=SourceKind.FILE,
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Update created_at to be old
|
||||
from reflector.db import get_database
|
||||
from reflector.db.transcripts import transcripts
|
||||
|
||||
for t_id in [transcript1.id, transcript2.id]:
|
||||
await get_database().execute(
|
||||
transcripts.update()
|
||||
.where(transcripts.c.id == t_id)
|
||||
.values(created_at=old_date)
|
||||
)
|
||||
|
||||
with patch("reflector.worker.cleanup.settings") as mock_settings:
|
||||
mock_settings.PUBLIC_MODE = True
|
||||
mock_settings.PUBLIC_DATA_RETENTION_DAYS = 7
|
||||
|
||||
# Mock remove_by_id to fail for the first transcript
|
||||
original_remove = transcripts_controller.remove_by_id
|
||||
call_count = 0
|
||||
|
||||
async def mock_remove_by_id(transcript_id, user_id=None):
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
if call_count == 1:
|
||||
raise Exception("Simulated deletion error")
|
||||
return await original_remove(transcript_id, user_id)
|
||||
|
||||
with patch.object(
|
||||
transcripts_controller, "remove_by_id", side_effect=mock_remove_by_id
|
||||
):
|
||||
result = await cleanup_old_public_data()
|
||||
|
||||
# Should have one successful deletion and one error
|
||||
assert result["transcripts_deleted"] == 1
|
||||
assert len(result["errors"]) == 1
|
||||
assert "Failed to delete transcript" in result["errors"][0]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_meeting_consent_cascade_delete():
|
||||
"""Test that meeting_consent records are automatically deleted when meeting is deleted."""
|
||||
from reflector.db import get_database
|
||||
from reflector.db.meetings import (
|
||||
meeting_consent,
|
||||
meeting_consent_controller,
|
||||
meetings,
|
||||
)
|
||||
|
||||
# Create a meeting
|
||||
meeting_id = "test-cascade-meeting"
|
||||
await get_database().execute(
|
||||
meetings.insert().values(
|
||||
id=meeting_id,
|
||||
room_name="Test Meeting for CASCADE",
|
||||
room_url="https://example.com/cascade-test",
|
||||
host_room_url="https://example.com/cascade-test-host",
|
||||
start_date=datetime.now(timezone.utc),
|
||||
end_date=datetime.now(timezone.utc) + timedelta(hours=1),
|
||||
user_id="test-user",
|
||||
room_id=None,
|
||||
)
|
||||
)
|
||||
|
||||
# Create consent records for this meeting
|
||||
consent1_id = "consent-1"
|
||||
consent2_id = "consent-2"
|
||||
|
||||
await get_database().execute(
|
||||
meeting_consent.insert().values(
|
||||
id=consent1_id,
|
||||
meeting_id=meeting_id,
|
||||
user_id="user1",
|
||||
consent_given=True,
|
||||
consent_timestamp=datetime.now(timezone.utc),
|
||||
)
|
||||
)
|
||||
|
||||
await get_database().execute(
|
||||
meeting_consent.insert().values(
|
||||
id=consent2_id,
|
||||
meeting_id=meeting_id,
|
||||
user_id="user2",
|
||||
consent_given=False,
|
||||
consent_timestamp=datetime.now(timezone.utc),
|
||||
)
|
||||
)
|
||||
|
||||
# Verify consent records exist
|
||||
consents = await meeting_consent_controller.get_by_meeting_id(meeting_id)
|
||||
assert len(consents) == 2
|
||||
|
||||
# Delete the meeting
|
||||
await get_database().execute(meetings.delete().where(meetings.c.id == meeting_id))
|
||||
|
||||
# Verify meeting is deleted
|
||||
query = meetings.select().where(meetings.c.id == meeting_id)
|
||||
result = await get_database().fetch_one(query)
|
||||
assert result is None
|
||||
|
||||
# Verify consent records are automatically deleted (CASCADE DELETE)
|
||||
consents_after = await meeting_consent_controller.get_by_meeting_id(meeting_id)
|
||||
assert len(consents_after) == 0
|
||||
@@ -272,6 +272,9 @@ class TestGPUModalTranscript:
|
||||
for f in temp_files:
|
||||
Path(f).unlink(missing_ok=True)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not "parakeet" in get_model_name(), reason="Parakeet only supports English"
|
||||
)
|
||||
def test_transcriptions_error_handling(self):
|
||||
"""Test error handling for invalid requests."""
|
||||
url = get_modal_transcript_url()
|
||||
|
||||
@@ -1,61 +0,0 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("enable_diarization", [False, True])
|
||||
async def test_basic_process(
|
||||
dummy_transcript,
|
||||
dummy_llm,
|
||||
dummy_processors,
|
||||
enable_diarization,
|
||||
dummy_diarization,
|
||||
):
|
||||
# goal is to start the server, and send rtc audio to it
|
||||
# validate the events received
|
||||
from pathlib import Path
|
||||
|
||||
from reflector.settings import settings
|
||||
from reflector.tools.process import process_audio_file
|
||||
|
||||
# LLM_BACKEND no longer exists in settings
|
||||
# settings.LLM_BACKEND = "test"
|
||||
settings.TRANSCRIPT_BACKEND = "whisper"
|
||||
|
||||
# event callback
|
||||
marks = {}
|
||||
|
||||
async def event_callback(event):
|
||||
if event.processor not in marks:
|
||||
marks[event.processor] = 0
|
||||
marks[event.processor] += 1
|
||||
|
||||
# invoke the process and capture events
|
||||
path = Path(__file__).parent / "records" / "test_mathieu_hello.wav"
|
||||
|
||||
if enable_diarization:
|
||||
# Test with diarization - may fail if pyannote.audio is not installed
|
||||
try:
|
||||
await process_audio_file(
|
||||
path.as_posix(), event_callback, enable_diarization=True
|
||||
)
|
||||
except SystemExit:
|
||||
pytest.skip("pyannote.audio not installed - skipping diarization test")
|
||||
else:
|
||||
# Test without diarization - should always work
|
||||
await process_audio_file(
|
||||
path.as_posix(), event_callback, enable_diarization=False
|
||||
)
|
||||
|
||||
print(f"Diarization: {enable_diarization}, Marks: {marks}")
|
||||
|
||||
# validate the events
|
||||
# Each processor should be called for each audio segment processed
|
||||
# The final processors (Topic, Title, Summary) should be called once at the end
|
||||
assert marks["TranscriptLinerProcessor"] > 0
|
||||
assert marks["TranscriptTranslatorPassthroughProcessor"] > 0
|
||||
assert marks["TranscriptTopicDetectorProcessor"] == 1
|
||||
assert marks["TranscriptFinalSummaryProcessor"] == 1
|
||||
assert marks["TranscriptFinalTitleProcessor"] == 1
|
||||
|
||||
if enable_diarization:
|
||||
assert marks["TestAudioDiarizationProcessor"] == 1
|
||||
@@ -23,7 +23,7 @@ async def test_search_postgresql_only():
|
||||
assert results == []
|
||||
assert total == 0
|
||||
|
||||
params_empty = SearchParameters(query_text="")
|
||||
params_empty = SearchParameters(query_text=None)
|
||||
results_empty, total_empty = await search_controller.search_transcripts(
|
||||
params_empty
|
||||
)
|
||||
@@ -34,7 +34,7 @@ async def test_search_postgresql_only():
|
||||
@pytest.mark.asyncio
|
||||
async def test_search_with_empty_query():
|
||||
"""Test that empty query returns all transcripts."""
|
||||
params = SearchParameters(query_text="")
|
||||
params = SearchParameters(query_text=None)
|
||||
results, total = await search_controller.search_transcripts(params)
|
||||
|
||||
assert isinstance(results, list)
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
"""Unit tests for search snippet generation."""
|
||||
|
||||
import pytest
|
||||
|
||||
from reflector.db.search import (
|
||||
SnippetCandidate,
|
||||
SnippetGenerator,
|
||||
@@ -512,11 +514,9 @@ data visualization and data storage"""
|
||||
)
|
||||
assert webvtt_count == 3
|
||||
|
||||
snippets_empty, count_empty = SnippetGenerator.combine_sources(
|
||||
None, None, "data", max_total=3
|
||||
)
|
||||
assert snippets_empty == []
|
||||
assert count_empty == 0
|
||||
# combine_sources requires at least one source to be present
|
||||
with pytest.raises(AssertionError, match="At least one source must be present"):
|
||||
SnippetGenerator.combine_sources(None, None, "data", max_total=3)
|
||||
|
||||
def test_edge_cases(self):
|
||||
"""Test edge cases for the pure functions."""
|
||||
|
||||
@@ -19,7 +19,7 @@ async def fake_transcript(tmpdir, client):
|
||||
transcript = await transcripts_controller.get_by_id(tid)
|
||||
assert transcript is not None
|
||||
|
||||
await transcripts_controller.update(transcript, {"status": "finished"})
|
||||
await transcripts_controller.update(transcript, {"status": "ended"})
|
||||
|
||||
# manually copy a file at the expected location
|
||||
audio_filename = transcript.audio_mp3_filename
|
||||
|
||||
@@ -29,10 +29,10 @@ async def client(app_lifespan):
|
||||
@pytest.mark.asyncio
|
||||
async def test_transcript_process(
|
||||
tmpdir,
|
||||
whisper_transcript,
|
||||
dummy_llm,
|
||||
dummy_processors,
|
||||
dummy_diarization,
|
||||
dummy_file_transcript,
|
||||
dummy_file_diarization,
|
||||
dummy_storage,
|
||||
client,
|
||||
):
|
||||
@@ -56,8 +56,8 @@ async def test_transcript_process(
|
||||
assert response.status_code == 200
|
||||
assert response.json()["status"] == "ok"
|
||||
|
||||
# wait for processing to finish (max 10 minutes)
|
||||
timeout_seconds = 600 # 10 minutes
|
||||
# wait for processing to finish (max 1 minute)
|
||||
timeout_seconds = 60
|
||||
start_time = time.monotonic()
|
||||
while (time.monotonic() - start_time) < timeout_seconds:
|
||||
# fetch the transcript and check if it is ended
|
||||
@@ -75,9 +75,10 @@ async def test_transcript_process(
|
||||
)
|
||||
assert response.status_code == 200
|
||||
assert response.json()["status"] == "ok"
|
||||
await asyncio.sleep(2)
|
||||
|
||||
# wait for processing to finish (max 10 minutes)
|
||||
timeout_seconds = 600 # 10 minutes
|
||||
# wait for processing to finish (max 1 minute)
|
||||
timeout_seconds = 60
|
||||
start_time = time.monotonic()
|
||||
while (time.monotonic() - start_time) < timeout_seconds:
|
||||
# fetch the transcript and check if it is ended
|
||||
@@ -99,4 +100,4 @@ async def test_transcript_process(
|
||||
response = await client.get(f"/transcripts/{tid}/topics")
|
||||
assert response.status_code == 200
|
||||
assert len(response.json()) == 1
|
||||
assert "want to share" in response.json()[0]["transcript"]
|
||||
assert "Hello world. How are you today?" in response.json()[0]["transcript"]
|
||||
|
||||
@@ -12,7 +12,8 @@ async def test_transcript_upload_file(
|
||||
tmpdir,
|
||||
dummy_llm,
|
||||
dummy_processors,
|
||||
dummy_diarization,
|
||||
dummy_file_transcript,
|
||||
dummy_file_diarization,
|
||||
dummy_storage,
|
||||
client,
|
||||
):
|
||||
@@ -36,8 +37,8 @@ async def test_transcript_upload_file(
|
||||
assert response.status_code == 200
|
||||
assert response.json()["status"] == "ok"
|
||||
|
||||
# wait the processing to finish (max 10 minutes)
|
||||
timeout_seconds = 600 # 10 minutes
|
||||
# wait the processing to finish (max 1 minute)
|
||||
timeout_seconds = 60
|
||||
start_time = time.monotonic()
|
||||
while (time.monotonic() - start_time) < timeout_seconds:
|
||||
# fetch the transcript and check if it is ended
|
||||
@@ -47,7 +48,7 @@ async def test_transcript_upload_file(
|
||||
break
|
||||
await asyncio.sleep(1)
|
||||
else:
|
||||
pytest.fail(f"Processing timed out after {timeout_seconds} seconds")
|
||||
return pytest.fail(f"Processing timed out after {timeout_seconds} seconds")
|
||||
|
||||
# check the transcript is ended
|
||||
transcript = resp.json()
|
||||
@@ -59,4 +60,4 @@ async def test_transcript_upload_file(
|
||||
response = await client.get(f"/transcripts/{tid}/topics")
|
||||
assert response.status_code == 200
|
||||
assert len(response.json()) == 1
|
||||
assert "want to share" in response.json()[0]["transcript"]
|
||||
assert "Hello world. How are you today?" in response.json()[0]["transcript"]
|
||||
|
||||
30
www/app/(app)/AuthWrapper.tsx
Normal file
30
www/app/(app)/AuthWrapper.tsx
Normal file
@@ -0,0 +1,30 @@
|
||||
"use client";
|
||||
|
||||
import { Flex, Spinner } from "@chakra-ui/react";
|
||||
import { useAuth } from "../lib/AuthProvider";
|
||||
import { useLoginRequiredPages } from "../lib/useLoginRequiredPages";
|
||||
|
||||
export default function AuthWrapper({
|
||||
children,
|
||||
}: {
|
||||
children: React.ReactNode;
|
||||
}) {
|
||||
const auth = useAuth();
|
||||
const redirectPath = useLoginRequiredPages();
|
||||
const redirectHappens = !!redirectPath;
|
||||
|
||||
if (auth.status === "loading" || redirectHappens) {
|
||||
return (
|
||||
<Flex
|
||||
flexDir="column"
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
h="calc(100vh - 80px)" // Account for header height
|
||||
>
|
||||
<Spinner size="xl" color="blue.500" />
|
||||
</Flex>
|
||||
);
|
||||
}
|
||||
|
||||
return <>{children}</>;
|
||||
}
|
||||
@@ -1,7 +1,10 @@
|
||||
import React from "react";
|
||||
import { Box, Stack, Link, Heading } from "@chakra-ui/react";
|
||||
import NextLink from "next/link";
|
||||
import { Room, SourceKind } from "../../../api";
|
||||
import type { components } from "../../../reflector-api";
|
||||
|
||||
type Room = components["schemas"]["Room"];
|
||||
type SourceKind = components["schemas"]["SourceKind"];
|
||||
|
||||
interface FilterSidebarProps {
|
||||
rooms: Room[];
|
||||
@@ -72,7 +75,7 @@ export default function FilterSidebar({
|
||||
key={room.id}
|
||||
as={NextLink}
|
||||
href="#"
|
||||
onClick={() => onFilterChange("room", room.id)}
|
||||
onClick={() => onFilterChange("room" as SourceKind, room.id)}
|
||||
color={
|
||||
selectedSourceKind === "room" && selectedRoomId === room.id
|
||||
? "blue.500"
|
||||
|
||||
@@ -18,7 +18,10 @@ import {
|
||||
highlightMatches,
|
||||
generateTextFragment,
|
||||
} from "../../../lib/textHighlight";
|
||||
import { SearchResult } from "../../../api";
|
||||
import type { components } from "../../../reflector-api";
|
||||
|
||||
type SearchResult = components["schemas"]["SearchResult"];
|
||||
type SourceKind = components["schemas"]["SourceKind"];
|
||||
|
||||
interface TranscriptCardsProps {
|
||||
results: SearchResult[];
|
||||
@@ -120,7 +123,7 @@ function TranscriptCard({
|
||||
: "N/A";
|
||||
const formattedDate = formatLocalDate(result.created_at);
|
||||
const source =
|
||||
result.source_kind === "room"
|
||||
result.source_kind === ("room" as SourceKind)
|
||||
? result.room_name || result.room_id
|
||||
: result.source_kind;
|
||||
|
||||
|
||||
@@ -19,37 +19,33 @@ import {
|
||||
parseAsStringLiteral,
|
||||
} from "nuqs";
|
||||
import { LuX } from "react-icons/lu";
|
||||
import { useSearchTranscripts } from "../transcripts/useSearchTranscripts";
|
||||
import useSessionUser from "../../lib/useSessionUser";
|
||||
import { Room, SourceKind, SearchResult, $SourceKind } from "../../api";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import type { components } from "../../reflector-api";
|
||||
|
||||
type Room = components["schemas"]["Room"];
|
||||
type SourceKind = components["schemas"]["SourceKind"];
|
||||
type SearchResult = components["schemas"]["SearchResult"];
|
||||
import {
|
||||
useRoomsList,
|
||||
useTranscriptsSearch,
|
||||
useTranscriptDelete,
|
||||
useTranscriptProcess,
|
||||
} from "../../lib/apiHooks";
|
||||
import FilterSidebar from "./_components/FilterSidebar";
|
||||
import Pagination, {
|
||||
FIRST_PAGE,
|
||||
PaginationPage,
|
||||
parsePaginationPage,
|
||||
totalPages as getTotalPages,
|
||||
paginationPageTo0Based,
|
||||
} from "./_components/Pagination";
|
||||
import TranscriptCards from "./_components/TranscriptCards";
|
||||
import DeleteTranscriptDialog from "./_components/DeleteTranscriptDialog";
|
||||
import { formatLocalDate } from "../../lib/time";
|
||||
import { RECORD_A_MEETING_URL } from "../../api/urls";
|
||||
import { useUserName } from "../../lib/useUserName";
|
||||
|
||||
const SEARCH_FORM_QUERY_INPUT_NAME = "query" as const;
|
||||
|
||||
const usePrefetchRooms = (setRooms: (rooms: Room[]) => void): void => {
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
useEffect(() => {
|
||||
if (!api) return;
|
||||
api
|
||||
.v1RoomsList({ page: 1 })
|
||||
.then((rooms) => setRooms(rooms.items))
|
||||
.catch((err) => setError(err, "There was an error fetching the rooms"));
|
||||
}, [api, setError]);
|
||||
};
|
||||
|
||||
const SearchForm: React.FC<{
|
||||
setPage: (page: PaginationPage) => void;
|
||||
sourceKind: SourceKind | null;
|
||||
@@ -69,7 +65,6 @@ const SearchForm: React.FC<{
|
||||
searchQuery,
|
||||
setSearchQuery,
|
||||
}) => {
|
||||
// to keep the search input controllable + more fine grained control (urlSearchQuery is updated on submits)
|
||||
const [searchInputValue, setSearchInputValue] = useState(searchQuery || "");
|
||||
const handleSearchQuerySubmit = async (d: FormData) => {
|
||||
await setSearchQuery((d.get(SEARCH_FORM_QUERY_INPUT_NAME) as string) || "");
|
||||
@@ -163,7 +158,6 @@ const UnderSearchFormFilterIndicators: React.FC<{
|
||||
p="1px"
|
||||
onClick={() => {
|
||||
setSourceKind(null);
|
||||
// TODO questionable
|
||||
setRoomId(null);
|
||||
}}
|
||||
_hover={{ bg: "blue.200" }}
|
||||
@@ -209,7 +203,11 @@ export default function TranscriptBrowser() {
|
||||
|
||||
const [urlSourceKind, setUrlSourceKind] = useQueryState(
|
||||
"source",
|
||||
parseAsStringLiteral($SourceKind.enum).withOptions({
|
||||
parseAsStringLiteral([
|
||||
"room",
|
||||
"live",
|
||||
"file",
|
||||
] as const satisfies SourceKind[]).withOptions({
|
||||
shallow: false,
|
||||
}),
|
||||
);
|
||||
@@ -229,46 +227,40 @@ export default function TranscriptBrowser() {
|
||||
useEffect(() => {
|
||||
const maybePage = parsePaginationPage(urlPage);
|
||||
if ("error" in maybePage) {
|
||||
setPage(FIRST_PAGE).then(() => {
|
||||
/*may be called n times we dont care*/
|
||||
});
|
||||
setPage(FIRST_PAGE).then(() => {});
|
||||
return;
|
||||
}
|
||||
_setSafePage(maybePage.value);
|
||||
}, [urlPage]);
|
||||
|
||||
const [rooms, setRooms] = useState<Room[]>([]);
|
||||
|
||||
const pageSize = 20;
|
||||
|
||||
const {
|
||||
results,
|
||||
totalCount: totalResults,
|
||||
isLoading,
|
||||
reload,
|
||||
} = useSearchTranscripts(
|
||||
urlSearchQuery,
|
||||
{
|
||||
roomIds: urlRoomId ? [urlRoomId] : null,
|
||||
sourceKind: urlSourceKind,
|
||||
},
|
||||
{
|
||||
pageSize,
|
||||
page,
|
||||
},
|
||||
);
|
||||
data: searchData,
|
||||
isLoading: searchLoading,
|
||||
refetch: reloadSearch,
|
||||
} = useTranscriptsSearch(urlSearchQuery, {
|
||||
limit: pageSize,
|
||||
offset: paginationPageTo0Based(page) * pageSize,
|
||||
room_id: urlRoomId || undefined,
|
||||
source_kind: urlSourceKind || undefined,
|
||||
});
|
||||
|
||||
const results = searchData?.results || [];
|
||||
const totalResults = searchData?.total || 0;
|
||||
|
||||
// Fetch rooms
|
||||
const { data: roomsData } = useRoomsList(1);
|
||||
const rooms = roomsData?.items || [];
|
||||
|
||||
const totalPages = getTotalPages(totalResults, pageSize);
|
||||
|
||||
const userName = useSessionUser().name;
|
||||
const userName = useUserName();
|
||||
const [deletionLoading, setDeletionLoading] = useState(false);
|
||||
const api = useApi();
|
||||
const { setError } = useError();
|
||||
const cancelRef = React.useRef(null);
|
||||
const [transcriptToDeleteId, setTranscriptToDeleteId] =
|
||||
React.useState<string>();
|
||||
|
||||
usePrefetchRooms(setRooms);
|
||||
|
||||
const handleFilterTranscripts = (
|
||||
sourceKind: SourceKind | null,
|
||||
roomId: string,
|
||||
@@ -280,44 +272,37 @@ export default function TranscriptBrowser() {
|
||||
|
||||
const onCloseDeletion = () => setTranscriptToDeleteId(undefined);
|
||||
|
||||
const deleteTranscript = useTranscriptDelete();
|
||||
const processTranscript = useTranscriptProcess();
|
||||
|
||||
const confirmDeleteTranscript = (transcriptId: string) => {
|
||||
if (!api || deletionLoading) return;
|
||||
if (deletionLoading) return;
|
||||
setDeletionLoading(true);
|
||||
api
|
||||
.v1TranscriptDelete({ transcriptId })
|
||||
.then(() => {
|
||||
setDeletionLoading(false);
|
||||
onCloseDeletion();
|
||||
reload();
|
||||
})
|
||||
.catch((err) => {
|
||||
setDeletionLoading(false);
|
||||
setError(err, "There was an error deleting the transcript");
|
||||
});
|
||||
deleteTranscript.mutate(
|
||||
{
|
||||
params: {
|
||||
path: { transcript_id: transcriptId },
|
||||
},
|
||||
},
|
||||
{
|
||||
onSuccess: () => {
|
||||
setDeletionLoading(false);
|
||||
onCloseDeletion();
|
||||
reloadSearch();
|
||||
},
|
||||
onError: () => {
|
||||
setDeletionLoading(false);
|
||||
},
|
||||
},
|
||||
);
|
||||
};
|
||||
|
||||
const handleProcessTranscript = (transcriptId: string) => {
|
||||
if (!api) {
|
||||
console.error("API not available on handleProcessTranscript");
|
||||
return;
|
||||
}
|
||||
api
|
||||
.v1TranscriptProcess({ transcriptId })
|
||||
.then((result) => {
|
||||
const status =
|
||||
result && typeof result === "object" && "status" in result
|
||||
? (result as { status: string }).status
|
||||
: undefined;
|
||||
if (status === "already running") {
|
||||
setError(
|
||||
new Error("Processing is already running, please wait"),
|
||||
"Processing is already running, please wait",
|
||||
);
|
||||
}
|
||||
})
|
||||
.catch((err) => {
|
||||
setError(err, "There was an error processing the transcript");
|
||||
});
|
||||
processTranscript.mutate({
|
||||
params: {
|
||||
path: { transcript_id: transcriptId },
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
const transcriptToDelete = results?.find(
|
||||
@@ -332,7 +317,7 @@ export default function TranscriptBrowser() {
|
||||
? transcriptToDelete.room_name || transcriptToDelete.room_id
|
||||
: transcriptToDelete?.source_kind;
|
||||
|
||||
if (isLoading && results.length === 0) {
|
||||
if (searchLoading && results.length === 0) {
|
||||
return (
|
||||
<Flex
|
||||
flexDir="column"
|
||||
@@ -360,7 +345,7 @@ export default function TranscriptBrowser() {
|
||||
>
|
||||
<Heading size="lg">
|
||||
{userName ? `${userName}'s Transcriptions` : "Your Transcriptions"}{" "}
|
||||
{(isLoading || deletionLoading) && <Spinner size="sm" />}
|
||||
{(searchLoading || deletionLoading) && <Spinner size="sm" />}
|
||||
</Heading>
|
||||
</Flex>
|
||||
|
||||
@@ -403,12 +388,12 @@ export default function TranscriptBrowser() {
|
||||
<TranscriptCards
|
||||
results={results}
|
||||
query={urlSearchQuery}
|
||||
isLoading={isLoading}
|
||||
isLoading={searchLoading}
|
||||
onDelete={setTranscriptToDeleteId}
|
||||
onReprocess={handleProcessTranscript}
|
||||
/>
|
||||
|
||||
{!isLoading && results.length === 0 && (
|
||||
{!searchLoading && results.length === 0 && (
|
||||
<EmptyResult searchQuery={urlSearchQuery} />
|
||||
)}
|
||||
</Flex>
|
||||
|
||||
@@ -2,9 +2,8 @@ import { Container, Flex, Link } from "@chakra-ui/react";
|
||||
import { getConfig } from "../lib/edgeConfig";
|
||||
import NextLink from "next/link";
|
||||
import Image from "next/image";
|
||||
import About from "../(aboutAndPrivacy)/about";
|
||||
import Privacy from "../(aboutAndPrivacy)/privacy";
|
||||
import UserInfo from "../(auth)/userInfo";
|
||||
import AuthWrapper from "./AuthWrapper";
|
||||
import { RECORD_A_MEETING_URL } from "../api/urls";
|
||||
|
||||
export default async function AppLayout({
|
||||
@@ -90,7 +89,7 @@ export default async function AppLayout({
|
||||
</div>
|
||||
</Flex>
|
||||
|
||||
{children}
|
||||
<AuthWrapper>{children}</AuthWrapper>
|
||||
</Container>
|
||||
);
|
||||
}
|
||||
|
||||
@@ -12,7 +12,9 @@ import {
|
||||
HStack,
|
||||
} from "@chakra-ui/react";
|
||||
import { LuLink } from "react-icons/lu";
|
||||
import { Room } from "../../../api";
|
||||
import type { components } from "../../../reflector-api";
|
||||
|
||||
type Room = components["schemas"]["Room"];
|
||||
import { RoomActionsMenu } from "./RoomActionsMenu";
|
||||
|
||||
interface RoomCardsProps {
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import { Box, Heading, Text, VStack } from "@chakra-ui/react";
|
||||
import { Room } from "../../../api";
|
||||
import type { components } from "../../../reflector-api";
|
||||
|
||||
type Room = components["schemas"]["Room"];
|
||||
import { RoomTable } from "./RoomTable";
|
||||
import { RoomCards } from "./RoomCards";
|
||||
|
||||
|
||||
@@ -9,7 +9,9 @@ import {
|
||||
Spinner,
|
||||
} from "@chakra-ui/react";
|
||||
import { LuLink } from "react-icons/lu";
|
||||
import { Room } from "../../../api";
|
||||
import type { components } from "../../../reflector-api";
|
||||
|
||||
type Room = components["schemas"]["Room"];
|
||||
import { RoomActionsMenu } from "./RoomActionsMenu";
|
||||
|
||||
interface RoomTableProps {
|
||||
|
||||
@@ -11,15 +11,28 @@ import {
|
||||
Input,
|
||||
Select,
|
||||
Spinner,
|
||||
IconButton,
|
||||
createListCollection,
|
||||
useDisclosure,
|
||||
} from "@chakra-ui/react";
|
||||
import { useEffect, useState } from "react";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { useEffect, useMemo, useState } from "react";
|
||||
import { LuEye, LuEyeOff } from "react-icons/lu";
|
||||
import useRoomList from "./useRoomList";
|
||||
import { ApiError, Room } from "../../api";
|
||||
import type { components } from "../../reflector-api";
|
||||
import {
|
||||
useRoomCreate,
|
||||
useRoomUpdate,
|
||||
useRoomDelete,
|
||||
useZulipStreams,
|
||||
useZulipTopics,
|
||||
useRoomGet,
|
||||
useRoomTestWebhook,
|
||||
} from "../../lib/apiHooks";
|
||||
import { RoomList } from "./_components/RoomList";
|
||||
import { PaginationPage } from "../browse/_components/Pagination";
|
||||
import { assertExists } from "../../lib/utils";
|
||||
|
||||
type Room = components["schemas"]["Room"];
|
||||
|
||||
interface SelectOption {
|
||||
label: string;
|
||||
@@ -55,6 +68,8 @@ const roomInitialState = {
|
||||
recordingType: "cloud",
|
||||
recordingTrigger: "automatic-2nd-participant",
|
||||
isShared: false,
|
||||
webhookUrl: "",
|
||||
webhookSecret: "",
|
||||
};
|
||||
|
||||
export default function RoomsList() {
|
||||
@@ -72,61 +87,77 @@ export default function RoomsList() {
|
||||
const recordingTypeCollection = createListCollection({
|
||||
items: recordingTypeOptions,
|
||||
});
|
||||
const [room, setRoom] = useState(roomInitialState);
|
||||
const [roomInput, setRoomInput] = useState<null | typeof roomInitialState>(
|
||||
null,
|
||||
);
|
||||
const [isEditing, setIsEditing] = useState(false);
|
||||
const [editRoomId, setEditRoomId] = useState("");
|
||||
const api = useApi();
|
||||
// TODO seems to be no setPage calls
|
||||
const [page, setPage] = useState<number>(1);
|
||||
const { loading, response, refetch } = useRoomList(PaginationPage(page));
|
||||
const [streams, setStreams] = useState<Stream[]>([]);
|
||||
const [topics, setTopics] = useState<Topic[]>([]);
|
||||
const [editRoomId, setEditRoomId] = useState<string | null>(null);
|
||||
const {
|
||||
loading,
|
||||
response,
|
||||
refetch,
|
||||
error: roomListError,
|
||||
} = useRoomList(PaginationPage(1));
|
||||
const [nameError, setNameError] = useState("");
|
||||
const [linkCopied, setLinkCopied] = useState("");
|
||||
interface Stream {
|
||||
stream_id: number;
|
||||
name: string;
|
||||
}
|
||||
const [selectedStreamId, setSelectedStreamId] = useState<number | null>(null);
|
||||
const [testingWebhook, setTestingWebhook] = useState(false);
|
||||
const [webhookTestResult, setWebhookTestResult] = useState<string | null>(
|
||||
null,
|
||||
);
|
||||
const [showWebhookSecret, setShowWebhookSecret] = useState(false);
|
||||
|
||||
interface Topic {
|
||||
name: string;
|
||||
}
|
||||
const createRoomMutation = useRoomCreate();
|
||||
const updateRoomMutation = useRoomUpdate();
|
||||
const deleteRoomMutation = useRoomDelete();
|
||||
const { data: streams = [] } = useZulipStreams();
|
||||
const { data: topics = [] } = useZulipTopics(selectedStreamId);
|
||||
|
||||
const {
|
||||
data: detailedEditedRoom,
|
||||
isLoading: isDetailedEditedRoomLoading,
|
||||
error: detailedEditedRoomError,
|
||||
} = useRoomGet(editRoomId);
|
||||
|
||||
const error = roomListError || detailedEditedRoomError;
|
||||
|
||||
// room being edited, as fetched from the server
|
||||
const editedRoom: typeof roomInitialState | null = useMemo(
|
||||
() =>
|
||||
detailedEditedRoom
|
||||
? {
|
||||
name: detailedEditedRoom.name,
|
||||
zulipAutoPost: detailedEditedRoom.zulip_auto_post,
|
||||
zulipStream: detailedEditedRoom.zulip_stream,
|
||||
zulipTopic: detailedEditedRoom.zulip_topic,
|
||||
isLocked: detailedEditedRoom.is_locked,
|
||||
roomMode: detailedEditedRoom.room_mode,
|
||||
recordingType: detailedEditedRoom.recording_type,
|
||||
recordingTrigger: detailedEditedRoom.recording_trigger,
|
||||
isShared: detailedEditedRoom.is_shared,
|
||||
webhookUrl: detailedEditedRoom.webhook_url || "",
|
||||
webhookSecret: detailedEditedRoom.webhook_secret || "",
|
||||
}
|
||||
: null,
|
||||
[detailedEditedRoom],
|
||||
);
|
||||
|
||||
// a room input value or a last api room state
|
||||
const room = roomInput || editedRoom || roomInitialState;
|
||||
|
||||
const roomTestWebhookMutation = useRoomTestWebhook();
|
||||
|
||||
// Update selected stream ID when zulip stream changes
|
||||
useEffect(() => {
|
||||
const fetchZulipStreams = async () => {
|
||||
if (!api) return;
|
||||
|
||||
try {
|
||||
const response = await api.v1ZulipGetStreams();
|
||||
setStreams(response);
|
||||
} catch (error) {
|
||||
console.error("Error fetching Zulip streams:", error);
|
||||
if (room.zulipStream && streams.length > 0) {
|
||||
const selectedStream = streams.find((s) => s.name === room.zulipStream);
|
||||
if (selectedStream !== undefined) {
|
||||
setSelectedStreamId(selectedStream.stream_id);
|
||||
}
|
||||
};
|
||||
|
||||
if (room.zulipAutoPost) {
|
||||
fetchZulipStreams();
|
||||
} else {
|
||||
setSelectedStreamId(null);
|
||||
}
|
||||
}, [room.zulipAutoPost, !api]);
|
||||
|
||||
useEffect(() => {
|
||||
const fetchZulipTopics = async () => {
|
||||
if (!api || !room.zulipStream) return;
|
||||
try {
|
||||
const selectedStream = streams.find((s) => s.name === room.zulipStream);
|
||||
if (selectedStream) {
|
||||
const response = await api.v1ZulipGetTopics({
|
||||
streamId: selectedStream.stream_id,
|
||||
});
|
||||
setTopics(response);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error("Error fetching Zulip topics:", error);
|
||||
}
|
||||
};
|
||||
|
||||
fetchZulipTopics();
|
||||
}, [room.zulipStream, streams, api]);
|
||||
}, [room.zulipStream, streams]);
|
||||
|
||||
const streamOptions: SelectOption[] = streams.map((stream) => {
|
||||
return { label: stream.name, value: stream.name };
|
||||
@@ -155,6 +186,76 @@ export default function RoomsList() {
|
||||
}, 2000);
|
||||
};
|
||||
|
||||
const handleCloseDialog = () => {
|
||||
setShowWebhookSecret(false);
|
||||
setWebhookTestResult(null);
|
||||
setEditRoomId(null);
|
||||
onClose();
|
||||
};
|
||||
|
||||
const handleTestWebhook = async () => {
|
||||
if (!room.webhookUrl) {
|
||||
setWebhookTestResult("Please enter a webhook URL first");
|
||||
return;
|
||||
}
|
||||
if (!editRoomId) {
|
||||
console.error("No room ID to test webhook");
|
||||
return;
|
||||
}
|
||||
|
||||
setTestingWebhook(true);
|
||||
setWebhookTestResult(null);
|
||||
|
||||
try {
|
||||
const response = await roomTestWebhookMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
room_id: editRoomId,
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
if (response.success) {
|
||||
setWebhookTestResult(
|
||||
`✅ Webhook test successful! Status: ${response.status_code}`,
|
||||
);
|
||||
} else {
|
||||
let errorMsg = `❌ Webhook test failed`;
|
||||
errorMsg += ` (Status: ${response.status_code})`;
|
||||
if (response.error) {
|
||||
errorMsg += `: ${response.error}`;
|
||||
} else if (response.response_preview) {
|
||||
// Try to parse and extract meaningful error from response
|
||||
// Specific to N8N at the moment, as there is no specification for that
|
||||
// We could just display as is, but decided here to dig a little bit more.
|
||||
try {
|
||||
const preview = JSON.parse(response.response_preview);
|
||||
if (preview.message) {
|
||||
errorMsg += `: ${preview.message}`;
|
||||
}
|
||||
} catch {
|
||||
// If not JSON, just show the preview text (truncated)
|
||||
const previewText = response.response_preview.substring(0, 150);
|
||||
errorMsg += `: ${previewText}`;
|
||||
}
|
||||
} else if (response?.message) {
|
||||
errorMsg += `: ${response.message}`;
|
||||
}
|
||||
setWebhookTestResult(errorMsg);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error("Error testing webhook:", error);
|
||||
setWebhookTestResult("❌ Failed to test webhook. Please check your URL.");
|
||||
} finally {
|
||||
setTestingWebhook(false);
|
||||
}
|
||||
|
||||
// Clear result after 5 seconds
|
||||
setTimeout(() => {
|
||||
setWebhookTestResult(null);
|
||||
}, 5000);
|
||||
};
|
||||
|
||||
const handleSaveRoom = async () => {
|
||||
try {
|
||||
if (RESERVED_PATHS.includes(room.name)) {
|
||||
@@ -172,30 +273,34 @@ export default function RoomsList() {
|
||||
recording_type: room.recordingType,
|
||||
recording_trigger: room.recordingTrigger,
|
||||
is_shared: room.isShared,
|
||||
webhook_url: room.webhookUrl,
|
||||
webhook_secret: room.webhookSecret,
|
||||
};
|
||||
|
||||
if (isEditing) {
|
||||
await api?.v1RoomsUpdate({
|
||||
roomId: editRoomId,
|
||||
requestBody: roomData,
|
||||
await updateRoomMutation.mutateAsync({
|
||||
params: {
|
||||
path: { room_id: assertExists(editRoomId) },
|
||||
},
|
||||
body: roomData,
|
||||
});
|
||||
} else {
|
||||
await api?.v1RoomsCreate({
|
||||
requestBody: roomData,
|
||||
await createRoomMutation.mutateAsync({
|
||||
body: roomData,
|
||||
});
|
||||
}
|
||||
|
||||
setRoom(roomInitialState);
|
||||
setRoomInput(null);
|
||||
setIsEditing(false);
|
||||
setEditRoomId("");
|
||||
setNameError("");
|
||||
refetch();
|
||||
onClose();
|
||||
} catch (err) {
|
||||
handleCloseDialog();
|
||||
} catch (err: any) {
|
||||
if (
|
||||
err instanceof ApiError &&
|
||||
err.status === 400 &&
|
||||
(err.body as any).detail == "Room name is not unique"
|
||||
err?.status === 400 &&
|
||||
err?.body?.detail == "Room name is not unique"
|
||||
) {
|
||||
setNameError(
|
||||
"This room name is already taken. Please choose a different name.",
|
||||
@@ -206,18 +311,11 @@ export default function RoomsList() {
|
||||
}
|
||||
};
|
||||
|
||||
const handleEditRoom = (roomId, roomData) => {
|
||||
setRoom({
|
||||
name: roomData.name,
|
||||
zulipAutoPost: roomData.zulip_auto_post,
|
||||
zulipStream: roomData.zulip_stream,
|
||||
zulipTopic: roomData.zulip_topic,
|
||||
isLocked: roomData.is_locked,
|
||||
roomMode: roomData.room_mode,
|
||||
recordingType: roomData.recording_type,
|
||||
recordingTrigger: roomData.recording_trigger,
|
||||
isShared: roomData.is_shared,
|
||||
});
|
||||
const handleEditRoom = async (roomId: string, roomData) => {
|
||||
// Reset states
|
||||
setShowWebhookSecret(false);
|
||||
setWebhookTestResult(null);
|
||||
|
||||
setEditRoomId(roomId);
|
||||
setIsEditing(true);
|
||||
setNameError("");
|
||||
@@ -226,8 +324,10 @@ export default function RoomsList() {
|
||||
|
||||
const handleDeleteRoom = async (roomId: string) => {
|
||||
try {
|
||||
await api?.v1RoomsDelete({
|
||||
roomId,
|
||||
await deleteRoomMutation.mutateAsync({
|
||||
params: {
|
||||
path: { room_id: roomId },
|
||||
},
|
||||
});
|
||||
refetch();
|
||||
} catch (err) {
|
||||
@@ -244,7 +344,7 @@ export default function RoomsList() {
|
||||
.toLowerCase();
|
||||
setNameError("");
|
||||
}
|
||||
setRoom({
|
||||
setRoomInput({
|
||||
...room,
|
||||
[name]: type === "checkbox" ? checked : value,
|
||||
});
|
||||
@@ -267,6 +367,9 @@ export default function RoomsList() {
|
||||
</Flex>
|
||||
);
|
||||
|
||||
if (roomListError)
|
||||
return <div>{`${roomListError.name}: ${roomListError.message}`}</div>;
|
||||
|
||||
return (
|
||||
<Flex
|
||||
flexDir="column"
|
||||
@@ -285,8 +388,10 @@ export default function RoomsList() {
|
||||
colorPalette="primary"
|
||||
onClick={() => {
|
||||
setIsEditing(false);
|
||||
setRoom(roomInitialState);
|
||||
setRoomInput(null);
|
||||
setNameError("");
|
||||
setShowWebhookSecret(false);
|
||||
setWebhookTestResult(null);
|
||||
onOpen();
|
||||
}}
|
||||
>
|
||||
@@ -296,7 +401,7 @@ export default function RoomsList() {
|
||||
|
||||
<Dialog.Root
|
||||
open={open}
|
||||
onOpenChange={(e) => (e.open ? onOpen() : onClose())}
|
||||
onOpenChange={(e) => (e.open ? onOpen() : handleCloseDialog())}
|
||||
size="lg"
|
||||
>
|
||||
<Dialog.Backdrop />
|
||||
@@ -352,7 +457,7 @@ export default function RoomsList() {
|
||||
<Select.Root
|
||||
value={[room.roomMode]}
|
||||
onValueChange={(e) =>
|
||||
setRoom({ ...room, roomMode: e.value[0] })
|
||||
setRoomInput({ ...room, roomMode: e.value[0] })
|
||||
}
|
||||
collection={roomModeCollection}
|
||||
>
|
||||
@@ -382,7 +487,7 @@ export default function RoomsList() {
|
||||
<Select.Root
|
||||
value={[room.recordingType]}
|
||||
onValueChange={(e) =>
|
||||
setRoom({
|
||||
setRoomInput({
|
||||
...room,
|
||||
recordingType: e.value[0],
|
||||
recordingTrigger:
|
||||
@@ -417,7 +522,7 @@ export default function RoomsList() {
|
||||
<Select.Root
|
||||
value={[room.recordingTrigger]}
|
||||
onValueChange={(e) =>
|
||||
setRoom({ ...room, recordingTrigger: e.value[0] })
|
||||
setRoomInput({ ...room, recordingTrigger: e.value[0] })
|
||||
}
|
||||
collection={recordingTriggerCollection}
|
||||
disabled={room.recordingType !== "cloud"}
|
||||
@@ -472,7 +577,7 @@ export default function RoomsList() {
|
||||
<Select.Root
|
||||
value={room.zulipStream ? [room.zulipStream] : []}
|
||||
onValueChange={(e) =>
|
||||
setRoom({
|
||||
setRoomInput({
|
||||
...room,
|
||||
zulipStream: e.value[0],
|
||||
zulipTopic: "",
|
||||
@@ -507,7 +612,7 @@ export default function RoomsList() {
|
||||
<Select.Root
|
||||
value={room.zulipTopic ? [room.zulipTopic] : []}
|
||||
onValueChange={(e) =>
|
||||
setRoom({ ...room, zulipTopic: e.value[0] })
|
||||
setRoomInput({ ...room, zulipTopic: e.value[0] })
|
||||
}
|
||||
collection={topicCollection}
|
||||
disabled={!room.zulipAutoPost}
|
||||
@@ -533,6 +638,109 @@ export default function RoomsList() {
|
||||
</Select.Positioner>
|
||||
</Select.Root>
|
||||
</Field.Root>
|
||||
|
||||
{/* Webhook Configuration Section */}
|
||||
<Field.Root mt={8}>
|
||||
<Field.Label>Webhook URL</Field.Label>
|
||||
<Input
|
||||
name="webhookUrl"
|
||||
type="url"
|
||||
placeholder="https://example.com/webhook"
|
||||
value={room.webhookUrl}
|
||||
onChange={handleRoomChange}
|
||||
/>
|
||||
<Field.HelperText>
|
||||
Optional: URL to receive notifications when transcripts are
|
||||
ready
|
||||
</Field.HelperText>
|
||||
</Field.Root>
|
||||
|
||||
{room.webhookUrl && (
|
||||
<>
|
||||
<Field.Root mt={4}>
|
||||
<Field.Label>Webhook Secret</Field.Label>
|
||||
<Flex gap={2}>
|
||||
<Input
|
||||
name="webhookSecret"
|
||||
type={showWebhookSecret ? "text" : "password"}
|
||||
value={room.webhookSecret}
|
||||
onChange={handleRoomChange}
|
||||
placeholder={
|
||||
isEditing && room.webhookSecret
|
||||
? "••••••••"
|
||||
: "Leave empty to auto-generate"
|
||||
}
|
||||
flex="1"
|
||||
/>
|
||||
{isEditing && room.webhookSecret && (
|
||||
<IconButton
|
||||
size="sm"
|
||||
variant="ghost"
|
||||
aria-label={
|
||||
showWebhookSecret ? "Hide secret" : "Show secret"
|
||||
}
|
||||
onClick={() =>
|
||||
setShowWebhookSecret(!showWebhookSecret)
|
||||
}
|
||||
>
|
||||
{showWebhookSecret ? <LuEyeOff /> : <LuEye />}
|
||||
</IconButton>
|
||||
)}
|
||||
</Flex>
|
||||
<Field.HelperText>
|
||||
Used for HMAC signature verification (auto-generated if
|
||||
left empty)
|
||||
</Field.HelperText>
|
||||
</Field.Root>
|
||||
|
||||
{isEditing && (
|
||||
<>
|
||||
<Flex
|
||||
mt={2}
|
||||
gap={2}
|
||||
alignItems="flex-start"
|
||||
direction="column"
|
||||
>
|
||||
<Button
|
||||
size="sm"
|
||||
variant="outline"
|
||||
onClick={handleTestWebhook}
|
||||
disabled={testingWebhook || !room.webhookUrl}
|
||||
>
|
||||
{testingWebhook ? (
|
||||
<>
|
||||
<Spinner size="xs" mr={2} />
|
||||
Testing...
|
||||
</>
|
||||
) : (
|
||||
"Test Webhook"
|
||||
)}
|
||||
</Button>
|
||||
{webhookTestResult && (
|
||||
<div
|
||||
style={{
|
||||
fontSize: "14px",
|
||||
wordBreak: "break-word",
|
||||
maxWidth: "100%",
|
||||
padding: "8px",
|
||||
borderRadius: "4px",
|
||||
backgroundColor: webhookTestResult.startsWith(
|
||||
"✅",
|
||||
)
|
||||
? "#f0fdf4"
|
||||
: "#fef2f2",
|
||||
border: `1px solid ${webhookTestResult.startsWith("✅") ? "#86efac" : "#fca5a5"}`,
|
||||
}}
|
||||
>
|
||||
{webhookTestResult}
|
||||
</div>
|
||||
)}
|
||||
</Flex>
|
||||
</>
|
||||
)}
|
||||
</>
|
||||
)}
|
||||
|
||||
<Field.Root mt={4}>
|
||||
<Checkbox.Root
|
||||
name="isShared"
|
||||
@@ -557,7 +765,7 @@ export default function RoomsList() {
|
||||
</Field.Root>
|
||||
</Dialog.Body>
|
||||
<Dialog.Footer>
|
||||
<Button variant="ghost" onClick={onClose}>
|
||||
<Button variant="ghost" onClick={handleCloseDialog}>
|
||||
Cancel
|
||||
</Button>
|
||||
<Button
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { Page_Room_ } from "../../api";
|
||||
import { useRoomsList } from "../../lib/apiHooks";
|
||||
import type { components } from "../../reflector-api";
|
||||
|
||||
type Page_Room_ = components["schemas"]["Page_RoomDetails_"];
|
||||
import { PaginationPage } from "../browse/_components/Pagination";
|
||||
|
||||
type RoomList = {
|
||||
@@ -11,38 +11,17 @@ type RoomList = {
|
||||
refetch: () => void;
|
||||
};
|
||||
|
||||
//always protected
|
||||
// Wrapper to maintain backward compatibility
|
||||
const useRoomList = (page: PaginationPage): RoomList => {
|
||||
const [response, setResponse] = useState<Page_Room_ | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(true);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const [refetchCount, setRefetchCount] = useState(0);
|
||||
|
||||
const refetch = () => {
|
||||
setLoading(true);
|
||||
setRefetchCount(refetchCount + 1);
|
||||
const { data, isLoading, error, refetch } = useRoomsList(page);
|
||||
return {
|
||||
response: data || null,
|
||||
loading: isLoading,
|
||||
error: error
|
||||
? new Error(error.detail ? JSON.stringify(error.detail) : undefined)
|
||||
: null,
|
||||
refetch,
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
if (!api) return;
|
||||
setLoading(true);
|
||||
api
|
||||
.v1RoomsList({ page })
|
||||
.then((response) => {
|
||||
setResponse(response);
|
||||
setLoading(false);
|
||||
})
|
||||
.catch((err) => {
|
||||
setResponse(null);
|
||||
setLoading(false);
|
||||
setError(err);
|
||||
setErrorState(err);
|
||||
});
|
||||
}, [!api, page, refetchCount]);
|
||||
|
||||
return { response, loading, error, refetch };
|
||||
};
|
||||
|
||||
export default useRoomList;
|
||||
|
||||
@@ -6,9 +6,10 @@ import TopicPlayer from "./topicPlayer";
|
||||
import useParticipants from "../../useParticipants";
|
||||
import useTopicWithWords from "../../useTopicWithWords";
|
||||
import ParticipantList from "./participantList";
|
||||
import { GetTranscriptTopic } from "../../../../api";
|
||||
import type { components } from "../../../../reflector-api";
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
import { SelectedText, selectedTextIsTimeSlice } from "./types";
|
||||
import useApi from "../../../../lib/useApi";
|
||||
import { useTranscriptUpdate } from "../../../../lib/apiHooks";
|
||||
import useTranscript from "../../useTranscript";
|
||||
import { useError } from "../../../../(errors)/errorContext";
|
||||
import { useRouter } from "next/navigation";
|
||||
@@ -23,7 +24,7 @@ export type TranscriptCorrect = {
|
||||
export default function TranscriptCorrect({
|
||||
params: { transcriptId },
|
||||
}: TranscriptCorrect) {
|
||||
const api = useApi();
|
||||
const updateTranscriptMutation = useTranscriptUpdate();
|
||||
const transcript = useTranscript(transcriptId);
|
||||
const stateCurrentTopic = useState<GetTranscriptTopic>();
|
||||
const [currentTopic, _sct] = stateCurrentTopic;
|
||||
@@ -34,16 +35,21 @@ export default function TranscriptCorrect({
|
||||
const { setError } = useError();
|
||||
const router = useRouter();
|
||||
|
||||
const markAsDone = () => {
|
||||
const markAsDone = async () => {
|
||||
if (transcript.response && !transcript.response.reviewed) {
|
||||
api
|
||||
?.v1TranscriptUpdate({ transcriptId, requestBody: { reviewed: true } })
|
||||
.then(() => {
|
||||
router.push(`/transcripts/${transcriptId}`);
|
||||
})
|
||||
.catch((e) => {
|
||||
setError(e, "Error marking as done");
|
||||
try {
|
||||
await updateTranscriptMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: { reviewed: true },
|
||||
});
|
||||
router.push(`/transcripts/${transcriptId}`);
|
||||
} catch (e) {
|
||||
setError(e as Error, "Error marking as done");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -1,8 +1,15 @@
|
||||
import { faArrowTurnDown } from "@fortawesome/free-solid-svg-icons";
|
||||
import { FontAwesomeIcon } from "@fortawesome/react-fontawesome";
|
||||
import { ChangeEvent, useEffect, useRef, useState } from "react";
|
||||
import { Participant } from "../../../../api";
|
||||
import useApi from "../../../../lib/useApi";
|
||||
import type { components } from "../../../../reflector-api";
|
||||
type Participant = components["schemas"]["Participant"];
|
||||
import {
|
||||
useTranscriptSpeakerAssign,
|
||||
useTranscriptSpeakerMerge,
|
||||
useTranscriptParticipantUpdate,
|
||||
useTranscriptParticipantCreate,
|
||||
useTranscriptParticipantDelete,
|
||||
} from "../../../../lib/apiHooks";
|
||||
import { UseParticipants } from "../../useParticipants";
|
||||
import { selectedTextIsSpeaker, selectedTextIsTimeSlice } from "./types";
|
||||
import { useError } from "../../../../(errors)/errorContext";
|
||||
@@ -30,9 +37,19 @@ const ParticipantList = ({
|
||||
topicWithWords,
|
||||
stateSelectedText,
|
||||
}: ParticipantList) => {
|
||||
const api = useApi();
|
||||
const { setError } = useError();
|
||||
const [loading, setLoading] = useState(false);
|
||||
const speakerAssignMutation = useTranscriptSpeakerAssign();
|
||||
const speakerMergeMutation = useTranscriptSpeakerMerge();
|
||||
const participantUpdateMutation = useTranscriptParticipantUpdate();
|
||||
const participantCreateMutation = useTranscriptParticipantCreate();
|
||||
const participantDeleteMutation = useTranscriptParticipantDelete();
|
||||
|
||||
const loading =
|
||||
speakerAssignMutation.isPending ||
|
||||
speakerMergeMutation.isPending ||
|
||||
participantUpdateMutation.isPending ||
|
||||
participantCreateMutation.isPending ||
|
||||
participantDeleteMutation.isPending;
|
||||
const [participantInput, setParticipantInput] = useState("");
|
||||
const inputRef = useRef<HTMLInputElement>(null);
|
||||
const [selectedText, setSelectedText] = stateSelectedText;
|
||||
@@ -103,7 +120,6 @@ const ParticipantList = ({
|
||||
const onSuccess = () => {
|
||||
topicWithWords.refetch();
|
||||
participants.refetch();
|
||||
setLoading(false);
|
||||
setAction(null);
|
||||
setSelectedText(undefined);
|
||||
setSelectedParticipant(undefined);
|
||||
@@ -120,11 +136,14 @@ const ParticipantList = ({
|
||||
if (loading || participants.loading || topicWithWords.loading) return;
|
||||
if (!selectedTextIsTimeSlice(selectedText)) return;
|
||||
|
||||
setLoading(true);
|
||||
try {
|
||||
await api?.v1TranscriptAssignSpeaker({
|
||||
transcriptId,
|
||||
requestBody: {
|
||||
await speakerAssignMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
participant: participant.id,
|
||||
timestamp_from: selectedText.start,
|
||||
timestamp_to: selectedText.end,
|
||||
@@ -132,8 +151,7 @@ const ParticipantList = ({
|
||||
});
|
||||
onSuccess();
|
||||
} catch (error) {
|
||||
setError(error, "There was an error assigning");
|
||||
setLoading(false);
|
||||
setError(error as Error, "There was an error assigning");
|
||||
throw error;
|
||||
}
|
||||
};
|
||||
@@ -141,32 +159,38 @@ const ParticipantList = ({
|
||||
const mergeSpeaker =
|
||||
(speakerFrom, participantTo: Participant) => async () => {
|
||||
if (loading || participants.loading || topicWithWords.loading) return;
|
||||
setLoading(true);
|
||||
|
||||
if (participantTo.speaker) {
|
||||
try {
|
||||
await api?.v1TranscriptMergeSpeaker({
|
||||
transcriptId,
|
||||
requestBody: {
|
||||
await speakerMergeMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
speaker_from: speakerFrom,
|
||||
speaker_to: participantTo.speaker,
|
||||
},
|
||||
});
|
||||
onSuccess();
|
||||
} catch (error) {
|
||||
setError(error, "There was an error merging");
|
||||
setLoading(false);
|
||||
setError(error as Error, "There was an error merging");
|
||||
}
|
||||
} else {
|
||||
try {
|
||||
await api?.v1TranscriptUpdateParticipant({
|
||||
transcriptId,
|
||||
participantId: participantTo.id,
|
||||
requestBody: { speaker: speakerFrom },
|
||||
await participantUpdateMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
participant_id: participantTo.id,
|
||||
},
|
||||
},
|
||||
body: { speaker: speakerFrom },
|
||||
});
|
||||
onSuccess();
|
||||
} catch (error) {
|
||||
setError(error, "There was an error merging (update)");
|
||||
setLoading(false);
|
||||
setError(error as Error, "There was an error merging (update)");
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -186,105 +210,106 @@ const ParticipantList = ({
|
||||
(p) => p.speaker == selectedText,
|
||||
);
|
||||
if (participant && participant.name !== participantInput) {
|
||||
setLoading(true);
|
||||
api
|
||||
?.v1TranscriptUpdateParticipant({
|
||||
transcriptId,
|
||||
participantId: participant.id,
|
||||
requestBody: {
|
||||
try {
|
||||
await participantUpdateMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
participant_id: participant.id,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
name: participantInput,
|
||||
},
|
||||
})
|
||||
.then(() => {
|
||||
participants.refetch();
|
||||
setLoading(false);
|
||||
setAction(null);
|
||||
})
|
||||
.catch((e) => {
|
||||
setError(e, "There was an error renaming");
|
||||
setLoading(false);
|
||||
});
|
||||
participants.refetch();
|
||||
setAction(null);
|
||||
} catch (e) {
|
||||
setError(e as Error, "There was an error renaming");
|
||||
}
|
||||
}
|
||||
} else if (
|
||||
action == "Create to rename" &&
|
||||
selectedTextIsSpeaker(selectedText)
|
||||
) {
|
||||
setLoading(true);
|
||||
api
|
||||
?.v1TranscriptAddParticipant({
|
||||
transcriptId,
|
||||
requestBody: {
|
||||
try {
|
||||
await participantCreateMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
name: participantInput,
|
||||
speaker: selectedText,
|
||||
},
|
||||
})
|
||||
.then(() => {
|
||||
participants.refetch();
|
||||
setParticipantInput("");
|
||||
setOneMatch(undefined);
|
||||
setLoading(false);
|
||||
})
|
||||
.catch((e) => {
|
||||
setError(e, "There was an error creating");
|
||||
setLoading(false);
|
||||
});
|
||||
participants.refetch();
|
||||
setParticipantInput("");
|
||||
setOneMatch(undefined);
|
||||
} catch (e) {
|
||||
setError(e as Error, "There was an error creating");
|
||||
}
|
||||
} else if (
|
||||
action == "Create and assign" &&
|
||||
selectedTextIsTimeSlice(selectedText)
|
||||
) {
|
||||
setLoading(true);
|
||||
try {
|
||||
const participant = await api?.v1TranscriptAddParticipant({
|
||||
transcriptId,
|
||||
requestBody: {
|
||||
const participant = await participantCreateMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
name: participantInput,
|
||||
},
|
||||
});
|
||||
setLoading(false);
|
||||
assignTo(participant)().catch(() => {
|
||||
// error and loading are handled by assignTo catch
|
||||
participants.refetch();
|
||||
});
|
||||
} catch (error) {
|
||||
setError(e, "There was an error creating");
|
||||
setLoading(false);
|
||||
setError(error as Error, "There was an error creating");
|
||||
}
|
||||
} else if (action == "Create") {
|
||||
setLoading(true);
|
||||
api
|
||||
?.v1TranscriptAddParticipant({
|
||||
transcriptId,
|
||||
requestBody: {
|
||||
try {
|
||||
await participantCreateMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
name: participantInput,
|
||||
},
|
||||
})
|
||||
.then(() => {
|
||||
participants.refetch();
|
||||
setParticipantInput("");
|
||||
setLoading(false);
|
||||
inputRef.current?.focus();
|
||||
})
|
||||
.catch((e) => {
|
||||
setError(e, "There was an error creating");
|
||||
setLoading(false);
|
||||
});
|
||||
participants.refetch();
|
||||
setParticipantInput("");
|
||||
inputRef.current?.focus();
|
||||
} catch (e) {
|
||||
setError(e as Error, "There was an error creating");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const deleteParticipant = (participantId) => (e) => {
|
||||
const deleteParticipant = (participantId) => async (e) => {
|
||||
e.stopPropagation();
|
||||
if (loading || participants.loading || topicWithWords.loading) return;
|
||||
setLoading(true);
|
||||
api
|
||||
?.v1TranscriptDeleteParticipant({ transcriptId, participantId })
|
||||
.then(() => {
|
||||
participants.refetch();
|
||||
setLoading(false);
|
||||
})
|
||||
.catch((e) => {
|
||||
setError(e, "There was an error deleting");
|
||||
setLoading(false);
|
||||
|
||||
try {
|
||||
await participantDeleteMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
participant_id: participantId,
|
||||
},
|
||||
},
|
||||
});
|
||||
participants.refetch();
|
||||
} catch (e) {
|
||||
setError(e as Error, "There was an error deleting");
|
||||
}
|
||||
};
|
||||
|
||||
const selectParticipant = (participant) => (e) => {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import useTopics from "../../useTopics";
|
||||
import { Dispatch, SetStateAction, useEffect } from "react";
|
||||
import { GetTranscriptTopic } from "../../../../api";
|
||||
import type { components } from "../../../../reflector-api";
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
import {
|
||||
BoxProps,
|
||||
Box,
|
||||
|
||||
@@ -2,12 +2,10 @@ import { useEffect, useRef, useState } from "react";
|
||||
import React from "react";
|
||||
import Markdown from "react-markdown";
|
||||
import "../../../styles/markdown.css";
|
||||
import {
|
||||
GetTranscript,
|
||||
GetTranscriptTopic,
|
||||
UpdateTranscript,
|
||||
} from "../../../api";
|
||||
import useApi from "../../../lib/useApi";
|
||||
import type { components } from "../../../reflector-api";
|
||||
type GetTranscript = components["schemas"]["GetTranscript"];
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
import { useTranscriptUpdate } from "../../../lib/apiHooks";
|
||||
import {
|
||||
Flex,
|
||||
Heading,
|
||||
@@ -33,9 +31,8 @@ export default function FinalSummary(props: FinalSummaryProps) {
|
||||
const [preEditSummary, setPreEditSummary] = useState("");
|
||||
const [editedSummary, setEditedSummary] = useState("");
|
||||
|
||||
const api = useApi();
|
||||
|
||||
const { setError } = useError();
|
||||
const updateTranscriptMutation = useTranscriptUpdate();
|
||||
|
||||
useEffect(() => {
|
||||
setEditedSummary(props.transcriptResponse?.long_summary || "");
|
||||
@@ -47,12 +44,15 @@ export default function FinalSummary(props: FinalSummaryProps) {
|
||||
|
||||
const updateSummary = async (newSummary: string, transcriptId: string) => {
|
||||
try {
|
||||
const requestBody: UpdateTranscript = {
|
||||
long_summary: newSummary,
|
||||
};
|
||||
const updatedTranscript = await api?.v1TranscriptUpdate({
|
||||
transcriptId,
|
||||
requestBody,
|
||||
const updatedTranscript = await updateTranscriptMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
long_summary: newSummary,
|
||||
},
|
||||
});
|
||||
if (props.onUpdate) {
|
||||
props.onUpdate(newSummary);
|
||||
@@ -60,7 +60,7 @@ export default function FinalSummary(props: FinalSummaryProps) {
|
||||
console.log("Updated long summary:", updatedTranscript);
|
||||
} catch (err) {
|
||||
console.error("Failed to update long summary:", err);
|
||||
setError(err, "Failed to update long summary.");
|
||||
setError(err as Error, "Failed to update long summary.");
|
||||
}
|
||||
};
|
||||
|
||||
@@ -114,7 +114,12 @@ export default function FinalSummary(props: FinalSummaryProps) {
|
||||
<Button onClick={onDiscardClick} variant="ghost">
|
||||
Cancel
|
||||
</Button>
|
||||
<Button onClick={onSaveClick}>Save</Button>
|
||||
<Button
|
||||
onClick={onSaveClick}
|
||||
disabled={updateTranscriptMutation.isPending}
|
||||
>
|
||||
Save
|
||||
</Button>
|
||||
</Flex>
|
||||
)}
|
||||
{!isEditMode && (
|
||||
|
||||
@@ -86,7 +86,7 @@ export default function TranscriptDetails(details: TranscriptDetails) {
|
||||
useActiveTopic={useActiveTopic}
|
||||
waveform={waveform.waveform}
|
||||
media={mp3.media}
|
||||
mediaDuration={transcript.response.duration}
|
||||
mediaDuration={transcript.response?.duration || null}
|
||||
/>
|
||||
) : !mp3.loading && (waveform.error || mp3.error) ? (
|
||||
<Box p={4} bg="red.100" borderRadius="md">
|
||||
@@ -116,7 +116,7 @@ export default function TranscriptDetails(details: TranscriptDetails) {
|
||||
<Flex direction="column" gap={0}>
|
||||
<Flex alignItems="center" gap={2}>
|
||||
<TranscriptTitle
|
||||
title={transcript.response.title || "Unnamed Transcript"}
|
||||
title={transcript.response?.title || "Unnamed Transcript"}
|
||||
transcriptId={transcriptId}
|
||||
onUpdate={(newTitle) => {
|
||||
transcript.reload();
|
||||
|
||||
@@ -24,10 +24,16 @@ const TranscriptUpload = (details: TranscriptUpload) => {
|
||||
|
||||
const router = useRouter();
|
||||
|
||||
const [status, setStatus] = useState(
|
||||
const [status_, setStatus] = useState(
|
||||
webSockets.status.value || transcript.response?.status || "idle",
|
||||
);
|
||||
|
||||
// status is obviously done if we have transcript
|
||||
const status =
|
||||
!transcript.loading && transcript.response?.status === "ended"
|
||||
? transcript.response?.status
|
||||
: status_;
|
||||
|
||||
useEffect(() => {
|
||||
if (!transcriptStarted && webSockets.transcriptTextLive.length !== 0)
|
||||
setTranscriptStarted(true);
|
||||
@@ -35,8 +41,11 @@ const TranscriptUpload = (details: TranscriptUpload) => {
|
||||
|
||||
useEffect(() => {
|
||||
//TODO HANDLE ERROR STATUS BETTER
|
||||
// TODO deprecate webSockets.status.value / depend on transcript.response?.status from query lib
|
||||
const newStatus =
|
||||
webSockets.status.value || transcript.response?.status || "idle";
|
||||
transcript.response?.status === "ended"
|
||||
? "ended"
|
||||
: webSockets.status.value || transcript.response?.status || "idle";
|
||||
setStatus(newStatus);
|
||||
if (newStatus && (newStatus == "ended" || newStatus == "error")) {
|
||||
console.log(newStatus, "redirecting");
|
||||
|
||||
@@ -1,45 +1,33 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import type { components } from "../../reflector-api";
|
||||
import { useTranscriptCreate } from "../../lib/apiHooks";
|
||||
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import { CreateTranscript, GetTranscript } from "../../api";
|
||||
import useApi from "../../lib/useApi";
|
||||
type CreateTranscript = components["schemas"]["CreateTranscript"];
|
||||
type GetTranscript = components["schemas"]["GetTranscript"];
|
||||
|
||||
type UseCreateTranscript = {
|
||||
transcript: GetTranscript | null;
|
||||
loading: boolean;
|
||||
error: Error | null;
|
||||
create: (transcriptCreationDetails: CreateTranscript) => void;
|
||||
create: (transcriptCreationDetails: CreateTranscript) => Promise<void>;
|
||||
};
|
||||
|
||||
const useCreateTranscript = (): UseCreateTranscript => {
|
||||
const [transcript, setTranscript] = useState<GetTranscript | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(false);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const createMutation = useTranscriptCreate();
|
||||
|
||||
const create = (transcriptCreationDetails: CreateTranscript) => {
|
||||
if (loading || !api) return;
|
||||
const create = async (transcriptCreationDetails: CreateTranscript) => {
|
||||
if (createMutation.isPending) return;
|
||||
|
||||
setLoading(true);
|
||||
|
||||
api
|
||||
.v1TranscriptsCreate({ requestBody: transcriptCreationDetails })
|
||||
.then((transcript) => {
|
||||
setTranscript(transcript);
|
||||
setLoading(false);
|
||||
})
|
||||
.catch((err) => {
|
||||
setError(
|
||||
err,
|
||||
"There was an issue creating a transcript, please try again.",
|
||||
);
|
||||
setErrorState(err);
|
||||
setLoading(false);
|
||||
});
|
||||
await createMutation.mutateAsync({
|
||||
body: transcriptCreationDetails,
|
||||
});
|
||||
};
|
||||
|
||||
return { transcript, loading, error, create };
|
||||
return {
|
||||
transcript: createMutation.data || null,
|
||||
loading: createMutation.isPending,
|
||||
error: createMutation.error as Error | null,
|
||||
create,
|
||||
};
|
||||
};
|
||||
|
||||
export default useCreateTranscript;
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import React, { useState } from "react";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { useTranscriptUploadAudio } from "../../lib/apiHooks";
|
||||
import { Button, Spinner } from "@chakra-ui/react";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
|
||||
type FileUploadButton = {
|
||||
transcriptId: string;
|
||||
@@ -8,13 +9,16 @@ type FileUploadButton = {
|
||||
|
||||
export default function FileUploadButton(props: FileUploadButton) {
|
||||
const fileInputRef = React.useRef<HTMLInputElement>(null);
|
||||
const api = useApi();
|
||||
const uploadMutation = useTranscriptUploadAudio();
|
||||
const { setError } = useError();
|
||||
const [progress, setProgress] = useState(0);
|
||||
const triggerFileUpload = () => {
|
||||
fileInputRef.current?.click();
|
||||
};
|
||||
|
||||
const handleFileUpload = (event: React.ChangeEvent<HTMLInputElement>) => {
|
||||
const handleFileUpload = async (
|
||||
event: React.ChangeEvent<HTMLInputElement>,
|
||||
) => {
|
||||
const file = event.target.files?.[0];
|
||||
|
||||
if (file) {
|
||||
@@ -24,37 +28,45 @@ export default function FileUploadButton(props: FileUploadButton) {
|
||||
let start = 0;
|
||||
let uploadedSize = 0;
|
||||
|
||||
api?.httpRequest.config.interceptors.request.use((request) => {
|
||||
request.onUploadProgress = (progressEvent) => {
|
||||
const currentProgress = Math.floor(
|
||||
((uploadedSize + progressEvent.loaded) / file.size) * 100,
|
||||
);
|
||||
setProgress(currentProgress);
|
||||
};
|
||||
return request;
|
||||
});
|
||||
|
||||
const uploadNextChunk = async () => {
|
||||
if (chunkNumber == totalChunks) return;
|
||||
if (chunkNumber == totalChunks) {
|
||||
setProgress(0);
|
||||
return;
|
||||
}
|
||||
|
||||
const chunkSize = Math.min(maxChunkSize, file.size - start);
|
||||
const end = start + chunkSize;
|
||||
const chunk = file.slice(start, end);
|
||||
|
||||
await api?.v1TranscriptRecordUpload({
|
||||
transcriptId: props.transcriptId,
|
||||
formData: {
|
||||
chunk,
|
||||
},
|
||||
chunkNumber,
|
||||
totalChunks,
|
||||
});
|
||||
try {
|
||||
const formData = new FormData();
|
||||
formData.append("chunk", chunk);
|
||||
|
||||
uploadedSize += chunkSize;
|
||||
chunkNumber++;
|
||||
start = end;
|
||||
await uploadMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: props.transcriptId,
|
||||
},
|
||||
query: {
|
||||
chunk_number: chunkNumber,
|
||||
total_chunks: totalChunks,
|
||||
},
|
||||
},
|
||||
body: formData as any,
|
||||
});
|
||||
|
||||
uploadNextChunk();
|
||||
uploadedSize += chunkSize;
|
||||
const currentProgress = Math.floor((uploadedSize / file.size) * 100);
|
||||
setProgress(currentProgress);
|
||||
|
||||
chunkNumber++;
|
||||
start = end;
|
||||
|
||||
await uploadNextChunk();
|
||||
} catch (error) {
|
||||
setError(error as Error, "Failed to upload file");
|
||||
setProgress(0);
|
||||
}
|
||||
};
|
||||
|
||||
uploadNextChunk();
|
||||
|
||||
@@ -9,33 +9,27 @@ import { useRouter } from "next/navigation";
|
||||
import useCreateTranscript from "../createTranscript";
|
||||
import SelectSearch from "react-select-search";
|
||||
import { supportedLanguages } from "../../../supportedLanguages";
|
||||
import useSessionStatus from "../../../lib/useSessionStatus";
|
||||
import { featureEnabled } from "../../../domainContext";
|
||||
import { signIn } from "next-auth/react";
|
||||
import {
|
||||
Flex,
|
||||
Box,
|
||||
Spinner,
|
||||
Heading,
|
||||
Button,
|
||||
Card,
|
||||
Center,
|
||||
Link,
|
||||
CardBody,
|
||||
Stack,
|
||||
Text,
|
||||
Icon,
|
||||
Grid,
|
||||
IconButton,
|
||||
Spacer,
|
||||
Menu,
|
||||
Tooltip,
|
||||
Input,
|
||||
} from "@chakra-ui/react";
|
||||
import { useAuth } from "../../../lib/AuthProvider";
|
||||
import type { components } from "../../../reflector-api";
|
||||
|
||||
const TranscriptCreate = () => {
|
||||
const isClient = typeof window !== "undefined";
|
||||
const router = useRouter();
|
||||
const { isLoading, isAuthenticated } = useSessionStatus();
|
||||
const auth = useAuth();
|
||||
const isAuthenticated = auth.status === "authenticated";
|
||||
const isAuthRefreshing = auth.status === "refreshing";
|
||||
const isLoading = auth.status === "loading";
|
||||
const requireLogin = featureEnabled("requireLogin");
|
||||
|
||||
const [name, setName] = useState<string>("");
|
||||
@@ -54,20 +48,32 @@ const TranscriptCreate = () => {
|
||||
const [loadingUpload, setLoadingUpload] = useState(false);
|
||||
|
||||
const getTargetLanguage = () => {
|
||||
if (targetLanguage === "NOTRANSLATION") return;
|
||||
if (targetLanguage === "NOTRANSLATION") return undefined;
|
||||
return targetLanguage;
|
||||
};
|
||||
|
||||
const send = () => {
|
||||
if (loadingRecord || createTranscript.loading || permissionDenied) return;
|
||||
setLoadingRecord(true);
|
||||
createTranscript.create({ name, target_language: getTargetLanguage() });
|
||||
const targetLang = getTargetLanguage();
|
||||
createTranscript.create({
|
||||
name,
|
||||
source_language: "en",
|
||||
target_language: targetLang || "en",
|
||||
source_kind: "live",
|
||||
});
|
||||
};
|
||||
|
||||
const uploadFile = () => {
|
||||
if (loadingUpload || createTranscript.loading || permissionDenied) return;
|
||||
setLoadingUpload(true);
|
||||
createTranscript.create({ name, target_language: getTargetLanguage() });
|
||||
const targetLang = getTargetLanguage();
|
||||
createTranscript.create({
|
||||
name,
|
||||
source_language: "en",
|
||||
target_language: targetLang || "en",
|
||||
source_kind: "file",
|
||||
});
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
@@ -132,8 +138,8 @@ const TranscriptCreate = () => {
|
||||
<Center>
|
||||
{isLoading ? (
|
||||
<Spinner />
|
||||
) : requireLogin && !isAuthenticated ? (
|
||||
<Button onClick={() => signIn("authentik")}>Log in</Button>
|
||||
) : requireLogin && !isAuthenticated && !isAuthRefreshing ? (
|
||||
<Button onClick={() => auth.signIn("authentik")}>Log in</Button>
|
||||
) : (
|
||||
<Flex
|
||||
rounded="xl"
|
||||
|
||||
@@ -5,7 +5,9 @@ import RegionsPlugin from "wavesurfer.js/dist/plugins/regions.esm.js";
|
||||
|
||||
import { formatTime, formatTimeMs } from "../../lib/time";
|
||||
import { Topic } from "./webSocketTypes";
|
||||
import { AudioWaveform } from "../../api";
|
||||
import type { components } from "../../reflector-api";
|
||||
|
||||
type AudioWaveform = components["schemas"]["AudioWaveform"];
|
||||
import { waveSurferStyles } from "../../styles/recorder";
|
||||
import { Box, Flex, IconButton } from "@chakra-ui/react";
|
||||
import { LuPause, LuPlay } from "react-icons/lu";
|
||||
@@ -18,7 +20,7 @@ type PlayerProps = {
|
||||
];
|
||||
waveform: AudioWaveform;
|
||||
media: HTMLMediaElement;
|
||||
mediaDuration: number;
|
||||
mediaDuration: number | null;
|
||||
};
|
||||
|
||||
export default function Player(props: PlayerProps) {
|
||||
@@ -50,7 +52,9 @@ export default function Player(props: PlayerProps) {
|
||||
container: waveformRef.current,
|
||||
peaks: [props.waveform.data],
|
||||
height: "auto",
|
||||
duration: Math.floor(props.mediaDuration / 1000),
|
||||
duration: props.mediaDuration
|
||||
? Math.floor(props.mediaDuration / 1000)
|
||||
: undefined,
|
||||
media: props.media,
|
||||
|
||||
...waveSurferStyles.playerSettings,
|
||||
|
||||
@@ -6,7 +6,6 @@ import RecordPlugin from "../../lib/custom-plugins/record";
|
||||
import { formatTime, formatTimeMs } from "../../lib/time";
|
||||
import { waveSurferStyles } from "../../styles/recorder";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import FileUploadButton from "./fileUploadButton";
|
||||
import useWebRTC from "./useWebRTC";
|
||||
import useAudioDevice from "./useAudioDevice";
|
||||
import { Box, Flex, IconButton, Menu, RadioGroup } from "@chakra-ui/react";
|
||||
|
||||
@@ -2,7 +2,10 @@ import { useEffect, useState } from "react";
|
||||
import { featureEnabled } from "../../domainContext";
|
||||
|
||||
import { ShareMode, toShareMode } from "../../lib/shareMode";
|
||||
import { GetTranscript, GetTranscriptTopic, UpdateTranscript } from "../../api";
|
||||
import type { components } from "../../reflector-api";
|
||||
type GetTranscript = components["schemas"]["GetTranscript"];
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
type UpdateTranscript = components["schemas"]["UpdateTranscript"];
|
||||
import {
|
||||
Box,
|
||||
Flex,
|
||||
@@ -15,12 +18,11 @@ import {
|
||||
createListCollection,
|
||||
} from "@chakra-ui/react";
|
||||
import { LuShare2 } from "react-icons/lu";
|
||||
import useApi from "../../lib/useApi";
|
||||
import useSessionUser from "../../lib/useSessionUser";
|
||||
import { CustomSession } from "../../lib/types";
|
||||
import { useTranscriptUpdate } from "../../lib/apiHooks";
|
||||
import ShareLink from "./shareLink";
|
||||
import ShareCopy from "./shareCopy";
|
||||
import ShareZulip from "./shareZulip";
|
||||
import { useAuth } from "../../lib/AuthProvider";
|
||||
|
||||
type ShareAndPrivacyProps = {
|
||||
finalSummaryRef: any;
|
||||
@@ -50,12 +52,9 @@ export default function ShareAndPrivacy(props: ShareAndPrivacyProps) {
|
||||
);
|
||||
const [shareLoading, setShareLoading] = useState(false);
|
||||
const requireLogin = featureEnabled("requireLogin");
|
||||
const api = useApi();
|
||||
const updateTranscriptMutation = useTranscriptUpdate();
|
||||
|
||||
const updateShareMode = async (selectedValue: string) => {
|
||||
if (!api)
|
||||
throw new Error("ShareLink's API should always be ready at this point");
|
||||
|
||||
const selectedOption = shareOptionsData.find(
|
||||
(option) => option.value === selectedValue,
|
||||
);
|
||||
@@ -67,19 +66,27 @@ export default function ShareAndPrivacy(props: ShareAndPrivacyProps) {
|
||||
share_mode: selectedValue as "public" | "semi-private" | "private",
|
||||
};
|
||||
|
||||
const updatedTranscript = await api.v1TranscriptUpdate({
|
||||
transcriptId: props.transcriptResponse.id,
|
||||
requestBody,
|
||||
});
|
||||
setShareMode(
|
||||
shareOptionsData.find(
|
||||
(option) => option.value === updatedTranscript.share_mode,
|
||||
) || shareOptionsData[0],
|
||||
);
|
||||
setShareLoading(false);
|
||||
try {
|
||||
const updatedTranscript = await updateTranscriptMutation.mutateAsync({
|
||||
params: {
|
||||
path: { transcript_id: props.transcriptResponse.id },
|
||||
},
|
||||
body: requestBody,
|
||||
});
|
||||
setShareMode(
|
||||
shareOptionsData.find(
|
||||
(option) => option.value === updatedTranscript.share_mode,
|
||||
) || shareOptionsData[0],
|
||||
);
|
||||
} catch (err) {
|
||||
console.error("Failed to update share mode:", err);
|
||||
} finally {
|
||||
setShareLoading(false);
|
||||
}
|
||||
};
|
||||
|
||||
const userId = useSessionUser().id;
|
||||
const auth = useAuth();
|
||||
const userId = auth.status === "authenticated" ? auth.user?.id : null;
|
||||
|
||||
useEffect(() => {
|
||||
setIsOwner(!!(requireLogin && userId === props.transcriptResponse.user_id));
|
||||
@@ -124,7 +131,7 @@ export default function ShareAndPrivacy(props: ShareAndPrivacyProps) {
|
||||
"This transcript is public. Everyone can access it."}
|
||||
</Text>
|
||||
|
||||
{isOwner && api && (
|
||||
{isOwner && (
|
||||
<Select.Root
|
||||
key={shareMode.value}
|
||||
value={[shareMode.value || ""]}
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import { useState } from "react";
|
||||
import { GetTranscript, GetTranscriptTopic } from "../../api";
|
||||
import type { components } from "../../reflector-api";
|
||||
type GetTranscript = components["schemas"]["GetTranscript"];
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
import { Button, BoxProps, Box } from "@chakra-ui/react";
|
||||
|
||||
type ShareCopyProps = {
|
||||
|
||||
@@ -1,6 +1,9 @@
|
||||
import { useState, useEffect, useMemo } from "react";
|
||||
import { featureEnabled } from "../../domainContext";
|
||||
import { GetTranscript, GetTranscriptTopic } from "../../api";
|
||||
import type { components } from "../../reflector-api";
|
||||
|
||||
type GetTranscript = components["schemas"]["GetTranscript"];
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
import {
|
||||
BoxProps,
|
||||
Button,
|
||||
@@ -12,12 +15,15 @@ import {
|
||||
Checkbox,
|
||||
Combobox,
|
||||
Spinner,
|
||||
Portal,
|
||||
useFilter,
|
||||
useListCollection,
|
||||
} from "@chakra-ui/react";
|
||||
import { TbBrandZulip } from "react-icons/tb";
|
||||
import useApi from "../../lib/useApi";
|
||||
import {
|
||||
useZulipStreams,
|
||||
useZulipTopics,
|
||||
useTranscriptPostToZulip,
|
||||
} from "../../lib/apiHooks";
|
||||
|
||||
type ShareZulipProps = {
|
||||
transcriptResponse: GetTranscript;
|
||||
@@ -30,104 +36,75 @@ interface Stream {
|
||||
name: string;
|
||||
}
|
||||
|
||||
interface Topic {
|
||||
name: string;
|
||||
}
|
||||
|
||||
export default function ShareZulip(props: ShareZulipProps & BoxProps) {
|
||||
const [showModal, setShowModal] = useState(false);
|
||||
const [stream, setStream] = useState<string | undefined>(undefined);
|
||||
const [selectedStreamId, setSelectedStreamId] = useState<number | null>(null);
|
||||
const [topic, setTopic] = useState<string | undefined>(undefined);
|
||||
const [includeTopics, setIncludeTopics] = useState(false);
|
||||
const [isLoading, setIsLoading] = useState(true);
|
||||
const [streams, setStreams] = useState<Stream[]>([]);
|
||||
const [topics, setTopics] = useState<Topic[]>([]);
|
||||
const api = useApi();
|
||||
|
||||
const { data: streams = [], isLoading: isLoadingStreams } = useZulipStreams();
|
||||
const { data: topics = [] } = useZulipTopics(selectedStreamId);
|
||||
const postToZulipMutation = useTranscriptPostToZulip();
|
||||
|
||||
const { contains } = useFilter({ sensitivity: "base" });
|
||||
|
||||
const {
|
||||
collection: streamItemsCollection,
|
||||
filter: streamItemsFilter,
|
||||
set: streamItemsSet,
|
||||
} = useListCollection({
|
||||
initialItems: [] as { label: string; value: string }[],
|
||||
filter: contains,
|
||||
});
|
||||
const streamItems = useMemo(() => {
|
||||
return streams.map((stream: Stream) => ({
|
||||
label: stream.name,
|
||||
value: stream.name,
|
||||
}));
|
||||
}, [streams]);
|
||||
|
||||
const {
|
||||
collection: topicItemsCollection,
|
||||
filter: topicItemsFilter,
|
||||
set: topicItemsSet,
|
||||
} = useListCollection({
|
||||
initialItems: [] as { label: string; value: string }[],
|
||||
filter: contains,
|
||||
});
|
||||
const topicItems = useMemo(() => {
|
||||
return topics.map(({ name }) => ({
|
||||
label: name,
|
||||
value: name,
|
||||
}));
|
||||
}, [topics]);
|
||||
|
||||
const { collection: streamItemsCollection, filter: streamItemsFilter } =
|
||||
useListCollection({
|
||||
initialItems: streamItems,
|
||||
filter: contains,
|
||||
});
|
||||
|
||||
const { collection: topicItemsCollection, filter: topicItemsFilter } =
|
||||
useListCollection({
|
||||
initialItems: topicItems,
|
||||
filter: contains,
|
||||
});
|
||||
|
||||
// Update selected stream ID when stream changes
|
||||
useEffect(() => {
|
||||
const fetchZulipStreams = async () => {
|
||||
if (!api) return;
|
||||
|
||||
try {
|
||||
const response = await api.v1ZulipGetStreams();
|
||||
setStreams(response);
|
||||
|
||||
streamItemsSet(
|
||||
response.map((stream) => ({
|
||||
label: stream.name,
|
||||
value: stream.name,
|
||||
})),
|
||||
);
|
||||
|
||||
setIsLoading(false);
|
||||
} catch (error) {
|
||||
console.error("Error fetching Zulip streams:", error);
|
||||
}
|
||||
};
|
||||
|
||||
fetchZulipStreams();
|
||||
}, [!api]);
|
||||
|
||||
useEffect(() => {
|
||||
const fetchZulipTopics = async () => {
|
||||
if (!api || !stream) return;
|
||||
try {
|
||||
const selectedStream = streams.find((s) => s.name === stream);
|
||||
if (selectedStream) {
|
||||
const response = await api.v1ZulipGetTopics({
|
||||
streamId: selectedStream.stream_id,
|
||||
});
|
||||
setTopics(response);
|
||||
topicItemsSet(
|
||||
response.map((topic) => ({
|
||||
label: topic.name,
|
||||
value: topic.name,
|
||||
})),
|
||||
);
|
||||
} else {
|
||||
topicItemsSet([]);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error("Error fetching Zulip topics:", error);
|
||||
}
|
||||
};
|
||||
|
||||
fetchZulipTopics();
|
||||
}, [stream, streams, api]);
|
||||
if (stream && streams) {
|
||||
const selectedStream = streams.find((s: Stream) => s.name === stream);
|
||||
setSelectedStreamId(selectedStream ? selectedStream.stream_id : null);
|
||||
} else {
|
||||
setSelectedStreamId(null);
|
||||
}
|
||||
}, [stream, streams]);
|
||||
|
||||
const handleSendToZulip = async () => {
|
||||
if (!api || !props.transcriptResponse) return;
|
||||
if (!props.transcriptResponse) return;
|
||||
|
||||
if (stream && topic) {
|
||||
try {
|
||||
await api.v1TranscriptPostToZulip({
|
||||
transcriptId: props.transcriptResponse.id,
|
||||
stream,
|
||||
topic,
|
||||
includeTopics,
|
||||
await postToZulipMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: props.transcriptResponse.id,
|
||||
},
|
||||
query: {
|
||||
stream,
|
||||
topic,
|
||||
include_topics: includeTopics,
|
||||
},
|
||||
},
|
||||
});
|
||||
setShowModal(false);
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
console.error("Error posting to Zulip:", error);
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -155,7 +132,7 @@ export default function ShareZulip(props: ShareZulipProps & BoxProps) {
|
||||
</Dialog.CloseTrigger>
|
||||
</Dialog.Header>
|
||||
<Dialog.Body>
|
||||
{isLoading ? (
|
||||
{isLoadingStreams ? (
|
||||
<Flex justify="center" py={8}>
|
||||
<Spinner />
|
||||
</Flex>
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import { useState } from "react";
|
||||
import { UpdateTranscript } from "../../api";
|
||||
import useApi from "../../lib/useApi";
|
||||
import type { components } from "../../reflector-api";
|
||||
|
||||
type UpdateTranscript = components["schemas"]["UpdateTranscript"];
|
||||
import { useTranscriptUpdate } from "../../lib/apiHooks";
|
||||
import { Heading, IconButton, Input, Flex, Spacer } from "@chakra-ui/react";
|
||||
import { LuPen } from "react-icons/lu";
|
||||
|
||||
@@ -14,24 +16,27 @@ const TranscriptTitle = (props: TranscriptTitle) => {
|
||||
const [displayedTitle, setDisplayedTitle] = useState(props.title);
|
||||
const [preEditTitle, setPreEditTitle] = useState(props.title);
|
||||
const [isEditing, setIsEditing] = useState(false);
|
||||
const api = useApi();
|
||||
const updateTranscriptMutation = useTranscriptUpdate();
|
||||
|
||||
const updateTitle = async (newTitle: string, transcriptId: string) => {
|
||||
if (!api) return;
|
||||
try {
|
||||
const requestBody: UpdateTranscript = {
|
||||
title: newTitle,
|
||||
};
|
||||
const updatedTranscript = await api?.v1TranscriptUpdate({
|
||||
transcriptId,
|
||||
requestBody,
|
||||
await updateTranscriptMutation.mutateAsync({
|
||||
params: {
|
||||
path: { transcript_id: transcriptId },
|
||||
},
|
||||
body: requestBody,
|
||||
});
|
||||
if (props.onUpdate) {
|
||||
props.onUpdate(newTitle);
|
||||
}
|
||||
console.log("Updated transcript:", updatedTranscript);
|
||||
console.log("Updated transcript title:", newTitle);
|
||||
} catch (err) {
|
||||
console.error("Failed to update transcript:", err);
|
||||
// Revert title on error
|
||||
setDisplayedTitle(preEditTitle);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import { useContext, useEffect, useState } from "react";
|
||||
import { DomainContext } from "../../domainContext";
|
||||
import getApi from "../../lib/useApi";
|
||||
import { useTranscriptGet } from "../../lib/apiHooks";
|
||||
import { useAuth } from "../../lib/AuthProvider";
|
||||
|
||||
export type Mp3Response = {
|
||||
media: HTMLMediaElement | null;
|
||||
@@ -17,14 +18,17 @@ const useMp3 = (transcriptId: string, waiting?: boolean): Mp3Response => {
|
||||
const [audioLoadingError, setAudioLoadingError] = useState<null | string>(
|
||||
null,
|
||||
);
|
||||
const [transcriptMetadataLoading, setTranscriptMetadataLoading] =
|
||||
useState<boolean>(true);
|
||||
const [transcriptMetadataLoadingError, setTranscriptMetadataLoadingError] =
|
||||
useState<string | null>(null);
|
||||
const [audioDeleted, setAudioDeleted] = useState<boolean | null>(null);
|
||||
const api = getApi();
|
||||
const { api_url } = useContext(DomainContext);
|
||||
const accessTokenInfo = api?.httpRequest?.config?.TOKEN;
|
||||
const auth = useAuth();
|
||||
const accessTokenInfo =
|
||||
auth.status === "authenticated" ? auth.accessToken : null;
|
||||
|
||||
const {
|
||||
data: transcript,
|
||||
isLoading: transcriptMetadataLoading,
|
||||
error: transcriptError,
|
||||
} = useTranscriptGet(later ? null : transcriptId);
|
||||
|
||||
const [serviceWorker, setServiceWorker] =
|
||||
useState<ServiceWorkerRegistration | null>(null);
|
||||
@@ -52,72 +56,50 @@ const useMp3 = (transcriptId: string, waiting?: boolean): Mp3Response => {
|
||||
}, [navigator.serviceWorker, !serviceWorker, accessTokenInfo]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!transcriptId || !api || later) return;
|
||||
if (!transcriptId || later || !transcript) return;
|
||||
|
||||
let stopped = false;
|
||||
let audioElement: HTMLAudioElement | null = null;
|
||||
let handleCanPlay: (() => void) | null = null;
|
||||
let handleError: (() => void) | null = null;
|
||||
|
||||
setTranscriptMetadataLoading(true);
|
||||
setAudioLoading(true);
|
||||
|
||||
// First fetch transcript info to check if audio is deleted
|
||||
api
|
||||
.v1TranscriptGet({ transcriptId })
|
||||
.then((transcript) => {
|
||||
if (stopped) {
|
||||
return;
|
||||
}
|
||||
const deleted = transcript.audio_deleted || false;
|
||||
setAudioDeleted(deleted);
|
||||
|
||||
const deleted = transcript.audio_deleted || false;
|
||||
setAudioDeleted(deleted);
|
||||
setTranscriptMetadataLoadingError(null);
|
||||
if (deleted) {
|
||||
// Audio is deleted, don't attempt to load it
|
||||
setMedia(null);
|
||||
setAudioLoadingError(null);
|
||||
setAudioLoading(false);
|
||||
return;
|
||||
}
|
||||
|
||||
if (deleted) {
|
||||
// Audio is deleted, don't attempt to load it
|
||||
setMedia(null);
|
||||
setAudioLoadingError(null);
|
||||
setAudioLoading(false);
|
||||
return;
|
||||
}
|
||||
// Audio is not deleted, proceed to load it
|
||||
audioElement = document.createElement("audio");
|
||||
audioElement.src = `${api_url}/v1/transcripts/${transcriptId}/audio/mp3`;
|
||||
audioElement.crossOrigin = "anonymous";
|
||||
audioElement.preload = "auto";
|
||||
|
||||
// Audio is not deleted, proceed to load it
|
||||
audioElement = document.createElement("audio");
|
||||
audioElement.src = `${api_url}/v1/transcripts/${transcriptId}/audio/mp3`;
|
||||
audioElement.crossOrigin = "anonymous";
|
||||
audioElement.preload = "auto";
|
||||
handleCanPlay = () => {
|
||||
if (stopped) return;
|
||||
setAudioLoading(false);
|
||||
setAudioLoadingError(null);
|
||||
};
|
||||
|
||||
handleCanPlay = () => {
|
||||
if (stopped) return;
|
||||
setAudioLoading(false);
|
||||
setAudioLoadingError(null);
|
||||
};
|
||||
handleError = () => {
|
||||
if (stopped) return;
|
||||
setAudioLoading(false);
|
||||
setAudioLoadingError("Failed to load audio");
|
||||
};
|
||||
|
||||
handleError = () => {
|
||||
if (stopped) return;
|
||||
setAudioLoading(false);
|
||||
setAudioLoadingError("Failed to load audio");
|
||||
};
|
||||
audioElement.addEventListener("canplay", handleCanPlay);
|
||||
audioElement.addEventListener("error", handleError);
|
||||
|
||||
audioElement.addEventListener("canplay", handleCanPlay);
|
||||
audioElement.addEventListener("error", handleError);
|
||||
|
||||
if (!stopped) {
|
||||
setMedia(audioElement);
|
||||
}
|
||||
})
|
||||
.catch((error) => {
|
||||
if (stopped) return;
|
||||
console.error("Failed to fetch transcript:", error);
|
||||
setAudioDeleted(null);
|
||||
setTranscriptMetadataLoadingError(error.message);
|
||||
setAudioLoading(false);
|
||||
})
|
||||
.finally(() => {
|
||||
if (stopped) return;
|
||||
setTranscriptMetadataLoading(false);
|
||||
});
|
||||
if (!stopped) {
|
||||
setMedia(audioElement);
|
||||
}
|
||||
|
||||
return () => {
|
||||
stopped = true;
|
||||
@@ -128,14 +110,18 @@ const useMp3 = (transcriptId: string, waiting?: boolean): Mp3Response => {
|
||||
if (handleError) audioElement.removeEventListener("error", handleError);
|
||||
}
|
||||
};
|
||||
}, [transcriptId, api, later, api_url]);
|
||||
}, [transcriptId, transcript, later, api_url]);
|
||||
|
||||
const getNow = () => {
|
||||
setLater(false);
|
||||
};
|
||||
|
||||
const loading = audioLoading || transcriptMetadataLoading;
|
||||
const error = audioLoadingError || transcriptMetadataLoadingError;
|
||||
const error =
|
||||
audioLoadingError ||
|
||||
(transcriptError
|
||||
? (transcriptError as any).message || String(transcriptError)
|
||||
: null);
|
||||
|
||||
return { media, loading, error, getNow, audioDeleted };
|
||||
};
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import { Participant } from "../../api";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { shouldShowError } from "../../lib/errorUtils";
|
||||
import type { components } from "../../reflector-api";
|
||||
type Participant = components["schemas"]["Participant"];
|
||||
import { useTranscriptParticipants } from "../../lib/apiHooks";
|
||||
|
||||
type ErrorParticipants = {
|
||||
error: Error;
|
||||
@@ -29,46 +27,38 @@ export type UseParticipants = (
|
||||
) & { refetch: () => void };
|
||||
|
||||
const useParticipants = (transcriptId: string): UseParticipants => {
|
||||
const [response, setResponse] = useState<Participant[] | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(true);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const [count, setCount] = useState(0);
|
||||
const {
|
||||
data: response,
|
||||
isLoading: loading,
|
||||
error,
|
||||
refetch,
|
||||
} = useTranscriptParticipants(transcriptId || null);
|
||||
|
||||
const refetch = () => {
|
||||
if (!loading) {
|
||||
setCount(count + 1);
|
||||
setLoading(true);
|
||||
setErrorState(null);
|
||||
}
|
||||
};
|
||||
// Type-safe return based on state
|
||||
if (error) {
|
||||
return {
|
||||
error: error as Error,
|
||||
loading: false,
|
||||
response: null,
|
||||
refetch,
|
||||
} satisfies ErrorParticipants & { refetch: () => void };
|
||||
}
|
||||
|
||||
useEffect(() => {
|
||||
if (!transcriptId || !api) return;
|
||||
if (loading || !response) {
|
||||
return {
|
||||
response: response || null,
|
||||
loading: true,
|
||||
error: null,
|
||||
refetch,
|
||||
} satisfies LoadingParticipants & { refetch: () => void };
|
||||
}
|
||||
|
||||
setLoading(true);
|
||||
api
|
||||
.v1TranscriptGetParticipants({ transcriptId })
|
||||
.then((result) => {
|
||||
setResponse(result);
|
||||
setLoading(false);
|
||||
console.debug("Participants Loaded:", result);
|
||||
})
|
||||
.catch((error) => {
|
||||
const shouldShowHuman = shouldShowError(error);
|
||||
if (shouldShowHuman) {
|
||||
setError(error, "There was an error loading the participants");
|
||||
} else {
|
||||
setError(error);
|
||||
}
|
||||
setErrorState(error);
|
||||
setResponse(null);
|
||||
setLoading(false);
|
||||
});
|
||||
}, [transcriptId, !api, count]);
|
||||
|
||||
return { response, loading, error, refetch } as UseParticipants;
|
||||
return {
|
||||
response,
|
||||
loading: false,
|
||||
error: null,
|
||||
refetch,
|
||||
} satisfies SuccessParticipants & { refetch: () => void };
|
||||
};
|
||||
|
||||
export default useParticipants;
|
||||
|
||||
@@ -1,123 +0,0 @@
|
||||
// this hook is not great, we want to substitute it with a proper state management solution that is also not re-invention
|
||||
|
||||
import { useEffect, useRef, useState } from "react";
|
||||
import { SearchResult, SourceKind } from "../../api";
|
||||
import useApi from "../../lib/useApi";
|
||||
import {
|
||||
PaginationPage,
|
||||
paginationPageTo0Based,
|
||||
} from "../browse/_components/Pagination";
|
||||
|
||||
interface SearchFilters {
|
||||
roomIds: readonly string[] | null;
|
||||
sourceKind: SourceKind | null;
|
||||
}
|
||||
|
||||
const EMPTY_SEARCH_FILTERS: SearchFilters = {
|
||||
roomIds: null,
|
||||
sourceKind: null,
|
||||
};
|
||||
|
||||
type UseSearchTranscriptsOptions = {
|
||||
pageSize: number;
|
||||
page: PaginationPage;
|
||||
};
|
||||
|
||||
interface UseSearchTranscriptsReturn {
|
||||
results: SearchResult[];
|
||||
totalCount: number;
|
||||
isLoading: boolean;
|
||||
error: unknown;
|
||||
reload: () => void;
|
||||
}
|
||||
|
||||
function hashEffectFilters(filters: SearchFilters): string {
|
||||
return JSON.stringify(filters);
|
||||
}
|
||||
|
||||
export function useSearchTranscripts(
|
||||
query: string = "",
|
||||
filters: SearchFilters = EMPTY_SEARCH_FILTERS,
|
||||
options: UseSearchTranscriptsOptions = {
|
||||
pageSize: 20,
|
||||
page: PaginationPage(1),
|
||||
},
|
||||
): UseSearchTranscriptsReturn {
|
||||
const { pageSize, page } = options;
|
||||
|
||||
const [reloadCount, setReloadCount] = useState(0);
|
||||
|
||||
const api = useApi();
|
||||
const abortControllerRef = useRef<AbortController>();
|
||||
|
||||
const [data, setData] = useState<{ results: SearchResult[]; total: number }>({
|
||||
results: [],
|
||||
total: 0,
|
||||
});
|
||||
const [error, setError] = useState<any>();
|
||||
const [isLoading, setIsLoading] = useState(false);
|
||||
|
||||
const filterHash = hashEffectFilters(filters);
|
||||
|
||||
useEffect(() => {
|
||||
if (!api) {
|
||||
setData({ results: [], total: 0 });
|
||||
setError(undefined);
|
||||
setIsLoading(false);
|
||||
return;
|
||||
}
|
||||
|
||||
if (abortControllerRef.current) {
|
||||
abortControllerRef.current.abort();
|
||||
}
|
||||
|
||||
const abortController = new AbortController();
|
||||
abortControllerRef.current = abortController;
|
||||
|
||||
const performSearch = async () => {
|
||||
setIsLoading(true);
|
||||
|
||||
try {
|
||||
const response = await api.v1TranscriptsSearch({
|
||||
q: query || "",
|
||||
limit: pageSize,
|
||||
offset: paginationPageTo0Based(page) * pageSize,
|
||||
roomId: filters.roomIds?.[0],
|
||||
sourceKind: filters.sourceKind || undefined,
|
||||
});
|
||||
|
||||
if (abortController.signal.aborted) return;
|
||||
setData(response);
|
||||
setError(undefined);
|
||||
} catch (err: unknown) {
|
||||
if ((err as Error).name === "AbortError") {
|
||||
return;
|
||||
}
|
||||
if (abortController.signal.aborted) {
|
||||
console.error("Aborted search but error", err);
|
||||
return;
|
||||
}
|
||||
|
||||
setError(err);
|
||||
} finally {
|
||||
if (!abortController.signal.aborted) {
|
||||
setIsLoading(false);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
performSearch().then(() => {});
|
||||
|
||||
return () => {
|
||||
abortController.abort();
|
||||
};
|
||||
}, [api, query, page, filterHash, pageSize, reloadCount]);
|
||||
|
||||
return {
|
||||
results: data.results,
|
||||
totalCount: data.total,
|
||||
isLoading,
|
||||
error,
|
||||
reload: () => setReloadCount(reloadCount + 1),
|
||||
};
|
||||
}
|
||||
@@ -1,9 +1,8 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import type { components } from "../../reflector-api";
|
||||
import { useTranscriptTopicsWithWordsPerSpeaker } from "../../lib/apiHooks";
|
||||
|
||||
import { GetTranscriptTopicWithWordsPerSpeaker } from "../../api";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { shouldShowError } from "../../lib/errorUtils";
|
||||
type GetTranscriptTopicWithWordsPerSpeaker =
|
||||
components["schemas"]["GetTranscriptTopicWithWordsPerSpeaker"];
|
||||
|
||||
type ErrorTopicWithWords = {
|
||||
error: Error;
|
||||
@@ -33,47 +32,40 @@ const useTopicWithWords = (
|
||||
topicId: string | undefined,
|
||||
transcriptId: string,
|
||||
): UseTopicWithWords => {
|
||||
const [response, setResponse] =
|
||||
useState<GetTranscriptTopicWithWordsPerSpeaker | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(false);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const {
|
||||
data: response,
|
||||
isLoading: loading,
|
||||
error,
|
||||
refetch,
|
||||
} = useTranscriptTopicsWithWordsPerSpeaker(
|
||||
transcriptId || null,
|
||||
topicId || null,
|
||||
);
|
||||
|
||||
const [count, setCount] = useState(0);
|
||||
if (error) {
|
||||
return {
|
||||
error: error as Error,
|
||||
loading: false,
|
||||
response: null,
|
||||
refetch,
|
||||
} satisfies ErrorTopicWithWords & { refetch: () => void };
|
||||
}
|
||||
|
||||
const refetch = () => {
|
||||
if (!loading) {
|
||||
setCount(count + 1);
|
||||
setLoading(true);
|
||||
setErrorState(null);
|
||||
}
|
||||
};
|
||||
if (loading || !response) {
|
||||
return {
|
||||
response: response || null,
|
||||
loading: true,
|
||||
error: false,
|
||||
refetch,
|
||||
} satisfies LoadingTopicWithWords & { refetch: () => void };
|
||||
}
|
||||
|
||||
useEffect(() => {
|
||||
if (!transcriptId || !topicId || !api) return;
|
||||
|
||||
setLoading(true);
|
||||
|
||||
api
|
||||
.v1TranscriptGetTopicsWithWordsPerSpeaker({ transcriptId, topicId })
|
||||
.then((result) => {
|
||||
setResponse(result);
|
||||
setLoading(false);
|
||||
console.debug("Topics with words Loaded:", result);
|
||||
})
|
||||
.catch((error) => {
|
||||
const shouldShowHuman = shouldShowError(error);
|
||||
if (shouldShowHuman) {
|
||||
setError(error, "There was an error loading the topics with words");
|
||||
} else {
|
||||
setError(error);
|
||||
}
|
||||
setErrorState(error);
|
||||
});
|
||||
}, [transcriptId, !api, topicId, count]);
|
||||
|
||||
return { response, loading, error, refetch } as UseTopicWithWords;
|
||||
return {
|
||||
response,
|
||||
loading: false,
|
||||
error: null,
|
||||
refetch,
|
||||
} satisfies SuccessTopicWithWords & { refetch: () => void };
|
||||
};
|
||||
|
||||
export default useTopicWithWords;
|
||||
|
||||
@@ -1,10 +1,7 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import { useTranscriptTopics } from "../../lib/apiHooks";
|
||||
import type { components } from "../../reflector-api";
|
||||
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import { Topic } from "./webSocketTypes";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { shouldShowError } from "../../lib/errorUtils";
|
||||
import { GetTranscriptTopic } from "../../api";
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
|
||||
type TranscriptTopics = {
|
||||
topics: GetTranscriptTopic[] | null;
|
||||
@@ -13,34 +10,13 @@ type TranscriptTopics = {
|
||||
};
|
||||
|
||||
const useTopics = (id: string): TranscriptTopics => {
|
||||
const [topics, setTopics] = useState<Topic[] | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(true);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
useEffect(() => {
|
||||
if (!id || !api) return;
|
||||
const { data: topics, isLoading: loading, error } = useTranscriptTopics(id);
|
||||
|
||||
setLoading(true);
|
||||
api
|
||||
.v1TranscriptGetTopics({ transcriptId: id })
|
||||
.then((result) => {
|
||||
setTopics(result);
|
||||
setLoading(false);
|
||||
console.debug("Transcript topics loaded:", result);
|
||||
})
|
||||
.catch((err) => {
|
||||
setErrorState(err);
|
||||
const shouldShowHuman = shouldShowError(err);
|
||||
if (shouldShowHuman) {
|
||||
setError(err, "There was an error loading the topics");
|
||||
} else {
|
||||
setError(err);
|
||||
}
|
||||
});
|
||||
}, [id, !api]);
|
||||
|
||||
return { topics, loading, error };
|
||||
return {
|
||||
topics: topics || null,
|
||||
loading,
|
||||
error: error as Error | null,
|
||||
};
|
||||
};
|
||||
|
||||
export default useTopics;
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import { GetTranscript } from "../../api";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import { shouldShowError } from "../../lib/errorUtils";
|
||||
import useApi from "../../lib/useApi";
|
||||
import type { components } from "../../reflector-api";
|
||||
import { useTranscriptGet } from "../../lib/apiHooks";
|
||||
|
||||
type GetTranscript = components["schemas"]["GetTranscript"];
|
||||
|
||||
type ErrorTranscript = {
|
||||
error: Error;
|
||||
@@ -28,43 +27,43 @@ type SuccessTranscript = {
|
||||
const useTranscript = (
|
||||
id: string | null,
|
||||
): ErrorTranscript | LoadingTranscript | SuccessTranscript => {
|
||||
const [response, setResponse] = useState<GetTranscript | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(true);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const [reload, setReload] = useState(0);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const reloadHandler = () => setReload((prev) => prev + 1);
|
||||
const { data, isLoading, error, refetch } = useTranscriptGet(id);
|
||||
|
||||
useEffect(() => {
|
||||
if (!id || !api) return;
|
||||
// Map to the expected return format
|
||||
if (isLoading) {
|
||||
return {
|
||||
response: null,
|
||||
loading: true,
|
||||
error: false,
|
||||
reload: refetch,
|
||||
};
|
||||
}
|
||||
|
||||
if (!response) {
|
||||
setLoading(true);
|
||||
}
|
||||
if (error) {
|
||||
return {
|
||||
error: error as Error,
|
||||
loading: false,
|
||||
response: null,
|
||||
reload: refetch,
|
||||
};
|
||||
}
|
||||
|
||||
api
|
||||
.v1TranscriptGet({ transcriptId: id })
|
||||
.then((result) => {
|
||||
setResponse(result);
|
||||
setLoading(false);
|
||||
console.debug("Transcript Loaded:", result);
|
||||
})
|
||||
.catch((error) => {
|
||||
const shouldShowHuman = shouldShowError(error);
|
||||
if (shouldShowHuman) {
|
||||
setError(error, "There was an error loading the transcript");
|
||||
} else {
|
||||
setError(error);
|
||||
}
|
||||
setErrorState(error);
|
||||
});
|
||||
}, [id, !api, reload]);
|
||||
// Check if data is undefined or null
|
||||
if (!data) {
|
||||
return {
|
||||
response: null,
|
||||
loading: true,
|
||||
error: false,
|
||||
reload: refetch,
|
||||
};
|
||||
}
|
||||
|
||||
return { response, loading, error, reload: reloadHandler } as
|
||||
| ErrorTranscript
|
||||
| LoadingTranscript
|
||||
| SuccessTranscript;
|
||||
return {
|
||||
response: data,
|
||||
loading: false,
|
||||
error: null,
|
||||
reload: refetch,
|
||||
};
|
||||
};
|
||||
|
||||
export default useTranscript;
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import { AudioWaveform } from "../../api";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { shouldShowError } from "../../lib/errorUtils";
|
||||
import type { components } from "../../reflector-api";
|
||||
import { useTranscriptWaveform } from "../../lib/apiHooks";
|
||||
|
||||
type AudioWaveform = components["schemas"]["AudioWaveform"];
|
||||
|
||||
type AudioWaveFormResponse = {
|
||||
waveform: AudioWaveform | null;
|
||||
@@ -11,35 +10,17 @@ type AudioWaveFormResponse = {
|
||||
};
|
||||
|
||||
const useWaveform = (id: string, skip: boolean): AudioWaveFormResponse => {
|
||||
const [waveform, setWaveform] = useState<AudioWaveform | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(false);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const {
|
||||
data: waveform,
|
||||
isLoading: loading,
|
||||
error,
|
||||
} = useTranscriptWaveform(skip ? null : id);
|
||||
|
||||
useEffect(() => {
|
||||
if (!id || !api || skip) {
|
||||
setLoading(false);
|
||||
setErrorState(null);
|
||||
setWaveform(null);
|
||||
return;
|
||||
}
|
||||
setLoading(true);
|
||||
setErrorState(null);
|
||||
api
|
||||
.v1TranscriptGetAudioWaveform({ transcriptId: id })
|
||||
.then((result) => {
|
||||
setWaveform(result);
|
||||
setLoading(false);
|
||||
console.debug("Transcript waveform loaded:", result);
|
||||
})
|
||||
.catch((err) => {
|
||||
setErrorState(err);
|
||||
setLoading(false);
|
||||
});
|
||||
}, [id, api, skip]);
|
||||
|
||||
return { waveform, loading, error };
|
||||
return {
|
||||
waveform: waveform || null,
|
||||
loading,
|
||||
error: error as Error | null,
|
||||
};
|
||||
};
|
||||
|
||||
export default useWaveform;
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import Peer from "simple-peer";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import useApi from "../../lib/useApi";
|
||||
import { RtcOffer } from "../../api";
|
||||
import { useTranscriptWebRTC } from "../../lib/apiHooks";
|
||||
import type { components } from "../../reflector-api";
|
||||
type RtcOffer = components["schemas"]["RtcOffer"];
|
||||
|
||||
const useWebRTC = (
|
||||
stream: MediaStream | null,
|
||||
@@ -10,10 +11,10 @@ const useWebRTC = (
|
||||
): Peer => {
|
||||
const [peer, setPeer] = useState<Peer | null>(null);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const { mutateAsync: mutateWebRtcTranscriptAsync } = useTranscriptWebRTC();
|
||||
|
||||
useEffect(() => {
|
||||
if (!stream || !transcriptId || !api) {
|
||||
if (!stream || !transcriptId) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -24,7 +25,7 @@ const useWebRTC = (
|
||||
try {
|
||||
p = new Peer({ initiator: true, stream: stream });
|
||||
} catch (error) {
|
||||
setError(error, "Error creating WebRTC");
|
||||
setError(error as Error, "Error creating WebRTC");
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -32,26 +33,31 @@ const useWebRTC = (
|
||||
setError(new Error(`WebRTC error: ${err}`));
|
||||
});
|
||||
|
||||
p.on("signal", (data: any) => {
|
||||
if (!api) return;
|
||||
p.on("signal", async (data: any) => {
|
||||
if ("sdp" in data) {
|
||||
const rtcOffer: RtcOffer = {
|
||||
sdp: data.sdp,
|
||||
type: data.type,
|
||||
};
|
||||
|
||||
api
|
||||
.v1TranscriptRecordWebrtc({ transcriptId, requestBody: rtcOffer })
|
||||
.then((answer) => {
|
||||
try {
|
||||
p.signal(answer);
|
||||
} catch (error) {
|
||||
setError(error);
|
||||
}
|
||||
})
|
||||
.catch((error) => {
|
||||
setError(error, "Error loading WebRTCOffer");
|
||||
try {
|
||||
const answer = await mutateWebRtcTranscriptAsync({
|
||||
params: {
|
||||
path: {
|
||||
transcript_id: transcriptId,
|
||||
},
|
||||
},
|
||||
body: rtcOffer,
|
||||
});
|
||||
|
||||
try {
|
||||
p.signal(answer);
|
||||
} catch (error) {
|
||||
setError(error as Error);
|
||||
}
|
||||
} catch (error) {
|
||||
setError(error as Error, "Error loading WebRTCOffer");
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
@@ -63,7 +69,7 @@ const useWebRTC = (
|
||||
return () => {
|
||||
p.destroy();
|
||||
};
|
||||
}, [stream, transcriptId, !api]);
|
||||
}, [stream, transcriptId, mutateWebRtcTranscriptAsync]);
|
||||
|
||||
return peer;
|
||||
};
|
||||
|
||||
@@ -2,8 +2,12 @@ import { useContext, useEffect, useState } from "react";
|
||||
import { Topic, FinalSummary, Status } from "./webSocketTypes";
|
||||
import { useError } from "../../(errors)/errorContext";
|
||||
import { DomainContext } from "../../domainContext";
|
||||
import { AudioWaveform, GetTranscriptSegmentTopic } from "../../api";
|
||||
import useApi from "../../lib/useApi";
|
||||
import type { components } from "../../reflector-api";
|
||||
type AudioWaveform = components["schemas"]["AudioWaveform"];
|
||||
type GetTranscriptSegmentTopic =
|
||||
components["schemas"]["GetTranscriptSegmentTopic"];
|
||||
import { useQueryClient } from "@tanstack/react-query";
|
||||
import { $api } from "../../lib/apiClient";
|
||||
|
||||
export type UseWebSockets = {
|
||||
transcriptTextLive: string;
|
||||
@@ -33,8 +37,8 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
const [status, setStatus] = useState<Status>({ value: "" });
|
||||
const { setError } = useError();
|
||||
|
||||
const { websocket_url } = useContext(DomainContext);
|
||||
const api = useApi();
|
||||
const { websocket_url: websocketUrl } = useContext(DomainContext);
|
||||
const queryClient = useQueryClient();
|
||||
|
||||
const [accumulatedText, setAccumulatedText] = useState<string>("");
|
||||
|
||||
@@ -105,6 +109,13 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
title: "Topic 1: Introduction to Quantum Mechanics",
|
||||
transcript:
|
||||
"A brief overview of quantum mechanics and its principles.",
|
||||
segments: [
|
||||
{
|
||||
speaker: 1,
|
||||
start: 0,
|
||||
text: "This is the transcription of an example title",
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
id: "2",
|
||||
@@ -315,11 +326,9 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
}
|
||||
};
|
||||
|
||||
if (!transcriptId || !api) return;
|
||||
if (!transcriptId) return;
|
||||
|
||||
api?.v1TranscriptGetWebsocketEvents({ transcriptId }).then((result) => {});
|
||||
|
||||
const url = `${websocket_url}/v1/transcripts/${transcriptId}/events`;
|
||||
const url = `${websocketUrl}/v1/transcripts/${transcriptId}/events`;
|
||||
let ws = new WebSocket(url);
|
||||
|
||||
ws.onopen = () => {
|
||||
@@ -361,6 +370,16 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
return [...prevTopics, topic];
|
||||
});
|
||||
console.debug("TOPIC event:", message.data);
|
||||
// Invalidate topics query to sync with WebSocket data
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: $api.queryOptions(
|
||||
"get",
|
||||
"/v1/transcripts/{transcript_id}/topics",
|
||||
{
|
||||
params: { path: { transcript_id: transcriptId } },
|
||||
},
|
||||
).queryKey,
|
||||
});
|
||||
break;
|
||||
|
||||
case "FINAL_SHORT_SUMMARY":
|
||||
@@ -370,6 +389,16 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
case "FINAL_LONG_SUMMARY":
|
||||
if (message.data) {
|
||||
setFinalSummary(message.data);
|
||||
// Invalidate transcript query to sync summary
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: $api.queryOptions(
|
||||
"get",
|
||||
"/v1/transcripts/{transcript_id}",
|
||||
{
|
||||
params: { path: { transcript_id: transcriptId } },
|
||||
},
|
||||
).queryKey,
|
||||
});
|
||||
}
|
||||
break;
|
||||
|
||||
@@ -377,6 +406,16 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
console.debug("FINAL_TITLE event:", message.data);
|
||||
if (message.data) {
|
||||
setTitle(message.data.title);
|
||||
// Invalidate transcript query to sync title
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: $api.queryOptions(
|
||||
"get",
|
||||
"/v1/transcripts/{transcript_id}",
|
||||
{
|
||||
params: { path: { transcript_id: transcriptId } },
|
||||
},
|
||||
).queryKey,
|
||||
});
|
||||
}
|
||||
break;
|
||||
|
||||
@@ -434,6 +473,11 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
break;
|
||||
case 1001: // Navigate away
|
||||
break;
|
||||
case 1006: // Closed by client Chrome
|
||||
console.warn(
|
||||
"WebSocket closed by client, likely duplicated connection in react dev mode",
|
||||
);
|
||||
break;
|
||||
default:
|
||||
setError(
|
||||
new Error(`WebSocket closed unexpectedly with code: ${event.code}`),
|
||||
@@ -450,7 +494,7 @@ export const useWebSockets = (transcriptId: string | null): UseWebSockets => {
|
||||
return () => {
|
||||
ws.close();
|
||||
};
|
||||
}, [transcriptId, !api]);
|
||||
}, [transcriptId, websocketUrl]);
|
||||
|
||||
return {
|
||||
transcriptTextLive,
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
import { GetTranscriptTopic } from "../../api";
|
||||
import type { components } from "../../reflector-api";
|
||||
|
||||
type GetTranscriptTopic = components["schemas"]["GetTranscriptTopic"];
|
||||
|
||||
export type Topic = GetTranscriptTopic;
|
||||
|
||||
|
||||
@@ -1,18 +1,21 @@
|
||||
"use client";
|
||||
import { signOut, signIn } from "next-auth/react";
|
||||
import useSessionStatus from "../lib/useSessionStatus";
|
||||
|
||||
import { Spinner, Link } from "@chakra-ui/react";
|
||||
import { useAuth } from "../lib/AuthProvider";
|
||||
|
||||
export default function UserInfo() {
|
||||
const { isLoading, isAuthenticated } = useSessionStatus();
|
||||
|
||||
const auth = useAuth();
|
||||
const status = auth.status;
|
||||
const isLoading = status === "loading";
|
||||
const isAuthenticated = status === "authenticated";
|
||||
const isRefreshing = status === "refreshing";
|
||||
return isLoading ? (
|
||||
<Spinner size="xs" className="mx-3" />
|
||||
) : !isAuthenticated ? (
|
||||
) : !isAuthenticated && !isRefreshing ? (
|
||||
<Link
|
||||
href="/"
|
||||
className="font-light px-2"
|
||||
onClick={() => signIn("authentik")}
|
||||
onClick={() => auth.signIn("authentik")}
|
||||
>
|
||||
Log in
|
||||
</Link>
|
||||
@@ -20,7 +23,7 @@ export default function UserInfo() {
|
||||
<Link
|
||||
href="#"
|
||||
className="font-light px-2"
|
||||
onClick={() => signOut({ callbackUrl: "/" })}
|
||||
onClick={() => auth.signOut({ callbackUrl: "/" })}
|
||||
>
|
||||
Log out
|
||||
</Link>
|
||||
|
||||
@@ -21,11 +21,13 @@ import { toaster } from "../components/ui/toaster";
|
||||
import useRoomMeeting from "./useRoomMeeting";
|
||||
import { useRouter } from "next/navigation";
|
||||
import { notFound } from "next/navigation";
|
||||
import useSessionStatus from "../lib/useSessionStatus";
|
||||
import { useRecordingConsent } from "../recordingConsentContext";
|
||||
import useApi from "../lib/useApi";
|
||||
import { Meeting } from "../api";
|
||||
import { useMeetingAudioConsent } from "../lib/apiHooks";
|
||||
import type { components } from "../reflector-api";
|
||||
|
||||
type Meeting = components["schemas"]["Meeting"];
|
||||
import { FaBars } from "react-icons/fa6";
|
||||
import { useAuth } from "../lib/AuthProvider";
|
||||
|
||||
export type RoomDetails = {
|
||||
params: {
|
||||
@@ -76,31 +78,30 @@ const useConsentDialog = (
|
||||
wherebyRef: RefObject<HTMLElement> /*accessibility*/,
|
||||
) => {
|
||||
const { state: consentState, touch, hasConsent } = useRecordingConsent();
|
||||
const [consentLoading, setConsentLoading] = useState(false);
|
||||
// toast would open duplicates, even with using "id=" prop
|
||||
const [modalOpen, setModalOpen] = useState(false);
|
||||
const api = useApi();
|
||||
const audioConsentMutation = useMeetingAudioConsent();
|
||||
|
||||
const handleConsent = useCallback(
|
||||
async (meetingId: string, given: boolean) => {
|
||||
if (!api) return;
|
||||
|
||||
setConsentLoading(true);
|
||||
|
||||
try {
|
||||
await api.v1MeetingAudioConsent({
|
||||
meetingId,
|
||||
requestBody: { consent_given: given },
|
||||
await audioConsentMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
meeting_id: meetingId,
|
||||
},
|
||||
},
|
||||
body: {
|
||||
consent_given: given,
|
||||
},
|
||||
});
|
||||
|
||||
touch(meetingId);
|
||||
} catch (error) {
|
||||
console.error("Error submitting consent:", error);
|
||||
} finally {
|
||||
setConsentLoading(false);
|
||||
}
|
||||
},
|
||||
[api, touch],
|
||||
[audioConsentMutation, touch],
|
||||
);
|
||||
|
||||
const showConsentModal = useCallback(() => {
|
||||
@@ -194,7 +195,12 @@ const useConsentDialog = (
|
||||
return cleanup;
|
||||
}, [meetingId, handleConsent, wherebyRef, modalOpen]);
|
||||
|
||||
return { showConsentModal, consentState, hasConsent, consentLoading };
|
||||
return {
|
||||
showConsentModal,
|
||||
consentState,
|
||||
hasConsent,
|
||||
consentLoading: audioConsentMutation.isPending,
|
||||
};
|
||||
};
|
||||
|
||||
function ConsentDialogButton({
|
||||
@@ -254,7 +260,9 @@ export default function Room(details: RoomDetails) {
|
||||
const roomName = details.params.roomName;
|
||||
const meeting = useRoomMeeting(roomName);
|
||||
const router = useRouter();
|
||||
const { isLoading, isAuthenticated } = useSessionStatus();
|
||||
const status = useAuth().status;
|
||||
const isAuthenticated = status === "authenticated";
|
||||
const isLoading = status === "loading" || meeting.loading;
|
||||
|
||||
const roomUrl = meeting?.response?.host_room_url
|
||||
? meeting?.response?.host_room_url
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import { useError } from "../(errors)/errorContext";
|
||||
import { Meeting } from "../api";
|
||||
import type { components } from "../reflector-api";
|
||||
import { shouldShowError } from "../lib/errorUtils";
|
||||
import useApi from "../lib/useApi";
|
||||
|
||||
type Meeting = components["schemas"]["Meeting"];
|
||||
import { useRoomsCreateMeeting } from "../lib/apiHooks";
|
||||
import { notFound } from "next/navigation";
|
||||
|
||||
type ErrorMeeting = {
|
||||
@@ -30,27 +32,25 @@ const useRoomMeeting = (
|
||||
roomName: string | null | undefined,
|
||||
): ErrorMeeting | LoadingMeeting | SuccessMeeting => {
|
||||
const [response, setResponse] = useState<Meeting | null>(null);
|
||||
const [loading, setLoading] = useState<boolean>(true);
|
||||
const [error, setErrorState] = useState<Error | null>(null);
|
||||
const [reload, setReload] = useState(0);
|
||||
const { setError } = useError();
|
||||
const api = useApi();
|
||||
const createMeetingMutation = useRoomsCreateMeeting();
|
||||
const reloadHandler = () => setReload((prev) => prev + 1);
|
||||
|
||||
useEffect(() => {
|
||||
if (!roomName || !api) return;
|
||||
if (!roomName) return;
|
||||
|
||||
if (!response) {
|
||||
setLoading(true);
|
||||
}
|
||||
|
||||
api
|
||||
.v1RoomsCreateMeeting({ roomName })
|
||||
.then((result) => {
|
||||
const createMeeting = async () => {
|
||||
try {
|
||||
const result = await createMeetingMutation.mutateAsync({
|
||||
params: {
|
||||
path: {
|
||||
room_name: roomName,
|
||||
},
|
||||
},
|
||||
});
|
||||
setResponse(result);
|
||||
setLoading(false);
|
||||
})
|
||||
.catch((error) => {
|
||||
} catch (error: any) {
|
||||
const shouldShowHuman = shouldShowError(error);
|
||||
if (shouldShowHuman && error.status !== 404) {
|
||||
setError(
|
||||
@@ -60,9 +60,14 @@ const useRoomMeeting = (
|
||||
} else {
|
||||
setError(error);
|
||||
}
|
||||
setErrorState(error);
|
||||
});
|
||||
}, [roomName, !api, reload]);
|
||||
}
|
||||
};
|
||||
|
||||
createMeeting();
|
||||
}, [roomName, reload]);
|
||||
|
||||
const loading = createMeetingMutation.isPending && !response;
|
||||
const error = createMeetingMutation.error as Error | null;
|
||||
|
||||
return { response, loading, error, reload: reloadHandler } as
|
||||
| ErrorMeeting
|
||||
|
||||
@@ -1,37 +0,0 @@
|
||||
import type { BaseHttpRequest } from "./core/BaseHttpRequest";
|
||||
import type { OpenAPIConfig } from "./core/OpenAPI";
|
||||
import { Interceptors } from "./core/OpenAPI";
|
||||
import { AxiosHttpRequest } from "./core/AxiosHttpRequest";
|
||||
|
||||
import { DefaultService } from "./services.gen";
|
||||
|
||||
type HttpRequestConstructor = new (config: OpenAPIConfig) => BaseHttpRequest;
|
||||
|
||||
export class OpenApi {
|
||||
public readonly default: DefaultService;
|
||||
|
||||
public readonly request: BaseHttpRequest;
|
||||
|
||||
constructor(
|
||||
config?: Partial<OpenAPIConfig>,
|
||||
HttpRequest: HttpRequestConstructor = AxiosHttpRequest,
|
||||
) {
|
||||
this.request = new HttpRequest({
|
||||
BASE: config?.BASE ?? "",
|
||||
VERSION: config?.VERSION ?? "0.1.0",
|
||||
WITH_CREDENTIALS: config?.WITH_CREDENTIALS ?? false,
|
||||
CREDENTIALS: config?.CREDENTIALS ?? "include",
|
||||
TOKEN: config?.TOKEN,
|
||||
USERNAME: config?.USERNAME,
|
||||
PASSWORD: config?.PASSWORD,
|
||||
HEADERS: config?.HEADERS,
|
||||
ENCODE_PATH: config?.ENCODE_PATH,
|
||||
interceptors: {
|
||||
request: config?.interceptors?.request ?? new Interceptors(),
|
||||
response: config?.interceptors?.response ?? new Interceptors(),
|
||||
},
|
||||
});
|
||||
|
||||
this.default = new DefaultService(this.request);
|
||||
}
|
||||
}
|
||||
@@ -1,8 +1,5 @@
|
||||
// NextAuth route handler for Authentik
|
||||
// Refresh rotation has been taken from https://next-auth.js.org/v3/tutorials/refresh-token-rotation even if we are using 4.x
|
||||
|
||||
import NextAuth from "next-auth";
|
||||
import { authOptions } from "../../../lib/auth";
|
||||
import { authOptions } from "../../../lib/authBackend";
|
||||
|
||||
const handler = NextAuth(authOptions);
|
||||
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
import type { ApiRequestOptions } from "./ApiRequestOptions";
|
||||
import type { ApiResult } from "./ApiResult";
|
||||
|
||||
export class ApiError extends Error {
|
||||
public readonly url: string;
|
||||
public readonly status: number;
|
||||
public readonly statusText: string;
|
||||
public readonly body: unknown;
|
||||
public readonly request: ApiRequestOptions;
|
||||
|
||||
constructor(
|
||||
request: ApiRequestOptions,
|
||||
response: ApiResult,
|
||||
message: string,
|
||||
) {
|
||||
super(message);
|
||||
|
||||
this.name = "ApiError";
|
||||
this.url = response.url;
|
||||
this.status = response.status;
|
||||
this.statusText = response.statusText;
|
||||
this.body = response.body;
|
||||
this.request = request;
|
||||
}
|
||||
}
|
||||
@@ -1,21 +0,0 @@
|
||||
export type ApiRequestOptions<T = unknown> = {
|
||||
readonly method:
|
||||
| "GET"
|
||||
| "PUT"
|
||||
| "POST"
|
||||
| "DELETE"
|
||||
| "OPTIONS"
|
||||
| "HEAD"
|
||||
| "PATCH";
|
||||
readonly url: string;
|
||||
readonly path?: Record<string, unknown>;
|
||||
readonly cookies?: Record<string, unknown>;
|
||||
readonly headers?: Record<string, unknown>;
|
||||
readonly query?: Record<string, unknown>;
|
||||
readonly formData?: Record<string, unknown>;
|
||||
readonly body?: any;
|
||||
readonly mediaType?: string;
|
||||
readonly responseHeader?: string;
|
||||
readonly responseTransformer?: (data: unknown) => Promise<T>;
|
||||
readonly errors?: Record<number | string, string>;
|
||||
};
|
||||
@@ -1,7 +0,0 @@
|
||||
export type ApiResult<TData = any> = {
|
||||
readonly body: TData;
|
||||
readonly ok: boolean;
|
||||
readonly status: number;
|
||||
readonly statusText: string;
|
||||
readonly url: string;
|
||||
};
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user